Blame view
ifcs2018_journal.tex
64.4 KB
32b45e8e1 change type de pa... |
1 |
\documentclass[a4paper,journal]{IEEEtran/IEEEtran} |
27f5f4108 Article étendu. |
2 3 4 5 6 7 8 9 |
\usepackage{graphicx,color,hyperref} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amssymb} \usepackage{amsmath} \usepackage{algorithm2e} \usepackage{url,balance} \usepackage[normalem]{ulem} |
842e804be Permier pas vers ... |
10 11 12 13 |
\usepackage{tikz} \usetikzlibrary{positioning,fit} \usepackage{multirow} \usepackage{scalefnt} |
b43d41ac2 Première partie d... |
14 15 |
\usepackage{caption} \usepackage{subcaption} |
842e804be Permier pas vers ... |
16 |
|
c7f6afba7 Dernière correction. |
17 |
|
27f5f4108 Article étendu. |
18 19 20 21 22 23 24 25 26 27 |
\hyphenation{op-tical net-works semi-conduc-tor} \textheight=26cm \setlength{\footskip}{30pt} \pagenumbering{gobble} \begin{document} \title{Filter optimization for real time digital processing of radiofrequency signals: application to oscillator metrology} \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, G. Goavec-M\'erou\IEEEauthorrefmark{1}, |
b43d41ac2 Première partie d... |
28 29 |
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\ \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\ |
27f5f4108 Article étendu. |
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ Email: \{pyb2,jmfriedt\}@femto-st.fr} } \maketitle \thispagestyle{plain} \pagestyle{plain} ewtheorem{definition}{Definition} \begin{abstract} Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to radiofrequency signal processing. Applied to oscillator characterization in the context of ultrastable clocks, stringent filtering requirements are defined by spurious signal or noise rejection needs. Since real time radiofrequency processing must be performed in a Field Programmable Array to meet timing constraints, we investigate optimization strategies to design filters meeting rejection characteristics while limiting the hardware resources |
0642fff00 relecture journal |
46 47 48 49 50 |
required and keeping timing constraints within the targeted measurement bandwidths. The presented technique is applicable to scheduling any sequence of processing blocks characterized by a throughput, resource occupation and performance tabulated as a function of configuration characateristics, as is the case for filters with their coefficients and resolution yielding rejection and number of multipliers. |
27f5f4108 Article étendu. |
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
\end{abstract} \begin{IEEEkeywords} Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter \end{IEEEkeywords} \section{Digital signal processing of ultrastable clock signals} Analog oscillator phase noise characteristics are classically performed by downconverting the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. \begin{figure}[h!tb] \begin{center} \includegraphics[width=.8\linewidth]{images/schema} \end{center} \caption{Fully digital oscillator phase noise characterization: the Device Under Test (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays the spectral characteristics of the phase fluctuations.} \label{schema} \end{figure} As with the analog mixer, the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as well as the generation of the frequency sum signal in addition to the frequency difference. These unwanted spectral characteristics must be rejected before decimating the data stream for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the downconverter and the decimation processing blocks are core characteristics of an oscillator characterization system, and must reject out-of-band signals below the targeted phase noise -- typically in the sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency datastream: optimizing the performance of the filter while reducing the needed resources is hence tackled in a systematic approach using optimization techniques. Most significantly, we tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with tunable number of coefficients and tunable number of bits representing the coefficients and the data being processed. \section{Finite impulse response filter} |
0642fff00 relecture journal |
95 |
We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined |
27f5f4108 Article étendu. |
96 97 |
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the outputs $y_k$ |
842e804be Permier pas vers ... |
98 99 100 101 |
\begin{align} y_n=\sum_{k=0}^N b_k x_{n-k} \label{eq:fir_equation} \end{align} |
27f5f4108 Article étendu. |
102 103 |
As opposed to an implementation on a general purpose processor in which word size is defined by the |
0642fff00 relecture journal |
104 |
processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since |
27f5f4108 Article étendu. |
105 106 107 108 |
not only the coefficient values and number of taps must be defined, but also the number of bits defining the coefficients and the sample size. For this reason, and because we consider pipeline processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but |
5e2bf244b Suppression d'un ... |
109 |
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language |
0642fff00 relecture journal |
110 |
(VHDL) level. |
7c951bd35 Typo + texte en n... |
111 |
Since latency is not an issue in a openloop phase noise characterization instrument, |
90c55845a relecture JMF |
112 |
the large |
27f5f4108 Article étendu. |
113 |
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, |
7c951bd35 Typo + texte en n... |
114 |
is not considered as an issue as would be in a closed loop system. |
27f5f4108 Article étendu. |
115 116 117 118 119 |
The coefficients are classically expressed as floating point values. However, this binary number representation is not efficient for fast arithmetic computation by an FPGA. Instead, we select to quantify these floating point values into integer values. This quantization will result in some precision loss. |
27f5f4108 Article étendu. |
120 |
\begin{figure}[h!tb] |
46ae3f9cf Final draft. |
121 |
\includegraphics[width=\linewidth]{images/zero_values} |
27f5f4108 Article étendu. |
122 123 124 125 126 127 128 129 130 131 132 133 |
\caption{Impact of the quantization resolution of the coefficients: the quantization is set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting the 30~first and 30~last coefficients out of the initial 128~band-pass filter coefficients to 0 (red dots).} \label{float_vs_int} \end{figure} The tradeoff between quantization resolution and number of coefficients when considering integer operations is not trivial. As an illustration of the issue related to the relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the |
7c951bd35 Typo + texte en n... |
134 135 136 |
taps become null, making the large number of coefficients irrelevant: processing resources are hence saved by shrinking the filter length. This tradeoff aimed at minimizing resources |
27f5f4108 Article étendu. |
137 138 139 140 141 142 143 144 145 146 |
to reach a given rejection level, or maximizing out of band rejection for a given computational resource, will drive the investigation on cascading filters designed with varying tap resolution and tap length, as will be shown in the next section. Indeed, our development strategy closely follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} in which basic blocks are defined and characterized before being assembled \cite{hide} in a complete processing chain. In our case, assembling the filter blocks is a simpler block combination process since we assume a single value to be processed and a single value to be generated at each clock cycle. The FIR filters will not be considered to decimate in the current implementation: the decimation is assumed to be located after the FIR cascade at the moment. |
842e804be Permier pas vers ... |
147 |
\section{Methodology description} |
0642fff00 relecture journal |
148 |
|
5e2bf244b Suppression d'un ... |
149 150 |
Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP) chain obtained by assembling basic processing blocks, with hardware and manufacturer independence. |
0642fff00 relecture journal |
151 |
Achieving such a target requires defining an abstract model to represent some basic properties |
7c951bd35 Typo + texte en n... |
152 |
of DSP blocks such as performance (i.e. rejection or ripples in the bandpass for filters) and |
0642fff00 relecture journal |
153 154 155 |
resource occupation. These abstract properties, not necessarily related to the detailed hardware implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum target, whether in terms of maximizing performance for a given arbitrary resource occupation, or |
7c951bd35 Typo + texte en n... |
156 |
minimizing resource occupation for a given performance. In our approach, the solution of the |
0642fff00 relecture journal |
