Blame view
ifcs2018_journal.tex
67.4 KB
a5c9e7b94 Rajout de la pyra... |
1 2 |
% fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de |
c9c460c6b menage article IFCS |
3 4 |
% rejection par bit et perte si moins de bits que rejection/6 % developper programme lineaire en incluant le decalage de bits |
a5c9e7b94 Rajout de la pyra... |
5 6 |
% insister que avant on etait synthetisable mais pas implementable, alors que maintenant on % implemente et on demontre que ca tourne |
c9c460c6b menage article IFCS |
7 8 9 |
% gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ? % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer % (zedboard ou redpit) |
c9c460c6b menage article IFCS |
10 |
% label schema : verifier que "argumenter de la cascade de FIR" est fait |
32b45e8e1 change type de pa... |
11 |
\documentclass[a4paper,journal]{IEEEtran/IEEEtran} |
27f5f4108 Article étendu. |
12 13 14 15 16 17 18 19 |
\usepackage{graphicx,color,hyperref} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amssymb} \usepackage{amsmath} \usepackage{algorithm2e} \usepackage{url,balance} \usepackage[normalem]{ulem} |
842e804be Permier pas vers ... |
20 21 22 23 |
\usepackage{tikz} \usetikzlibrary{positioning,fit} \usepackage{multirow} \usepackage{scalefnt} |
b43d41ac2 Première partie d... |
24 25 |
\usepackage{caption} \usepackage{subcaption} |
842e804be Permier pas vers ... |
26 |
|
27f5f4108 Article étendu. |
27 28 29 30 31 32 33 34 35 36 37 |
% correct bad hyphenation here \hyphenation{op-tical net-works semi-conduc-tor} \textheight=26cm \setlength{\footskip}{30pt} \pagenumbering{gobble} \begin{document} \title{Filter optimization for real time digital processing of radiofrequency signals: application to oscillator metrology} \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, G. Goavec-M\'erou\IEEEauthorrefmark{1}, |
b43d41ac2 Première partie d... |
38 39 |
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\ \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\ |
27f5f4108 Article étendu. |
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ Email: \{pyb2,jmfriedt\}@femto-st.fr} } \maketitle \thispagestyle{plain} \pagestyle{plain} ewtheorem{definition}{Definition} \begin{abstract} Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to radiofrequency signal processing. Applied to oscillator characterization in the context of ultrastable clocks, stringent filtering requirements are defined by spurious signal or noise rejection needs. Since real time radiofrequency processing must be performed in a Field Programmable Array to meet timing constraints, we investigate optimization strategies to design filters meeting rejection characteristics while limiting the hardware resources |
0642fff00 relecture journal |
56 57 58 59 60 |
required and keeping timing constraints within the targeted measurement bandwidths. The presented technique is applicable to scheduling any sequence of processing blocks characterized by a throughput, resource occupation and performance tabulated as a function of configuration characateristics, as is the case for filters with their coefficients and resolution yielding rejection and number of multipliers. |
27f5f4108 Article étendu. |
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
\end{abstract} \begin{IEEEkeywords} Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter \end{IEEEkeywords} \section{Digital signal processing of ultrastable clock signals} Analog oscillator phase noise characteristics are classically performed by downconverting the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. \begin{figure}[h!tb] \begin{center} \includegraphics[width=.8\linewidth]{images/schema} \end{center} \caption{Fully digital oscillator phase noise characterization: the Device Under Test (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays the spectral characteristics of the phase fluctuations.} \label{schema} \end{figure} As with the analog mixer, the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as well as the generation of the frequency sum signal in addition to the frequency difference. These unwanted spectral characteristics must be rejected before decimating the data stream for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the downconverter and the decimation processing blocks are core characteristics of an oscillator characterization system, and must reject out-of-band signals below the targeted phase noise -- typically in the sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency datastream: optimizing the performance of the filter while reducing the needed resources is hence tackled in a systematic approach using optimization techniques. Most significantly, we tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with tunable number of coefficients and tunable number of bits representing the coefficients and the data being processed. \section{Finite impulse response filter} |
0642fff00 relecture journal |
105 |
We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined |
27f5f4108 Article étendu. |
106 107 |
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the outputs $y_k$ |
842e804be Permier pas vers ... |
108 109 110 111 |
\begin{align} y_n=\sum_{k=0}^N b_k x_{n-k} \label{eq:fir_equation} \end{align} |
27f5f4108 Article étendu. |
112 113 |
As opposed to an implementation on a general purpose processor in which word size is defined by the |
0642fff00 relecture journal |
114 |
processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since |
27f5f4108 Article étendu. |
115 116 117 118 |
not only the coefficient values and number of taps must be defined, but also the number of bits defining the coefficients and the sample size. For this reason, and because we consider pipeline processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but |
5e2bf244b Suppression d'un ... |
119 |
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language |
0642fff00 relecture journal |
120 |
(VHDL) level. |
7c951bd35 Typo + texte en n... |
121 |
Since latency is not an issue in a openloop phase noise characterization instrument, |
90c55845a relecture JMF |
122 |
the large |
27f5f4108 Article étendu. |
123 |
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, |
7c951bd35 Typo + texte en n... |
124 |
is not considered as an issue as would be in a closed loop system. |
27f5f4108 Article étendu. |
125 126 127 128 129 |
The coefficients are classically expressed as floating point values. However, this binary number representation is not efficient for fast arithmetic computation by an FPGA. Instead, we select to quantify these floating point values into integer values. This quantization will result in some precision loss. |
27f5f4108 Article étendu. |
130 |
\begin{figure}[h!tb] |
46ae3f9cf Final draft. |
131 |
\includegraphics[width=\linewidth]{images/zero_values} |
27f5f4108 Article étendu. |
132 133 134 135 136 137 138 139 140 141 142 143 |
\caption{Impact of the quantization resolution of the coefficients: the quantization is set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting the 30~first and 30~last coefficients out of the initial 128~band-pass filter coefficients to 0 (red dots).} \label{float_vs_int} \end{figure} The tradeoff between quantization resolution and number of coefficients when considering integer operations is not trivial. As an illustration of the issue related to the relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the |
7c951bd35 Typo + texte en n... |
144 145 146 |
taps become null, making the large number of coefficients irrelevant: processing resources are hence saved by shrinking the filter length. This tradeoff aimed at minimizing resources |
27f5f4108 Article étendu. |
147 148 149 150 151 152 153 154 155 156 |
to reach a given rejection level, or maximizing out of band rejection for a given computational resource, will drive the investigation on cascading filters designed with varying tap resolution and tap length, as will be shown in the next section. Indeed, our development strategy closely follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} in which basic blocks are defined and characterized before being assembled \cite{hide} in a complete processing chain. In our case, assembling the filter blocks is a simpler block combination process since we assume a single value to be processed and a single value to be generated at each clock cycle. The FIR filters will not be considered to decimate in the current implementation: the decimation is assumed to be located after the FIR cascade at the moment. |
842e804be Permier pas vers ... |
157 |
\section{Methodology description} |
0642fff00 relecture journal |
158 |
|
5e2bf244b Suppression d'un ... |
159 160 |
Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP) chain obtained by assembling basic processing blocks, with hardware and manufacturer independence. |
0642fff00 relecture journal |
161 |
Achieving such a target requires defining an abstract model to represent some basic properties |
7c951bd35 Typo + texte en n... |
162 |
of DSP blocks such as performance (i.e. rejection or ripples in the bandpass for filters) and |
0642fff00 relecture journal |
163 164 165 |
