Blame view

ifcs2018_journal.tex 67.4 KB
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
1
2
  % fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
  % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
c9c460c6b   jfriedt   menage article IFCS
3
4
  %    rejection par bit et perte si moins de bits que rejection/6
  % developper programme lineaire en incluant le decalage de bits
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
5
6
  % insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
  % implemente et on demontre que ca tourne
c9c460c6b   jfriedt   menage article IFCS
7
8
9
  %   gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ?
  % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer
  %        (zedboard ou redpit)
c9c460c6b   jfriedt   menage article IFCS
10
  % label schema : verifier que "argumenter de la cascade de FIR" est fait
32b45e8e1   Arthur HUGEAT   change type de pa...
11
  \documentclass[a4paper,journal]{IEEEtran/IEEEtran}
27f5f4108   Arthur HUGEAT   Article étendu.
12
13
14
15
16
17
18
19
  \usepackage{graphicx,color,hyperref}
  \usepackage{amsfonts}
  \usepackage{amsthm}
  \usepackage{amssymb}
  \usepackage{amsmath}
  \usepackage{algorithm2e}
  \usepackage{url,balance}
  \usepackage[normalem]{ulem}
842e804be   Arthur HUGEAT   Permier pas vers ...
20
21
22
23
  \usepackage{tikz}
  \usetikzlibrary{positioning,fit}
  \usepackage{multirow}
  \usepackage{scalefnt}
b43d41ac2   Arthur HUGEAT   Première partie d...
24
25
  \usepackage{caption}
  \usepackage{subcaption}
842e804be   Arthur HUGEAT   Permier pas vers ...
26

27f5f4108   Arthur HUGEAT   Article étendu.
27
28
29
30
31
32
33
34
35
36
37
  % correct bad hyphenation here
  \hyphenation{op-tical net-works semi-conduc-tor}
  \textheight=26cm
  \setlength{\footskip}{30pt}
  \pagenumbering{gobble}
  \begin{document}
  \title{Filter optimization for real time digital processing of radiofrequency signals: application
  to oscillator metrology}
  
  \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
  G. Goavec-M\'erou\IEEEauthorrefmark{1},
b43d41ac2   Arthur HUGEAT   Première partie d...
38
39
  P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\
  \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\
27f5f4108   Arthur HUGEAT   Article étendu.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
  Email: \{pyb2,jmfriedt\}@femto-st.fr}
  }
  \maketitle
  \thispagestyle{plain}
  \pagestyle{plain}
  
  ewtheorem{definition}{Definition}
  
  \begin{abstract}
  Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
  radiofrequency signal processing. Applied to oscillator characterization in the context
  of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
  noise rejection needs. Since real time radiofrequency processing must be performed in a
  Field Programmable Array to meet timing constraints, we investigate optimization strategies
  to design filters meeting rejection characteristics while limiting the hardware resources
0642fff00   jfriedt   relecture journal
56
57
58
59
60
  required and keeping timing constraints within the targeted measurement bandwidths. The
  presented technique is applicable to scheduling any sequence of processing blocks characterized
  by a throughput, resource occupation and performance tabulated as a function of configuration
  characateristics, as is the case for filters with their coefficients and resolution yielding
  rejection and number of multipliers.
27f5f4108   Arthur HUGEAT   Article étendu.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  \end{abstract}
  
  \begin{IEEEkeywords}
  Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
  \end{IEEEkeywords}
  
  \section{Digital signal processing of ultrastable clock signals}
  
  Analog oscillator phase noise characteristics are classically performed by downconverting
  the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
  followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
  a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
  multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
  
  \begin{figure}[h!tb]
  \begin{center}
  \includegraphics[width=.8\linewidth]{images/schema}
  \end{center}
  \caption{Fully digital oscillator phase noise characterization: the Device Under Test
  (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
  downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
  and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
  Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
  the spectral characteristics of the phase fluctuations.}
  \label{schema}
  \end{figure}
  
  As with the analog mixer,
  the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
  well as the generation of the frequency sum signal in addition to the frequency difference.
  These unwanted spectral characteristics must be rejected before decimating the data stream
  for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
  downconverter
  and the decimation processing blocks are core characteristics of an oscillator characterization
  system, and must reject out-of-band signals below the targeted phase noise -- typically in the
  sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
  use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
  datastream: optimizing the performance of the filter while reducing the needed resources is
  hence tackled in a systematic approach using optimization techniques. Most significantly, we
  tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
  tunable number of coefficients and tunable number of bits representing the coefficients and the
  data being processed.
  
