Commit db81f7ad9d5b1f457661973583951a2555a77203
1 parent
c27d271058
Exists in
master
captions figures
Showing 1 changed file with 41 additions and 19 deletions Side-by-side Diff
ifcs2018_journal.tex
| ... | ... | @@ -312,7 +312,8 @@ |
| 312 | 312 | \begin{figure} |
| 313 | 313 | \centering |
| 314 | 314 | \includegraphics[width=\linewidth]{images/colored_custom_criterion} |
| 315 | -\caption{Custom criterion (maximum rejection in the stopband minus the mean of the absolute value of the passband rejection) | |
| 315 | +\caption{Custom criterion (maximum rejection in the stopband minus the {\color{red} sum of the | |
| 316 | +absolute values of the passband rejection normalized to the bandwidth}) | |
| 316 | 317 | comparison between monolithic filter and cascaded filters} |
| 317 | 318 | \label{fig:custom_criterion} |
| 318 | 319 | \end{figure} |
| ... | ... | @@ -328,7 +329,9 @@ |
| 328 | 329 | \begin{figure} |
| 329 | 330 | \centering |
| 330 | 331 | \includegraphics[width=\linewidth]{images/rejection_pyramid} |
| 331 | -\caption{Rejection as a function of number of coefficients and number of bits} | |
| 332 | +\caption{{\color{red}{Filter}} rejection as a function of number of coefficients and number of bits | |
| 333 | +{\color{red}: this lookup table will be used to identify which filter parameters -- number of bits | |
| 334 | +representing coefficients and number of coefficients -- best match the targeted transfer function.}} | |
| 332 | 335 | \label{fig:rejection_pyramid} |
| 333 | 336 | \end{figure} |
| 334 | 337 | |
| ... | ... | @@ -343,7 +346,7 @@ |
| 343 | 346 | with respect to a basic sum of the rejection criteria shown as a the dotted yellow line. |
| 344 | 347 | % r2.9 |
| 345 | 348 | Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection |
| 346 | -criteria of each filter. However since the this sum underestimates the rejection capability of the cascade, | |
| 349 | +criteria of each filter. However since the {\color{red}individual filter rejection} sum underestimates the rejection capability of the cascade, | |
| 347 | 350 | % r2.10 |
| 348 | 351 | this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability |
| 349 | 352 | of the filter cascade to meet design criteria. |
| ... | ... | @@ -351,7 +354,11 @@ |
| 351 | 354 | \begin{figure} |
| 352 | 355 | \centering |
| 353 | 356 | \includegraphics[width=\linewidth]{images/cascaded_criterion} |
| 354 | -\caption{Rejection of two cascaded filters} | |
| 357 | +\caption{{\color{red}Transfer function of individual filters and after cascading} the two filters, | |
| 358 | +{\color{red}demonstrating that the selected criterion of maximum rejection in the bandstop (horizontal | |
| 359 | +lines) is met. Notice that the cascaded filter has better rejection than summing the bandstop | |
| 360 | +maximum of each individual filter.} | |
| 361 | +} | |
| 355 | 362 | \label{fig:sum_rejection} |
| 356 | 363 | \end{figure} |
| 357 | 364 | |
| ... | ... | @@ -521,7 +528,8 @@ |
| 521 | 528 | \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ; |
| 522 | 529 | \draw[->] (Postproc) -- (Results) ; |
| 523 | 530 | \end{tikzpicture} |
| 524 | - \caption{Design workflow from the input parameters to the results} | |
| 531 | + \caption{Design workflow from the input parameters to the results {\color{red} allowing for | |
| 532 | +a fully automated optimal solution search.}} | |
| 525 | 533 | \label{fig:workflow} |
| 526 | 534 | \end{figure} |
| 527 | 535 | |
| 528 | 536 | |
| 529 | 537 | |
| 530 | 538 | |
| ... | ... | @@ -699,22 +707,28 @@ |
| 699 | 707 | \centering |
| 700 | 708 | \begin{subfigure}{\linewidth} |
| 701 | 709 | \includegraphics[width=\linewidth]{images/max_500} |
| 702 | - \caption{Signal spectrum for MAX/500} | |
| 710 | + \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving | |
| 711 | +the MAX/500 problem of maximizing rejection for a given resource allocation (500~arbitrary units).} | |
| 703 | 712 | \label{fig:max_500_result} |
| 704 | 713 | \end{subfigure} |
| 705 | 714 | |
| 706 | 715 | \begin{subfigure}{\linewidth} |
| 707 | 716 | \includegraphics[width=\linewidth]{images/max_1000} |
| 708 | - \caption{Signal spectrum for MAX/1000} | |
| 717 | + \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving | |
| 718 | +the MAX/1000 problem of maximizing rejection for a given resource allocation (1000~arbitrary units).} | |
