Blame view

ifcs2018_journal.tex 64.5 KB
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
1
2
  % fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
  % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
c9c460c6b   jfriedt   menage article IFCS
3
4
  %    rejection par bit et perte si moins de bits que rejection/6
  % developper programme lineaire en incluant le decalage de bits
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
5
6
  % insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
  % implemente et on demontre que ca tourne
c9c460c6b   jfriedt   menage article IFCS
7
8
9
  %   gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ?
  % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer
  %        (zedboard ou redpit)
c9c460c6b   jfriedt   menage article IFCS
10
  % label schema : verifier que "argumenter de la cascade de FIR" est fait
32b45e8e1   Arthur HUGEAT   change type de pa...
11
  \documentclass[a4paper,journal]{IEEEtran/IEEEtran}
27f5f4108   Arthur HUGEAT   Article étendu.
12
13
14
15
16
17
18
19
  \usepackage{graphicx,color,hyperref}
  \usepackage{amsfonts}
  \usepackage{amsthm}
  \usepackage{amssymb}
  \usepackage{amsmath}
  \usepackage{algorithm2e}
  \usepackage{url,balance}
  \usepackage[normalem]{ulem}
842e804be   Arthur HUGEAT   Permier pas vers ...
20
21
22
23
  \usepackage{tikz}
  \usetikzlibrary{positioning,fit}
  \usepackage{multirow}
  \usepackage{scalefnt}
b43d41ac2   Arthur HUGEAT   Première partie d...
24
25
  \usepackage{caption}
  \usepackage{subcaption}
842e804be   Arthur HUGEAT   Permier pas vers ...
26

27f5f4108   Arthur HUGEAT   Article étendu.
27
28
29
30
31
32
33
34
35
36
37
  % correct bad hyphenation here
  \hyphenation{op-tical net-works semi-conduc-tor}
  \textheight=26cm
  \setlength{\footskip}{30pt}
  \pagenumbering{gobble}
  \begin{document}
  \title{Filter optimization for real time digital processing of radiofrequency signals: application
  to oscillator metrology}
  
  \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
  G. Goavec-M\'erou\IEEEauthorrefmark{1},
b43d41ac2   Arthur HUGEAT   Première partie d...
38
39
  P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\
  \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\
27f5f4108   Arthur HUGEAT   Article étendu.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
  Email: \{pyb2,jmfriedt\}@femto-st.fr}
  }
  \maketitle
  \thispagestyle{plain}
  \pagestyle{plain}
  
  ewtheorem{definition}{Definition}
  
  \begin{abstract}
  Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
  radiofrequency signal processing. Applied to oscillator characterization in the context
  of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
  noise rejection needs. Since real time radiofrequency processing must be performed in a
  Field Programmable Array to meet timing constraints, we investigate optimization strategies
  to design filters meeting rejection characteristics while limiting the hardware resources
0642fff00   jfriedt   relecture journal
56
57
58
59
60
  required and keeping timing constraints within the targeted measurement bandwidths. The
  presented technique is applicable to scheduling any sequence of processing blocks characterized
  by a throughput, resource occupation and performance tabulated as a function of configuration
  characateristics, as is the case for filters with their coefficients and resolution yielding
  rejection and number of multipliers.
27f5f4108   Arthur HUGEAT   Article étendu.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  \end{abstract}
  
  \begin{IEEEkeywords}
  Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
  \end{IEEEkeywords}
  
  \section{Digital signal processing of ultrastable clock signals}
  
  Analog oscillator phase noise characteristics are classically performed by downconverting
  the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
  followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
  a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
  multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
  
  \begin{figure}[h!tb]
  \begin{center}
  \includegraphics[width=.8\linewidth]{images/schema}
  \end{center}
  \caption{Fully digital oscillator phase noise characterization: the Device Under Test
  (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
  downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
  and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
  Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
  the spectral characteristics of the phase fluctuations.}
  \label{schema}
  \end{figure}
  
  As with the analog mixer,
  the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
  well as the generation of the frequency sum signal in addition to the frequency difference.
  These unwanted spectral characteristics must be rejected before decimating the data stream
  for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
  downconverter
  and the decimation processing blocks are core characteristics of an oscillator characterization
  system, and must reject out-of-band signals below the targeted phase noise -- typically in the
  sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
  use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
  datastream: optimizing the performance of the filter while reducing the needed resources is
  hence tackled in a systematic approach using optimization techniques. Most significantly, we
  tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
  tunable number of coefficients and tunable number of bits representing the coefficients and the
  data being processed.
  
  \section{Finite impulse response filter}
0642fff00   jfriedt   relecture journal
105
  We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined
27f5f4108   Arthur HUGEAT   Article étendu.
106
107
  by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
  outputs $y_k$
842e804be   Arthur HUGEAT   Permier pas vers ...
108
109
110
111
  \begin{align}
      y_n=\sum_{k=0}^N b_k x_{n-k}
      \label{eq:fir_equation}
  \end{align}
27f5f4108   Arthur HUGEAT   Article étendu.
112
113
  
  As opposed to an implementation on a general purpose processor in which word size is defined by the
0642fff00   jfriedt   relecture journal
114
  processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since
27f5f4108   Arthur HUGEAT   Article étendu.
115
116
117
118
  not only the coefficient values and number of taps must be defined, but also the number of bits
  defining the coefficients and the sample size. For this reason, and because we consider pipeline
  processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
  signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
119
  the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language
0642fff00   jfriedt   relecture journal
120
  (VHDL) level.
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
121
  {\color{red}Since latency is not an issue in a openloop phase noise characterization instrument,
90c55845a   jfriedt   relecture JMF
122
  the large
27f5f4108   Arthur HUGEAT   Article étendu.
123
  numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
90c55845a   jfriedt   relecture JMF
124
  is not considered as an issue as would be in a closed loop system.}  % r2.4
27f5f4108   Arthur HUGEAT   Article étendu.
125
126
127
128
129
  
  The coefficients are classically expressed as floating point values. However, this binary
  number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
  we select to quantify these floating point values into integer values. This quantization
  will result in some precision loss.
27f5f4108   Arthur HUGEAT   Article étendu.
130
  \begin{figure}[h!tb]
46ae3f9cf   Arthur HUGEAT   Final draft.
131
  \includegraphics[width=\linewidth]{images/zero_values}
27f5f4108   Arthur HUGEAT   Article étendu.
132
133
134
135
136
137
138
139
140
141
142
143
  \caption{Impact of the quantization resolution of the coefficients: the quantization is
  set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
  the 30~first and 30~last coefficients out of the initial 128~band-pass
  filter coefficients to 0 (red dots).}
  \label{float_vs_int}
  \end{figure}
  
  The tradeoff between quantization resolution and number of coefficients when considering
  integer operations is not trivial. As an illustration of the issue related to the
  relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
  a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
  quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
144
  taps become null, {\color{red}making the large number of coefficients irrelevant: processing
90c55845a   jfriedt   relecture JMF
145
146
  resources % r1.1
  are hence saved by shrinking the filter length.} This tradeoff aimed at minimizing resources
27f5f4108   Arthur HUGEAT   Article étendu.
147
148
149
150
151
152
153
154
155
156
  to reach a given rejection level, or maximizing out of band rejection for a given computational
  resource, will drive the investigation on cascading filters designed with varying tap resolution
  and tap length, as will be shown in the next section. Indeed, our development strategy closely
  follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
  in which basic blocks are defined and characterized before being assembled \cite{hide}
  in a complete processing chain. In our case, assembling the filter blocks is a simpler block
  combination process since we assume a single value to be processed and a single value to be
  generated at each clock cycle. The FIR filters will not be considered to decimate in the
  current implementation: the decimation is assumed to be located after the FIR cascade at the
  moment.
842e804be   Arthur HUGEAT   Permier pas vers ...
157
  \section{Methodology description}
0642fff00   jfriedt   relecture journal
158