  \section{Finite impulse response filter}
0642fff00   jfriedt   relecture journal
105
  We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined
27f5f4108   Arthur HUGEAT   Article étendu.
106
107
  by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
  outputs $y_k$
842e804be   Arthur HUGEAT   Permier pas vers ...
108
109
110
111
  \begin{align}
      y_n=\sum_{k=0}^N b_k x_{n-k}
      \label{eq:fir_equation}
  \end{align}
27f5f4108   Arthur HUGEAT   Article étendu.
112
113
  
  As opposed to an implementation on a general purpose processor in which word size is defined by the
0642fff00   jfriedt   relecture journal
114
  processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since
27f5f4108   Arthur HUGEAT   Article étendu.
115
116
117
118
  not only the coefficient values and number of taps must be defined, but also the number of bits
  defining the coefficients and the sample size. For this reason, and because we consider pipeline
  processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
  signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
119
  the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language
0642fff00   jfriedt   relecture journal
120
  (VHDL) level.
7c951bd35   Arthur HUGEAT   Typo + texte en n...
121
  Since latency is not an issue in a openloop phase noise characterization instrument,
90c55845a   jfriedt   relecture JMF
122
  the large
27f5f4108   Arthur HUGEAT   Article étendu.
123
  numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
7c951bd35   Arthur HUGEAT   Typo + texte en n...
124
  is not considered as an issue as would be in a closed loop system.
27f5f4108   Arthur HUGEAT   Article étendu.
125
126
127
128
129
  
  The coefficients are classically expressed as floating point values. However, this binary
  number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
  we select to quantify these floating point values into integer values. This quantization
  will result in some precision loss.
27f5f4108   Arthur HUGEAT   Article étendu.
130
  \begin{figure}[h!tb]
46ae3f9cf   Arthur HUGEAT   Final draft.
131
  \includegraphics[width=\linewidth]{images/zero_values}
27f5f4108   Arthur HUGEAT   Article étendu.
132
133
134
135
136
137
138
139
140
141
142
143
  \caption{Impact of the quantization resolution of the coefficients: the quantization is
  set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
  the 30~first and 30~last coefficients out of the initial 128~band-pass
  filter coefficients to 0 (red dots).}
  \label{float_vs_int}
  \end{figure}
  
  The tradeoff between quantization resolution and number of coefficients when considering
  integer operations is not trivial. As an illustration of the issue related to the
  relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
  a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
  quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
7c951bd35   Arthur HUGEAT   Typo + texte en n...
144
145
146
  taps become null, making the large number of coefficients irrelevant: processing
  resources
  are hence saved by shrinking the filter length. This tradeoff aimed at minimizing resources
27f5f4108   Arthur HUGEAT   Article étendu.
147
148
149
150
151
152
153
154
155
156
  to reach a given rejection level, or maximizing out of band rejection for a given computational
  resource, will drive the investigation on cascading filters designed with varying tap resolution
  and tap length, as will be shown in the next section. Indeed, our development strategy closely
  follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
  in which basic blocks are defined and characterized before being assembled \cite{hide}
  in a complete processing chain. In our case, assembling the filter blocks is a simpler block
  combination process since we assume a single value to be processed and a single value to be
  generated at each clock cycle. The FIR filters will not be considered to decimate in the
  current implementation: the decimation is assumed to be located after the FIR cascade at the
  moment.
842e804be   Arthur HUGEAT   Permier pas vers ...
157
  \section{Methodology description}
0642fff00   jfriedt   relecture journal
158