157 158 159 160 161 |
solver is then synthesized using the dedicated tool provided by each platform manufacturer to assess the validity of our abstract resource occupation indicator, and the result of running the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize that all solutions found by the solver are synthesized and executed on hardware at the end of the analysis. |
c27d27105 relecture |
162 |
In this demonstration, we focus on only two operations: filtering and shifting the number of |
0642fff00 relecture journal |
163 |
bits needed to represent the data along the processing chain. |
5e2bf244b Suppression d'un ... |
164 |
We have chosen these basic operations because shifting and the filtering have already been studied |
0642fff00 relecture journal |
165 |
in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for |
5e2bf244b Suppression d'un ... |
166 167 |
assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend requiring pipelined processing at full bandwidth for the earliest steps, including for |
0642fff00 relecture journal |
168 169 170 171 |
time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}. Addressing only two operations allows for demonstrating the methodology but should not be considered as a limitation of the framework which can be extended to assembling any number |
7c951bd35 Typo + texte en n... |
172 |
of skeleton blocks as long as performance and resource occupation can be determined. |
90c55845a relecture JMF |
173 |
Hence, |
7c951bd35 Typo + texte en n... |
174 |
in this paper we will apply our methodology on simple DSP chains: a white noise input signal |
90c55845a relecture JMF |
175 |
is generated using a Pseudo-Random Number (PRN) generator or by sampling a wideband (125~MS/s) |
7c951bd35 Typo + texte en n... |
176 |
14-bit Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor. Once samples have been |
0642fff00 relecture journal |
177 178 179 |
digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance -- practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing, |
5e2bf244b Suppression d'un ... |
180 |
allowing to assess either filter rejection for a given resource usage, or validating the rejection |
0642fff00 relecture journal |
181 |
when implementing a solution minimizing resource occupation. |
842e804be Permier pas vers ... |
182 |
|
7c951bd35 Typo + texte en n... |
183 |
The first step of our approach is to model the DSP chain. Since we aim at only optimizing |
ec91065ab Ajout du tableau ... |
184 185 |
the filtering part of the signal processing chain, we have not included the PRN generator or the ADC in the model: the input data size and rate are considered fixed and defined by the hardware. |
90c55845a relecture JMF |
186 |
The filtering can be done in two ways, either by considering a single monolithic FIR filter |
ec91065ab Ajout du tableau ... |
187 |
requiring many coefficients to reach the targeted noise rejection ratio, or by |
7c951bd35 Typo + texte en n... |
188 |
cascading multiple FIR filters, each with fewer coefficients than found in the monolithic filter. |
842e804be Permier pas vers ... |
189 190 191 192 193 194 |
After each filter we leave the possibility of shifting the filtered data to consume less resources. Hence in the case of cascaded filter, we define a stage as a filter and a shifter (the shift could be omitted if we do not need to divide the filtered data). \subsection{Model of a FIR filter} |
0642fff00 relecture journal |
195 196 197 198 |
A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$) the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$ bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as |
842e804be Permier pas vers ... |
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage} shows a filtering stage. \begin{figure} \centering \begin{tikzpicture}[node distance=2cm] ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ; ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ; ode (Start) [left of=FIR] { } ; ode (End) [right of=Shift] { } ; ode[draw,fit=(FIR) (Shift)] (Filter) { } ; \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ; \draw[->] (FIR) -- (Shift) ; \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ; \end{tikzpicture} \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)} \label{fig:fir_stage} \end{figure} |
27f5f4108 Article étendu. |
224 |
|
0642fff00 relecture journal |
225 226 227 |
FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB. This rejection has been computed using GNU Octave software FIR coefficient design functions (\texttt{firls} and \texttt{fir1}). |
842e804be Permier pas vers ... |
228 229 230 |
For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients. Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively, the coefficients are normalized by their absolute maximum before being scaled to integer coefficients. |
0642fff00 relecture journal |
231 |
At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits. |
842e804be Permier pas vers ... |
232 |
|
0642fff00 relecture journal |
233 234 235 |
With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter transfer function. Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag}, |
5e2bf244b Suppression d'un ... |
236 |
the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the |
7c951bd35 Typo + texte en n... |
237 |
bandpass ripples as emphasized in \cite{lim_1988,lim_1996}. Throughout this demonstration, |
90c55845a relecture JMF |
238 239 240 |
we arbitrarily set a bandpass of 40\% of the Nyquist frequency and a bandstop from 60\% of the Nyquist frequency to the end of the band, as would be typically selected to prevent aliasing before decimating the dataflow by 2. The method is however generalized to any filter |
7c951bd35 Typo + texte en n... |
241 242 |
shape as long as it is defined from the initial modeling steps: Fig. \ref{fig:rejection_pyramid} as described below is indeed unique for each filter shape. |
842e804be Permier pas vers ... |
243 244 |
\begin{figure} |
0642fff00 relecture journal |
245 246 |
\begin{center} \scalebox{0.8}{ |
842e804be Permier pas vers ... |
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
\centering \begin{tikzpicture}[scale=0.3] \draw[<->] (0,15) -- (0,0) -- (21,0) ; \draw[thick] (0,12) -- (8,12) -- (20,0) ; \draw (0,14) node [left] { $P$ } ; \draw (20,0) node [below] { $f$ } ; \draw[>=latex,<->] (0,14) -- (8,14) ; \draw (4,14) node [above] { passband } node [below] { $40\%$ } ; \draw[>=latex,<->] (8,14) -- (12,14) ; \draw (10,14) node [above] { transition } node [below] { $20\%$ } ; \draw[>=latex,<->] (12,14) -- (20,14) ; \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ; \draw[>=latex,<->] (16,12) -- (16,8) ; \draw (16,10) node [right] { rejection } ; \draw[dashed] (8,-1) -- (8,14) ; \draw[dashed] (12,-1) -- (12,14) ; \draw[dashed] (8,12) -- (16,12) ; \draw[dashed] (12,8) -- (16,8) ; \end{tikzpicture} |
0642fff00 relecture journal |
274 275 |
} \end{center} |
842e804be Permier pas vers ... |
276 277 278 279 |
\caption{Shape of the filter transmitted power $P$ as a function of frequency $f$: the passband is considered to occupy the initial 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition width.} \label{fig:fir_mag} |
27f5f4108 Article étendu. |
280 |
\end{figure} |
7c951bd35 Typo + texte en n... |
281 |
In the transition band, the behavior of the filter is left free, we only define the passband and the stopband characteristics. |
7c951bd35 Typo + texte en n... |
282 283 |
Initial considered criteria include the mean value of the stopband rejection which yields unacceptable results since notches overestimate the rejection capability of the filter. |
c7f6afba7 Dernière correction. |
284 |
An intermediate criterion considered the maximal rejection within the stopband, to which the sum of the absolute values |
c27d27105 relecture |
285 |
within the passband is subtracted to avoid filters with excessive ripples, normalized to the |
b5ace9bdc Revision 2. |
286 |
bin width to remain consistent with the passband criterion (dBc/Hz units in all cases). |
c7f6afba7 Dernière correction. |
287 288 |
In this case, cascading too many filters with individual excessive ($>$ 1~dB) passband ripples led to unacceptable ($>$ 10~dB) final ripple levels, especially close to the transition band. |
a45e29d4b article et lettre |
289 290 |
Hence, the final criterion considers the minimal rejection in the stopband to which the the maximal amplitude in the passband (maximum value minus the minimum value) is substracted, with |
c7f6afba7 Dernière correction. |
291 |
a 1~dB threshold on the latter quantity over which the filter is discarded. |
b5ace9bdc Revision 2. |
292 |
With this |
959bbc540 re-relecture JMF |
293 |
criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}. |
c7f6afba7 Dernière correction. |
294 295 |