5e2bf244b   Arthur HUGEAT   Suppression d'un ...
159
160
  Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP)
  chain obtained by assembling basic processing blocks, with hardware and manufacturer independence.
0642fff00   jfriedt   relecture journal
161
162
163
164
165
166
167
168
169
170
171
  Achieving such a target requires defining an abstract model to represent some basic properties
  of DSP blocks such as perfomance (i.e. rejection or ripples in the bandpass for filters) and
  resource occupation. These abstract properties, not necessarily related to the detailed hardware
  implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum
  target, whether in terms of maximizing performance for a given arbitrary resource occupation, or
  minimizing resource occupation for a given perfomance. In our approach, the solution of the
  solver is then synthesized using the dedicated tool provided by each platform manufacturer
  to assess the validity of our abstract resource occupation indicator, and the result of running
  the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize
  that all solutions found by the solver are synthesized and executed on hardware at the end
  of the analysis.
c27d27105   jfriedt   relecture
172
  In this demonstration, we focus on only two operations: filtering and shifting the number of
0642fff00   jfriedt   relecture journal
173
  bits needed to represent the data along the processing chain.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
174
  We have chosen these basic operations because shifting and the filtering have already been studied
0642fff00   jfriedt   relecture journal
175
  in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
176
177
  assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend
  requiring pipelined processing at full bandwidth for the earliest steps, including for
0642fff00   jfriedt   relecture journal
178
179
180
181
  time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}.
  
  Addressing only two operations allows for demonstrating the methodology but should not be
  considered as a limitation of the framework which can be extended to assembling any number
90c55845a   jfriedt   relecture JMF
182
183
184
185
186
  of skeleton blocks as long as perfomance and resource occupation can be determined. {\color{red}
  Hence,
  in this paper we will apply our methodology on simple DSP chains: a white noise input signal % r1.2
  is generated using a Pseudo-Random Number (PRN) generator or by sampling a wideband (125~MS/s)
  14-bit Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor.} Once samples have been
0642fff00   jfriedt   relecture journal
187
188
189
  digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance --
  practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction
  by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing,
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
190
  allowing to assess either filter rejection for a given resource usage, or validating the rejection
0642fff00   jfriedt   relecture journal
191
  when implementing a solution minimizing resource occupation.
842e804be   Arthur HUGEAT   Permier pas vers ...
192

90c55845a   jfriedt   relecture JMF
193
194
  {\color{red}
  The first step of our approach is to model the DSP chain. Since we aim at only optimizing % r1.3
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
195
196
  the filtering part of the signal processing chain, we have not included the PRN generator or the
  ADC in the model: the input data size and rate are considered fixed and defined by the hardware.
90c55845a   jfriedt   relecture JMF
197
  The filtering can be done in two ways, either by considering a single monolithic FIR filter
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
198
  requiring many coefficients to reach the targeted noise rejection ratio, or by
90c55845a   jfriedt   relecture JMF
199
  cascading multiple FIR filters, each with fewer coefficients than found in the monolithic filter.}
842e804be   Arthur HUGEAT   Permier pas vers ...
200
201
202
203
204
205
  
  After each filter we leave the possibility of shifting the filtered data to consume
  less resources. Hence in the case of cascaded filter, we define a stage as a filter
  and a shifter (the shift could be omitted if we do not need to divide the filtered data).
  
  \subsection{Model of a FIR filter}
0642fff00   jfriedt   relecture journal
206
207
208
209
  
  A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$)
  the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$
  bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as
842e804be   Arthur HUGEAT   Permier pas vers ...
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage}
  shows a filtering stage.
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=2cm]
      
  ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ;
      
  ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ;
      
  ode (Start) [left of=FIR] { } ;
      
  ode (End) [right of=Shift] { } ;
  
      
  ode[draw,fit=(FIR) (Shift)] (Filter) { } ;
  
      \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ;
      \draw[->] (FIR) -- (Shift) ;
      \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ;
    \end{tikzpicture}
    \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)}
    \label{fig:fir_stage}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
235

0642fff00   jfriedt   relecture journal
236
237
238
  FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB.
  This rejection has been computed using GNU Octave software FIR coefficient design functions
  (\texttt{firls} and \texttt{fir1}).
842e804be   Arthur HUGEAT   Permier pas vers ...
239
240
241
  For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients.
  Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively,
  the coefficients are normalized by their absolute maximum before being scaled to integer coefficients.
0642fff00   jfriedt   relecture journal
242
  At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits.
842e804be   Arthur HUGEAT   Permier pas vers ...
243

0642fff00   jfriedt   relecture journal
244
245
246
  With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter
  transfer function.
  Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag},
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
247
  the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the
90c55845a   jfriedt   relecture JMF
248
249
250
251
  bandpass ripples as emphasized in \cite{lim_1988,lim_1996}. {\color{red}Throughout this demonstration,
  we arbitrarily set a bandpass of 40\% of the Nyquist frequency and a bandstop from 60\%
  of the Nyquist frequency to the end of the band, as would be typically selected to prevent
  aliasing before decimating the dataflow by 2. The method is however generalized to any filter
959bbc540   jfriedt   re-relecture JMF
252
253
  shape as long as it is defined from the initial modelling steps: Fig. \ref{fig:rejection_pyramid}
  as described below is indeed unique for each filter shape.}
842e804be   Arthur HUGEAT   Permier pas vers ...
254
255
  
  \begin{figure}
0642fff00   jfriedt   relecture journal
256
257
  \begin{center}
  \scalebox{0.8}{
842e804be   Arthur HUGEAT   Permier pas vers ...
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    \centering
    \begin{tikzpicture}[scale=0.3]
      \draw[<->] (0,15) -- (0,0) -- (21,0) ;
      \draw[thick] (0,12) -- (8,12) -- (20,0) ;
  
      \draw (0,14) node [left] { $P$ } ;
      \draw (20,0) node [below] { $f$ } ;
  
      \draw[>=latex,<->] (0,14) -- (8,14) ;
      \draw (4,14) node [above] { passband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (8,14) -- (12,14) ;
      \draw (10,14) node [above] { transition } node [below] { $20\%$ } ;
  
      \draw[>=latex,<->] (12,14) -- (20,14) ;
      \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (16,12) -- (16,8) ;
      \draw (16,10) node [right] { rejection } ;
  
      \draw[dashed] (8,-1) -- (8,14) ;
      \draw[dashed] (12,-1) -- (12,14) ;
  
      \draw[dashed] (8,12) -- (16,12) ;
      \draw[dashed] (12,8) -- (16,8) ;
  
