Blame view

ifcs2018_proceeding.tex 39.6 KB
0494f3f5b   jfriedt   corrections mineures
1
2
3
4
  % JMF : revoir l'abstract : on y avait mis le Zynq7010 de la redpitaya en montrant
  %   comment optimiser les perfs a surface finie. Ici aussi on tombait dans le cas ou`
  %   la solution a 1 seul FIR n'etait simplement pas synthetisable => fusionner les deux
  %   contributions pour le papier TUFFC
30a06bd2a   jfriedt   initial commit: I...
5
6
7
  \documentclass[a4paper,conference]{IEEEtran/IEEEtran}
  \usepackage{graphicx,color,hyperref}
  \usepackage{amsfonts}
6dfba800f   jfriedt   complement a la p...
8
9
10
  \usepackage{amsthm}
  \usepackage{amssymb}
  \usepackage{amsmath}
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
11
  \usepackage{algorithm2e}
33bcbbbcd   jfriedt   biblio en majuscu...
12
  \usepackage{url,balance}
30a06bd2a   jfriedt   initial commit: I...
13
  \usepackage[normalem]{ulem}
30a06bd2a   jfriedt   initial commit: I...
14
15
16
17
18
19
20
21
  % correct bad hyphenation here
  \hyphenation{op-tical net-works semi-conduc-tor}
  \textheight=26cm
  \setlength{\footskip}{30pt}
  \pagenumbering{gobble}
  \begin{document}
  \title{Filter optimization for real time digital processing of radiofrequency signals: application
  to oscillator metrology}
970e2bac6   ahugeat   Ajout des valeurs...
22
23
  \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
  G. Goavec-M\'erou\IEEEauthorrefmark{1},
190924a53   Arthur HUGEAT   ajout des choix d...
24
  P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
30a06bd2a   jfriedt   initial commit: I...
25
26
27
28
29
30
31
  \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
  \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
  Email: \{pyb2,jmfriedt\}@femto-st.fr}
  }
  \maketitle
  \thispagestyle{plain}
  \pagestyle{plain}
6dfba800f   jfriedt   complement a la p...
32
33
  
  ewtheorem{definition}{Definition}
30a06bd2a   jfriedt   initial commit: I...
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
  
  \begin{abstract}
  Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
  radiofrequency signal processing. Applied to oscillator characterization in the context
  of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
  noise rejection needs. Since real time radiofrequency processing must be performed in a
  Field Programmable Array to meet timing constraints, we investigate optimization strategies
  to design filters meeting rejection characteristics while limiting the hardware resources
  required and keeping timing constraints within the targeted measurement bandwidths.
  \end{abstract}
  
  \begin{IEEEkeywords}
  Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
  \end{IEEEkeywords}
  
  \section{Digital signal processing of ultrastable clock signals}
  
  Analog oscillator phase noise characteristics are classically performed by downconverting
970e2bac6   ahugeat   Ajout des valeurs...
52
  the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
30a06bd2a   jfriedt   initial commit: I...
53
54
  followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
  a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
970e2bac6   ahugeat   Ajout des valeurs...
55
  multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
30a06bd2a   jfriedt   initial commit: I...
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  
  \begin{figure}[h!tb]
  \begin{center}
  \includegraphics[width=.8\linewidth]{images/schema}
  \end{center}
  \caption{Fully digital oscillator phase noise characterization: the Device Under Test
  (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
  downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
  and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
  Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
  the spectral characteristics of the phase fluctuations.}
  \label{schema}
  \end{figure}
  
  As with the analog mixer,
  the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
  well as the generation of the frequency sum signal in addition to the frequency difference.
  These unwanted spectral characteristics must be rejected before decimating the data stream
39aa2f001   jfriedt   biblio 2018
74
  for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
5c78fa3b0   jfriedt   FIFO et HLS
75
  downconverter
30a06bd2a   jfriedt   initial commit: I...
76
77
78
79
80
81
82
83
84
  and the decimation processing blocks are core characteristics of an oscillator characterization
  system, and must reject out-of-band signals below the targeted phase noise -- typically in the
  sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
  use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
  datastream: optimizing the performance of the filter while reducing the needed resources is
  hence tackled in a systematic approach using optimization techniques. Most significantly, we
  tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
  tunable number of coefficients and tunable number of bits representing the coefficients and the
  data being processed.
7fcf1da2a   Arthur HUGEAT   ajout de la versi...
85
86
87
  \section{Finite impulse response filter}
  