The best filter has a correct rejection estimation and the worst filter is discarded based on the excessive passband ripple criterion. |
27f5f4108 Article étendu. |
296 |
|
842e804be Permier pas vers ... |
297 298 |
\begin{figure} \centering |
b5ace9bdc Revision 2. |
299 |
\includegraphics[width=\linewidth]{images/custom_criterion} |
c7f6afba7 Dernière correction. |
300 |
\caption{Selected filter qualification criterion computed as the maximum rejection in the stopband |
a45e29d4b article et lettre |
301 302 |
minus the maximal ripple amplitude in the passband with a $>$ 1~dB threshold above which the filter is discarded: comparison between monolithic filter (blue, rejected in this case) and cascaded filters (red).} |
842e804be Permier pas vers ... |
303 304 |
\label{fig:custom_criterion} \end{figure} |
27f5f4108 Article étendu. |
305 |
|
0642fff00 relecture journal |
306 307 308 309 |
Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the rejection as a function of the number of coefficients and the number of bits representing these coefficients. The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet. |
5e2bf244b Suppression d'un ... |
310 |
Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection. |
0642fff00 relecture journal |
311 |
Conversely when setting the a given number of bits, increasing the number of coefficients will not improve |
c7f6afba7 Dernière correction. |
312 |
the rejection. Hence the best coefficient set are on the vertex of the pyramid. Notice that the word length |
a45e29d4b article et lettre |
313 314 |
and number of coefficients do not start at 1: filters with too few coefficients or too little tap word size are rejected by the excessive ripple constraint of the criterion. Hence, the size of the pyramid is significantly reduced by discarding |
c7f6afba7 Dernière correction. |
315 |
these filters and so is the solution search space. |
a5c9e7b94 Rajout de la pyra... |
316 317 318 319 |
\begin{figure} \centering \includegraphics[width=\linewidth]{images/rejection_pyramid} |
c7f6afba7 Dernière correction. |
320 |
\caption{Filter rejection as a function of number of coefficients and number of bits |
7c951bd35 Typo + texte en n... |
321 |
: this lookup table will be used to identify which filter parameters -- number of bits |
c7f6afba7 Dernière correction. |
322 |
representing coefficients and number of coefficients -- best match the targeted transfer function. Filters |
a45e29d4b article et lettre |
323 |
with fewer than 10~taps or with coefficients coded on fewer than 5~bits are discarded due to excessive |
c7f6afba7 Dernière correction. |
324 |
ripples in the passband.} |
a5c9e7b94 Rajout de la pyra... |
325 326 |
\label{fig:rejection_pyramid} \end{figure} |
0642fff00 relecture journal |
327 |
Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps), |
5e2bf244b Suppression d'un ... |
328 |
we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria. |
0642fff00 relecture journal |
329 |
If the FIR filter coefficients are the same between the stages, we have: |
842e804be Permier pas vers ... |
330 |
$$F_{total} = F_1 + F_2$$ |
0642fff00 relecture journal |
331 332 333 |
But selecting two different sets of coefficient will yield a more complex situation in which the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves are two different filters with maximums and notches not located at the same frequency offsets. |
5e2bf244b Suppression d'un ... |
334 |
Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved |
0642fff00 relecture journal |
335 |
with respect to a basic sum of the rejection criteria shown as a the dotted yellow line. |
7c951bd35 Typo + texte en n... |
336 337 |
Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection criteria of each filter. However since the individual filter rejection sum underestimates the rejection capability of the cascade, |
7c951bd35 Typo + texte en n... |
338 |
this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability |
0642fff00 relecture journal |
339 |
of the filter cascade to meet design criteria. |
842e804be Permier pas vers ... |
340 341 342 |
\begin{figure} \centering |
46ae3f9cf Final draft. |
343 |
\includegraphics[width=\linewidth]{images/cascaded_criterion} |
7c951bd35 Typo + texte en n... |
344 345 |
\caption{Transfer function of individual filters and after cascading the two filters, demonstrating that the selected criterion of maximum rejection in the bandstop (horizontal |
db81f7ad9 captions figures |
346 |
lines) is met. Notice that the cascaded filter has better rejection than summing the bandstop |
7c951bd35 Typo + texte en n... |
347 |
maximum of each individual filter. |
db81f7ad9 captions figures |
348 |
} |
842e804be Permier pas vers ... |
349 350 |
\label{fig:sum_rejection} \end{figure} |
27f5f4108 Article étendu. |
351 |
|
c27d27105 relecture |
352 353 |
Finally in our case, we consider that the input signal are fully known. The resolution of the input data stream are fixed and still the same for all experiments |
7c951bd35 Typo + texte en n... |
354 |
in this paper. |
b43d41ac2 Première partie d... |
355 |
|
0642fff00 relecture journal |
356 |
Based on this analysis, we address the estimate of resource consumption (called |
7c951bd35 Typo + texte en n... |
357 |
silicon area -- in the case of FPGAs this means processing cells) as a function of |
0642fff00 relecture journal |
358 359 360 361 362 363 |
filter characteristics. As a reminder, we do not aim at matching actual hardware configuration but consider an arbitrary silicon area occupied by each processing function, and will assess after synthesis the adequation of this arbitrary unit with actual hardware resources provided by FPGA manufacturers. The sum of individual processing unit areas is constrained by a total silicon area representative of FPGA global resources. Formally, variable $a_i$ is the area taken by filter~$i$ |
46ae3f9cf Final draft. |
364 365 |
(in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB). Constant $\mathcal{A}$ is the total available area. We model our problem as follows: |
8d9489b3b Add first draft f... |
366 367 368 369 370 371 372 373 374 375 376 |
\begin{align} \text{Maximize } & \sum_{i=1}^n r_i otag \\ \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\ a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\ r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\ \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\ \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\ \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\ \pi_1^- &= \Pi^I \label{eq:init} \end{align} |
8d9489b3b Add first draft f... |
377 378 |
Equation~\ref{eq:area} states that the total area taken by the filters must be less than the available area. Equation~\ref{eq:areadef} gives the definition of |
0642fff00 relecture journal |
379 380 |
the area used by a filter, considered as the area of the FIR since the Shifter is assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size |
8d9489b3b Add first draft f... |
381 |
$\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the |
0642fff00 relecture journal |
382 383 384 |
input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined previously. The Shifter does not introduce negative rejection as we will explain later, |
8d9489b3b Add first draft f... |
385 386 387 388 389 390 391 392 |
so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of a filter is the same as the input number of bits of the next filter. Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative rejection. Indeed, the results of the FIR can be right shifted without compromising the quality of the rejection until a threshold. Each bit of the output data |
0642fff00 relecture journal |
393 |
increases the maximum rejection level by 6~dB. We add one to take the sign bit |
8d9489b3b Add first draft f... |
394 395 |
into account. If equation~\ref{eq:maxshift} was not present, the Shifter could shift too much and introduce some noise in the output data. Each supplementary |
0642fff00 relecture journal |
396 397 398 |
shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is: $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$. Finally, equation~\ref{eq:init} gives the number of bits of the global input. |
8d9489b3b Add first draft f... |
399 |
|
7c78647f1 Ajout de correction. |
400 |
This model is non-linear since we multiply some variable with another variable |
c27d27105 relecture |
401 |
and it is even non-quadratic, as the cost function $F$ does not have a known |
7c78647f1 Ajout de correction. |
402 |
linear or quadratic expression. To linearize this problem, we introduce $p$ FIR configurations. |
c27d27105 relecture |
403 404 405 |
This variable $p$ is defined by the user, and represents the number of different set of coefficients generated (remember, we use \texttt{firls} and \texttt{fir1} functions from GNU Octave) based on the targeted filter characteristics and implementation |