    \end{tikzpicture}
0642fff00   jfriedt   relecture journal
285
286
  }
  \end{center}
842e804be   Arthur HUGEAT   Permier pas vers ...
287
288
289
290
  \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$:
  the passband is considered to occupy the initial 40\% of the Nyquist frequency range,
  the stopband the last 40\%, allowing 20\% transition width.}
  \label{fig:fir_mag}
27f5f4108   Arthur HUGEAT   Article étendu.
291
  \end{figure}
959bbc540   jfriedt   re-relecture JMF
292
  In the transition band, the behavior of the filter is left free, we only {\color{red}define} the passband and the stopband characteristics.
b43d41ac2   Arthur HUGEAT   Première partie d...
293
294
295
296
  % r2.7
  % Our initial criterion considered the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion
  % yields unacceptable results since notches overestimate the rejection capability of the filter. Furthermore, the losses within
  % the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients.
959bbc540   jfriedt   re-relecture JMF
297
  Our criterion to compute the filter rejection considers
b43d41ac2   Arthur HUGEAT   Première partie d...
298
  % r2.8 et r2.2 r2.3
9c253d6d2   Arthur HUGEAT   Correction sur le...
299
  the {\color{red}minimal} rejection within the stopband, to which the {\color{red}sum of the absolute values
c27d27105   jfriedt   relecture
300
301
  within the passband is subtracted to avoid filters with excessive ripples, normalized to the
  bin width to remain consistent with the passband criterion (dBc/Hz units in all cases)}. With this
959bbc540   jfriedt   re-relecture JMF
302
  criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}.
b43d41ac2   Arthur HUGEAT   Première partie d...
303
304
305
306
307
308
309
  
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/colored_mean_criterion}
  % \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters}
  % \label{fig:mean_criterion}
  % \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
310

842e804be   Arthur HUGEAT   Permier pas vers ...
311
312
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
313
  \includegraphics[width=\linewidth]{images/colored_custom_criterion}
efde7e849   Arthur HUGEAT   Merge branch 'mas...
314
  \caption{Custom criterion (maximum rejection in the stopband minus the {\color{red} sum of the
db81f7ad9   jfriedt   captions figures
315
  absolute values of the passband rejection normalized to the bandwidth})
0642fff00   jfriedt   relecture journal
316
  comparison between monolithic filter and cascaded filters}
842e804be   Arthur HUGEAT   Permier pas vers ...
317
318
  \label{fig:custom_criterion}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
319

0642fff00   jfriedt   relecture journal
320
321
322
323
  Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps
  and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the
  rejection as a function of the number of coefficients and the number of bits representing these coefficients.
  The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
324
  Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection.
0642fff00   jfriedt   relecture journal
325
326
  Conversely when setting the a given number of bits, increasing the number of coefficients will not improve
  the rejection. Hence the best coefficient set are on the vertex of the pyramid.
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
327
328
329
330
  
  \begin{figure}
  \centering
  \includegraphics[width=\linewidth]{images/rejection_pyramid}
db81f7ad9   jfriedt   captions figures
331
332
333
  \caption{{\color{red}{Filter}} rejection as a function of number of coefficients and number of bits
  {\color{red}: this lookup table will be used to identify which filter parameters -- number of bits
  representing coefficients and number of coefficients -- best match the targeted transfer function.}}
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
334
335
  \label{fig:rejection_pyramid}
  \end{figure}
0642fff00   jfriedt   relecture journal
336
  Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps),
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
337
  we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria.
0642fff00   jfriedt   relecture journal
338
  If the FIR filter coefficients are the same between the stages, we have:
842e804be   Arthur HUGEAT   Permier pas vers ...
339
  $$F_{total} = F_1 + F_2$$
0642fff00   jfriedt   relecture journal
340
341
342
  But selecting two different sets of coefficient will yield a more complex situation in which
  the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves
  are two different filters with maximums and notches not located at the same frequency offsets.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
343
  Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved
0642fff00   jfriedt   relecture journal
344
  with respect to a basic sum of the rejection criteria shown as a the dotted yellow line.
b43d41ac2   Arthur HUGEAT   Première partie d...
345
346
  % r2.9
  Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection
db81f7ad9   jfriedt   captions figures
347
  criteria of each filter. However since the {\color{red}individual filter rejection} sum underestimates the rejection capability of the cascade,
b43d41ac2   Arthur HUGEAT   Première partie d...
348
349
  % r2.10
  this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability
0642fff00   jfriedt   relecture journal
350
  of the filter cascade to meet design criteria.
842e804be   Arthur HUGEAT   Permier pas vers ...
351
352
353
  
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
354
  \includegraphics[width=\linewidth]{images/cascaded_criterion}
db81f7ad9   jfriedt   captions figures
355
356
357
358
359
  \caption{{\color{red}Transfer function of individual filters and after cascading} the two filters,
  {\color{red}demonstrating that the selected criterion of maximum rejection in the bandstop (horizontal
  lines) is met. Notice that the cascaded filter has better rejection than summing the bandstop
  maximum of each individual filter.}
  }
842e804be   Arthur HUGEAT   Permier pas vers ...
360
361
  \label{fig:sum_rejection}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
362

b43d41ac2   Arthur HUGEAT   Première partie d...
363
  % r2.6
c27d27105   jfriedt   relecture
364
365
366
367
  {\color{red}
  Finally in our case, we consider that the input signal are fully known. The
  resolution of the input data stream are fixed and still the same for all experiments
  in this paper.}
b43d41ac2   Arthur HUGEAT   Première partie d...
368

0642fff00   jfriedt   relecture journal
369
  Based on this analysis, we address the estimate of resource consumption (called
b43d41ac2   Arthur HUGEAT   Première partie d...
370
371
  % r2.11
  silicon area -- in the case of FPGAs this means processing cells) as a function of
0642fff00   jfriedt   relecture journal
372
373
374
375
376
377
  filter characteristics. As a reminder, we do not aim at matching actual hardware
  configuration but consider an arbitrary silicon area occupied by each processing function,
  and will assess after synthesis the adequation of this arbitrary unit with actual
  hardware resources provided by FPGA manufacturers. The sum of individual processing
  unit areas is constrained by a total silicon area representative of FPGA global resources.
  Formally, variable $a_i$ is the area taken by filter~$i$
46ae3f9cf   Arthur HUGEAT   Final draft.
378
379
  (in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB).
  Constant $\mathcal{A}$ is the total available area. We model our problem as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
380
381
382
383
384
385
386
387
388
389
390
  \begin{align}
  \text{Maximize } & \sum_{i=1}^n r_i  
  otag \\
  \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\
  a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\
  r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\
  \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\
  \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\
  \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\
  \pi_1^- &= \Pi^I \label{eq:init}
  \end{align}
8d9489b3b   Arthur HUGEAT   Add first draft f...
391
392
  Equation~\ref{eq:area} states that the total area taken by the filters must be
  less than the available area. Equation~\ref{eq:areadef} gives the definition of
0642fff00   jfriedt   relecture journal
393
394
  the area used by a filter, considered as the area of the FIR since the Shifter is
  assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size
8d9489b3b   Arthur HUGEAT   Add first draft f...
395
  $\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the
0642fff00   jfriedt   relecture journal
396
397
398
  input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the
  definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined
  previously. The Shifter does not introduce negative rejection as we will explain later,
8d9489b3b   Arthur HUGEAT   Add first draft f...
399
400
401
402
403
404
405
406
  so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the
  relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add
  $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes
  $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of
  a filter is the same as the input number of bits of the next filter.
  Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative
  rejection. Indeed, the results of the FIR can be right shifted without compromising
  the quality of the rejection until a threshold. Each bit of the output data
0642fff00   jfriedt   relecture journal
407
  increases the maximum rejection level by 6~dB. We add one to take the sign bit
8d9489b3b   Arthur HUGEAT   Add first draft f...
408
409
  into account. If equation~\ref{eq:maxshift} was not present, the Shifter could
  shift too much and introduce some noise in the output data. Each supplementary
0642fff00   jfriedt   relecture journal
410
411
412
  shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is:
  $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$.
  Finally, equation~\ref{eq:init} gives the number of bits of the global input.
8d9489b3b   Arthur HUGEAT   Add first draft f...
413