resource occupation. These abstract properties, not necessarily related to the detailed hardware implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum target, whether in terms of maximizing performance for a given arbitrary resource occupation, or |
7c951bd35 Typo + texte en n... |
166 |
minimizing resource occupation for a given performance. In our approach, the solution of the |
0642fff00 relecture journal |
167 168 169 170 171 |
solver is then synthesized using the dedicated tool provided by each platform manufacturer to assess the validity of our abstract resource occupation indicator, and the result of running the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize that all solutions found by the solver are synthesized and executed on hardware at the end of the analysis. |
c27d27105 relecture |
172 |
In this demonstration, we focus on only two operations: filtering and shifting the number of |
0642fff00 relecture journal |
173 |
bits needed to represent the data along the processing chain. |
5e2bf244b Suppression d'un ... |
174 |
We have chosen these basic operations because shifting and the filtering have already been studied |
0642fff00 relecture journal |
175 |
in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for |
5e2bf244b Suppression d'un ... |
176 177 |
assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend requiring pipelined processing at full bandwidth for the earliest steps, including for |
0642fff00 relecture journal |
178 179 180 181 |
time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}. Addressing only two operations allows for demonstrating the methodology but should not be considered as a limitation of the framework which can be extended to assembling any number |
7c951bd35 Typo + texte en n... |
182 |
of skeleton blocks as long as performance and resource occupation can be determined. |
90c55845a relecture JMF |
183 |
Hence, |
7c951bd35 Typo + texte en n... |
184 |
in this paper we will apply our methodology on simple DSP chains: a white noise input signal |
90c55845a relecture JMF |
185 |
is generated using a Pseudo-Random Number (PRN) generator or by sampling a wideband (125~MS/s) |
7c951bd35 Typo + texte en n... |
186 |
14-bit Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor. Once samples have been |
0642fff00 relecture journal |
187 188 189 |
digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance -- practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing, |
5e2bf244b Suppression d'un ... |
190 |
allowing to assess either filter rejection for a given resource usage, or validating the rejection |
0642fff00 relecture journal |
191 |
when implementing a solution minimizing resource occupation. |
842e804be Permier pas vers ... |
192 |
|
7c951bd35 Typo + texte en n... |
193 |
The first step of our approach is to model the DSP chain. Since we aim at only optimizing |
ec91065ab Ajout du tableau ... |
194 195 |
the filtering part of the signal processing chain, we have not included the PRN generator or the ADC in the model: the input data size and rate are considered fixed and defined by the hardware. |
90c55845a relecture JMF |
196 |
The filtering can be done in two ways, either by considering a single monolithic FIR filter |
ec91065ab Ajout du tableau ... |
197 |
requiring many coefficients to reach the targeted noise rejection ratio, or by |
7c951bd35 Typo + texte en n... |
198 |
cascading multiple FIR filters, each with fewer coefficients than found in the monolithic filter. |
842e804be Permier pas vers ... |
199 200 201 202 203 204 |
After each filter we leave the possibility of shifting the filtered data to consume less resources. Hence in the case of cascaded filter, we define a stage as a filter and a shifter (the shift could be omitted if we do not need to divide the filtered data). \subsection{Model of a FIR filter} |
0642fff00 relecture journal |
205 206 207 208 |
A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$) the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$ bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as |
842e804be Permier pas vers ... |
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage} shows a filtering stage. \begin{figure} \centering \begin{tikzpicture}[node distance=2cm] ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ; ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ; ode (Start) [left of=FIR] { } ; ode (End) [right of=Shift] { } ; ode[draw,fit=(FIR) (Shift)] (Filter) { } ; \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ; \draw[->] (FIR) -- (Shift) ; \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ; \end{tikzpicture} \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)} \label{fig:fir_stage} \end{figure} |
27f5f4108 Article étendu. |
234 |
|
0642fff00 relecture journal |
235 236 237 |
FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB. This rejection has been computed using GNU Octave software FIR coefficient design functions (\texttt{firls} and \texttt{fir1}). |
842e804be Permier pas vers ... |
238 239 240 |
For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients. Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively, the coefficients are normalized by their absolute maximum before being scaled to integer coefficients. |
0642fff00 relecture journal |
241 |
At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits. |
842e804be Permier pas vers ... |
242 |
|
0642fff00 relecture journal |
243 244 245 |
With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter transfer function. Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag}, |
5e2bf244b Suppression d'un ... |
246 |
the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the |
7c951bd35 Typo + texte en n... |
247 |
bandpass ripples as emphasized in \cite{lim_1988,lim_1996}. Throughout this demonstration, |
90c55845a relecture JMF |
248 249 250 |
we arbitrarily set a bandpass of 40\% of the Nyquist frequency and a bandstop from 60\% of the Nyquist frequency to the end of the band, as would be typically selected to prevent aliasing before decimating the dataflow by 2. The method is however generalized to any filter |
7c951bd35 Typo + texte en n... |
251 252 |
shape as long as it is defined from the initial modeling steps: Fig. \ref{fig:rejection_pyramid} as described below is indeed unique for each filter shape. |
842e804be Permier pas vers ... |
253 254 |
\begin{figure} |
0642fff00 relecture journal |
255 256 |
\begin{center} \scalebox{0.8}{ |
842e804be Permier pas vers ... |
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
\centering \begin{tikzpicture}[scale=0.3] \draw[<->] (0,15) -- (0,0) -- (21,0) ; \draw[thick] (0,12) -- (8,12) -- (20,0) ; \draw (0,14) node [left] { $P$ } ; \draw (20,0) node [below] { $f$ } ; \draw[>=latex,<->] (0,14) -- (8,14) ; \draw (4,14) node [above] { passband } node [below] { $40\%$ } ; \draw[>=latex,<->] (8,14) -- (12,14) ; \draw (10,14) node [above] { transition } node [below] { $20\%$ } ; \draw[>=latex,<->] (12,14) -- (20,14) ; \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ; \draw[>=latex,<->] (16,12) -- (16,8) ; \draw (16,10) node [right] { rejection } ; \draw[dashed] (8,-1) -- (8,14) ; \draw[dashed] (12,-1) -- (12,14) ; \draw[dashed] (8,12) -- (16,12) ; \draw[dashed] (12,8) -- (16,8) ; \end{tikzpicture} |
0642fff00 relecture journal |
284 285 |
} \end{center} |
842e804be Permier pas vers ... |
286 287 288 289 |
\caption{Shape of the filter transmitted power $P$ as a function of frequency $f$: the passband is considered to occupy the initial 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition width.} \label{fig:fir_mag} |
27f5f4108 Article étendu. |
290 |
\end{figure} |
7c951bd35 Typo + texte en n... |
291 |
In the transition band, the behavior of the filter is left free, we only define the passband and the stopband characteristics. |
b43d41ac2 Première partie d... |
292 |
% r2.7 |
7c951bd35 Typo + texte en n... |
293 294 |
Initial considered criteria include the mean value of the stopband rejection which yields unacceptable results since notches overestimate the rejection capability of the filter. |
4d905253d relecture finale JMF |
295 |
% Furthermore, the losses within |
b43d41ac2 Première partie d... |
296 |
% the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients. |
a45e29d4b article et lettre |
297 298 299 |
{\color{red} An intermediate criterion considered the maximal rejection within the stopband, to which the sum of the absolute values % JMF : je fais le choix de remplacer minimal par maximal rejection pour etre coherent avec caption de Fig custom_criterion mais surtout parceque % rejection me semble plus convaincant si on la maximise (il me semble que -120 dB de S21 signifie 120 dB de rejection donc on veut maximiser) |
c27d27105 relecture |
300 |
within the passband is subtracted to avoid filters with excessive ripples, normalized to the |
b5ace9bdc Revision 2. |
301 |
bin width to remain consistent with the passband criterion (dBc/Hz units in all cases). |
a45e29d4b article et lettre |
302 303 304 305 306 |