  We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
88
  by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
5c78fa3b0   jfriedt   FIFO et HLS
89
  outputs $y_k$
7fcf1da2a   Arthur HUGEAT   ajout de la versi...
90
  $$y_n=\sum_{k=0}^N b_k x_{n-k}$$
190924a53   Arthur HUGEAT   ajout des choix d...
91
  As opposed to an implementation on a general purpose processor in which word size is defined by the
7fcf1da2a   Arthur HUGEAT   ajout de la versi...
92
  processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
93
  not only the coefficient values and number of taps must be defined, but also the number of bits
5c78fa3b0   jfriedt   FIFO et HLS
94
  defining the coefficients and the sample size. For this reason, and because we consider pipeline
e3580faae   jfriedt   relecture/correct...
95
  processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
96
  signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
0494f3f5b   jfriedt   corrections mineures
97
  the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level.
5c78fa3b0   jfriedt   FIFO et HLS
98
  Since latency is not an issue in a openloop phase noise characterization instrument, the large
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
99
  numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
5c78fa3b0   jfriedt   FIFO et HLS
100
  is not considered as an issue as would be in a closed loop system.
7fcf1da2a   Arthur HUGEAT   ajout de la versi...
101

76ebb20ed   jfriedt   relecture proceed...
102
103
104
  The coefficients are classically expressed as floating point values. However, this binary
  number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
  we select to quantify these floating point values into integer values. This quantization
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
105
  will result in some precision loss.
6dfba800f   jfriedt   complement a la p...
106
107
108
109
  
  %As illustrated in Fig. \ref{float_vs_int}, we see that we aren't
  %need too coefficients or too sample size. If we have lot of coefficients but a small sample size,
  %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality.
190924a53   Arthur HUGEAT   ajout des choix d...
110

76ebb20ed   jfriedt   relecture proceed...
111
  % JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
112
113
  % AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi)
  %    et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler
6dfba800f   jfriedt   complement a la p...
114
115
116
  %\begin{figure}[h!tb]
  %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf}
  %\caption{Impact of the quantization resolution of the coefficients}
ee2ff04c6   jfriedt   illustration quan...
117
  %\label{float_vs_int}
6dfba800f   jfriedt   complement a la p...
118
  %\end{figure}
e3580faae   jfriedt   relecture/correct...
119
120
121
  \begin{figure}[h!tb]
  \includegraphics[width=\linewidth]{images/demo_filtre}
  \caption{Impact of the quantization resolution of the coefficients: the quantization is
df9d66a38   Arthur HUGEAT   Redimension des f...
122
  set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
33bcbbbcd   jfriedt   biblio en majuscu...
123
124
  the 30~first and 30~last coefficients out of the initial 128~band-pass
  filter coefficients to 0 (red dots).}
e3580faae   jfriedt   relecture/correct...
125
126
  \label{float_vs_int}
  \end{figure}
6dfba800f   jfriedt   complement a la p...
127
128
129
130
131
132
133
134
135
  The tradeoff between quantization resolution and number of coefficients when considering
  integer operations is not trivial. As an illustration of the issue related to the
  relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
  a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
  quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
  taps become null, making the large number of coefficients irrelevant and allowing to save
  processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
  to reach a given rejection level, or maximizing out of band rejection for a given computational
  resource, will drive the investigation on cascading filters designed with varying tap resolution
e3580faae   jfriedt   relecture/correct...
136
137
138
139
  and tap length, as will be shown in the next section. Indeed, our development strategy closely
  follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
  in which basic blocks are defined and characterized before being assembled \cite{hide}
  in a complete processing chain. In our case, assembling the filter blocks is a simpler block
bee7a1f72   Arthur HUGEAT   fix typo
140
  combination process since we assume a single value to be processed and a single value to be
e3580faae   jfriedt   relecture/correct...
141
142
143
  generated at each clock cycle. The FIR filters will not be considered to decimate in the
  current implementation: the decimation is assumed to be located after the FIR cascade at the
  moment.
190924a53   Arthur HUGEAT   ajout des choix d...
144

30a06bd2a   jfriedt   initial commit: I...
145
146
147
148
149
150
151
152
153
154
155
  \section{Filter optimization}
  
  A basic approach for implementing the FIR filter is to compute the transfer function of
  a monolithic filter: this single filter defines all coefficients with the same resolution
  (number of bits) and processes data represented with their own resolution. Meeting the
  filter shape requires a large number of coefficients, limited by resources of the FPGA since
  this filter must process data stream at the radiofrequency sampling rate after the mixer.
  