| 709 | 719 | \label{fig:max_1000_result} |
| 710 | 720 | \end{subfigure} |
| 711 | 721 | |
| 712 | 722 | \begin{subfigure}{\linewidth} |
| 713 | 723 | \includegraphics[width=\linewidth]{images/max_1500} |
| 714 | - \caption{Signal spectrum for MAX/1500} | |
| 724 | + \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving | |
| 725 | +the MAX/1500 problem of maximizing rejection for a given resource allocation (1500~arbitrary units).} | |
| 715 | 726 | \label{fig:max_1500_result} |
| 716 | 727 | \end{subfigure} |
| 717 | - \caption{Signal spectrum of each experimental configurations MAX/500, MAX/1000 and MAX/1500} | |
| 728 | + \caption{\color{red}Solutions for the MAX/500, MAX/1000 and MAX/1500 problems of maximizing | |
| 729 | +rejection for a given resource allocation. | |
| 730 | +The filter shape constraint (bandpass and bandstop) is shown as thick | |
| 731 | +horizontal lines on each chart.} | |
| 718 | 732 | \end{figure} |
| 719 | 733 | |
| 720 | 734 | In all cases, we observe that the actual rejection is close to the rejection computed by the solver. |
| ... | ... | @@ -736,7 +750,8 @@ |
| 736 | 750 | Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication. |
| 737 | 751 | |
| 738 | 752 | \begin{table}[h!tb] |
| 739 | - \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} | |
| 753 | + \caption{Resource occupation {\color{red}following synthesis of the solutions found for | |
| 754 | +the problem of maximizing rejection for a given resource allocation}. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} | |
| 740 | 755 | \label{tbl:resources_usage} |
| 741 | 756 | \centering |
| 742 | 757 | \begin{tabular}{|c|c|ccc|c|} |
| 743 | 758 | |
| 744 | 759 | |
| 745 | 760 | |
| 746 | 761 | |
| ... | ... | @@ -953,29 +968,36 @@ |
| 953 | 968 | \begin{figure} |
| 954 | 969 | \centering |
| 955 | 970 | \begin{subfigure}{\linewidth} |
| 956 | - \includegraphics[width=\linewidth]{images/min_40} | |
| 957 | - \caption{Signal spectrum for MIN/40} | |
| 971 | + \includegraphics[width=.91\linewidth]{images/min_40} | |
| 972 | + \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving | |
| 973 | +the MIN/40 problem of minimizing resource allocation for reaching a 40~dB rejection.} | |
| 958 | 974 | \label{fig:min_40} |
| 959 | 975 | \end{subfigure} |
| 960 | 976 | |
| 961 | 977 | \begin{subfigure}{\linewidth} |
| 962 | - \includegraphics[width=\linewidth]{images/min_60} | |
| 963 | - \caption{Signal spectrum for MIN/60} | |
| 978 | + \includegraphics[width=.91\linewidth]{images/min_60} | |
| 979 | + \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving | |
| 980 | +the MIN/60 problem of minimizing resource allocation for reaching a 60~dB rejection.} | |
| 964 | 981 | \label{fig:min_60} |
| 965 | 982 | \end{subfigure} |
| 966 | 983 | |
| 967 | 984 | \begin{subfigure}{\linewidth} |
| 968 | - \includegraphics[width=\linewidth]{images/min_80} | |
| 969 | - \caption{Signal spectrum for MIN/80} | |
| 985 | + \includegraphics[width=.91\linewidth]{images/min_80} | |
| 986 | + \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving | |
| 987 | +the MIN/80 problem of minimizing resource allocation for reaching a 80~dB rejection.} | |
| 970 | 988 | \label{fig:min_80} |
| 971 | 989 | \end{subfigure} |
| 972 | 990 | |
| 973 | 991 | \begin{subfigure}{\linewidth} |
| 974 | - \includegraphics[width=\linewidth]{images/min_100} | |
| 975 | - \caption{Signal spectrum for MIN/100} | |
| 992 | + \includegraphics[width=.91\linewidth]{images/min_100} | |
| 993 | + \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving | |
| 994 | +the MIN/100 problem of minimizing resource allocation for reaching a 100~dB rejection.} | |
| 976 | 995 | \label{fig:min_100} |
| 977 | 996 | \end{subfigure} |
| 978 | - \caption{Signal spectrum of each experimental configurations MIN/40, MIN/60, MIN/80 and MIN/100} | |
| 997 | + \caption{\color{red}Solutions for the MIN/40, MIN/60, MIN/80 and MIN/100 problems of reaching a | |
| 998 | +given rejection while minimizing resource allocation. The filter shape constraint (bandpass and | |
| 999 | +bandstop) is shown as thick | |
| 1000 | +horizontal lines on each chart.} | |
| 979 | 1001 | \end{figure} |
| 980 | 1002 | |
| 981 | 1003 | We observe that all rejections given by the quadratic solver are close to the experimentally |