In this case, cascading too many filters with individual excessive ($>$ 1~dB) passband ripples led to unacceptable ($>$ 10~dB) final ripple levels, especially close to the transition band. Hence, the final criterion considers the minimal rejection in the stopband to which the the maximal amplitude in the passband (maximum value minus the minimum value) is substracted, with a 1~dB threshold on the latter quantity over which the filter is discarded.} |
b5ace9bdc Revision 2. |
307 308 309 310 311 312 |
% Our final criterion to compute the filter rejection considers % % r2.8 et r2.2 r2.3 % the minimal rejection within the stopband, to which the sum of the absolute values % within the passband is subtracted to avoid filters with excessive ripples, normalized to the % bin width to remain consistent with the passband criterion (dBc/Hz units in all cases). With this |
959bbc540 re-relecture JMF |
313 |
criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}. |
b5ace9bdc Revision 2. |
314 |
{\color{red} The best filter has a correct rejection estimation and the worst filter |
a45e29d4b article et lettre |
315 |
is discarded based on the excessive passband ripple criterion.} |
b43d41ac2 Première partie d... |
316 317 318 319 320 321 322 |
% \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/colored_mean_criterion} % \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters} % \label{fig:mean_criterion} % \end{figure} |
27f5f4108 Article étendu. |
323 |
|
842e804be Permier pas vers ... |
324 325 |
\begin{figure} \centering |
b5ace9bdc Revision 2. |
326 |
\includegraphics[width=\linewidth]{images/custom_criterion} |
a45e29d4b article et lettre |
327 328 329 |
\caption{\color{red}Selected filter qualification criterion computed as the maximum rejection in the stopband minus the maximal ripple amplitude in the passband with a $>$ 1~dB threshold above which the filter is discarded: comparison between monolithic filter (blue, rejected in this case) and cascaded filters (red).} |
842e804be Permier pas vers ... |
330 331 |
\label{fig:custom_criterion} \end{figure} |
27f5f4108 Article étendu. |
332 |
|
0642fff00 relecture journal |
333 334 335 336 |
Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the rejection as a function of the number of coefficients and the number of bits representing these coefficients. The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet. |
5e2bf244b Suppression d'un ... |
337 |
Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection. |
0642fff00 relecture journal |
338 |
Conversely when setting the a given number of bits, increasing the number of coefficients will not improve |
a45e29d4b article et lettre |
339 340 341 342 |
the rejection. Hence the best coefficient set are on the vertex of the pyramid. {\color{red} Notice that the word length and number of coefficients do not start at 1: filters with too few coefficients or too little tap word size are rejected by the excessive ripple constraint of the criterion. Hence, the size of the pyramid is significantly reduced by discarding these filters and so is the solution search space.} % ajout JMF |
a5c9e7b94 Rajout de la pyra... |
343 344 345 346 |
\begin{figure} \centering \includegraphics[width=\linewidth]{images/rejection_pyramid} |
b5ace9bdc Revision 2. |
347 |
\caption{\color{red}Filter rejection as a function of number of coefficients and number of bits |
7c951bd35 Typo + texte en n... |
348 |
: this lookup table will be used to identify which filter parameters -- number of bits |
a45e29d4b article et lettre |
349 350 351 |
representing coefficients and number of coefficients -- best match the targeted transfer function. {\color{red}Filters with fewer than 10~taps or with coefficients coded on fewer than 5~bits are discarded due to excessive ripples in the passband.}} % ajout JMF |
a5c9e7b94 Rajout de la pyra... |
352 353 |
\label{fig:rejection_pyramid} \end{figure} |
0642fff00 relecture journal |
354 |
Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps), |
5e2bf244b Suppression d'un ... |
355 |
we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria. |
0642fff00 relecture journal |
356 |
If the FIR filter coefficients are the same between the stages, we have: |
842e804be Permier pas vers ... |
357 |
$$F_{total} = F_1 + F_2$$ |
0642fff00 relecture journal |
358 359 360 |
But selecting two different sets of coefficient will yield a more complex situation in which the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves are two different filters with maximums and notches not located at the same frequency offsets. |
5e2bf244b Suppression d'un ... |
361 |
Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved |
0642fff00 relecture journal |
362 |
with respect to a basic sum of the rejection criteria shown as a the dotted yellow line. |
b43d41ac2 Première partie d... |
363 |
% r2.9 |
7c951bd35 Typo + texte en n... |
364 365 |
Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection criteria of each filter. However since the individual filter rejection sum underestimates the rejection capability of the cascade, |
b43d41ac2 Première partie d... |
366 |
% r2.10 |
7c951bd35 Typo + texte en n... |
367 |
this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability |
0642fff00 relecture journal |
368 |
of the filter cascade to meet design criteria. |
842e804be Permier pas vers ... |
369 370 371 |
\begin{figure} \centering |
46ae3f9cf Final draft. |
372 |
\includegraphics[width=\linewidth]{images/cascaded_criterion} |
7c951bd35 Typo + texte en n... |
373 374 |
\caption{Transfer function of individual filters and after cascading the two filters, demonstrating that the selected criterion of maximum rejection in the bandstop (horizontal |
db81f7ad9 captions figures |
375 |
lines) is met. Notice that the cascaded filter has better rejection than summing the bandstop |
7c951bd35 Typo + texte en n... |
376 |
maximum of each individual filter. |
db81f7ad9 captions figures |
377 |
} |
842e804be Permier pas vers ... |
378 379 |
\label{fig:sum_rejection} \end{figure} |
27f5f4108 Article étendu. |
380 |
|
c27d27105 relecture |
381 382 |
Finally in our case, we consider that the input signal are fully known. The resolution of the input data stream are fixed and still the same for all experiments |
7c951bd35 Typo + texte en n... |
383 |
in this paper. |
b43d41ac2 Première partie d... |
384 |
|
0642fff00 relecture journal |
385 |
Based on this analysis, we address the estimate of resource consumption (called |
b43d41ac2 Première partie d... |
386 |
% r2.11 |
7c951bd35 Typo + texte en n... |
387 |
silicon area -- in the case of FPGAs this means processing cells) as a function of |
0642fff00 relecture journal |
388 389 390 391 392 393 |
filter characteristics. As a reminder, we do not aim at matching actual hardware configuration but consider an arbitrary silicon area occupied by each processing function, and will assess after synthesis the adequation of this arbitrary unit with actual hardware resources provided by FPGA manufacturers. The sum of individual processing unit areas is constrained by a total silicon area representative of FPGA global resources. Formally, variable $a_i$ is the area taken by filter~$i$ |
46ae3f9cf Final draft. |
394 395 |
(in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB). Constant $\mathcal{A}$ is the total available area. We model our problem as follows: |
8d9489b3b Add first draft f... |
396 397 398 399 400 401 402 403 404 405 406 |
\begin{align} \text{Maximize } & \sum_{i=1}^n r_i otag \\ \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\ a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\ r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\ \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\ \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\ \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\ \pi_1^- &= \Pi^I \label{eq:init} \end{align} |
8d9489b3b Add first draft f... |
407 408 |
Equation~\ref{eq:area} states that the total area taken by the filters must be less than the available area. Equation~\ref{eq:areadef} gives the definition of |
0642fff00 relecture journal |
409 410 |
the area used by a filter, considered as the area of the FIR since the Shifter is assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size |
8d9489b3b Add first draft f... |
411 |
$\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the |
0642fff00 relecture journal |
412 413 414 |
input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined previously. The Shifter does not introduce negative rejection as we will explain later, |
8d9489b3b Add first draft f... |
415 416 417 418 419 420 421 422 |
so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of a filter is the same as the input number of bits of the next filter. Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative rejection. Indeed, the results of the FIR can be right shifted without compromising the quality of the rejection until a threshold. Each bit of the output data |
0642fff00 relecture journal |
423 |
increases the maximum rejection level by 6~dB. We add one to take the sign bit |
8d9489b3b Add first draft f... |
424 425 |
into account. If equation~\ref{eq:maxshift} was not present, the Shifter could shift too much and introduce some noise in the output data. Each supplementary |