  An optimization problem \cite{leung2004handbook} aims at improving one or many
  performance criteria within a constrained resource environment. Amongst the tools
  developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to
33bcbbbcd   jfriedt   biblio en majuscu...
156
  formally define the stated problem and search for an optimal use of available
30a06bd2a   jfriedt   initial commit: I...
157
  resources \cite{yu2007design, kodek1980design}.
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
158
  First we need to ensure that our problem is a real optimization problem. When
33bcbbbcd   jfriedt   biblio en majuscu...
159
160
  designing a processing function in the FPGA, we aim at meeting some requirement such as
  the throughput, the computation time or the noise rejection noise. However, due to limited
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
161
  resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor)
33bcbbbcd   jfriedt   biblio en majuscu...
162
163
164
  or LUT (Look Up Table), a tradeoff must be generally searched between performance and available
  computational resources: optimizing some criteria within finite, limited
  resources indeed matches the definition of a classical optimization problem.
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
165
166
  
  Specifically the degrees of freedom when addressing the problem of replacing the single monolithic
8a48cee58   Arthur HUGEAT   Rajout de la defi...
167
168
169
  FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$,
  the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ representing
  -the data fed to the filter. Because each FIR in the chain is fed the output of the previous stage,
970e2bac6   ahugeat   Ajout des valeurs...
170
  the optimization of the complete processing chain within a constrained resource environment is not
365465b1b   jfriedt   notations
171
  trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which aims
8a48cee58   Arthur HUGEAT   Rajout de la defi...
172
  at approximating the number of bits needed in a worst case condition to represent the output of the
365465b1b   jfriedt   notations
173
174
175
176
  FIR. Indeed, the number of bits generated by the FIR is $(C_i+D_i)\times\log_2(N_i)$ with $D_i$
  the number of bits needed to represent the data $x_k$ generated by the previous stage, but the
  $\log$ function is avoided for its incompatibility with a linear programming description, and
  the simple product is approximated as the number of gates needed to perform the calculation. Such an
e3580faae   jfriedt   relecture/correct...
177
178
179
180
181
182
  occupied area estimate assumes that the number of gates scales as the number of bits and the number
  of coefficients, but does not account for the detailed implementation of the hardware. Indeed,
  various FPGA implementations will provide different hardware functionalities, and we shall consider
  at the end of the design a synthesis step using vendor software to assess the validity of the solution
  found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random
  Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications
33bcbbbcd   jfriedt   biblio en majuscu...
183
  are most efficiently implemented by using DSP blocks whose input word
e3580faae   jfriedt   relecture/correct...
184
185
186
187
  size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high
  abstraction on the resource occupation is nevertheless selected in the following discussion in order
  to leave enough degrees of freedom in the problem to try and find original solutions: too many
  constraints in the initial statement of the problem leave little room for finding an optimal solution.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
188

e3580faae   jfriedt   relecture/correct...
189
190
191
  \begin{figure}[h!tb]
  \begin{center}
  \includegraphics[width=.5\linewidth]{schema2}
df9d66a38   Arthur HUGEAT   Redimension des f...
192
  \caption{Shape of the filter transmitted power $P$ as a function of frequency:
33bcbbbcd   jfriedt   biblio en majuscu...
193
194
  the bandpass BP is considered to occupy the initial
  40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition
e3580faae   jfriedt   relecture/correct...
195
196
197
198
199
200
  width.}
  \label{rejection-shape}
  \end{center}
  \end{figure}
  
  Following these considerations, the model is expressed as:
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
201
202
203
  \begin{align}
    \begin{cases}
      \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\
365465b1b   jfriedt   notations
204
      \mathcal{A}_i &= N_i \times C_i\\
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
205
206
207
208
      \Delta_i &= \Delta _{i-1} + \mathcal{P}_i
    \end{cases}
    \label{model-FIR}
  \end{align}
365465b1b   jfriedt   notations
209
  To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the stopband rejection dependence with $N_i$ and $C_i$, $\mathcal{A}_i$
0494f3f5b   jfriedt   corrections mineures
210
  is a theoretical area occupation of the processing block on the FPGA as discussed earlier, and $\Delta_i$ is the total rejection for the current stage $i$.
e3580faae   jfriedt   relecture/correct...
211
  Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending
df9d66a38   Arthur HUGEAT   Redimension des f...
212
213
  on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an
  incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements.
33bcbbbcd   jfriedt   biblio en majuscu...
214
215
  Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will
  be illustrated lated (section \ref{median}), we have designed
df9d66a38   Arthur HUGEAT   Redimension des f...
216
  a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband
e3580faae   jfriedt   relecture/correct...
217
218
219
220
  (Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response
  in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid
  ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter
  rejection capability. Weighing these two criteria allows designing the linear program to be solved.
30a06bd2a   jfriedt   initial commit: I...
221