7c78647f1   Arthur HUGEAT   Ajout de correction.
414
415
  {\color{red}
  This model is non-linear since we multiply some variable with another variable
c27d27105   jfriedt   relecture
416
  and it is even non-quadratic, as the cost function $F$ does not have a known
7c78647f1   Arthur HUGEAT   Ajout de correction.
417
  linear or quadratic expression. To linearize this problem, we introduce $p$ FIR configurations.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
418
419
420
421
422
423
424
425
426
  % AH: conflit merge
  % This variable must be defined by the user, it represent the number of different
  % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  % functions from GNU Octave). To choose this value, we consider a subset of the figure~\ref{fig:rejection_pyramid}
  % to restrict the number of configurations. Indeed, it is useless to have too many coefficients or
  % too many bits, hence we take the configurations close to edge of pyramid. Thank to theses
  % configurations $C_{ij}$ and $\pi_{ij}^C$ ($1 \leq j \leq p$) become constant
  % and the function $F$ can be estimate for each configurations
  % thanks our rejection criterion. We also defined binary
c27d27105   jfriedt   relecture
427
428
429
  This variable $p$ is defined by the user, and represents the number of different
  set of coefficients generated (remember, we use \texttt{firls} and \texttt{fir1}
  functions from GNU Octave) based on the targeted filter characteristics and implementation
efde7e849   Arthur HUGEAT   Merge branch 'mas...
430
  assumptions (estimated number of bits defining the coefficients). Hence, $C_{ij}$ and
c27d27105   jfriedt   relecture
431
  $\pi_{ij}^C$ become constants and
efde7e849   Arthur HUGEAT   Merge branch 'mas...
432
  we define $1 \leq j \leq p$ so that the function $F$ can be estimated (Look Up Table)
c27d27105   jfriedt   relecture
433
  for each configurations thanks to the rejection criterion. We also define the binary
46ae3f9cf   Arthur HUGEAT   Final draft.
434
435
  variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  and 0 otherwise. The new equations are as follows:
7c78647f1   Arthur HUGEAT   Ajout de correction.
436
  }
8d9489b3b   Arthur HUGEAT   Add first draft f...
437
438
439
440
441
442
443
444
445
446
447
  
  \begin{align}
  a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  \end{align}
  
  Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
7c78647f1   Arthur HUGEAT   Ajout de correction.
448
  {\color{red}
efde7e849   Arthur HUGEAT   Merge branch 'mas...
449
450
451
452
453
454
455
456
457
458
459
  % JM: conflict merge
  % However the problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2}
  % we multiply
  % $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can
  % linearise this multiplication if we can bound $\pi_i^-$. As $\pi_i^-$ is the data size,
  % we define $0 < \pi_i^- \leq 128$ which is the maximum data size whose estimation is
  % assumed on hardware characteristics.
  % The Gurobi (\url{www.gurobi.com}) optimization software used to solve this quadratic
  % model is able to linearize the model provided as is. This model
  % has $O(np)$ variables and $O(n)$ constraints.}
  However the problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2}
c27d27105   jfriedt   relecture
460
461
  we multiply
  $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can
efde7e849   Arthur HUGEAT   Merge branch 'mas...
462
  linearise linearize this multiplication. The following formula shows how to linearize
9c253d6d2   Arthur HUGEAT   Correction sur le...
463
464
465
466
467
468
469
470
471
472
473
474
  this situation in general case with $y$ a binary variable and $x$ a real variable ($0 \leq x \leq X^{max}$):
  \begin{equation*}
    m = x \times y \implies
    \left \{
    \begin{split}
      m & \geq 0 \\
      m & \leq y \times X^{max} \\
      m & \leq x \\
      m & \geq x - (1 - y) \times X^{max} \\
    \end{split}
    \right .
  \end{equation*}
efde7e849   Arthur HUGEAT   Merge branch 'mas...
475
476
  So if we bound up $\pi_i^-$ by 128~bits which is the maximum data size whose estimation is
  assumed on hardware characteristics,
9c253d6d2   Arthur HUGEAT   Correction sur le...
477
  the Gurobi (\url{www.gurobi.com}) optimization software will be able to linearize
efde7e849   Arthur HUGEAT   Merge branch 'mas...
478
  for us the quadratic problem so the model is left as is. This model
c27d27105   jfriedt   relecture
479
  has $O(np)$ variables and $O(n)$ constraints.}
46ae3f9cf   Arthur HUGEAT   Final draft.
480

7c78647f1   Arthur HUGEAT   Ajout de correction.
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  % This model is non-linear and even non-quadratic, as $F$ does not have a known
  % linear or quadratic expression. We introduce $p$ FIR configurations
  % $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants.
  % % r2.12
  % This variable must be defined by the user, it represent the number of different
  % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  % functions from GNU Octave).
  % We define binary
  % variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  % and 0 otherwise. The new equations are as follows:
  %
  % \begin{align}
  % a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  % r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  % \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  % \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  % \end{align}
  %
  % Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  % respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  % Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
  %
  % % r2.13
  % This modified model is quadratic since we multiply two variables in the
  % equation~\ref{eq:areadef2} ($\delta_{ij}$ by $\pi_{ij}^-$) but it can be linearised if necessary.
  % The Gurobi
  % (\url{www.gurobi.com}) optimization software is used to solve this quadratic
  % model, and since Gurobi is able to linearize, the model is left as is. This model
  % has $O(np)$ variables and $O(n)$ constraints.
0642fff00   jfriedt   relecture journal
510
511
512
513
514
  Two problems will be addressed using the workflow described in the next section: on the one
  hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary
  silcon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area
  for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the
  objective function is replaced with:
8d9489b3b   Arthur HUGEAT   Add first draft f...
515
516
517
518
  \begin{align}
  \text{Minimize } & \sum_{i=1}^n a_i  
  otag
  \end{align}
0642fff00   jfriedt   relecture journal
519
520
  We adapt our constraints of quadratic program to replace equation \ref{eq:area}
  with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal
8d9489b3b   Arthur HUGEAT   Add first draft f...
521
522
523
524
525
526
527
528
  rejection required.
  
  \begin{align}
  \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min}
  \end{align}
  
  \section{Design workflow}
  \label{sec:workflow}
0642fff00   jfriedt   relecture journal
529
  In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area}
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
530
  and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved
0642fff00   jfriedt   relecture journal
531
  in the computation of the results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=0.75cm and 2cm]
      
  ode[draw,minimum size=1cm] (Solver) { Filter Solver } ;
      
  ode (Start) [left= 3cm of Solver] { } ;
      
  ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ;
      
  ode (Input) [above= of TCL] { } ;
      
  ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ;
      
  ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ;
      
  ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ;
      
  ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ;
      
  ode (Results) [left= of Postproc] { } ;
  
      \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ;
      \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ;
      \draw[->] (Solver) edge node [below] { (1a) } (TCL) ;
      \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ;
      \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ;
      \draw[->,dashed] (Bitstream) -- (Deploy) ;
      \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ;
      \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ;
      \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ;
      \draw[->] (Postproc) -- (Results) ;
    \end{tikzpicture}
db81f7ad9   jfriedt   captions figures
566
567
    \caption{Design workflow from the input parameters to the results {\color{red} allowing for
  a fully automated optimal solution search.}}
8d9489b3b   Arthur HUGEAT   Add first draft f...
568
569
570
571
572
573
    \label{fig:workflow}
  \end{figure}
  
  The filter solver is a C++ program that takes as input the maximum area
  $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$,
  the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates
0642fff00   jfriedt   relecture journal
574
  the quadratic programs and uses the Gurobi solver to estimate the optimal results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
575
576
577
578
  Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow})
  and a deploy script ((1b) on figure~\ref{fig:workflow}).
  