efde7e849 Merge branch 'mas... |
406 |
assumptions (estimated number of bits defining the coefficients). Hence, $C_{ij}$ and |
c27d27105 relecture |
407 |
$\pi_{ij}^C$ become constants and |
efde7e849 Merge branch 'mas... |
408 |
we define $1 \leq j \leq p$ so that the function $F$ can be estimated (Look Up Table) |
c27d27105 relecture |
409 |
for each configurations thanks to the rejection criterion. We also define the binary |
46ae3f9cf Final draft. |
410 411 |
variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$ and 0 otherwise. The new equations are as follows: |
8d9489b3b Add first draft f... |
412 413 414 415 416 417 418 419 420 421 422 |
\begin{align} a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\ r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\ \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\ \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config} \end{align} Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}. Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most. |
4d905253d relecture finale JMF |
423 |
The problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2} |
c27d27105 relecture |
424 425 |
we multiply $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can |
7c951bd35 Typo + texte en n... |
426 |
linearize this multiplication. The following formula shows how to linearize |
9c253d6d2 Correction sur le... |
427 428 429 430 431 432 433 434 435 436 437 438 |
this situation in general case with $y$ a binary variable and $x$ a real variable ($0 \leq x \leq X^{max}$): \begin{equation*} m = x \times y \implies \left \{ \begin{split} m & \geq 0 \\ m & \leq y \times X^{max} \\ m & \leq x \\ m & \geq x - (1 - y) \times X^{max} \\ \end{split} \right . \end{equation*} |
efde7e849 Merge branch 'mas... |
439 440 |
So if we bound up $\pi_i^-$ by 128~bits which is the maximum data size whose estimation is assumed on hardware characteristics, |
9c253d6d2 Correction sur le... |
441 |
the Gurobi (\url{www.gurobi.com}) optimization software will be able to linearize |
efde7e849 Merge branch 'mas... |
442 |
for us the quadratic problem so the model is left as is. This model |
7c951bd35 Typo + texte en n... |
443 |
has $O(np)$ variables and $O(n)$ constraints. |
46ae3f9cf Final draft. |
444 |
|
0642fff00 relecture journal |
445 446 |
Two problems will be addressed using the workflow described in the next section: on the one hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary |
7c951bd35 Typo + texte en n... |
447 |
silicon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area |
0642fff00 relecture journal |
448 449 |
for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the objective function is replaced with: |
8d9489b3b Add first draft f... |
450 451 452 453 |
\begin{align} \text{Minimize } & \sum_{i=1}^n a_i otag \end{align} |
0642fff00 relecture journal |
454 455 |
We adapt our constraints of quadratic program to replace equation \ref{eq:area} with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal |
8d9489b3b Add first draft f... |
456 457 458 459 460 461 462 463 |
rejection required. \begin{align} \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min} \end{align} \section{Design workflow} \label{sec:workflow} |
0642fff00 relecture journal |
464 |
In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area} |
5e2bf244b Suppression d'un ... |
465 |
and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved |
0642fff00 relecture journal |
466 |
in the computation of the results. |
8d9489b3b Add first draft f... |
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
\begin{figure} \centering \begin{tikzpicture}[node distance=0.75cm and 2cm] ode[draw,minimum size=1cm] (Solver) { Filter Solver } ; ode (Start) [left= 3cm of Solver] { } ; ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ; ode (Input) [above= of TCL] { } ; ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ; ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ; ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ; ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ; ode (Results) [left= of Postproc] { } ; \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ; \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ; \draw[->] (Solver) edge node [below] { (1a) } (TCL) ; \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ; \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ; \draw[->,dashed] (Bitstream) -- (Deploy) ; \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ; \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ; \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ; \draw[->] (Postproc) -- (Results) ; \end{tikzpicture} |
7c951bd35 Typo + texte en n... |
501 502 |
\caption{Design workflow from the input parameters to the results allowing for a fully automated optimal solution search.} |
8d9489b3b Add first draft f... |
503 504 505 506 507 508 |
\label{fig:workflow} \end{figure} The filter solver is a C++ program that takes as input the maximum area $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$, the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates |
0642fff00 relecture journal |
509 |
the quadratic programs and uses the Gurobi solver to estimate the optimal results. |
8d9489b3b Add first draft f... |
510 511 512 513 |
Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow}) and a deploy script ((1b) on figure~\ref{fig:workflow}). The TCL script describes the whole digital processing chain from the beginning |
0642fff00 relecture journal |
514 |
(the raw signal data) to the end (the filtered data) in a language compatible |
5e2bf244b Suppression d'un ... |
515 |
with proprietary synthesis software, namely Vivado for Xilinx and Quartus for |
0642fff00 relecture journal |
516 |
Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN) |
8d9489b3b Add first draft f... |
517 518 519 520 521 |
generator inside the FPGA and $\Pi^I$ is fixed at 16~bits. Then the script builds each stage of the chain with a generic FIR task that comes from a skeleton library. The generic FIR is highly configurable with the number of coefficients and the size of the coefficients. The coefficients themselves are not stored in the script. |
0642fff00 relecture journal |
522 523 524 525 |
As the signal is processed in real-time, the output signal is stored as consecutive bursts of data for post-processing, mainly assessing the consistency of the implemented FIR cascade transfer function with the design criteria and the expected transfer function. |
8d9489b3b Add first draft f... |
526 527 528 529 |
The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}). We use the 2018.2 version of Xilinx Vivado and we execute the synthesized bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series |
0642fff00 relecture journal |
530 531 532 533 |
FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to provide a broadband noise source. The board runs the Linux kernel and surrounding environment produced from the Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring |
5e2bf244b Suppression d'un ... |
534 |
the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and |
0642fff00 relecture journal |
535 |
fetching the results is automated. |
8d9489b3b Add first draft f... |
536 537 538 539 540 541 542 543 544 545 |
The deploy script uploads the bitstream to the board ((3) on figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers, configures the coefficients of the FIR filters. It then waits for the results and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}). Finally, an Octave post-processing script computes the final results thanks to the output data ((5) on figure~\ref{fig:workflow}). The results are normalized so that the Power Spectrum Density (PSD) starts at zero and the different configurations can be compared. |
0642fff00 relecture journal |
546 |
\section{Maximizing the rejection at fixed silicon area} |
8d9489b3b Add first draft f... |
547 548 549 |
\label{sec:fixed_area} This section presents the output of the filter solver {\em i.e.} the computed configurations for each stage, the computed rejection and the computed silicon area. |
0642fff00 relecture journal |
550 |
Such results allow for understanding the choices made by the solver to compute its solutions. |
8d9489b3b Add first draft f... |
551 552 553 554 555 |
The experimental setup is composed of three cases. The raw input is generated by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$. Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500 arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500. |
c7f6afba7 Dernière correction. |
556 |
The number of configurations $p$ is 1133, with $C_i$ ranging from 3 to 60 and $\pi^C$ |
8d9489b3b Add first draft f... |
557 558 559 560 561 562 563 564 565 566 567 568 569 |