30a06bd2a   jfriedt   initial commit: I...
222
223
224
225
226
  \begin{figure}[h!tb]
  \includegraphics[width=\linewidth]{images/noise-rejection.pdf}
  \caption{Rejection as a function of number of coefficients and number of bits}
  \label{noise-rejection}
  \end{figure}
8a48cee58   Arthur HUGEAT   Rajout de la defi...
227
228
229
  The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource
  occupation below a user-defined threshold, or as will be discussed here, aims at minimizing the area
  needed to reach a given rejection ($\min(S_q)$ in the forthcoming discussion, Eqs. \ref{cstr_size}
365465b1b   jfriedt   notations
230
  and \ref{cstr_rejection}). The MILP solver is allowed to choose the number of successive
30a06bd2a   jfriedt   initial commit: I...
231
  filters, within an upper bound. The last problem is to model the noise rejection. Since filter
e3580faae   jfriedt   relecture/correct...
232
  noise rejection capability is not modeled with linear equations, a look-up-table is generated
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
233
  for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each
0494f3f5b   jfriedt   corrections mineures
234
235
236
  one of these conditions, the low-pass filter rejection is stored as computed by the frequency response
  of the digital filter (Fig. \ref{noise-rejection}). Various rejection criteria have been investigated,
  including mean value of the stopband response, median value of the stopband response, or as finally
9db1d56ab   Arthur HUGEAT   Merge branch 'mas...
237
  selected, maximum value in the stopband. An intuitive analysis of the chart of Fig. \ref{noise-rejection}
0494f3f5b   jfriedt   corrections mineures
238
  hints at an optimum
33bcbbbcd   jfriedt   biblio en majuscu...
239
240
  set of tap length and number of bit for representing the coefficients along the line of the pyramidal
  shaped rejection capability function.
30a06bd2a   jfriedt   initial commit: I...
241
242
243
  
  Linear program formalism for solving the problem is well documented: an objective function is
  defined which is linearly dependent on the parameters to be optimized. Constraints are expressed
a1a7d8766   jfriedt   minor correction
244
245
  as linear equations and solved using one of the available solvers, in our case GLPK\cite{glpk}.
  With the notations used in the description of system \ref{model-FIR}, we have defined the linear problem as:
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
246
247
  \paragraph{Variables}
  \begin{align*}
e3580faae   jfriedt   relecture/correct...
248
  x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
249
250
251
252
253
254
255
  & \text{ $j$ is the stage} \\
  & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\
  \end{align*}
  \paragraph{Constants}
  \begin{align*}
  \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\
  & \text{ $p$ is the number of different filters} \\
48d886be9   Arthur HUGEAT   Correction des no...
256
257
258
259
260
261
262
  % N(i) & \text{ % Constant to let the
  % number of coefficients %} \\ & \text{
  % for filter $i$}\\
  % C(i) & \text{ % Constant to let the
  % number of bits of %}\\ & \text{
  % each coefficient for filter $i$}\\
  \mathcal{S}_{\max} & \text{ Total space available inside the FPGA}
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
263
264
  \end{align*}
  \paragraph{Constraints}
e3580faae   jfriedt   relecture/correct...
265
266
267
268
269
270
271
272
273
  \begin{align}
  1 \leq i \leq p & 
  onumber\\
  1 \leq j \leq q & \text{ $q$ is the max of filter stage} 
  onumber \\
  \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} 
  onumber\\
  \mathcal{S}_0 = 0 & \text{ initial occupation} 
  onumber\\
bee7a1f72   Arthur HUGEAT   fix typo
274
  \forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\
365465b1b   jfriedt   notations
275
276
  \mathcal{S}_j \leq \mathcal{S}_{\max}
  onumber \\
e3580faae   jfriedt   relecture/correct...
277
278
  \mathcal{N}_0 = 0 & \text{ initial rejection}
  onumber\\
bee7a1f72   Arthur HUGEAT   fix typo
279
280
281
  \forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\
  \mathcal{N}_q \geqslant 160 & \text{ an user defined bound}
  onumber\\
e3580faae   jfriedt   relecture/correct...
282
283
284
285
  & \text{ (e.g. 160~dB here)}
  onumber\\
  onumber
  \end{align}
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
286
287
288
289
  \paragraph{Goal}
  \begin{align*}
  \min \mathcal{S}_q
  \end{align*}
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
290
291
292
293
294
  The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on
  the previous occupation and the occupation of current selected filter (it is possible
  that no filter is selected for this stage). And the second one \ref{cstr_rejection}
  means the same thing but for the rejection, the rejection depends the previous rejection
  plus the rejection of selected filter.
30a06bd2a   jfriedt   initial commit: I...
295