  The TCL script describes the whole digital processing chain from the beginning
0642fff00   jfriedt   relecture journal
579
  (the raw signal data) to the end (the filtered data) in a language compatible
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
580
  with proprietary synthesis software, namely Vivado for Xilinx and Quartus for
0642fff00   jfriedt   relecture journal
581
  Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN)
8d9489b3b   Arthur HUGEAT   Add first draft f...
582
583
584
585
586
  generator inside the FPGA and $\Pi^I$ is fixed at 16~bits.
  Then the script builds each stage of the chain with a generic FIR task that
  comes from a skeleton library. The generic FIR is highly configurable
  with the number of coefficients and the size of the coefficients. The coefficients
  themselves are not stored in the script.
0642fff00   jfriedt   relecture journal
587
588
589
590
  As the signal is processed in real-time, the output signal is stored as
  consecutive bursts of data for post-processing, mainly assessing the consistency of the
  implemented FIR cascade transfer function with the design criteria and the expected
  transfer function.
8d9489b3b   Arthur HUGEAT   Add first draft f...
591
592
593
594
  
  The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}).
  We use the 2018.2 version of Xilinx Vivado and we execute the synthesized
  bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series
0642fff00   jfriedt   relecture journal
595
596
597
598
  FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to
  provide a broadband noise source.
  The board runs the Linux kernel and surrounding environment produced from the
  Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
599
  the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and
0642fff00   jfriedt   relecture journal
600
  fetching the results is automated.
8d9489b3b   Arthur HUGEAT   Add first draft f...
601
602
603
604
605
606
607
608
609
610
  
  The deploy script uploads the bitstream to the board ((3) on
  figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers,
  configures the coefficients of the FIR filters. It then waits for the results
  and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}).
  
  Finally, an Octave post-processing script computes the final results thanks to
  the output data ((5) on figure~\ref{fig:workflow}).
  The results are normalized so that the Power Spectrum Density (PSD) starts at zero
  and the different configurations can be compared.
0642fff00   jfriedt   relecture journal
611
  \section{Maximizing the rejection at fixed silicon area}
8d9489b3b   Arthur HUGEAT   Add first draft f...
612
613
614
  \label{sec:fixed_area}
  This section presents the output of the filter solver {\em i.e.} the computed
  configurations for each stage, the computed rejection and the computed silicon area.
0642fff00   jfriedt   relecture journal
615
  Such results allow for understanding the choices made by the solver to compute its solutions.
8d9489b3b   Arthur HUGEAT   Add first draft f...
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
  
  The experimental setup is composed of three cases. The raw input is generated
  by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$.
  Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500
  arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500.
  The number of configurations $p$ is 1827, with $C_i$ ranging from 3 to 60 and $\pi^C$
  ranging from 2 to 22. In each case, the quadratic program has been able to give a
  result up to five stages ($n = 5$) in the cascaded filter.
  
  Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500.
  Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000.
  Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500.
  
  \renewcommand{\arraystretch}{1.4}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500}
    \label{tbl:gurobi_max_500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (21, 7, 0)  & -           & -           & -           & -           & 32~dB           & 483   \\
              2 & (3, 3, 15)  & (31, 9, 0)  & -           & -           & -           & 58~dB           & 460   \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (5, 3, 0)   & -           & -           & 66~dB           & 488   \\
              4 & (3, 3, 15)  & (19, 7, 0)  & (11, 5, 0)  & (3, 3, 0)   & -           & 74~dB           & 499   \\
              5 & (3, 3, 15)  & (23, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 78~dB           & 489   \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000}
    \label{tbl:gurobi_max_1000}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (37, 11, 0) & -           & -           & -           & -           & 56~dB           & 999  \\
              2 & (3, 3, 15)  & (51, 14, 0) & -           & -           & -           & 87~dB           & 975  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (19, 7, 0)  & -           & -           & 99~dB           & 1000 \\
              4 & (3, 4, 16)  & (27, 8, 0)  & (19, 7, 1)  & (11, 5, 0)  & -           & 103~dB          & 998  \\
              5 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 1)   & (3, 3, 0)   & 111~dB          & 984  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500}
    \label{tbl:gurobi_max_1500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (47, 15, 0) & -           & -           & -           & -           & 71~dB           & 1457  \\
              2 & (19, 6, 15) & (51, 14, 0) & -           & -           & -           & 103~dB          & 1489  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (35, 11, 0) & -           & -           & 122~dB          & 1492  \\
              4 & (3, 3, 15)  & (27, 8, 0)  & (19, 7, 0)  & (27, 9, 0)  & -           & 129~dB          & 1498  \\
              5 & (3, 3, 15)  & (23, 9, 2)  & (27, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & 136~dB          & 1499  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \renewcommand{\arraystretch}{1}
  
  From these tables, we can first state that the more stages are used to define
  the cascaded FIR filters, the better the rejection. It was an expected result as it has
  been previously observed that many small filters are better than
0642fff00   jfriedt   relecture journal
693
  a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions
8d9489b3b   Arthur HUGEAT   Add first draft f...
694
695
696
697
  being hardly used in practice due to the lack of tools for identifying individual filter
  coefficients in the cascaded approach.
  
  Second, the larger the silicon area, the better the rejection. This was also an
0642fff00   jfriedt   relecture journal
698
699
  expected result as more area means a filter of better quality with more coefficients
  or more bits per coefficient.
8d9489b3b   Arthur HUGEAT   Add first draft f...
700
701
702
703
704
705
706
707
  
  Then, we also observe that the first stage can have a larger shift than the other
  stages. This is explained by the fact that the solver tries to use just enough
  bits for the computed rejection after each stage. In the first stage, a
  balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift}
  gives the relation between both values.
  
  Finally, we note that the solver consumes all the given silicon area.
0642fff00   jfriedt   relecture journal
708
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
709
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
710
  data on the FPGA as measured experimentally and the dashed line are the noise levels
8d9489b3b   Arthur HUGEAT   Add first draft f...
711
712
713
714
715
  given by the quadratic solver. The configurations are those computed in the previous section.
  
  Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500.
  Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000.
  Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500.
27f5f4108   Arthur HUGEAT   Article étendu.
716

b43d41ac2   Arthur HUGEAT   Première partie d...
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_500}
  % \caption{Signal spectrum for MAX/500}
  % \label{fig:max_500_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1000}
  % \caption{Signal spectrum for MAX/1000}
  % \label{fig:max_1000_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1500}
  % \caption{Signal spectrum for MAX/1500}
  % \label{fig:max_1500_result}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
739
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
740
741
742
    \centering
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_500}
db81f7ad9   jfriedt   captions figures
743
744
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
  the MAX/500 problem of maximizing rejection for a given resource allocation (500~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
745
746
747
748
749
      \label{fig:max_500_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1000}
db81f7ad9   jfriedt   captions figures
750
751
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
  the MAX/1000 problem of maximizing rejection for a given resource allocation (1000~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
752
753
754
755
756
      \label{fig:max_1000_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1500}
db81f7ad9   jfriedt   captions figures
757
758
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
  the MAX/1500 problem of maximizing rejection for a given resource allocation (1500~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
759
760
      \label{fig:max_1500_result}
    \end{subfigure}
db81f7ad9   jfriedt   captions figures
761
762
    \caption{\color{red}Solutions for the MAX/500, MAX/1000 and MAX/1500 problems of maximizing
  rejection for a given resource allocation.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
763
  The filter shape constraint (bandpass and bandstop) is shown as thick
db81f7ad9   jfriedt   captions figures
764
  horizontal lines on each chart.}
842e804be   Arthur HUGEAT   Permier pas vers ...
765
  \end{figure}
8d9489b3b   Arthur HUGEAT   Add first draft f...
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
  In all cases, we observe that the actual rejection is close to the rejection computed by the solver.
  
  We compare the actual silicon resources given by Vivado to the
  resources in arbitrary units.
  The goal is to check that our arbitrary units of silicon area models well enough
  the real resources on the FPGA. Especially we want to verify that, for a given
  number of arbitrary units, the actual silicon resources do not depend on the
  number of stages $n$. Most significantly, our approach aims
  at remaining far enough from the practical logic gate implementation used by
  various vendors to remain platform independent and be portable from one
  architecture to another.
  
  Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and
  MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000
  and 1500 arbitrary units. We have taken care to extract solely the resources used by
0642fff00   jfriedt   relecture journal
781
782
  the FIR filters and remove additional processing blocks including FIFO and Programmable
  Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication.
27f5f4108   Arthur HUGEAT   Article étendu.
783

0642fff00   jfriedt   relecture journal
784
  \begin{table}[h!tb]
db81f7ad9   jfriedt   captions figures
785
786
    \caption{Resource occupation {\color{red}following synthesis of the solutions found for
  the problem of maximizing rejection for a given resource allocation}. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
8d9489b3b   Arthur HUGEAT   Add first draft f...
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
    \label{tbl:resources_usage}
    \centering
        \begin{tabular}{|c|c|ccc|c|}
          \hline
          $n$ &          & MAX/500  & MAX/1000 & MAX/1500 & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 249      & 453      & 627      & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & \emph{120}               \\
              & DSP      & 21       & 37       & 47       & \emph{80}                \\ \hline
              & LUT      & 2374     & 5494     & 691      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 70       & \emph{80}                \\ \hline
              & LUT      & 2443     & 3304     & 3521     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 19       & 35       & \emph{80}                \\ \hline
              & LUT      & 2634     & 3753     & 2557     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 19       & 46       & \emph{80}                \\ \hline
              & LUT      & 2423     & 3047     & 2847     & \emph{17600}             \\
          5   & BRAM     & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & 0        & 22       & 46       & \emph{80}                \\ \hline
        \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
808
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
809

8d9489b3b   Arthur HUGEAT   Add first draft f...
810
  In some cases, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that,
0642fff00   jfriedt   relecture journal
811
812
  when the filter coefficients are small enough, or when the input size is small
  enough, Vivado optimizes resource consumption by selecting multiplexers to
8d9489b3b   Arthur HUGEAT   Add first draft f...
813
814
  implement the multiplications instead of a DSP. In this case, it is quite difficult
  to compare the whole silicon budget.
0642fff00   jfriedt   relecture journal
815
  However, a rough estimation can be made with a simple equivalence: looking at
8d9489b3b   Arthur HUGEAT   Add first draft f...
816
817
  the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$,
  we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon
0642fff00   jfriedt   relecture journal
818
819
  area use. With this equivalence, our 500 arbitraty units correspond to 2500 LUTs,
  1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond
8d9489b3b   Arthur HUGEAT   Add first draft f...
820
  to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary
0642fff00   jfriedt   relecture journal
821
  unit map well to actual hardware resources. The relatively small differences can probably be explained
8d9489b3b   Arthur HUGEAT   Add first draft f...
822
  by the optimizations done by Vivado based on the detailed map of available processing resources.
0642fff00   jfriedt   relecture journal
823
824
825
826
  We now present the computation time needed to solve the quadratic problem.
  For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606
  clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve
  the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic
8d9489b3b   Arthur HUGEAT   Add first draft f...
827
  problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units.
0642fff00   jfriedt   relecture journal
828
829
  \begin{table}[h!tb]
  \caption{Time needed to solve the quadratic program with Gurobi}
8d9489b3b   Arthur HUGEAT   Add first draft f...
830
  \label{tbl:area_time}
842e804be   Arthur HUGEAT   Permier pas vers ...
831
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
832
833
834
835
836
837
838
  \begin{tabular}{|c|c|c|c|}\hline
  $n$ & Time (MAX/500)          & Time (MAX/1000)             & Time (MAX/1500)              \\\hline\hline
  1   & 0.1~s                   & 0.1~s                       & 0.3~s                        \\
  2   & 1.1~s                   & 2.2~s                       & 12~s                         \\
  3   & 17~s                    & 137~s  ($\approx$ 2~min)    & 275~s ($\approx$ 4~min)      \\
  4   & 52~s                    & 5448~s ($\approx$ 90~min)   & 5505~s ($\approx$ 17~h)      \\
  5   & 286~s ($\approx$ 4~min) & 4119~s ($\approx$ 68~min)   & 235479~s ($\approx$ 3~days)  \\\hline
842e804be   Arthur HUGEAT   Permier pas vers ...
839
  \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
840
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
841

8d9489b3b   Arthur HUGEAT   Add first draft f...
842
843
  As expected, the computation time seems to rise exponentially with the number of stages. % TODO: exponentiel ?
  When the area is limited, the design exploration space is more limited and the solver is able to
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
844
  find an optimal solution faster.
0642fff00   jfriedt   relecture journal
845
846
  
  \subsection{Minimizing resource occupation at fixed rejection}\label{sec:fixed_rej}
8d9489b3b   Arthur HUGEAT   Add first draft f...
847

0642fff00   jfriedt   relecture journal
848
849
  This section presents the results of the complementary quadratic program aimed at
  minimizing the area occupation for a targeted rejection level.
8d9489b3b   Arthur HUGEAT   Add first draft f...
850

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
851
  The experimental setup is composed of four cases. The raw input is the same
0642fff00   jfriedt   relecture journal
852
  as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
853
854
  Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB.
  Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
855
856
857
858
859
  The number of configurations $p$ is the same as previous section.
  
  Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40.
  Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60.
  Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
860
  Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
861
862
  
  \renewcommand{\arraystretch}{1.4}
0642fff00   jfriedt   relecture journal
863
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40}
    \label{tbl:gurobi_min_40}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (27, 8, 0)  & -           & -           & -           & -           & 41~dB           & 648   \\
              2 & (3, 2, 14)  & (19, 7, 0)  & -           & -           & -           & 40~dB           & 263   \\
              3 & (3, 3, 15)  & (11, 5, 0)  & (3, 3, 0)   & -           & -           & 41~dB           & 192   \\
              4 & (3, 3, 15)  & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & -           & 42~dB           & 147   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
879
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
880

0642fff00   jfriedt   relecture journal
881
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60}
    \label{tbl:gurobi_min_60}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (39, 13, 0) & -           & -           & -           & -           & 60~dB           & 1131 \\
              2 & (3, 3, 15)  & (35, 10, 0) & -           & -           & -           & 60~dB           & 547  \\
              3 & (3, 3, 15)  & (27, 8, 0)  & (3, 3, 0)   & -           & -           & 62~dB           & 426  \\
              4 & (3, 2, 14)  & (11, 5, 1)  & (11, 5, 0)  & (3, 3, 0)   & -           & 60~dB           & 344  \\
              5 & (3, 2, 14)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & 60~dB           & 279  \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
898
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
899

0642fff00   jfriedt   relecture journal
900
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80}
    \label{tbl:gurobi_min_80}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (55, 16, 0) & -           & -           & -           & -           & 81~dB           & 1760  \\
              2 & (3, 3, 15)  & (47, 14, 0) & -           & -           & -           & 80~dB           & 903   \\
              3 & (3, 3, 15)  & (23, 9, 0)  & (19, 7, 0)  & -           & -           & 80~dB           & 698   \\
              4 & (3, 3, 15)  & (27, 9, 0)  & (7, 7, 4)   & (3, 3, 0)   & -           & 80~dB           & 605   \\
              5 & (3, 2, 14)  & (27, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 81~dB           & 534   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
917
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
  
  \begin{table}[h!tb]
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100}
    \label{tbl:gurobi_min_100}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & -           & -           & -           & -           & -           & -               & -     \\
              2 & (15, 7, 17) & (51, 14, 0) & -           & -           & -           & 100~dB          & 1365  \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (27, 9, 0)  & -           & -           & 100~dB          & 1002  \\
              4 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & -           & 101~dB          & 909   \\
              5 & (3, 3, 15)  & (23, 8, 1)  & (19, 7, 0)  & (3, 3, 0)   & (3, 3, 0)   & 101~dB          & 810   \\
          \hline
        \end{tabular}
      }
  \end{table}
8d9489b3b   Arthur HUGEAT   Add first draft f...
937
  \renewcommand{\arraystretch}{1}
27f5f4108   Arthur HUGEAT   Article étendu.
938

9b83af848   jfriedt   final corrections
939
  From these tables, we can first state that almost all configurations reach the targeted rejection
0642fff00   jfriedt   relecture journal
940
  level or even better thanks to our underestimate of the cascade rejection as the sum of the
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
941
  individual filter rejection. The only exception is for the monolithic case ($n = 1$) in
9b83af848   jfriedt   final corrections
942
  MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection.
0642fff00   jfriedt   relecture journal
943
944
945
946
947
948
949
950
951
952
953
954
  Futhermore, the area of the monolithic filter is twice as big as the two cascaded filters
  (1131 and 1760  arbitrary units v.s 547 and 903 arbitrary units for 60 and 80~dB rejection
  respectively). More generally, the more filters are cascaded, the lower the occupied area.
  
  Like in previous section, the solver chooses always a little filter as first
  filter stage and the second one is often the biggest filter. This choice can be explained
  as in the previous section, with the solver using just enough bits not to degrade the input
  signal and in the second filter selecting a better filter to improve rejection without
  having too many bits in the output data.
  
  For the specific case of MIN/40 for $n = 5$ the solver has determined that the optimal
  number of filters is 4 so it did not chose any configuration for the last filter. Hence this
8d9489b3b   Arthur HUGEAT   Add first draft f...
955
  solution is equivalent to the result for $n = 4$.
0642fff00   jfriedt   relecture journal
956
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
957
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
958
  data on the FPGA as measured experimentally and the dashed line is the noise level
8d9489b3b   Arthur HUGEAT   Add first draft f...
959
960
961
962
963
  given by the quadratic solver.
  
  Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40.
  Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60.
  Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
964
  Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100.
27f5f4108   Arthur HUGEAT   Article étendu.
965

b43d41ac2   Arthur HUGEAT   Première partie d...
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_40}
  % \caption{Signal spectrum for MIN/40}
  % \label{fig:min_40}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_60}
  % \caption{Signal spectrum for MIN/60}
  % \label{fig:min_60}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_80}
  % \caption{Signal spectrum for MIN/80}
  % \label{fig:min_80}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_100}
  % \caption{Signal spectrum for MIN/100}
  % \label{fig:min_100}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
995
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
996
997
    \centering
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
998
999
1000
      \includegraphics[width=.91\linewidth]{images/min_40}
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
  the MIN/40 problem of minimizing resource allocation for reaching a 40~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1001
1002
1003
1004
      \label{fig:min_40}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1005
1006
1007
      \includegraphics[width=.91\linewidth]{images/min_60}
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
  the MIN/60 problem of minimizing resource allocation for reaching a 60~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1008
1009
1010
1011
      \label{fig:min_60}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1012
1013
1014
      \includegraphics[width=.91\linewidth]{images/min_80}
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
  the MIN/80 problem of minimizing resource allocation for reaching a 80~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1015
1016
1017
1018
      \label{fig:min_80}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1019
1020
1021
      \includegraphics[width=.91\linewidth]{images/min_100}
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
  the MIN/100 problem of minimizing resource allocation for reaching a 100~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1022
1023
      \label{fig:min_100}
    \end{subfigure}
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1024
1025
1026
    \caption{\color{red}Solutions for the MIN/40, MIN/60, MIN/80 and MIN/100 problems of reaching a
  given rejection while minimizing resource allocation. The filter shape constraint (bandpass and
  bandstop) is shown as thick
db81f7ad9   jfriedt   captions figures
1027
  horizontal lines on each chart.}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1028
  \end{figure}
0642fff00   jfriedt   relecture journal
1029
1030
  We observe that all rejections given by the quadratic solver are close to the experimentally
  measured rejection. All curves prove that the constraint to reach the target rejection is
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1031
  respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1032

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1033
1034
  Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60;
  MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We
8d9489b3b   Arthur HUGEAT   Add first draft f...
1035
1036
1037
  have taken care to extract solely the resources used by
  the FIR filters and remove additional processing blocks including FIFO and PL to
  PS communication.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1038
  \renewcommand{\arraystretch}{1.2}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1039
1040
1041
1042
  \begin{table}
    \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
    \label{tbl:resources_usage_comp}
    \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1043
1044
    {\scalefont{0.90}
        \begin{tabular}{|c|c|cccc|c|}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1045
          \hline
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
          $n$ &          & MIN/40   & MIN/60   & MIN/80   & MIN/100  & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 343      & 334      & 772      & -        & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & -        & \emph{120}               \\
              & DSP      & 27       & 39       & 55       & -        & \emph{80}                \\ \hline
              & LUT      & 1252     & 2862     & 5099     & 640      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 0        & 66       & \emph{80}                \\ \hline
              & LUT      & 891      & 2148     & 2023     & 2448     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 0        & 19       & 27       & \emph{80}                \\ \hline
              & LUT      & 662      & 1729     & 2451     & 2893     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 0        & 7        & 19       & \emph{80}                \\ \hline
              & LUT      & -        & 1259     & 2602     & 2505     & \emph{17600}             \\
          5   & BRAM     & -        & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & -        & 0        & 0        & 19       & \emph{80}                \\ \hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
1062
        \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1063
    }
8d9489b3b   Arthur HUGEAT   Add first draft f...
1064
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1065
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1066