ranging from 2 to 22. In each case, the quadratic program has been able to give a result up to five stages ($n = 5$) in the cascaded filter. Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500. Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000. Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500. \renewcommand{\arraystretch}{1.4} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500} \label{tbl:gurobi_max_500} \centering |
c7f6afba7 Dernière correction. |
570 |
{\scalefont{0.77} |
8d9489b3b Add first draft f... |
571 572 573 574 575 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (21, 7, 0) & - & - & - & - & 32~dB & 483 \\ |
b5ace9bdc Revision 2. |
576 577 578 579 |
2 & (3, 5, 18) & (33, 10, 0) & - & - & - & 48~dB & 492 \\ 3 & (3, 5, 18) & (19, 7, 1) & (15, 7, 0) & - & - & 56~dB & 493 \\ 4 & (3, 5, 18) & (19, 7, 1) & (15, 7, 0) & - & - & 56~dB & 493 \\ 5 & (3, 5, 18) & (19, 7, 1) & (15, 7, 0) & - & - & 56~dB & 493 \\ |
8d9489b3b Add first draft f... |
580 581 582 583 584 585 586 587 588 |
\hline \end{tabular} } \end{table} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000} \label{tbl:gurobi_max_1000} \centering |
c7f6afba7 Dernière correction. |
589 |
{\scalefont{0.77} |
8d9489b3b Add first draft f... |
590 591 592 593 594 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (37, 11, 0) & - & - & - & - & 56~dB & 999 \\ |
b5ace9bdc Revision 2. |
595 596 597 598 |
2 & (15, 8, 17) & (35, 11, 0) & - & - & - & 80~dB & 990 \\ 3 & (3, 13, 26) & (31, 9, 1) & (27, 9, 0) & - & - & 92~dB & 999 \\ 4 & (3, 5, 18) & (19, 7, 1) & (19, 7, 0) & (19, 7, 0) & - & 98~dB & 994 \\ 5 & (3, 5, 18) & (19, 7, 1) & (19, 7, 0) & (19, 7, 0) & - & 98~dB & 994 \\ |
8d9489b3b Add first draft f... |
599 600 601 602 603 604 605 606 607 |
\hline \end{tabular} } \end{table} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500} \label{tbl:gurobi_max_1500} \centering |
c7f6afba7 Dernière correction. |
608 |
{\scalefont{0.77} |
8d9489b3b Add first draft f... |
609 610 611 612 613 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (47, 15, 0) & - & - & - & - & 71~dB & 1457 \\ |
b5ace9bdc Revision 2. |
614 615 616 617 |
2 & (19, 6, 15) & (51, 14, 0) & - & - & - & 102~dB & 1489 \\ 3 & (15, 9, 18) & (31, 8, 0) & (27, 9, 0) & - & - & 116~dB & 1488 \\ 4 & (3, 9, 22) & (31, 9, 1) & (27, 9, 0) & (19, 7, 0) & - & 125~dB & 1500 \\ 5 & (3, 9, 22) & (31, 9, 1) & (27, 9, 0) & (19, 7, 0) & - & 125~dB & 1500 \\ |
8d9489b3b Add first draft f... |
618 619 620 621 622 623 |
\hline \end{tabular} } \end{table} \renewcommand{\arraystretch}{1} |
c7f6afba7 Dernière correction. |
624 |
By analyzing these tables, we can first state that we reach an optimal solution |
a45e29d4b article et lettre |
625 |
for each case : $n = 3$ for MAX/500, and $n = 4$ for MAX/1000 and MAX/1500. Moreover |
c7f6afba7 Dernière correction. |
626 |
the cascaded filters always exhibit better performance than the monolithic solution. |
b5ace9bdc Revision 2. |
627 |
It was an expected result as it has |
8d9489b3b Add first draft f... |
628 |
been previously observed that many small filters are better than |
0642fff00 relecture journal |
629 |
a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions |
8d9489b3b Add first draft f... |
630 631 632 633 |
being hardly used in practice due to the lack of tools for identifying individual filter coefficients in the cascaded approach. Second, the larger the silicon area, the better the rejection. This was also an |
0642fff00 relecture journal |
634 635 |
expected result as more area means a filter of better quality with more coefficients or more bits per coefficient. |
8d9489b3b Add first draft f... |
636 637 638 639 640 641 642 643 |
Then, we also observe that the first stage can have a larger shift than the other stages. This is explained by the fact that the solver tries to use just enough bits for the computed rejection after each stage. In the first stage, a balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift} gives the relation between both values. Finally, we note that the solver consumes all the given silicon area. |
0642fff00 relecture journal |
644 |
The following graphs present the rejection for real data on the FPGA. In all the following |
8d9489b3b Add first draft f... |
645 |
figures, the solid line represents the actual rejection of the filtered |
0642fff00 relecture journal |
646 |
data on the FPGA as measured experimentally and the dashed line are the noise levels |
8d9489b3b Add first draft f... |
647 648 649 650 651 |
given by the quadratic solver. The configurations are those computed in the previous section. Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500. Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000. Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500. |
27f5f4108 Article étendu. |
652 |
|
842e804be Permier pas vers ... |
653 |
\begin{figure} |
b43d41ac2 Première partie d... |
654 655 656 |
\centering \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_500} |
c7f6afba7 Dernière correction. |
657 |
\caption{Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
658 |
the MAX/500 problem of maximizing rejection for a given resource allocation (500~arbitrary units).} |
b43d41ac2 Première partie d... |
659 660 661 662 663 |
\label{fig:max_500_result} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_1000} |
c7f6afba7 Dernière correction. |
664 |
\caption{Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
665 |
the MAX/1000 problem of maximizing rejection for a given resource allocation (1000~arbitrary units).} |
b43d41ac2 Première partie d... |
666 667 668 669 670 |
\label{fig:max_1000_result} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_1500} |
c7f6afba7 Dernière correction. |
671 |
\caption{Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
672 |
the MAX/1500 problem of maximizing rejection for a given resource allocation (1500~arbitrary units).} |
b43d41ac2 Première partie d... |
673 674 |
\label{fig:max_1500_result} \end{subfigure} |
c7f6afba7 Dernière correction. |
675 |
\caption{Solutions for the MAX/500, MAX/1000 and MAX/1500 problems of maximizing |
db81f7ad9 captions figures |
676 |
rejection for a given resource allocation. |
efde7e849 Merge branch 'mas... |
677 |
The filter shape constraint (bandpass and bandstop) is shown as thick |
db81f7ad9 captions figures |
678 |
horizontal lines on each chart.} |
842e804be Permier pas vers ... |
679 |
\end{figure} |
8d9489b3b Add first draft f... |
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
In all cases, we observe that the actual rejection is close to the rejection computed by the solver. We compare the actual silicon resources given by Vivado to the resources in arbitrary units. The goal is to check that our arbitrary units of silicon area models well enough the real resources on the FPGA. Especially we want to verify that, for a given number of arbitrary units, the actual silicon resources do not depend on the number of stages $n$. Most significantly, our approach aims at remaining far enough from the practical logic gate implementation used by various vendors to remain platform independent and be portable from one architecture to another. Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000 and 1500 arbitrary units. We have taken care to extract solely the resources used by |
0642fff00 relecture journal |
695 696 |
the FIR filters and remove additional processing blocks including FIFO and Programmable Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication. |
27f5f4108 Article étendu. |
697 |
|
0642fff00 relecture journal |
698 |
\begin{table}[h!tb] |
7c951bd35 Typo + texte en n... |
699 700 |
\caption{Resource occupation following synthesis of the solutions found for the problem of maximizing rejection for a given resource allocation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} |
8d9489b3b Add first draft f... |
701 702 703 704 705 706 707 708 |
\label{tbl:resources_usage} \centering \begin{tabular}{|c|c|ccc|c|} \hline $n$ & & MAX/500 & MAX/1000 & MAX/1500 & \emph{Zynq 7010} \\ \hline\hline & LUT & 249 & 453 & 627 & \emph{17600} \\ 1 & BRAM & 1 & 1 & 1 & \emph{120} \\ & DSP & 21 & 37 & 47 & \emph{80} \\ \hline |
b5ace9bdc Revision 2. |
709 |
& LUT & 2253 & 474 & 691 & \emph{17600} \\ |
8d9489b3b Add first draft f... |
710 |
2 & BRAM & 2 & 2 & 2 & \emph{120} \\ |
b5ace9bdc Revision 2. |
711 712 |
& DSP & 0 & 50 & 70 & \emph{80} \\ \hline & LUT & 1329 & 2006 & 3158 & \emph{17600} \\ |
8d9489b3b Add first draft f... |
713 |
3 & BRAM & 3 & 3 & 3 & \emph{120} \\ |
b5ace9bdc Revision 2. |
714 715 716 717 718 719 720 |
& DSP & 15 & 30 & 42 & \emph{80} \\ \hline & LUT & 1329 & 1600 & 2260 & \emph{17600} \\ 4 & BRAM & 3 & 4 & 4 & \emph{120} \\ & DPS & 15 & 38 & 49 & \emph{80} \\ \hline & LUT & 1329 & 1600 & 2260 & \emph{17600} \\ 5 & BRAM & 3 & 4 & 4 & \emph{120} \\ & DPS & 15 & 38 & 49 & \emph{80} \\ \hline |