33bcbbbcd   jfriedt   biblio en majuscu...
296
  \subsection{Low bandpass ripple and maximum rejection criteria}
30a06bd2a   jfriedt   initial commit: I...
297
298
  The MILP solver provides a solution to the problem by selecting a series of small FIR with
  increasing number of bits representing data and coefficients as well as an increasing number
48d886be9   Arthur HUGEAT   Correction des no...
299
  of coefficients, instead of a single monolithic filter.
30a06bd2a   jfriedt   initial commit: I...
300
301
302
  
  \begin{figure}[h!tb]
  % \includegraphics[width=\linewidth]{images/compare-fir.pdf}
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
303
  \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf}
30a06bd2a   jfriedt   initial commit: I...
304
305
306
307
  \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
  with a cutoff frequency set at half the Nyquist frequency.}
  \label{compare-fir}
  \end{figure}
67ebe1295   jfriedt   tentative de desc...
308
309
310
311
312
313
  Fig. \ref{compare-fir} exhibits the
  performance comparison between one solution and a monolithic FIR when selecting a cutoff
  frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the
  same space usage are provided as selected by the MILP solver. The FIR cascade provides improved
  rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to
  be tuned or compensated for.
30a06bd2a   jfriedt   initial commit: I...
314
  The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}.
67ebe1295   jfriedt   tentative de desc...
315
  We have considered a set of resources representative of the hardware platform we work on,
0494f3f5b   jfriedt   corrections mineures
316
  Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results reported in
67ebe1295   jfriedt   tentative de desc...
317
318
  Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to
  the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10
9513b4310   jfriedt   remplacement Tab1...
319
  filters fit in the available resources. However, in all cases the DSP resources are fully
67ebe1295   jfriedt   tentative de desc...
320
321
322
323
324
325
  used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software,
  implementing the design fails due to the excessive resource usage preventing routing the signals
  on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization
  procedure by finding non-trivial solutions matching resource constraints, but on the other
  hand also illustrates the limitation of a model with an abstraction layer that does not account
  for the detailed architecture of the hardware.
30a06bd2a   jfriedt   initial commit: I...
326
327
328
329
  
  \begin{table}[h!tb]
  \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade
  identified as optimal by the MILP solver within a finite resource criterion. The last line refers
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
330
  to available resources on a Zynq-7020 as found on the Zedboard.}
30a06bd2a   jfriedt   initial commit: I...
331
  \begin{center}
315be2a30   jfriedt   figures avec axes...
332
333
  \begin{tabular}{|c|cccc|}\hline
  FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline
3ca9d7dfc   Arthur HUGEAT   ajout du programm...
334
335
336
337
  1 (monolithic) & 1 & 76183 & 220 & -162 \\
  5 & 5 & 18597 & 220 & -160 \\
  10 & 8 & 24729 & 220 & -161 \\\hline\hline
  \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} &  \\\hline
4103fb716   jfriedt   retour au tableau...
338
339
340
341
342
343
  %\begin{tabular}{|c|ccccc|}\hline
  %FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline
  %1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\
  %5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\
  %10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline
  %\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} &  \\\hline
30a06bd2a   jfriedt   initial commit: I...
344
345
346
347
348
  \end{tabular}
  \end{center}
  %\vspace{-0.7cm}
  \label{t1}
  \end{table}
33bcbbbcd   jfriedt   biblio en majuscu...
349
350
351
352
353
354
355
356
357
358
359
  \subsection{Alternate criteria}\label{median}
  
  Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer
  function, namely low ripple in the bandpass defined as the first 40\% of the frequency
  range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for
  demonstrating the need to properly select the optimization criterion, two cases of poor
  filter shapes obtained by selecting the mean value and median value of the rejection,
  with no consideration for the ripples in the bandpass. The results of the optimizations,
  in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}.
  
  \begin{figure}[h!tb]
df9d66a38   Arthur HUGEAT   Redimension des f...
360
  \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf}
33bcbbbcd   jfriedt   biblio en majuscu...
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
  \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
  with a cutoff frequency set at half the Nyquist frequency.}
  \label{compare-mean}
  \end{figure}
  
  In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not
  acceptable since the notch at the end of the transition band compensates for some unacceptable
  rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive
  high frequency spurious components to be aliased at low frequency when decimating the signal.
  Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and
  and slowly decaying transfer function starting to attenuate spectral components well before the
  transition band starts. Such issues are partly aleviated by replacing a mean rejection value with
  a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for
  the reasons stated previously and much poorer than those found with the maximum rejection criterion
  selected earlier (Fig. \ref{compare-fir}).
  