0642fff00   jfriedt   relecture journal
1067
1068
1069
  If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT)
  the real resource consumption decreases as a function of the number of stages in the cascaded
  filter according
8d9489b3b   Arthur HUGEAT   Add first draft f...
1070
1071
  to the solution given by the quadratic solver. Indeed, we have always a decreasing
  consumption even if the difference between the monolithic and the two cascaded
0642fff00   jfriedt   relecture journal
1072
  filters is less than expected.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1073

0642fff00   jfriedt   relecture journal
1074
  Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve
8d9489b3b   Arthur HUGEAT   Add first draft f...
1075
  the quadratic program.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1076
  \renewcommand{\arraystretch}{1.2}
0642fff00   jfriedt   relecture journal
1077
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
1078
1079
1080
  \caption{Time to solve the quadratic program with Gurobi}
  \label{tbl:area_time_comp}
  \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1081
1082
1083
1084
1085
1086
1087
1088
  {\scalefont{0.90}
  \begin{tabular}{|c|c|c|c|c|}\hline
  $n$ & Time (MIN/40)           & Time (MIN/60)               & Time (MIN/80) & Time (MIN/100)               \\\hline\hline
  1   & 0.07~s                  & 0.02~s                      & 0.01~s        & -                            \\
  2   & 7.8~s                   & 16~s                        & 14~s          & 1.8~s                        \\
  3   & 4.7~s                   & 14~s                        & 28~s          & 39~s                         \\
  4   & 39~s                    & 20~s                        & 193~s         & 522~s  ($\approx$ 9~min)     \\
  5   & -                       & 12~s                        & 170~s         & 1048~s ($\approx$ 17~min)    \\\hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
1089
  \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1090
  }
8d9489b3b   Arthur HUGEAT   Add first draft f...
1091
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1092
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1093

0642fff00   jfriedt   relecture journal
1094
  The time needed to solve this configuration is significantly shorter than the time
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1095
  needed in the previous section. Indeed the worst time in this case is only 17~minutes,
0642fff00   jfriedt   relecture journal
1096
1097
  compared to 3~days in the previous section: this problem is more easily solved than the
  previous one.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1098

56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1099
  {\color{red} % r1.4
c27d27105   jfriedt   relecture
1100
  To conclude, we compare our monolithic filters with the FIR Compiler provided by
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1101
  Xilinx in the Vivado software suite (v.2018.2). For each experiment we use the
c27d27105   jfriedt   relecture
1102
  same coefficient set and we compare the resource consumption, having checked that
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1103
  the transfer functions are indeed the same with both implementations.
c27d27105   jfriedt   relecture
1104
1105
1106
  Table~\ref{tbl:xilinx_resources} exhibits the results.
  The FIR Compiler never use BRAM while our filter implementation uses one block. This difference
  is explained be our wish to have a dynamically reconfigurable FIR filter whose
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1107
  coefficients can be updated from the processing system without having to update the FPGA design.
c27d27105   jfriedt   relecture
1108
  With the FIR compiler, the coefficients are defined during the FPGA design so that
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1109
1110
  changing coefficients required generating a new design. The difference with the LUT consumption
  is also attributed to the reconfigurability logic. However the DSP consumption, the scarcest
c27d27105   jfriedt   relecture
1111
1112
  resource, is the same between the Xilinx FIR Compiler end
  our FIR block: we hence conclude that our solutions are as good as the Xilinx implementation.
56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1113

ec91065ab   Arthur HUGEAT   Ajout du tableau ...
1114
1115
1116
1117
  \renewcommand{\arraystretch}{1.2}
  \begin{table}
  \centering
  \caption{Resource consumption compared between the FIR Compiler from Xilinx and our FIR block}
56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1118
  \label{tbl:xilinx_resources}
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
  \begin{tabular}{|c|c|c|c|c|c|c|}
  \hline
  \multirow{2}{*}{} & \multicolumn{3}{c|}{Xilinx} & \multicolumn{3}{c|}{Our FIR block} \\ \cline{2-7}
                    & LUT     & BRAM     & DSP    & LUT       & BRAM       & DSP       \\ \hline
  MAX/500           & 177     & 0        & 21     & 249       & 1          & 21        \\ \hline
  MAX/1000          & 306     & 0        & 37     & 453       & 1          & 37        \\ \hline
  MAX/1500          & 418     & 0        & 47     & 627       & 1          & 47        \\ \hline
  MIN/40            & 225     & 0        & 27     & 347       & 1          & 27        \\ \hline
  MIN/60            & 322     & 0        & 39     & 334       & 1          & 39        \\ \hline
  MIN/80            & 482     & 0        & 55     & 772       & 1          & 55        \\ \hline
  \end{tabular}
  \end{table}
  \renewcommand{\arraystretch}{1}
56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1132
  }
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
1133

27f5f4108   Arthur HUGEAT   Article étendu.
1134
  \section{Conclusion}
0642fff00   jfriedt   relecture journal
1135
1136
1137
1138
1139
1140
1141
1142
  We have proposed a new approach to schedule a set of signal processing blocks whose performances
  and resource consumption has been tabulated, and applied this methodology to the practical
  case of implementing cascaded FIR filters inside a FPGA.
  This method aims to be hardware independent and focuses an a high-level of abstraction.
  We have modeled the FIR filter operation and the impact of data shift. Thanks to this model,
  we have created a quadratic program to select the optimal FIR taps to reach a targeted
  rejection. Individual filter taps have been identified using commonly available tools and the
  emphasis is on FIR assembly rather than individual FIR coefficient identification.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1143
1144
1145
  
  Our experimental results are very promising in providing a rational approach to selecting
  the coefficients of each FIR filter in the context of a performance target for a chain of
0642fff00   jfriedt   relecture journal
1146
1147
1148
  such filters. The FPGA design that is produced automatically by the proposed
  workflow is able to filter an input signal as expected, validating experimentally our model and our approach.
  The quadratic program can be adapted it to an other problem based on assembling skeleton blocks.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1149
1150
  
  A perspective is to model and add the decimators to the processing chain to have a classical
0642fff00   jfriedt   relecture journal
1151
1152
  FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon
  area usage for subsequent stages since some hardware optimization can be applied in
8d9489b3b   Arthur HUGEAT   Add first draft f...
1153
1154
1155
1156
  this case.
  
  The software used to demonstrate the concepts developed in this paper is based on the
  CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}.
27f5f4108   Arthur HUGEAT   Article étendu.
1157
1158
1159
1160
1161
  \section*{Acknowledgement}
  
  This work is supported by the ANR Programme d'Investissement d'Avenir in
  progress at the Time and Frequency Departments of the FEMTO-ST Institute
  (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
842e804be   Arthur HUGEAT   Permier pas vers ...
1162
  The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila
27f5f4108   Arthur HUGEAT   Article étendu.
1163
1164
1165
1166
1167
1168
  for support and fruitful discussions.
  
  \bibliographystyle{IEEEtran}
  \balance
  \bibliography{references,biblio}
  \end{document}