0642fff00 relecture journal |
426 427 428 |
shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is: $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$. Finally, equation~\ref{eq:init} gives the number of bits of the global input. |
8d9489b3b Add first draft f... |
429 |
|
7c78647f1 Ajout de correction. |
430 |
This model is non-linear since we multiply some variable with another variable |
c27d27105 relecture |
431 |
and it is even non-quadratic, as the cost function $F$ does not have a known |
7c78647f1 Ajout de correction. |
432 |
linear or quadratic expression. To linearize this problem, we introduce $p$ FIR configurations. |
efde7e849 Merge branch 'mas... |
433 434 435 436 437 438 439 440 441 |
% AH: conflit merge % This variable must be defined by the user, it represent the number of different % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1} % functions from GNU Octave). To choose this value, we consider a subset of the figure~\ref{fig:rejection_pyramid} % to restrict the number of configurations. Indeed, it is useless to have too many coefficients or % too many bits, hence we take the configurations close to edge of pyramid. Thank to theses % configurations $C_{ij}$ and $\pi_{ij}^C$ ($1 \leq j \leq p$) become constant % and the function $F$ can be estimate for each configurations % thanks our rejection criterion. We also defined binary |
c27d27105 relecture |
442 443 444 |
This variable $p$ is defined by the user, and represents the number of different set of coefficients generated (remember, we use \texttt{firls} and \texttt{fir1} functions from GNU Octave) based on the targeted filter characteristics and implementation |
efde7e849 Merge branch 'mas... |
445 |
assumptions (estimated number of bits defining the coefficients). Hence, $C_{ij}$ and |
c27d27105 relecture |
446 |
$\pi_{ij}^C$ become constants and |
efde7e849 Merge branch 'mas... |
447 |
we define $1 \leq j \leq p$ so that the function $F$ can be estimated (Look Up Table) |
c27d27105 relecture |
448 |
for each configurations thanks to the rejection criterion. We also define the binary |
46ae3f9cf Final draft. |
449 450 |
variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$ and 0 otherwise. The new equations are as follows: |
8d9489b3b Add first draft f... |
451 452 453 454 455 456 457 458 459 460 461 |
\begin{align} a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\ r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\ \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\ \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config} \end{align} Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}. Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most. |
efde7e849 Merge branch 'mas... |
462 463 464 465 466 467 468 469 470 471 |
% JM: conflict merge % However the problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2} % we multiply % $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can % linearise this multiplication if we can bound $\pi_i^-$. As $\pi_i^-$ is the data size, % we define $0 < \pi_i^- \leq 128$ which is the maximum data size whose estimation is % assumed on hardware characteristics. % The Gurobi (\url{www.gurobi.com}) optimization software used to solve this quadratic % model is able to linearize the model provided as is. This model % has $O(np)$ variables and $O(n)$ constraints.} |
4d905253d relecture finale JMF |
472 |
The problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2} |
c27d27105 relecture |
473 474 |
we multiply $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can |
7c951bd35 Typo + texte en n... |
475 |
linearize this multiplication. The following formula shows how to linearize |
9c253d6d2 Correction sur le... |
476 477 478 479 480 481 482 483 484 485 486 487 |
this situation in general case with $y$ a binary variable and $x$ a real variable ($0 \leq x \leq X^{max}$): \begin{equation*} m = x \times y \implies \left \{ \begin{split} m & \geq 0 \\ m & \leq y \times X^{max} \\ m & \leq x \\ m & \geq x - (1 - y) \times X^{max} \\ \end{split} \right . \end{equation*} |
efde7e849 Merge branch 'mas... |
488 489 |
So if we bound up $\pi_i^-$ by 128~bits which is the maximum data size whose estimation is assumed on hardware characteristics, |
9c253d6d2 Correction sur le... |
490 |
the Gurobi (\url{www.gurobi.com}) optimization software will be able to linearize |
efde7e849 Merge branch 'mas... |
491 |
for us the quadratic problem so the model is left as is. This model |
7c951bd35 Typo + texte en n... |
492 |
has $O(np)$ variables and $O(n)$ constraints. |
46ae3f9cf Final draft. |
493 |
|
7c78647f1 Ajout de correction. |
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
% This model is non-linear and even non-quadratic, as $F$ does not have a known % linear or quadratic expression. We introduce $p$ FIR configurations % $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants. % % r2.12 % This variable must be defined by the user, it represent the number of different % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1} % functions from GNU Octave). % We define binary % variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$ % and 0 otherwise. The new equations are as follows: % % \begin{align} % a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\ % r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\ % \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\ % \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config} % \end{align} % % Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace % respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}. % Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most. % % % r2.13 % This modified model is quadratic since we multiply two variables in the % equation~\ref{eq:areadef2} ($\delta_{ij}$ by $\pi_{ij}^-$) but it can be linearised if necessary. % The Gurobi % (\url{www.gurobi.com}) optimization software is used to solve this quadratic % model, and since Gurobi is able to linearize, the model is left as is. This model % has $O(np)$ variables and $O(n)$ constraints. |
0642fff00 relecture journal |
523 524 |
Two problems will be addressed using the workflow described in the next section: on the one hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary |
7c951bd35 Typo + texte en n... |
525 |
silicon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area |
0642fff00 relecture journal |
526 527 |
for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the objective function is replaced with: |
8d9489b3b Add first draft f... |
528 529 530 531 |
\begin{align} \text{Minimize } & \sum_{i=1}^n a_i otag \end{align} |
0642fff00 relecture journal |
532 533 |
We adapt our constraints of quadratic program to replace equation \ref{eq:area} with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal |
8d9489b3b Add first draft f... |
534 535 536 537 538 539 540 541 |
rejection required. \begin{align} \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min} \end{align} \section{Design workflow} \label{sec:workflow} |
0642fff00 relecture journal |
542 |
In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area} |
5e2bf244b Suppression d'un ... |
543 |
and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved |
0642fff00 relecture journal |
544 |
in the computation of the results. |
8d9489b3b Add first draft f... |
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
\begin{figure} \centering \begin{tikzpicture}[node distance=0.75cm and 2cm] ode[draw,minimum size=1cm] (Solver) { Filter Solver } ; ode (Start) [left= 3cm of Solver] { } ; ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ; ode (Input) [above= of TCL] { } ; ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ; ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ; ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ; ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ; ode (Results) [left= of Postproc] { } ; \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ; \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ; \draw[->] (Solver) edge node [below] { (1a) } (TCL) ; \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ; \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ; \draw[->,dashed] (Bitstream) -- (Deploy) ; \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ; \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ; \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ; \draw[->] (Postproc) -- (Results) ; \end{tikzpicture} |
7c951bd35 Typo + texte en n... |
579 580 |
\caption{Design workflow from the input parameters to the results allowing for a fully automated optimal solution search.} |
8d9489b3b Add first draft f... |
581 582 583 584 585 586 |
\label{fig:workflow} \end{figure} The filter solver is a C++ program that takes as input the maximum area $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$, the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates |
0642fff00 relecture journal |
587 |
the quadratic programs and uses the Gurobi solver to estimate the optimal results. |
8d9489b3b Add first draft f... |
588 589 590 591 |
Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow}) and a deploy script ((1b) on figure~\ref{fig:workflow}). The TCL script describes the whole digital processing chain from the beginning |
0642fff00 relecture journal |
592 |
(the raw signal data) to the end (the filtered data) in a language compatible |
5e2bf244b Suppression d'un ... |
593 |
with proprietary synthesis software, namely Vivado for Xilinx and Quartus for |
0642fff00 relecture journal |
594 |
Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN) |
8d9489b3b Add first draft f... |
595 596 597 598 599 |
generator inside the FPGA and $\Pi^I$ is fixed at 16~bits. Then the script builds each stage of the chain with a generic FIR task that comes from a skeleton library. The generic FIR is highly configurable with the number of coefficients and the size of the coefficients. The coefficients themselves are not stored in the script. |
0642fff00 relecture journal |
600 601 602 603 |
As the signal is processed in real-time, the output signal is stored as consecutive bursts of data for post-processing, mainly assessing the consistency of the implemented FIR cascade transfer function with the design criteria and the expected transfer function. |
8d9489b3b Add first draft f... |
604 605 606 607 |
The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}). We use the 2018.2 version of Xilinx Vivado and we execute the synthesized bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series |
0642fff00 relecture journal |
608 609 610 611 |
FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to provide a broadband noise source. The board runs the Linux kernel and surrounding environment produced from the Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring |
5e2bf244b Suppression d'un ... |
612 |
the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and |
0642fff00 relecture journal |
613 |
fetching the results is automated. |
8d9489b3b Add first draft f... |
614 615 616 617 618 619 620 621 622 623 |
The deploy script uploads the bitstream to the board ((3) on figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers, configures the coefficients of the FIR filters. It then waits for the results and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}). Finally, an Octave post-processing script computes the final results thanks to the output data ((5) on figure~\ref{fig:workflow}). The results are normalized so that the Power Spectrum Density (PSD) starts at zero and the different configurations can be compared. |
0642fff00 relecture journal |
624 |
\section{Maximizing the rejection at fixed silicon area} |
8d9489b3b Add first draft f... |
625 626 627 |
\label{sec:fixed_area} This section presents the output of the filter solver {\em i.e.} the computed configurations for each stage, the computed rejection and the computed silicon area. |
0642fff00 relecture journal |
628 |
Such results allow for understanding the choices made by the solver to compute its solutions. |
8d9489b3b Add first draft f... |
629 630 631 632 633 |
The experimental setup is composed of three cases. The raw input is generated by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$. Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500 arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500. |
a45e29d4b article et lettre |
634 |
The number of configurations $p$ is {\color{red}1133}, with $C_i$ ranging from 3 to 60 and $\pi^C$ |
8d9489b3b Add first draft f... |
635 636 637 638 639 640 641 642 643 644 645 646 647 |
ranging from 2 to 22. In each case, the quadratic program has been able to give a result up to five stages ($n = 5$) in the cascaded filter. Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500. Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000. Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500. \renewcommand{\arraystretch}{1.4} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500} \label{tbl:gurobi_max_500} \centering |
b5ace9bdc Revision 2. |
648 649 |
{\color{red} \scalefont{0.77} |
8d9489b3b Add first draft f... |
650 651 652 653 654 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (21, 7, 0) & - & - & - & - & 32~dB & 483 \\ |
b5ace9bdc Revision 2. |
655 656 657 658 |
2 & (3, 5, 18) & (33, 10, 0) & - & - & - & 48~dB & 492 \\ 3 & (3, 5, 18) & (19, 7, 1) & (15, 7, 0) & - & - & 56~dB & 493 \\ 4 & (3, 5, 18) & (19, 7, 1) & (15, 7, 0) & - & - & 56~dB & 493 \\ 5 & (3, 5, 18) & (19, 7, 1) & (15, 7, 0) & - & - & 56~dB & 493 \\ |
8d9489b3b Add first draft f... |
659 660 661 662 663 664 665 666 667 |
\hline \end{tabular} } \end{table} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000} \label{tbl:gurobi_max_1000} \centering |
b5ace9bdc Revision 2. |
668 |
{\color{red}\scalefont{0.77} |
8d9489b3b Add first draft f... |
669 670 671 672 673 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (37, 11, 0) & - & - & - & - & 56~dB & 999 \\ |
b5ace9bdc Revision 2. |
674 675 676 677 |
2 & (15, 8, 17) & (35, 11, 0) & - & - & - & 80~dB & 990 \\ 3 & (3, 13, 26) & (31, 9, 1) & (27, 9, 0) & - & - & 92~dB & 999 \\ 4 & (3, 5, 18) & (19, 7, 1) & (19, 7, 0) & (19, 7, 0) & - & 98~dB & 994 \\ 5 & (3, 5, 18) & (19, 7, 1) & (19, 7, 0) & (19, 7, 0) & - & 98~dB & 994 \\ |
8d9489b3b Add first draft f... |
678 679 680 681 682 683 684 685 686 |
\hline \end{tabular} } \end{table} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500} \label{tbl:gurobi_max_1500} \centering |
b5ace9bdc Revision 2. |
687 |
{\color{red}\scalefont{0.77} |
8d9489b3b Add first draft f... |
688 689 690 691 692 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (47, 15, 0) & - & - & - & - & 71~dB & 1457 \\ |
b5ace9bdc Revision 2. |
693 694 695 696 |
2 & (19, 6, 15) & (51, 14, 0) & - & - & - & 102~dB & 1489 \\ 3 & (15, 9, 18) & (31, 8, 0) & (27, 9, 0) & - & - & 116~dB & 1488 \\ 4 & (3, 9, 22) & (31, 9, 1) & (27, 9, 0) & (19, 7, 0) & - & 125~dB & 1500 \\ 5 & (3, 9, 22) & (31, 9, 1) & (27, 9, 0) & (19, 7, 0) & - & 125~dB & 1500 \\ |
8d9489b3b Add first draft f... |
697 698 699 700 701 702 |
\hline \end{tabular} } \end{table} \renewcommand{\arraystretch}{1} |
b5ace9bdc Revision 2. |
703 704 |
% From these tables, we can first state that the more stages are used to define % the cascaded FIR filters, the better the rejection. |
a45e29d4b article et lettre |
705 706 707 |
{\color{red} By analyzing these tables, we can first state that we reach an optimal solution for each case : $n = 3$ for MAX/500, and $n = 4$ for MAX/1000 and MAX/1500. Moreover the cascaded filters always exhibit better performance than the monolithic solution.} |
b5ace9bdc Revision 2. |
708 |
It was an expected result as it has |
8d9489b3b Add first draft f... |
709 |
been previously observed that many small filters are better than |
0642fff00 relecture journal |
710 |
a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions |
8d9489b3b Add first draft f... |
711 712 713 714 |
being hardly used in practice due to the lack of tools for identifying individual filter coefficients in the cascaded approach. Second, the larger the silicon area, the better the rejection. This was also an |
0642fff00 relecture journal |
715 716 |
expected result as more area means a filter of better quality with more coefficients or more bits per coefficient. |
8d9489b3b Add first draft f... |
717 718 719 720 721 722 723 724 |
Then, we also observe that the first stage can have a larger shift than the other stages. This is explained by the fact that the solver tries to use just enough bits for the computed rejection after each stage. In the first stage, a balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift} gives the relation between both values. Finally, we note that the solver consumes all the given silicon area. |
0642fff00 relecture journal |
725 |
The following graphs present the rejection for real data on the FPGA. In all the following |
8d9489b3b Add first draft f... |
726 |
figures, the solid line represents the actual rejection of the filtered |
0642fff00 relecture journal |
727 |
data on the FPGA as measured experimentally and the dashed line are the noise levels |
8d9489b3b Add first draft f... |
728 729 730 731 732 |
given by the quadratic solver. The configurations are those computed in the previous section. Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500. Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000. Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500. |
27f5f4108 Article étendu. |
733 |
|
b43d41ac2 Première partie d... |
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
% \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/max_500} % \caption{Signal spectrum for MAX/500} % \label{fig:max_500_result} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/max_1000} % \caption{Signal spectrum for MAX/1000} % \label{fig:max_1000_result} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/max_1500} % \caption{Signal spectrum for MAX/1500} % \label{fig:max_1500_result} % \end{figure} % r2.14 et r2.15 et r2.16 |
842e804be Permier pas vers ... |
756 |
\begin{figure} |
b43d41ac2 Première partie d... |
757 758 759 |
\centering \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_500} |
b5ace9bdc Revision 2. |
760 |