  \begin{figure}[h!tb]
df9d66a38   Arthur HUGEAT   Redimension des f...
378
  \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf}
33bcbbbcd   jfriedt   biblio en majuscu...
379
380
381
382
  \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
  with a cutoff frequency set at half the Nyquist frequency.}
  \label{compare-median}
  \end{figure}
30a06bd2a   jfriedt   initial commit: I...
383
384
385
386
387
  \section{Filter coefficient selection}
  
  The coefficients of a single monolithic filter are computed as the impulse response
  of the filter transfer function, and practically approximated by a multitude of methods
  including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing
bee7a1f72   Arthur HUGEAT   fix typo
388
  (Matlab's {\tt fir1} function).
30a06bd2a   jfriedt   initial commit: I...
389
390
391
392
393
394
395
396
  
  \begin{figure}[h!tb]
  \includegraphics[width=\linewidth]{images/fir1-vs-firls}
  \caption{Evolution of the rejection capability of least-square optimized filters and Hamming
  FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit
  encoded integers.}
  \label{2}
  \end{figure}
e3580faae   jfriedt   relecture/correct...
397
398
399
400
401
402
  Cascading filters opens a new optimization opportunity by
  selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2}
  illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better
  rejection than {\tt firls}: since the linear solver increases the number of coefficients along
  the processing chain, the type of selected filter also changes depending on the number of coefficients
  and evolves along the processing chain.
30a06bd2a   jfriedt   initial commit: I...
403
404
405
406
407
408
409
410
  \section{Conclusion}
  
  We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate
  Array for improved noise rejection within constrained resource occupation, as needed for
  real time processing of radiofrequency signal when characterizing spectral phase noise
  characteristics of stable oscillators. The flexibility of the digital approach makes the result
  best suited for closing the loop and using the measurement output in a feedback loop for
  controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior
970e2bac6   ahugeat   Ajout des valeurs...
411
  is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical
30a06bd2a   jfriedt   initial commit: I...
412
413
414
  atomic transition).
  
  \section*{Acknowledgement}
970e2bac6   ahugeat   Ajout des valeurs...
415
416
417
  This work is supported by the ANR Programme d'Investissement d'Avenir in
  progress at the Time and Frequency Departments of the FEMTO-ST Institute
  (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
30a06bd2a   jfriedt   initial commit: I...
418
419
  The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and
  fruitful discussions.
e3580faae   jfriedt   relecture/correct...
420
  \bibliographystyle{IEEEtran}
33bcbbbcd   jfriedt   biblio en majuscu...
421
  \balance
e3580faae   jfriedt   relecture/correct...
422
423
  \bibliography{references,biblio}
  \end{document}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
424

6dfba800f   jfriedt   complement a la p...
425
  	\section{Contexte d'ordonnancement}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
426
  	Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement
6dfba800f   jfriedt   complement a la p...
427
  	et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
428
  	nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement
6dfba800f   jfriedt   complement a la p...
429
  	et d'optimisation.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
430

6dfba800f   jfriedt   complement a la p...
431
  	\subsection{D\'efinition du vocabulaire}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
432
  	Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions
6dfba800f   jfriedt   complement a la p...
433
434
435
  	importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} :
  	\begin{definition}
  		\label{def-ordo1}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
436
  		Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ :
6dfba800f   jfriedt   complement a la p...
437
438
  		$V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$.
  	\end{definition}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
439
440
441
442
443
  
  	Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances
  	des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de
  	chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors
  	la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son
6dfba800f   jfriedt   complement a la p...
444
  	temps d'ex\'ecution.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
445

6dfba800f   jfriedt   complement a la p...
446
447
448
449
450
451
  	Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est :
  	\begin{definition}
  		\label{def-ordo2}
  		L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec
  		l'objectif d'optimiser un ou plusieurs critères de performance.
  	\end{definition}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
452

6dfba800f   jfriedt   complement a la p...
453
454
455
  	Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}.
  	En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches.
  	Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
456

6dfba800f   jfriedt   complement a la p...
457
  	En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela,
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
458
  	il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles
6dfba800f   jfriedt   complement a la p...
459
  	sont les m\'ethodes qu'on peut appliquer.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
460

6dfba800f   jfriedt   complement a la p...
461
462
  	Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories :
  	\begin{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
463
  		\item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes
6dfba800f   jfriedt   complement a la p...
464
465
  		les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e.
  		\item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps,
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
466
467
468
469
  		les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter
  		des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas,
  		on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une
  		t\^ache de fin.
6dfba800f   jfriedt   complement a la p...
470
471
472
473
  		\item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où
  		il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème
  		que nous traitons ici.
  	\end{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
474

6dfba800f   jfriedt   complement a la p...
475
476
  	Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications
  	de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
477
478
  