8d9489b3b Add first draft f... |
721 |
\end{tabular} |
842e804be Permier pas vers ... |
722 |
\end{table} |
27f5f4108 Article étendu. |
723 |
|
c7f6afba7 Dernière correction. |
724 |
In case $n = 2$ for MAX/500, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that, |
0642fff00 relecture journal |
725 726 |
when the filter coefficients are small enough, or when the input size is small enough, Vivado optimizes resource consumption by selecting multiplexers to |
8d9489b3b Add first draft f... |
727 728 |
implement the multiplications instead of a DSP. In this case, it is quite difficult to compare the whole silicon budget. |
0642fff00 relecture journal |
729 |
However, a rough estimation can be made with a simple equivalence: looking at |
8d9489b3b Add first draft f... |
730 731 |
the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$, we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon |
7c951bd35 Typo + texte en n... |
732 |
area use. With this equivalence, our 500 arbitrary units correspond to 2500 LUTs, |
0642fff00 relecture journal |
733 |
1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond |
8d9489b3b Add first draft f... |
734 |
to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary |
0642fff00 relecture journal |
735 |
unit map well to actual hardware resources. The relatively small differences can probably be explained |
8d9489b3b Add first draft f... |
736 |
by the optimizations done by Vivado based on the detailed map of available processing resources. |
0642fff00 relecture journal |
737 738 739 740 |
We now present the computation time needed to solve the quadratic problem. For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606 clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic |
8d9489b3b Add first draft f... |
741 |
problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units. |
0642fff00 relecture journal |
742 743 |
\begin{table}[h!tb] \caption{Time needed to solve the quadratic program with Gurobi} |
8d9489b3b Add first draft f... |
744 |
\label{tbl:area_time} |
842e804be Permier pas vers ... |
745 |
\centering |
8d9489b3b Add first draft f... |
746 747 |
\begin{tabular}{|c|c|c|c|}\hline $n$ & Time (MAX/500) & Time (MAX/1000) & Time (MAX/1500) \\\hline\hline |
b5ace9bdc Revision 2. |
748 749 750 751 752 |
1 & 0.01~s & 0.02~s & 0.03~s \\ 2 & 0.1~s & 1~s & 2~s \\ 3 & 5~s & 27~s & 351~s ($\approx$ 6~min) \\ 4 & 4~s & 141~s ($\approx$ 3~min) & 1134~s ($\approx$ 18~min) \\ 5 & 6~s & 630~s ($\approx$ 10~min) & 49400~s ($\approx$ 13~h) \\\hline |
842e804be Permier pas vers ... |
753 |
\end{tabular} |
842e804be Permier pas vers ... |
754 |
\end{table} |
27f5f4108 Article étendu. |
755 |
|
b5ace9bdc Revision 2. |
756 |
As expected, the computation time seems to rise exponentially with the number of stages. |
8d9489b3b Add first draft f... |
757 |
When the area is limited, the design exploration space is more limited and the solver is able to |
5e2bf244b Suppression d'un ... |
758 |
find an optimal solution faster. |
c7f6afba7 Dernière correction. |
759 |
We also notice that the solution with $n$ greater than the optimal value |
a45e29d4b article et lettre |
760 761 |
takes more time to be found than the optimal one. This can be explained since the search space is larger and we need more time to ensure that the previous solution (from the |
c7f6afba7 Dernière correction. |
762 |
smaller value of $n$) still remains the optimal solution. |
0642fff00 relecture journal |
763 |
|
c7f6afba7 Dernière correction. |
764 765 |
\subsection{Minimizing resource occupation at fixed rejection} \label{sec:fixed_rej} |
8d9489b3b Add first draft f... |
766 |
|
0642fff00 relecture journal |
767 768 |
This section presents the results of the complementary quadratic program aimed at minimizing the area occupation for a targeted rejection level. |
8d9489b3b Add first draft f... |
769 |
|
b312dca6a Ajout de MIN/100. |
770 |
The experimental setup is composed of four cases. The raw input is the same |
0642fff00 relecture journal |
771 |
as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$. |
b312dca6a Ajout de MIN/100. |
772 773 |
Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB. Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100. |
8d9489b3b Add first draft f... |
774 775 776 777 778 |
The number of configurations $p$ is the same as previous section. Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40. Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60. Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80. |
b312dca6a Ajout de MIN/100. |
779 |
Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100. |
8d9489b3b Add first draft f... |
780 781 |
\renewcommand{\arraystretch}{1.4} |
0642fff00 relecture journal |
782 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
783 784 785 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40} \label{tbl:gurobi_min_40} \centering |
c7f6afba7 Dernière correction. |
786 |
{\scalefont{0.77} |
8d9489b3b Add first draft f... |
787 788 789 790 791 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (27, 8, 0) & - & - & - & - & 41~dB & 648 \\ |
b5ace9bdc Revision 2. |
792 793 794 795 |
2 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ 3 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ 4 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ 5 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ |
8d9489b3b Add first draft f... |
796 797 798 |
\hline \end{tabular} } |
842e804be Permier pas vers ... |
799 |
\end{table} |
27f5f4108 Article étendu. |
800 |
|
0642fff00 relecture journal |
801 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
802 803 804 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60} \label{tbl:gurobi_min_60} \centering |
c7f6afba7 Dernière correction. |
805 |
{\scalefont{0.77} |
8d9489b3b Add first draft f... |
806 807 808 809 810 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (39, 13, 0) & - & - & - & - & 60~dB & 1131 \\ |
b5ace9bdc Revision 2. |
811 812 813 814 |
2 & (15, 6, 16) & (23, 9, 0) & - & - & - & 60~dB & 675 \\ 3 & (3, 5, 18) & (15, 6, 2) & (23, 8, 0) & - & - & 60~dB & 543 \\ 4 & (3, 5, 18) & (15, 6, 2) & (23, 8, 0) & - & - & 60~dB & 543 \\ 5 & (3, 5, 18) & (15, 6, 2) & (23, 8, 0) & - & - & 60~dB & 543 \\ |
8d9489b3b Add first draft f... |
815 816 817 |
\hline \end{tabular} } |
842e804be Permier pas vers ... |
818 |
\end{table} |
27f5f4108 Article étendu. |
819 |
|
0642fff00 relecture journal |
820 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
821 822 823 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80} \label{tbl:gurobi_min_80} \centering |
c7f6afba7 Dernière correction. |
824 |
{\scalefont{0.77} |
8d9489b3b Add first draft f... |
825 826 827 828 829 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (55, 16, 0) & - & - & - & - & 81~dB & 1760 \\ |
b5ace9bdc Revision 2. |
830 831 832 833 |
2 & (15, 8, 17) & (35, 11, 0) & - & - & - & 80~dB & 990 \\ 3 & (3, 7, 20) & (31, 9, 1) & (19, 7, 0) & - & - & 80~dB & 783 \\ 4 & (3, 7, 20) & (31, 9, 1) & (19, 7, 0) & - & - & 80~dB & 783 \\ 5 & (3, 7, 20) & (31, 9, 1) & (19, 7, 0) & - & - & 80~dB & 783 \\ |
8d9489b3b Add first draft f... |
834 835 836 |
\hline \end{tabular} } |
842e804be Permier pas vers ... |
837 |
\end{table} |
b312dca6a Ajout de MIN/100. |
838 839 840 841 842 |
\begin{table}[h!tb] \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100} \label{tbl:gurobi_min_100} \centering |
c7f6afba7 Dernière correction. |
843 |
{\scalefont{0.77} |
b312dca6a Ajout de MIN/100. |
844 845 846 847 848 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & - & - & - & - & - & - & - \\ |
b5ace9bdc Revision 2. |
849 850 851 852 |
2 & (27, 9, 15) & (35, 11, 0) & - & - & - & 100~dB & 1410 \\ 3 & (3, 5, 18) & (35, 11, 1) & (27, 9, 0) & - & - & 100~dB & 1147 \\ 4 & (3, 5, 18) & (15, 6, 2) & (27, 9, 0) & (19, 7, 0) & - & 100~dB & 1067 \\ 5 & (3, 5, 18) & (15, 6, 2) & (27, 9, 0) & (19, 7, 0) & - & 100~dB & 1067 \\ |
b312dca6a Ajout de MIN/100. |
853 854 855 856 |
\hline \end{tabular} } \end{table} |
8d9489b3b Add first draft f... |
857 |
\renewcommand{\arraystretch}{1} |
27f5f4108 Article étendu. |
858 |
|
9b83af848 final corrections |
859 |
From these tables, we can first state that almost all configurations reach the targeted rejection |
0642fff00 relecture journal |
860 |
level or even better thanks to our underestimate of the cascade rejection as the sum of the |
b312dca6a Ajout de MIN/100. |
861 |
individual filter rejection. The only exception is for the monolithic case ($n = 1$) in |
9b83af848 final corrections |
862 |
MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection. |
7c951bd35 Typo + texte en n... |
863 |
Furthermore, the area of the monolithic filter is twice as big as the two cascaded filters |
c7f6afba7 Dernière correction. |
864 |