\caption{\color{red}Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
761 |
the MAX/500 problem of maximizing rejection for a given resource allocation (500~arbitrary units).} |
b43d41ac2 Première partie d... |
762 763 764 765 766 |
\label{fig:max_500_result} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_1000} |
b5ace9bdc Revision 2. |
767 |
\caption{\color{red}Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
768 |
the MAX/1000 problem of maximizing rejection for a given resource allocation (1000~arbitrary units).} |
b43d41ac2 Première partie d... |
769 770 771 772 773 |
\label{fig:max_1000_result} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_1500} |
b5ace9bdc Revision 2. |
774 |
\caption{\color{red}Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
775 |
the MAX/1500 problem of maximizing rejection for a given resource allocation (1500~arbitrary units).} |
b43d41ac2 Première partie d... |
776 777 |
\label{fig:max_1500_result} \end{subfigure} |
b5ace9bdc Revision 2. |
778 |
\caption{\color{red}Solutions for the MAX/500, MAX/1000 and MAX/1500 problems of maximizing |
db81f7ad9 captions figures |
779 |
rejection for a given resource allocation. |
efde7e849 Merge branch 'mas... |
780 |
The filter shape constraint (bandpass and bandstop) is shown as thick |
db81f7ad9 captions figures |
781 |
horizontal lines on each chart.} |
842e804be Permier pas vers ... |
782 |
\end{figure} |
8d9489b3b Add first draft f... |
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
In all cases, we observe that the actual rejection is close to the rejection computed by the solver. We compare the actual silicon resources given by Vivado to the resources in arbitrary units. The goal is to check that our arbitrary units of silicon area models well enough the real resources on the FPGA. Especially we want to verify that, for a given number of arbitrary units, the actual silicon resources do not depend on the number of stages $n$. Most significantly, our approach aims at remaining far enough from the practical logic gate implementation used by various vendors to remain platform independent and be portable from one architecture to another. Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000 and 1500 arbitrary units. We have taken care to extract solely the resources used by |
0642fff00 relecture journal |
798 799 |
the FIR filters and remove additional processing blocks including FIFO and Programmable Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication. |
27f5f4108 Article étendu. |
800 |
|
0642fff00 relecture journal |
801 |
\begin{table}[h!tb] |
7c951bd35 Typo + texte en n... |
802 803 |
\caption{Resource occupation following synthesis of the solutions found for the problem of maximizing rejection for a given resource allocation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} |
8d9489b3b Add first draft f... |
804 |
\label{tbl:resources_usage} |
b5ace9bdc Revision 2. |
805 |
\color{red} |
8d9489b3b Add first draft f... |
806 807 808 809 810 811 812 |
\centering \begin{tabular}{|c|c|ccc|c|} \hline $n$ & & MAX/500 & MAX/1000 & MAX/1500 & \emph{Zynq 7010} \\ \hline\hline & LUT & 249 & 453 & 627 & \emph{17600} \\ 1 & BRAM & 1 & 1 & 1 & \emph{120} \\ & DSP & 21 & 37 & 47 & \emph{80} \\ \hline |
b5ace9bdc Revision 2. |
813 |
& LUT & 2253 & 474 & 691 & \emph{17600} \\ |
8d9489b3b Add first draft f... |
814 |
2 & BRAM & 2 & 2 & 2 & \emph{120} \\ |
b5ace9bdc Revision 2. |
815 816 |
& DSP & 0 & 50 & 70 & \emph{80} \\ \hline & LUT & 1329 & 2006 & 3158 & \emph{17600} \\ |
8d9489b3b Add first draft f... |
817 |
3 & BRAM & 3 & 3 & 3 & \emph{120} \\ |
b5ace9bdc Revision 2. |
818 819 820 821 822 823 824 |
& DSP & 15 & 30 & 42 & \emph{80} \\ \hline & LUT & 1329 & 1600 & 2260 & \emph{17600} \\ 4 & BRAM & 3 & 4 & 4 & \emph{120} \\ & DPS & 15 & 38 & 49 & \emph{80} \\ \hline & LUT & 1329 & 1600 & 2260 & \emph{17600} \\ 5 & BRAM & 3 & 4 & 4 & \emph{120} \\ & DPS & 15 & 38 & 49 & \emph{80} \\ \hline |
8d9489b3b Add first draft f... |
825 |
\end{tabular} |
842e804be Permier pas vers ... |
826 |
\end{table} |
27f5f4108 Article étendu. |
827 |
|
b5ace9bdc Revision 2. |
828 |
{\color{red} In case $n = 2$ for MAX/500}, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that, |
0642fff00 relecture journal |
829 830 |
when the filter coefficients are small enough, or when the input size is small enough, Vivado optimizes resource consumption by selecting multiplexers to |
8d9489b3b Add first draft f... |
831 832 |
implement the multiplications instead of a DSP. In this case, it is quite difficult to compare the whole silicon budget. |
0642fff00 relecture journal |
833 |
However, a rough estimation can be made with a simple equivalence: looking at |
8d9489b3b Add first draft f... |
834 835 |
the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$, we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon |
7c951bd35 Typo + texte en n... |
836 |
area use. With this equivalence, our 500 arbitrary units correspond to 2500 LUTs, |
0642fff00 relecture journal |
837 |
1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond |
8d9489b3b Add first draft f... |
838 |
to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary |
0642fff00 relecture journal |
839 |
unit map well to actual hardware resources. The relatively small differences can probably be explained |
8d9489b3b Add first draft f... |
840 |
by the optimizations done by Vivado based on the detailed map of available processing resources. |
0642fff00 relecture journal |
841 842 843 844 |
We now present the computation time needed to solve the quadratic problem. For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606 clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic |
8d9489b3b Add first draft f... |
845 |
problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units. |
0642fff00 relecture journal |
846 847 |
\begin{table}[h!tb] \caption{Time needed to solve the quadratic program with Gurobi} |
8d9489b3b Add first draft f... |
848 |
\label{tbl:area_time} |
842e804be Permier pas vers ... |
849 |
\centering |
b5ace9bdc Revision 2. |
850 |
\color{red} |
8d9489b3b Add first draft f... |
851 852 |
\begin{tabular}{|c|c|c|c|}\hline $n$ & Time (MAX/500) & Time (MAX/1000) & Time (MAX/1500) \\\hline\hline |
b5ace9bdc Revision 2. |
853 854 855 856 857 |
1 & 0.01~s & 0.02~s & 0.03~s \\ 2 & 0.1~s & 1~s & 2~s \\ 3 & 5~s & 27~s & 351~s ($\approx$ 6~min) \\ 4 & 4~s & 141~s ($\approx$ 3~min) & 1134~s ($\approx$ 18~min) \\ 5 & 6~s & 630~s ($\approx$ 10~min) & 49400~s ($\approx$ 13~h) \\\hline |
842e804be Permier pas vers ... |
858 |
\end{tabular} |
842e804be Permier pas vers ... |
859 |
\end{table} |
27f5f4108 Article étendu. |
860 |
|
b5ace9bdc Revision 2. |
861 |
As expected, the computation time seems to rise exponentially with the number of stages. |
8d9489b3b Add first draft f... |
862 |
When the area is limited, the design exploration space is more limited and the solver is able to |
5e2bf244b Suppression d'un ... |
863 |
find an optimal solution faster. |
a45e29d4b article et lettre |
864 865 866 867 |
{\color{red} We also notice that the solution with $n$ greater than the optimal value takes more time to be found than the optimal one. This can be explained since the search space is larger and we need more time to ensure that the previous solution (from the smaller value of $n$) still remains the optimal solution.} |
0642fff00 relecture journal |
868 869 |
\subsection{Minimizing resource occupation at fixed rejection}\label{sec:fixed_rej} |
8d9489b3b Add first draft f... |
870 |
|
0642fff00 relecture journal |
871 872 |
This section presents the results of the complementary quadratic program aimed at minimizing the area occupation for a targeted rejection level. |
8d9489b3b Add first draft f... |
873 |
|
b312dca6a Ajout de MIN/100. |
874 |
The experimental setup is composed of four cases. The raw input is the same |
0642fff00 relecture journal |
875 |
as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$. |
b312dca6a Ajout de MIN/100. |
876 877 |
Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB. Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100. |
8d9489b3b Add first draft f... |
878 879 880 881 882 |
The number of configurations $p$ is the same as previous section. Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40. Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60. Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80. |
b312dca6a Ajout de MIN/100. |
883 |
Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100. |
8d9489b3b Add first draft f... |
884 885 |
\renewcommand{\arraystretch}{1.4} |
0642fff00 relecture journal |
886 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
887 888 889 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40} \label{tbl:gurobi_min_40} \centering |
b5ace9bdc Revision 2. |
890 |
{\scalefont{0.77}\color{red} |
8d9489b3b Add first draft f... |
891 892 893 894 895 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (27, 8, 0) & - & - & - & - & 41~dB & 648 \\ |
b5ace9bdc Revision 2. |
896 897 898 899 |
