Commit 56f7c40c963b2da3756f4f2947a7ad632ff8ccd5

Authored by Arthur HUGEAT
1 parent 7c78647f19
Exists in master

Ajout de corrections.

Showing 2 changed files with 71 additions and 22 deletions Side-by-side Diff

ifcs2018_journal.tex
... ... @@ -1046,11 +1046,24 @@
1046 1046 compared to 3~days in the previous section: this problem is more easily solved than the
1047 1047 previous one.
1048 1048  
  1049 +{\color{red} % r1.4
  1050 +To conclude we have compared our monolithic filters with the FIR Compiler form
  1051 +Xilinx. For each experimentation we use the same coefficient set and we compare the
  1052 +resources consumption. The table~\ref{tbl:xilinx_resources} exhibits the results.
  1053 +The FIR Compiler never use BRAM while our filter use one block. This difference
  1054 +can be explain be our wish to have a reconfigurable FIR filter. In our case, we can
  1055 +configure the coefficients set without to have to change the FPGA design. With
  1056 +the FIR compiler, the coefficients set are given during the FPGA design conception
  1057 +so we have to change the coefficients, we need to regenerate the design. The
  1058 +difference with the LUT consumption is also related to the reconfigurability
  1059 +logic. However the DSP consumption, the most restricted resource, are the same between the FIR compiler end
  1060 +our FIR block. Our solutions are as good as the Xilinx implementation.
  1061 +
1049 1062 \renewcommand{\arraystretch}{1.2}
1050 1063 \begin{table}
1051 1064 \centering
1052 1065 \caption{Resource consumption compared between the FIR Compiler from Xilinx and our FIR block}
1053   -\label{tbl:area_time_comp}
  1066 +\label{tbl:xilinx_resources}
1054 1067 \begin{tabular}{|c|c|c|c|c|c|c|}
1055 1068 \hline
1056 1069 \multirow{2}{*}{} & \multicolumn{3}{c|}{Xilinx} & \multicolumn{3}{c|}{Our FIR block} \\ \cline{2-7}
... ... @@ -1064,6 +1077,7 @@
1064 1077 \end{tabular}
1065 1078 \end{table}
1066 1079 \renewcommand{\arraystretch}{1}
  1080 +}
1067 1081  
1068 1082 \section{Conclusion}
1069 1083  
ifcs2018_journal_reponse.tex
... ... @@ -110,7 +110,7 @@
110 110 ''
111 111  
112 112 {\bf
113   -I appreciate that the authors attempted and document two optimizations: that % r1.4 - en attente des résultats
  113 +I appreciate that the authors attempted and document two optimizations: that % r1.4 - fait
114 114 of maximum rejection ratio at fixed silicon area, as well as minimum silicon
115 115 area for a fixed minimum rejection ratio. For non-experts, it might be very
116 116 useful to compare the results of both optimization paths to the performance and
... ... @@ -119,8 +119,10 @@
119 119 for examination online.
120 120 }
121 121  
122   -TODO : FIR Compiler et regarder les ressources pour un FIR comparable a ceux monolithiques
123   -fournis dans l'article (memes coefs et meme nombre de coefs)
  122 +To compare the performance of our FIR filters and the performance of device
  123 +manufacturers generic filter, we have added a paragraph and a table at the
  124 +end of experiments section. We compare the resources consumption with the same
  125 +FIR coefficients set.
124 126  
125 127 {\bf
126 128 Reviewer: 2
127 129  
128 130  
... ... @@ -160,17 +162,40 @@
160 162 We have added on Figs 10--16 (now Fig 9(a)--(c)) the templates used to defined
161 163 the bandpass and the bandstop of the filter.
162 164  
163   -%Peut etre refaire une serie de simulation dans lesquelles on impose une coupure
164   -%non pas entre 40 et 60\% mais entre 50 et 60\% pour demontrer que l'outil s'adapte
165   -%au critere qu'on lui impose, et que la coupure moins raide n'est pas intrinseque
166   -%a la cascade de filtres.
167   -%AH: Je finis les corrections, je poste l'article revu et pendant ce temps j'essaie de
168   -%relancer des expérimentations. Si j'arrive à les finir à temps, je les intégrerai
  165 +We are aware of this non equivalence but we think that difference is not due to
  166 +the cascaded filters but due to the definition of rejection criterion on the passband.
  167 +Indeed, in this article we have choose to take the summation of absolute values divide
  168 +by the bandwidth but this criterion is maybe too permissive and when we cascade
  169 +some filters this impact is more important.
169 170  
170   -JMF : il n'a pas tord, la coupure est bcp moins franche a 5 filtres qu'a 1. Ca se voyait
171   -moins avant de moyenner les fonctions de transfert, mais il y a bien une 15aine de dB
172   -quand on cascade 5 filtres !
  171 +However if we change the passband
  172 +criterion by the summation of absolute value in passband, weighting given to the
  173 +passband ripples are too strong and the solver are too restricted to provide
  174 +any interesting solution but the ripples in passband will be minimal. And if we take the maximum absolute value in