(675 and 1131 arbitrary units v.s 990 and 1760 arbitrary units for 60 and 80~dB rejection |
0642fff00 relecture journal |
865 866 867 868 869 870 871 |
respectively). More generally, the more filters are cascaded, the lower the occupied area. Like in previous section, the solver chooses always a little filter as first filter stage and the second one is often the biggest filter. This choice can be explained as in the previous section, with the solver using just enough bits not to degrade the input signal and in the second filter selecting a better filter to improve rejection without having too many bits in the output data. |
c7f6afba7 Dernière correction. |
872 |
For each case, we found an optimal solution with $n < 5$: for MIN/40 $n=2$, |
b5ace9bdc Revision 2. |
873 |
for MIN/60 and MIN/80 $n = 3$ and for MIN/100 $n = 4$. In all cases, the solutions |
c7f6afba7 Dernière correction. |
874 |
when $n$ is greater than this optimal $n$ remain identical to the optimal one. |
8d9489b3b Add first draft f... |
875 |
|
0642fff00 relecture journal |
876 |
The following graphs present the rejection for real data on the FPGA. In all the following |
8d9489b3b Add first draft f... |
877 |
figures, the solid line represents the actual rejection of the filtered |
0642fff00 relecture journal |
878 |
data on the FPGA as measured experimentally and the dashed line is the noise level |
8d9489b3b Add first draft f... |
879 880 881 882 883 |
given by the quadratic solver. Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40. Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60. Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80. |
b312dca6a Ajout de MIN/100. |
884 |
Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100. |
27f5f4108 Article étendu. |
885 |
|
842e804be Permier pas vers ... |
886 |
\begin{figure} |
b43d41ac2 Première partie d... |
887 888 |
\centering \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
889 |
\includegraphics[width=.91\linewidth]{images/min_40} |
c7f6afba7 Dernière correction. |
890 |
\caption{Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
891 |
the MIN/40 problem of minimizing resource allocation for reaching a 40~dB rejection.} |
b43d41ac2 Première partie d... |
892 893 894 895 |
\label{fig:min_40} \end{subfigure} \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
896 |
\includegraphics[width=.91\linewidth]{images/min_60} |
c7f6afba7 Dernière correction. |
897 |
\caption{Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
898 |
the MIN/60 problem of minimizing resource allocation for reaching a 60~dB rejection.} |
b43d41ac2 Première partie d... |
899 900 901 902 |
\label{fig:min_60} \end{subfigure} \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
903 |
\includegraphics[width=.91\linewidth]{images/min_80} |
c7f6afba7 Dernière correction. |
904 |
\caption{Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
905 |
the MIN/80 problem of minimizing resource allocation for reaching a 80~dB rejection.} |
b43d41ac2 Première partie d... |
906 907 908 909 |
\label{fig:min_80} \end{subfigure} \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
910 |
\includegraphics[width=.91\linewidth]{images/min_100} |
c7f6afba7 Dernière correction. |
911 |
\caption{Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
912 |
the MIN/100 problem of minimizing resource allocation for reaching a 100~dB rejection.} |
b43d41ac2 Première partie d... |
913 914 |
\label{fig:min_100} \end{subfigure} |
c7f6afba7 Dernière correction. |
915 |
\caption{Solutions for the MIN/40, MIN/60, MIN/80 and MIN/100 problems of reaching a |
efde7e849 Merge branch 'mas... |
916 917 |
given rejection while minimizing resource allocation. The filter shape constraint (bandpass and bandstop) is shown as thick |
db81f7ad9 captions figures |
918 |
horizontal lines on each chart.} |
b312dca6a Ajout de MIN/100. |
919 |
\end{figure} |
0642fff00 relecture journal |
920 921 |
We observe that all rejections given by the quadratic solver are close to the experimentally measured rejection. All curves prove that the constraint to reach the target rejection is |
b312dca6a Ajout de MIN/100. |
922 |
respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters. |
8d9489b3b Add first draft f... |
923 |
|
b312dca6a Ajout de MIN/100. |
924 925 |
Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60; MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We |
8d9489b3b Add first draft f... |
926 927 928 |
have taken care to extract solely the resources used by the FIR filters and remove additional processing blocks including FIFO and PL to PS communication. |
b312dca6a Ajout de MIN/100. |
929 |
\renewcommand{\arraystretch}{1.2} |
8d9489b3b Add first draft f... |
930 931 932 933 |
\begin{table} \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} \label{tbl:resources_usage_comp} \centering |
c7f6afba7 Dernière correction. |
934 |
{\scalefont{0.90} |
b312dca6a Ajout de MIN/100. |
935 |
\begin{tabular}{|c|c|cccc|c|} |
8d9489b3b Add first draft f... |
936 |
\hline |
b312dca6a Ajout de MIN/100. |
937 938 939 940 |
$n$ & & MIN/40 & MIN/60 & MIN/80 & MIN/100 & \emph{Zynq 7010} \\ \hline\hline & LUT & 343 & 334 & 772 & - & \emph{17600} \\ 1 & BRAM & 1 & 1 & 1 & - & \emph{120} \\ & DSP & 27 & 39 & 55 & - & \emph{80} \\ \hline |
b5ace9bdc Revision 2. |
941 |
& LUT & 1664 & 2329 & 474 & 620 & \emph{17600} \\ |
b312dca6a Ajout de MIN/100. |
942 |
2 & BRAM & 2 & 2 & 2 & 2 & \emph{120} \\ |
b5ace9bdc Revision 2. |
943 944 945 946 947 948 949 950 951 952 |
& DSP & 0 & 15 & 50 & 62 & \emph{80} \\ \hline & LUT & 1664 & 3114 & 1884 & 2873 & \emph{17600} \\ 3 & BRAM & 2 & 3 & 3 & 3 & \emph{120} \\ & DSP & 0 & 0 & 22 & 27 & \emph{80} \\ \hline & LUT & 1664 & 3114 & 2570 & 4318 & \emph{17600} \\ 4 & BRAM & 2 & 3 & 4 & 4 & \emph{120} \\ & DPS & 0 & 15 & 19 & 19 & \emph{80} \\ \hline & LUT & 1664 & 3114 & 2570 & 4318 & \emph{17600} \\ 5 & BRAM & 2 & 3 & 4 & 4 & \emph{120} \\ & DPS & 0 & 0 & 19 & 19 & \emph{80} \\ \hline |
8d9489b3b Add first draft f... |
953 |
\end{tabular} |
b312dca6a Ajout de MIN/100. |
954 |
} |
8d9489b3b Add first draft f... |
955 |
\end{table} |
b312dca6a Ajout de MIN/100. |
956 |
\renewcommand{\arraystretch}{1} |
8d9489b3b Add first draft f... |
957 |
|
0642fff00 relecture journal |
958 959 960 |
If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT) the real resource consumption decreases as a function of the number of stages in the cascaded filter according |
8d9489b3b Add first draft f... |
961 962 |
to the solution given by the quadratic solver. Indeed, we have always a decreasing consumption even if the difference between the monolithic and the two cascaded |
0642fff00 relecture journal |
963 |
filters is less than expected. |
8d9489b3b Add first draft f... |
964 |
|
0642fff00 relecture journal |
965 |
Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve |
8d9489b3b Add first draft f... |
966 |
the quadratic program. |
b312dca6a Ajout de MIN/100. |
967 |
\renewcommand{\arraystretch}{1.2} |
0642fff00 relecture journal |
968 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
969 970 971 |
\caption{Time to solve the quadratic program with Gurobi} \label{tbl:area_time_comp} \centering |
c7f6afba7 Dernière correction. |
972 |
{\scalefont{0.90} |
b312dca6a Ajout de MIN/100. |
973 974 |
\begin{tabular}{|c|c|c|c|c|}\hline $n$ & Time (MIN/40) & Time (MIN/60) & Time (MIN/80) & Time (MIN/100) \\\hline\hline |
b5ace9bdc Revision 2. |
975 976 977 978 979 |
1 & 0.04~s & 0.01~s & 0.01~s & - \\ 2 & 2.7~s & 2.4~s & 2.4~s & 0.8~s \\ 3 & 4.6~s & 7~s & 7~s & 18~s \\ 4 & 3~s & 22~s & 70~s & 220~s ($\approx$ 3~min) \\ 5 & 5~s & 122~s & 200~s & 384~s ($\approx$ 5~min) \\\hline |
8d9489b3b Add first draft f... |
980 |
\end{tabular} |
b312dca6a Ajout de MIN/100. |
981 |
} |
8d9489b3b Add first draft f... |
982 |
\end{table} |
b312dca6a Ajout de MIN/100. |
983 |
\renewcommand{\arraystretch}{1} |
8d9489b3b Add first draft f... |
984 |
|
0642fff00 relecture journal |
985 |
The time needed to solve this configuration is significantly shorter than the time |
c7f6afba7 Dernière correction. |
986 987 988 |
needed in the previous section. Indeed the worst time in this case is only 5~minutes, compared to 13~hours in the previous section: this problem is more easily solved than the previous one. |
8d9489b3b Add first draft f... |
989 |
|
c27d27105 relecture |
990 |
To conclude, we compare our monolithic filters with the FIR Compiler provided by |
efde7e849 Merge branch 'mas... |
991 |
Xilinx in the Vivado software suite (v.2018.2). For each experiment we use the |
c27d27105 relecture |
992 |
same coefficient set and we compare the resource consumption, having checked that |
efde7e849 Merge branch 'mas... |
993 |
the transfer functions are indeed the same with both implementations. |
c27d27105 relecture |
994 |
Table~\ref{tbl:xilinx_resources} exhibits the results. |