2 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ 3 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ 4 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ 5 & (3, 5, 18) & (27, 8, 0) & - & - & - & 42~dB & 360 \\ |
8d9489b3b Add first draft f... |
900 901 902 |
\hline \end{tabular} } |
842e804be Permier pas vers ... |
903 |
\end{table} |
27f5f4108 Article étendu. |
904 |
|
0642fff00 relecture journal |
905 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
906 907 908 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60} \label{tbl:gurobi_min_60} \centering |
b5ace9bdc Revision 2. |
909 |
{\scalefont{0.77}\color{red} |
8d9489b3b Add first draft f... |
910 911 912 913 914 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (39, 13, 0) & - & - & - & - & 60~dB & 1131 \\ |
b5ace9bdc Revision 2. |
915 916 917 918 |
2 & (15, 6, 16) & (23, 9, 0) & - & - & - & 60~dB & 675 \\ 3 & (3, 5, 18) & (15, 6, 2) & (23, 8, 0) & - & - & 60~dB & 543 \\ 4 & (3, 5, 18) & (15, 6, 2) & (23, 8, 0) & - & - & 60~dB & 543 \\ 5 & (3, 5, 18) & (15, 6, 2) & (23, 8, 0) & - & - & 60~dB & 543 \\ |
8d9489b3b Add first draft f... |
919 920 921 |
\hline \end{tabular} } |
842e804be Permier pas vers ... |
922 |
\end{table} |
27f5f4108 Article étendu. |
923 |
|
0642fff00 relecture journal |
924 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
925 926 927 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80} \label{tbl:gurobi_min_80} \centering |
b5ace9bdc Revision 2. |
928 |
{\scalefont{0.77}\color{red} |
8d9489b3b Add first draft f... |
929 930 931 932 933 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (55, 16, 0) & - & - & - & - & 81~dB & 1760 \\ |
b5ace9bdc Revision 2. |
934 935 936 937 |
2 & (15, 8, 17) & (35, 11, 0) & - & - & - & 80~dB & 990 \\ 3 & (3, 7, 20) & (31, 9, 1) & (19, 7, 0) & - & - & 80~dB & 783 \\ 4 & (3, 7, 20) & (31, 9, 1) & (19, 7, 0) & - & - & 80~dB & 783 \\ 5 & (3, 7, 20) & (31, 9, 1) & (19, 7, 0) & - & - & 80~dB & 783 \\ |
8d9489b3b Add first draft f... |
938 939 940 |
\hline \end{tabular} } |
842e804be Permier pas vers ... |
941 |
\end{table} |
b312dca6a Ajout de MIN/100. |
942 943 944 945 946 |
\begin{table}[h!tb] \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100} \label{tbl:gurobi_min_100} \centering |
b5ace9bdc Revision 2. |
947 |
{\scalefont{0.77}\color{red} |
b312dca6a Ajout de MIN/100. |
948 949 950 951 952 |
\begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & - & - & - & - & - & - & - \\ |
b5ace9bdc Revision 2. |
953 954 955 956 |
2 & (27, 9, 15) & (35, 11, 0) & - & - & - & 100~dB & 1410 \\ 3 & (3, 5, 18) & (35, 11, 1) & (27, 9, 0) & - & - & 100~dB & 1147 \\ 4 & (3, 5, 18) & (15, 6, 2) & (27, 9, 0) & (19, 7, 0) & - & 100~dB & 1067 \\ 5 & (3, 5, 18) & (15, 6, 2) & (27, 9, 0) & (19, 7, 0) & - & 100~dB & 1067 \\ |
b312dca6a Ajout de MIN/100. |
957 958 959 960 |
\hline \end{tabular} } \end{table} |
8d9489b3b Add first draft f... |
961 |
\renewcommand{\arraystretch}{1} |
27f5f4108 Article étendu. |
962 |
|
9b83af848 final corrections |
963 |
From these tables, we can first state that almost all configurations reach the targeted rejection |
0642fff00 relecture journal |
964 |
level or even better thanks to our underestimate of the cascade rejection as the sum of the |
b312dca6a Ajout de MIN/100. |
965 |
individual filter rejection. The only exception is for the monolithic case ($n = 1$) in |
9b83af848 final corrections |
966 |
MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection. |
7c951bd35 Typo + texte en n... |
967 |
Furthermore, the area of the monolithic filter is twice as big as the two cascaded filters |
a45e29d4b article et lettre |
968 |
{\color{red}(675 and 1131 arbitrary units v.s 990 and 1760 arbitrary units for 60 and 80~dB rejection} |
0642fff00 relecture journal |
969 970 971 972 973 974 975 |
respectively). More generally, the more filters are cascaded, the lower the occupied area. Like in previous section, the solver chooses always a little filter as first filter stage and the second one is often the biggest filter. This choice can be explained as in the previous section, with the solver using just enough bits not to degrade the input signal and in the second filter selecting a better filter to improve rejection without having too many bits in the output data. |
b5ace9bdc Revision 2. |
976 977 |
{\color{red} For each case, we found an optimal solution with $n < 5$: for MIN/40 $n=2$, for MIN/60 and MIN/80 $n = 3$ and for MIN/100 $n = 4$. In all cases, the solutions |
a45e29d4b article et lettre |
978 |
when $n$ is greater than this optimal $n$ remain identical to the optimal one.} |
b5ace9bdc Revision 2. |
979 980 981 |
% For the specific case of MIN/40 for $n = 5$ the solver has determined that the optimal % number of filters is 4 so it did not chose any configuration for the last filter. Hence this % solution is equivalent to the result for $n = 4$. |
8d9489b3b Add first draft f... |
982 |
|
0642fff00 relecture journal |
983 |
The following graphs present the rejection for real data on the FPGA. In all the following |
8d9489b3b Add first draft f... |
984 |
figures, the solid line represents the actual rejection of the filtered |
0642fff00 relecture journal |
985 |
data on the FPGA as measured experimentally and the dashed line is the noise level |
8d9489b3b Add first draft f... |
986 987 988 989 990 |
given by the quadratic solver. Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40. Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60. Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80. |
b312dca6a Ajout de MIN/100. |
991 |
Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100. |
27f5f4108 Article étendu. |
992 |
|
b43d41ac2 Première partie d... |
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
% \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_40} % \caption{Signal spectrum for MIN/40} % \label{fig:min_40} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_60} % \caption{Signal spectrum for MIN/60} % \label{fig:min_60} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_80} % \caption{Signal spectrum for MIN/80} % \label{fig:min_80} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_100} % \caption{Signal spectrum for MIN/100} % \label{fig:min_100} % \end{figure} % r2.14 et r2.15 et r2.16 |
842e804be Permier pas vers ... |
1022 |
\begin{figure} |
b43d41ac2 Première partie d... |
1023 1024 |
\centering \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
1025 |
\includegraphics[width=.91\linewidth]{images/min_40} |
b5ace9bdc Revision 2. |
1026 |
\caption{\color{red}Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
1027 |
the MIN/40 problem of minimizing resource allocation for reaching a 40~dB rejection.} |
b43d41ac2 Première partie d... |
1028 1029 1030 1031 |
\label{fig:min_40} \end{subfigure} \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
1032 |
\includegraphics[width=.91\linewidth]{images/min_60} |
b5ace9bdc Revision 2. |
1033 |
\caption{\color{red}Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
1034 |
the MIN/60 problem of minimizing resource allocation for reaching a 60~dB rejection.} |
b43d41ac2 Première partie d... |
1035 1036 1037 1038 |
\label{fig:min_60} \end{subfigure} \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
1039 |
\includegraphics[width=.91\linewidth]{images/min_80} |
b5ace9bdc Revision 2. |
1040 |
\caption{\color{red}Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
1041 |
the MIN/80 problem of minimizing resource allocation for reaching a 80~dB rejection.} |
b43d41ac2 Première partie d... |
1042 1043 1044 1045 |
\label{fig:min_80} \end{subfigure} \begin{subfigure}{\linewidth} |
db81f7ad9 captions figures |
1046 |
\includegraphics[width=.91\linewidth]{images/min_100} |
b5ace9bdc Revision 2. |
1047 |
\caption{\color{red}Filter transfer functions for varying number of cascaded filters solving |
db81f7ad9 captions figures |
1048 |
the MIN/100 problem of minimizing resource allocation for reaching a 100~dB rejection.} |
b43d41ac2 Première partie d... |
1049 1050 |
\label{fig:min_100} \end{subfigure} |
b5ace9bdc Revision 2. |
1051 |
\caption{\color{red}Solutions for the MIN/40, MIN/60, MIN/80 and MIN/100 problems of reaching a |
efde7e849 Merge branch 'mas... |
1052 1053 |
given rejection while minimizing resource allocation. The filter shape constraint (bandpass and bandstop) is shown as thick |
db81f7ad9 captions figures |
1054 |
horizontal lines on each chart.} |
b312dca6a Ajout de MIN/100. |
1055 |
\end{figure} |
0642fff00 relecture journal |
1056 1057 |
We observe that all rejections given by the quadratic solver are close to the experimentally measured rejection. All curves prove that the constraint to reach the target rejection is |
b312dca6a Ajout de MIN/100. |
1058 |
respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters. |
8d9489b3b Add first draft f... |
1059 |
|
b312dca6a Ajout de MIN/100. |
1060 1061 |
Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60; MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We |
8d9489b3b Add first draft f... |
1062 1063 1064 |
have taken care to extract solely the resources used by the FIR filters and remove additional processing blocks including FIFO and PL to PS communication. |
b312dca6a Ajout de MIN/100. |