  	Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de
6dfba800f   jfriedt   complement a la p...
479
480
481
  	critères possibles. Nous allons donc parler des principaux :
  	\begin{itemize}
  		\item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
482
  		les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des
6dfba800f   jfriedt   complement a la p...
483
484
485
486
487
488
  		t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant
  		la fin d'ex\'ecution au plus tôt.
  		\item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches
  		et d'optimiser ce r\'esultat.
  		\item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees.
  	\end{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
489

6dfba800f   jfriedt   complement a la p...
490
491
492
493
  	En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation
  	multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un
  	des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet
  	de faire le meilleur compromis entre tous les critères.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
494

6dfba800f   jfriedt   complement a la p...
495
496
  	\subsection{Formalisation du problème}
  	\label{formalisation}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
497
  	Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser
6dfba800f   jfriedt   complement a la p...
498
499
  	formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes}
  	et nous essayerons de les formaliser le plus finement possible.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
500

6dfba800f   jfriedt   complement a la p...
501
502
503
  	Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres
  	que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une
  	t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
504

6dfba800f   jfriedt   complement a la p...
505
506
507
508
  	Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs :
  	\begin{itemize}
  		\item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge.
  		En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
509
510
  		Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la
  		dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee
6dfba800f   jfriedt   complement a la p...
511
  		et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
512
  		\item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements
6dfba800f   jfriedt   complement a la p...
513
  		les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
514
  		\item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent).
6dfba800f   jfriedt   complement a la p...
515
516
517
518
  		Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du
  		flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$.
  		\item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp.
  		est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
519
  		fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$
6dfba800f   jfriedt   complement a la p...
520
  		et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
521
522
  		\item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle
  		fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la
6dfba800f   jfriedt   complement a la p...
523
524
525
  		t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$.
  		\item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc.
  		Nous nommerons $\mathcal{A}_i$ cette taille.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
526
  		\item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter
6dfba800f   jfriedt   complement a la p...
527
528
529
  		la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\
  		%TODO Est-ce vraiment un paramètre ?
  	\end{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
530
531
532
  
  	Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations
  	que nous avons identifi\'ees :
6dfba800f   jfriedt   complement a la p...
533
534
535
536
537
538
539
540
  	\begin{itemize}
  		\item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution
  		de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes.
  		\item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart
  		et les paramètres internes de la t\^ache.
  		\item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit
  		sortant et des variables internes de la t\^ache.
  		\item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
541
542
543
  	\end{itemize}
  	Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche,
  	sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions.
6dfba800f   jfriedt   complement a la p...
544
545
  	Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit
  	un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes :
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
546

6dfba800f   jfriedt   complement a la p...
547
  	\paragraph{Contrainte de pr\'ecision :}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
548
  	Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre :
6dfba800f   jfriedt   complement a la p...
549
550
551
  	\begin{align*}
  		\pi _i ^+ \geq \pi _j ^-
  	\end{align*}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
552

6dfba800f   jfriedt   complement a la p...
553
  	\paragraph{Contrainte de d\'ebit :}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
554
  	Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre :
6dfba800f   jfriedt   complement a la p...
555
556
557
  	\begin{align*}
  		d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache}
  	\end{align*}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
558

6dfba800f   jfriedt   complement a la p...
559
  	\paragraph{Contrainte de synchronisation :}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
560
  	Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles
6dfba800f   jfriedt   complement a la p...
561
562
563
  	et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même.
  	Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors :
  	\begin{align*}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
564
565
566
567
568
  		\forall \text{ chemin } \mathcal{C}1(s, .., f),
  			\forall \text{ chemin } \mathcal{C}2(s, .., f)
  				\text{ tel que } \mathcal{C}1 
  eq \mathcal{C}2
  		\Rightarrow
6dfba800f   jfriedt   complement a la p...
569
570
  			\sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i
  	\end{align*}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
571

6dfba800f   jfriedt   complement a la p...
572
  	\paragraph{Contrainte de place :}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
573
  	Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ :
6dfba800f   jfriedt   complement a la p...
574
575
576
  	\begin{align*}
  		\sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA}
  	\end{align*}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
577

6dfba800f   jfriedt   complement a la p...
578
579
  	\subsection{Exemples de mod\'elisation}
  	\label{exemples-modeles}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
580
  	Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle.
6dfba800f   jfriedt   complement a la p...
581
  	Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
582

6dfba800f   jfriedt   complement a la p...
583
584
  	Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant
  	que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
585