4d905253d relecture finale JMF |
995 |
The FIR Compiler never uses BRAM while our filter implementation uses one block. This difference |
c27d27105 relecture |
996 |
is explained be our wish to have a dynamically reconfigurable FIR filter whose |
efde7e849 Merge branch 'mas... |
997 |
coefficients can be updated from the processing system without having to update the FPGA design. |
c27d27105 relecture |
998 |
With the FIR compiler, the coefficients are defined during the FPGA design so that |
efde7e849 Merge branch 'mas... |
999 1000 |
changing coefficients required generating a new design. The difference with the LUT consumption is also attributed to the reconfigurability logic. However the DSP consumption, the scarcest |
c27d27105 relecture |
1001 1002 |
resource, is the same between the Xilinx FIR Compiler end our FIR block: we hence conclude that our solutions are as good as the Xilinx implementation. |
56f7c40c9 Ajout de correcti... |
1003 |
|
ec91065ab Ajout du tableau ... |
1004 1005 1006 1007 |
\renewcommand{\arraystretch}{1.2} \begin{table} \centering \caption{Resource consumption compared between the FIR Compiler from Xilinx and our FIR block} |
56f7c40c9 Ajout de correcti... |
1008 |
\label{tbl:xilinx_resources} |
ec91065ab Ajout du tableau ... |
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
\begin{tabular}{|c|c|c|c|c|c|c|} \hline \multirow{2}{*}{} & \multicolumn{3}{c|}{Xilinx} & \multicolumn{3}{c|}{Our FIR block} \\ \cline{2-7} & LUT & BRAM & DSP & LUT & BRAM & DSP \\ \hline MAX/500 & 177 & 0 & 21 & 249 & 1 & 21 \\ \hline MAX/1000 & 306 & 0 & 37 & 453 & 1 & 37 \\ \hline MAX/1500 & 418 & 0 & 47 & 627 & 1 & 47 \\ \hline MIN/40 & 225 & 0 & 27 & 347 & 1 & 27 \\ \hline MIN/60 & 322 & 0 & 39 & 334 & 1 & 39 \\ \hline MIN/80 & 482 & 0 & 55 & 772 & 1 & 55 \\ \hline \end{tabular} \end{table} \renewcommand{\arraystretch}{1} |
27f5f4108 Article étendu. |
1022 |
\section{Conclusion} |
b5ace9bdc Revision 2. |
1023 |
We have proposed a new approach to optimize a set of signal processing blocks whose performances |
0642fff00 relecture journal |
1024 1025 1026 1027 1028 1029 1030 |
and resource consumption has been tabulated, and applied this methodology to the practical case of implementing cascaded FIR filters inside a FPGA. This method aims to be hardware independent and focuses an a high-level of abstraction. We have modeled the FIR filter operation and the impact of data shift. Thanks to this model, we have created a quadratic program to select the optimal FIR taps to reach a targeted rejection. Individual filter taps have been identified using commonly available tools and the emphasis is on FIR assembly rather than individual FIR coefficient identification. |
8d9489b3b Add first draft f... |
1031 1032 1033 |
Our experimental results are very promising in providing a rational approach to selecting the coefficients of each FIR filter in the context of a performance target for a chain of |
0642fff00 relecture journal |
1034 1035 1036 |
such filters. The FPGA design that is produced automatically by the proposed workflow is able to filter an input signal as expected, validating experimentally our model and our approach. The quadratic program can be adapted it to an other problem based on assembling skeleton blocks. |
8d9489b3b Add first draft f... |
1037 |
|
c7f6afba7 Dernière correction. |
1038 |
Considering that all area and rejection considerations could be explored within a reasonable |
a45e29d4b article et lettre |
1039 1040 |
computation duration, and that no improvement is observed when cascading more than four filters, we consider that this particular problem has been exhaustively investigated and optimal solutions found |
c7f6afba7 Dernière correction. |
1041 |
in all cases. |
a45e29d4b article et lettre |
1042 |
|
8d9489b3b Add first draft f... |
1043 |
A perspective is to model and add the decimators to the processing chain to have a classical |
0642fff00 relecture journal |
1044 1045 |
FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon area usage for subsequent stages since some hardware optimization can be applied in |
8d9489b3b Add first draft f... |
1046 1047 1048 1049 |
this case. The software used to demonstrate the concepts developed in this paper is based on the CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}. |
27f5f4108 Article étendu. |
1050 1051 1052 1053 1054 |
\section*{Acknowledgement} This work is supported by the ANR Programme d'Investissement d'Avenir in progress at the Time and Frequency Departments of the FEMTO-ST Institute (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. |
842e804be Permier pas vers ... |
1055 |
The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila |
27f5f4108 Article étendu. |
1056 1057 1058 1059 1060 |
for support and fruitful discussions. \bibliographystyle{IEEEtran} \balance \bibliography{references,biblio} |
863c2480f Article avec biog... |
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 |
\begin{IEEEbiography}[{\includegraphics[width=1in,height=1.25in,clip,keepaspectratio]{biographies/ah}}]{Arthur HUGEAT} obtained a master's degree in computer sciences from the Université de Franche-Comté (France). He specialized his master's degree in "Distributed System and Network". He has accomplished a six months internship at FEMTO-ST, in Time \& Frequency dept. and DISC dept. where he worked on the development of abstract model of FPGA FIR filters with the purpose to optimize their design. He has extended his internship subject thanks to a PhD thesis, where he has provided a generic method to optimize some Digital Signal Processing. He has applied this new approach by revisiting results about cascaded filters to improve noise rejection and decrease the resource consumption. \end{IEEEbiography} \begin{IEEEbiography}[{\includegraphics[width=1in,height=1.25in,clip,keepaspectratio]{biographies/jb}}]{Julien Bernard} obtained a Ph.D. degree in 2008 from the Grenoble Institute of Engineering (Grenoble INP) while studying parallel programming models in embedded systems. Since 2009, he has been an Associate Professor at the University of Franche-Comt\'e, in the Computer Science and Complex Systems Department of the FEMTO-ST Institute, Besan\c{c}on, France. He is interested in optimization problems in complex systems, such as wireless sensor networks or distributed and parallel machines. \end{IEEEbiography} \begin{IEEEbiography}[{\includegraphics[width=1in,height=1.25in,clip,keepaspectratio]{biographies/gmg}}]{Gwenhaël Goavec-Merou} completed his PhD on FPGA-CPU co-design for image processing in 2014. He has since been a research engineer at the Time \& Frequency department of FEMTO-ST in Besançon (France). His current research interests include digital electronics for characterizing oscillator stability, GPS processing with FPGA, time dissemination for data synchronization and more broadly radiofrequency signal processing. \end{IEEEbiography} \begin{IEEEbiography}[{\includegraphics[width=1in,height=1.25in,clip,keepaspectratio]{biographies/pyb}}]{Pierre-Yves Bourgeois} was born in Besan\c con, France, in 1976, feb. 29th. He received a Ph.D and the IEEE's UFFC best student award in 2004 for the development of ultra-low drift cryogenic sapphire resonator oscillators. After postdoctoral appointments in the Frequency Standards and Metrology Research group of the University of Western Australia, he joined the CNRS at the FEMTO-ST Institute within the Time and Frequency dpt. He is currently investigating on the definition of digital methods applied to modern techniques of time and frequency metrology and to the development of high precision instruments. He's also interrested in atomic oscillators and ion trapped atomic clocks. \end{IEEEbiography} \begin{IEEEbiography}[{\includegraphics[width=1in,height=1.25in,clip,keepaspectratio]{biographies/jmf}}]{Jean-Michel Friedt} obtained his Ph.D. degree in 2000. He worked as a postdoctoral fellow in IMEC, Leuven, Belgium, on acoustic and optical biosensors for characterizing organic thin film properties before joining the group of S. Ballandras in 2004 at FEMTO-ST, Besan\c{c}on, France, for the development of passive sensors interrogated through a wireless link. He has been an engineer with the company SENSeOR since its creation in 2006, hosted by the Time and Frequency Department of FEMTO-ST, where he obtained his Habilitation in 2010. He has been an Associate Professor with the University of Franche-Comt\'e since 2014, teaching radiofrequency and embedded electronics. His interests include scanning probe microscopy, passive radio-frequency sensors and the associated radar-like electronics implemented as software-defined radio, as well as the associated digital signal processing techniques. \end{IEEEbiography} |
27f5f4108 Article étendu. |
1089 |
\end{document} |