  175 +passband, the rejection evaluation are too close form the original criterion and
  176 +the result will not be improved.
173 177  
  178 +In this article, we will highlight the methodology instead of the filter conception.
  179 +Even if our rejection criterion is not the best, our methodology was not impacted
  180 +by this. So to improve the results, we can choose another criterion to be more
  181 +selective in passband but it is not the main objective of our article.
  182 +
  183 +% %Peut etre refaire une serie de simulation dans lesquelles on impose une coupure
  184 +% %non pas entre 40 et 60\% mais entre 50 et 60\% pour demontrer que l'outil s'adapte
  185 +% %au critere qu'on lui impose, et que la coupure moins raide n'est pas intrinseque
  186 +% %a la cascade de filtres.
  187 +% %AH: Je finis les corrections, je poste l'article revu et pendant ce temps j'essaie de
  188 +% %relancer des expérimentations. Si j'arrive à les finir à temps, je les intégrerai
  189 +%
  190 +% densité spectrale de la bande passante
  191 +% sum des valeurs absolues / largeur de la bande passante (1/N) vs max dans la bande de coupure
  192 +%
  193 +% JMF : il n'a pas tord, la coupure est bcp moins franche a 5 filtres qu'a 1. Ca se voyait
  194 +% moins avant de moyenner les fonctions de transfert, mais il y a bien une 15aine de dB
  195 +% quand on cascade 5 filtres !
  196 +%
  197 +% Dire que la chute n'est pas du à la casacade mais à notre critère de rejection
  198 +
174 199 {\bf
175 200 The reason is in the criterion that considers the average attenuation in % r2.2 - fait
176 201 the pass band. This criterion does not take into account the maximum attenuation
177 202  
... ... @@ -181,15 +206,18 @@
181 206 and in the results that are obtained and has to be reconsidered.
182 207 }
183 208  
184   -The manuscript erroneously stated that we considered the mean of the absolute
185   -value within the bandpass: the manuscript has now been corrected to properly state
186   -the selected criterion, namely the {\em sum} of the absolute value, so that any
187   -ripple in the bandpass will reduce the chances of a given filter set from being
188   -selected. The manuscript now states ``Our criterion to compute the filter rejection considers
189   -% r2.8 et r2.2 r2.3
190   -the maximum magnitude within the stopband, to which the {sum of the absolute values
191   -within the passband is subtracted to avoid filters with excessive ripples}.''
  209 +See above: If we choose the maximum absolute value in passband, we penalize the
  210 +case with 10 dB of ripple.
192 211  
  212 +% The manuscript erroneously stated that we considered the mean of the absolute
  213 +% value within the bandpass: the manuscript has now been corrected to properly state
  214 +% the selected criterion, namely the {\em sum} of the absolute value, so that any
  215 +% ripple in the bandpass will reduce the chances of a given filter set from being
  216 +% selected. The manuscript now states ``Our criterion to compute the filter rejection considers
  217 +% % r2.8 et r2.2 r2.3
  218 +% the maximum magnitude within the stopband, to which the {sum of the absolute values
  219 +% within the passband is subtracted to avoid filters with excessive ripples}.''
  220 +
193 221 {\bf
194 222 I strongly suggest to re-run the analysis with a criterion that takes also % r2.3 -fait
195 223 into account the maximum allowed attenuation in pass band, for example by
... ... @@ -200,6 +228,8 @@
200 228 See above: the absolute value within the passband will reject filters with
201 229 excessive ripples, including excessive attenuation, within the passband.
202 230  
  231 +% TODO: test max(stopband) - max(abs(passband))
  232 +
203 233 {\bf
204 234 In addition, I suggest to address the following points: % r2.4
205 235 - Page 1, line 50: the Authors state that IIR have shorter impulse response
... ... @@ -255,6 +285,8 @@
255 285 AH: Je ne suis pas d'accord, le critère n'est pas le min de la rejection mais le max
256 286 de la magnitude. J'ai corrigé en ce sens.
257 287  
  288 +Juste mettre une phrase pour dire que la mean ne donnait pas de bons résultats
  289 +
258 290 {\bf
259 291 - Page e, line 55, second column: ``takin'' % r2.9 - fait
260 292 - Page 3, line 58: ``pessimistic'' should be replaced with ``conservative'' % r2.10 - fait
... ... @@ -267,6 +299,9 @@
267 299 - Page 4, line 10: how $p$ is chosen? Which is the criterion used to choose % r2.12 - fait
268 300 these particular configurations? Are they chosen automatically?
269 301 }
  302 +C'est le nombre de coefficients et un taille raisonnable
  303 +Troncature de la pyramide
  304 +
270 305 See below: we have added a better description of $p$ during the transformation explanation.
271 306 ``we introduce $p$ FIR configurations.
272 307 This variable must be defined by the user, it represent the number of different