6dfba800f   jfriedt   complement a la p...
586
587
588
589
590
591
592
593
594
595
596
597
  	Donc d'après notre mod\'elisation :
  	\begin{itemize}
  		\item $N \in \mathcal{P}_i$
  		%TODO N ou 1 ?
  		\item $\delta _i = N\ c.h.$ (coup d'horloge)
  		\item $\pi _i ^+ = \pi _i ^- = 16 bits$
  		\item $f _i ^+ = f _i ^-$
  		\item $q _i ^+ = q _i ^- / N$
  		\item $d _i ^+ = q _i ^- / N / f _i ^-$
  		\item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\
  		%TODO Je ne sais pas trouver la taille...
  	\end{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
598
599
600
  
  	Un autre exemple int\'eressant que l'on peut donner, c'est le cas des spliters. Il s'agit la aussi d'un bloc très
  	simple qui permet de dupliquer un flux. On peut donc donner un nombre de sorties à cr\'eer, on note ce paramètre
6dfba800f   jfriedt   complement a la p...
601
602
603
604
605
606
607
608
609
610
611
612
  	%TODO pas très inspir\'e...
  	$X$. Voici ce que donne notre mod\'elisation :
  	\begin{itemize}
  		\item $X \in \mathcal{P}_i$
  		\item $\delta _i = 1\ c.h.$
  		\item $\pi _i ^+ = \pi _i ^- = 16 bits$
  		\item $f _i ^+ = f _i ^-$
  		\item $q _i ^+ = q _i ^-$
  		\item $d _i ^+ = d _i ^-$
  		\item $\Gamma _i ^- = 1$
  		\item $\Gamma _i ^+ = X$\\
  	\end{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
613

6dfba800f   jfriedt   complement a la p...
614
  	L'exemple suivant traite du cas du shifter. Il s'agit d'un bloc qui a pour but de diminuer le nombre de bits des
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
615
  	donn\'ees afin d'acc\'el\'erer les traitement sur les blocs suivants. On peut donc donner le nombre de bits à shifter,
6dfba800f   jfriedt   complement a la p...
616
617
618
619
620
621
622
623
624
625
  	on note ce paramètre $S$. Voici ce que donne notre mod\'elisation :
  	\begin{itemize}
  		\item $S \in \mathcal{P}_i$
  		\item $\delta _i = 1\ c.h.$
  		\item $\pi _i ^+ = \pi _i ^- - S$
  		\item $f _i ^+ = f _i ^-$
  		\item $q _i ^+ = q _i ^-$
  		\item $d _i ^+ = d _i ^-$
  		\item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\
  	\end{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
626
627
  
  	Nous allons traiter un dernier exemple un peu plus complexe, le cas d'un filtre d\'ecimateur (ou FIR). Ce bloc
6dfba800f   jfriedt   complement a la p...
628
  	est compos\'e de beaucoup de paramètres internes. On peut d\'efinir un nombre d'\'etages $E$, qui repr\'esente le nombre
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
629
  	d'it\'erations à faire avant d'arrêter le traitement. Afin d'effectuer son filtrage, on doit donner au bloc un ensemble
6dfba800f   jfriedt   complement a la p...
630
631
632
633
634
635
636
637
638
639
640
641
642
643
  	de coefficients $C$ et par cons\'equent ces coefficients ont leur propre pr\'ecision $\pi _C$. Pour finir, le dernier
  	paramètre à donner est le facteur de d\'ecimation $N$. Si on applique notre mod\'elisation, on peut obtenir cela :
  	\begin{itemize}
  		\item $E \in \mathcal{P}_i$
  		\item $C \in \mathcal{P}_i$
  		\item $\pi _C \in \mathcal{P}_i$
  		\item $N \in \mathcal{P}_i$
  		\item $\delta _i = E * |C| * q_i^-\ c.h.$ %Trop simpliste
  		\item $\pi _i ^+ = \pi _i ^- * \pi _C$
  		\item $f _i ^+ = f _i ^-$
  		\item $q _i ^+ = q _i ^- / N$
  		\item $d _i ^+ = q _i ^- / N / f _i ^-$
  		\item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\
  	\end{itemize}
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
644
645
  
  	Ces exemples ne sont que des modèles provisoires; pour s'assurer de leur performance, il faudra les
6dfba800f   jfriedt   complement a la p...
646
  	confronter à des simulations.
4dfca2c81   Arthur HUGEAT   merge jmf + ajout...
647
648
649
  
  
  Bien que les articles sur les skeletons, \cite{gwen-cogen}, \cite{skeleton} et \cite{hide}, nous aient donn\'e des indices sur une possible
6dfba800f   jfriedt   complement a la p...
650
651
  	mod\'elisation, ils \'etaient encore trop focalis\'es sur l'optimisation spatiale des blocs. Nous nous sommes donc inspir\'es de ces travaux
  	pour proposer notre modèle, en faisant abstraction des optimisations bas niveau.