1065 |
\renewcommand{\arraystretch}{1.2} |
8d9489b3b Add first draft f... |
1066 1067 1068 1069 |
\begin{table} \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} \label{tbl:resources_usage_comp} \centering |
b5ace9bdc Revision 2. |
1070 |
{\scalefont{0.90}\color{red} |
b312dca6a Ajout de MIN/100. |
1071 |
\begin{tabular}{|c|c|cccc|c|} |
8d9489b3b Add first draft f... |
1072 |
\hline |
b312dca6a Ajout de MIN/100. |
1073 1074 1075 1076 |
$n$ & & MIN/40 & MIN/60 & MIN/80 & MIN/100 & \emph{Zynq 7010} \\ \hline\hline & LUT & 343 & 334 & 772 & - & \emph{17600} \\ 1 & BRAM & 1 & 1 & 1 & - & \emph{120} \\ & DSP & 27 & 39 & 55 & - & \emph{80} \\ \hline |
b5ace9bdc Revision 2. |
1077 |
& LUT & 1664 & 2329 & 474 & 620 & \emph{17600} \\ |
b312dca6a Ajout de MIN/100. |
1078 |
2 & BRAM & 2 & 2 & 2 & 2 & \emph{120} \\ |
b5ace9bdc Revision 2. |
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 |
& DSP & 0 & 15 & 50 & 62 & \emph{80} \\ \hline & LUT & 1664 & 3114 & 1884 & 2873 & \emph{17600} \\ 3 & BRAM & 2 & 3 & 3 & 3 & \emph{120} \\ & DSP & 0 & 0 & 22 & 27 & \emph{80} \\ \hline & LUT & 1664 & 3114 & 2570 & 4318 & \emph{17600} \\ 4 & BRAM & 2 & 3 & 4 & 4 & \emph{120} \\ & DPS & 0 & 15 & 19 & 19 & \emph{80} \\ \hline & LUT & 1664 & 3114 & 2570 & 4318 & \emph{17600} \\ 5 & BRAM & 2 & 3 & 4 & 4 & \emph{120} \\ & DPS & 0 & 0 & 19 & 19 & \emph{80} \\ \hline |
8d9489b3b Add first draft f... |
1089 |
\end{tabular} |
b312dca6a Ajout de MIN/100. |
1090 |
} |
8d9489b3b Add first draft f... |
1091 |
\end{table} |
b312dca6a Ajout de MIN/100. |
1092 |
\renewcommand{\arraystretch}{1} |
8d9489b3b Add first draft f... |
1093 |
|
0642fff00 relecture journal |
1094 1095 1096 |
If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT) the real resource consumption decreases as a function of the number of stages in the cascaded filter according |
8d9489b3b Add first draft f... |
1097 1098 |
to the solution given by the quadratic solver. Indeed, we have always a decreasing consumption even if the difference between the monolithic and the two cascaded |
0642fff00 relecture journal |
1099 |
filters is less than expected. |
8d9489b3b Add first draft f... |
1100 |
|
0642fff00 relecture journal |
1101 |
Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve |
8d9489b3b Add first draft f... |
1102 |
the quadratic program. |
b312dca6a Ajout de MIN/100. |
1103 |
\renewcommand{\arraystretch}{1.2} |
0642fff00 relecture journal |
1104 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
1105 1106 1107 |
\caption{Time to solve the quadratic program with Gurobi} \label{tbl:area_time_comp} \centering |
b5ace9bdc Revision 2. |
1108 |
{\scalefont{0.90}\color{red} |
b312dca6a Ajout de MIN/100. |
1109 1110 |
\begin{tabular}{|c|c|c|c|c|}\hline $n$ & Time (MIN/40) & Time (MIN/60) & Time (MIN/80) & Time (MIN/100) \\\hline\hline |
b5ace9bdc Revision 2. |
1111 1112 1113 1114 1115 |
1 & 0.04~s & 0.01~s & 0.01~s & - \\ 2 & 2.7~s & 2.4~s & 2.4~s & 0.8~s \\ 3 & 4.6~s & 7~s & 7~s & 18~s \\ 4 & 3~s & 22~s & 70~s & 220~s ($\approx$ 3~min) \\ 5 & 5~s & 122~s & 200~s & 384~s ($\approx$ 5~min) \\\hline |
8d9489b3b Add first draft f... |
1116 |
\end{tabular} |
b312dca6a Ajout de MIN/100. |
1117 |
} |
8d9489b3b Add first draft f... |
1118 |
\end{table} |
b312dca6a Ajout de MIN/100. |
1119 |
\renewcommand{\arraystretch}{1} |
8d9489b3b Add first draft f... |
1120 |
|
0642fff00 relecture journal |
1121 |
The time needed to solve this configuration is significantly shorter than the time |
b5ace9bdc Revision 2. |
1122 1123 |
needed in the previous section. Indeed the worst time in this case is only {\color{red}5~minutes, compared to 13~hours} in the previous section: this problem is more easily solved than the |
a45e29d4b article et lettre |
1124 |
previous one. |
8d9489b3b Add first draft f... |
1125 |
|
c27d27105 relecture |
1126 |
To conclude, we compare our monolithic filters with the FIR Compiler provided by |
efde7e849 Merge branch 'mas... |
1127 |
Xilinx in the Vivado software suite (v.2018.2). For each experiment we use the |
c27d27105 relecture |
1128 |
same coefficient set and we compare the resource consumption, having checked that |
efde7e849 Merge branch 'mas... |
1129 |
the transfer functions are indeed the same with both implementations. |
c27d27105 relecture |
1130 |
Table~\ref{tbl:xilinx_resources} exhibits the results. |
4d905253d relecture finale JMF |
1131 |
The FIR Compiler never uses BRAM while our filter implementation uses one block. This difference |
c27d27105 relecture |
1132 |
is explained be our wish to have a dynamically reconfigurable FIR filter whose |
efde7e849 Merge branch 'mas... |
1133 |
coefficients can be updated from the processing system without having to update the FPGA design. |
c27d27105 relecture |
1134 |
With the FIR compiler, the coefficients are defined during the FPGA design so that |
efde7e849 Merge branch 'mas... |
1135 1136 |
changing coefficients required generating a new design. The difference with the LUT consumption is also attributed to the reconfigurability logic. However the DSP consumption, the scarcest |
c27d27105 relecture |
1137 1138 |
resource, is the same between the Xilinx FIR Compiler end our FIR block: we hence conclude that our solutions are as good as the Xilinx implementation. |
56f7c40c9 Ajout de correcti... |
1139 |
|
ec91065ab Ajout du tableau ... |
1140 1141 1142 1143 |
\renewcommand{\arraystretch}{1.2} \begin{table} \centering \caption{Resource consumption compared between the FIR Compiler from Xilinx and our FIR block} |
56f7c40c9 Ajout de correcti... |
1144 |
\label{tbl:xilinx_resources} |
ec91065ab Ajout du tableau ... |
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
\begin{tabular}{|c|c|c|c|c|c|c|} \hline \multirow{2}{*}{} & \multicolumn{3}{c|}{Xilinx} & \multicolumn{3}{c|}{Our FIR block} \\ \cline{2-7} & LUT & BRAM & DSP & LUT & BRAM & DSP \\ \hline MAX/500 & 177 & 0 & 21 & 249 & 1 & 21 \\ \hline MAX/1000 & 306 & 0 & 37 & 453 & 1 & 37 \\ \hline MAX/1500 & 418 & 0 & 47 & 627 & 1 & 47 \\ \hline MIN/40 & 225 & 0 & 27 & 347 & 1 & 27 \\ \hline MIN/60 & 322 & 0 & 39 & 334 & 1 & 39 \\ \hline MIN/80 & 482 & 0 & 55 & 772 & 1 & 55 \\ \hline \end{tabular} \end{table} \renewcommand{\arraystretch}{1} |
27f5f4108 Article étendu. |
1158 |
\section{Conclusion} |
b5ace9bdc Revision 2. |
1159 |
We have proposed a new approach to optimize a set of signal processing blocks whose performances |
0642fff00 relecture journal |
1160 1161 1162 1163 1164 1165 1166 |
and resource consumption has been tabulated, and applied this methodology to the practical case of implementing cascaded FIR filters inside a FPGA. This method aims to be hardware independent and focuses an a high-level of abstraction. We have modeled the FIR filter operation and the impact of data shift. Thanks to this model, we have created a quadratic program to select the optimal FIR taps to reach a targeted rejection. Individual filter taps have been identified using commonly available tools and the emphasis is on FIR assembly rather than individual FIR coefficient identification. |
8d9489b3b Add first draft f... |
1167 1168 1169 |
Our experimental results are very promising in providing a rational approach to selecting the coefficients of each FIR filter in the context of a performance target for a chain of |
0642fff00 relecture journal |
1170 1171 1172 |
such filters. The FPGA design that is produced automatically by the proposed workflow is able to filter an input signal as expected, validating experimentally our model and our approach. The quadratic program can be adapted it to an other problem based on assembling skeleton blocks. |
8d9489b3b Add first draft f... |
1173 |
|
a45e29d4b article et lettre |
1174 1175 1176 1177 |
{\color{red}Considering that all area and rejection considerations could be explored within a reasonable computation duration, and that no improvement is observed when cascading more than four filters, we consider that this particular problem has been exhaustively investigated and optimal solutions found in all cases.} % JMF |
8d9489b3b Add first draft f... |
1178 |
A perspective is to model and add the decimators to the processing chain to have a classical |
0642fff00 relecture journal |
1179 1180 |
FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon area usage for subsequent stages since some hardware optimization can be applied in |
8d9489b3b Add first draft f... |
1181 1182 1183 1184 |
this case. The software used to demonstrate the concepts developed in this paper is based on the CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}. |
27f5f4108 Article étendu. |
1185 1186 1187 1188 1189 |
\section*{Acknowledgement} This work is supported by the ANR Programme d'Investissement d'Avenir in progress at the Time and Frequency Departments of the FEMTO-ST Institute (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. |
842e804be Permier pas vers ... |
1190 |
The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila |
27f5f4108 Article étendu. |
1191 1192 1193 1194 1195 1196 |
for support and fruitful discussions. \bibliographystyle{IEEEtran} \balance \bibliography{references,biblio} \end{document} |