5e2bf244b   Arthur HUGEAT   Suppression d'un ...
159
160
  Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP)
  chain obtained by assembling basic processing blocks, with hardware and manufacturer independence.
0642fff00   jfriedt   relecture journal
161
  Achieving such a target requires defining an abstract model to represent some basic properties
7c951bd35   Arthur HUGEAT   Typo + texte en n...
162
  of DSP blocks such as performance (i.e. rejection or ripples in the bandpass for filters) and
0642fff00   jfriedt   relecture journal
163
164
165
  resource occupation. These abstract properties, not necessarily related to the detailed hardware
  implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum
  target, whether in terms of maximizing performance for a given arbitrary resource occupation, or
7c951bd35   Arthur HUGEAT   Typo + texte en n...
166
  minimizing resource occupation for a given performance. In our approach, the solution of the
0642fff00   jfriedt   relecture journal
167
168
169
170
171
  solver is then synthesized using the dedicated tool provided by each platform manufacturer
  to assess the validity of our abstract resource occupation indicator, and the result of running
  the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize
  that all solutions found by the solver are synthesized and executed on hardware at the end
  of the analysis.
c27d27105   jfriedt   relecture
172
  In this demonstration, we focus on only two operations: filtering and shifting the number of
0642fff00   jfriedt   relecture journal
173
  bits needed to represent the data along the processing chain.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
174
  We have chosen these basic operations because shifting and the filtering have already been studied
0642fff00   jfriedt   relecture journal
175
  in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
176
177
  assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend
  requiring pipelined processing at full bandwidth for the earliest steps, including for
0642fff00   jfriedt   relecture journal
178
179
180
181
  time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}.
  
  Addressing only two operations allows for demonstrating the methodology but should not be
  considered as a limitation of the framework which can be extended to assembling any number
7c951bd35   Arthur HUGEAT   Typo + texte en n...
182
  of skeleton blocks as long as performance and resource occupation can be determined.
90c55845a   jfriedt   relecture JMF
183
  Hence,
7c951bd35   Arthur HUGEAT   Typo + texte en n...
184
  in this paper we will apply our methodology on simple DSP chains: a white noise input signal
90c55845a   jfriedt   relecture JMF
185
  is generated using a Pseudo-Random Number (PRN) generator or by sampling a wideband (125~MS/s)
7c951bd35   Arthur HUGEAT   Typo + texte en n...
186
  14-bit Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor. Once samples have been
0642fff00   jfriedt   relecture journal
187
188
189
  digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance --
  practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction
  by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing,
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
190
  allowing to assess either filter rejection for a given resource usage, or validating the rejection
0642fff00   jfriedt   relecture journal
191
  when implementing a solution minimizing resource occupation.
842e804be   Arthur HUGEAT   Permier pas vers ...
192

7c951bd35   Arthur HUGEAT   Typo + texte en n...
193
  The first step of our approach is to model the DSP chain. Since we aim at only optimizing
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
194
195
  the filtering part of the signal processing chain, we have not included the PRN generator or the
  ADC in the model: the input data size and rate are considered fixed and defined by the hardware.
90c55845a   jfriedt   relecture JMF
196
  The filtering can be done in two ways, either by considering a single monolithic FIR filter
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
197
  requiring many coefficients to reach the targeted noise rejection ratio, or by
7c951bd35   Arthur HUGEAT   Typo + texte en n...
198
  cascading multiple FIR filters, each with fewer coefficients than found in the monolithic filter.
842e804be   Arthur HUGEAT   Permier pas vers ...
199
200
201
202
203
204
  
  After each filter we leave the possibility of shifting the filtered data to consume
  less resources. Hence in the case of cascaded filter, we define a stage as a filter
  and a shifter (the shift could be omitted if we do not need to divide the filtered data).
  
  \subsection{Model of a FIR filter}
0642fff00   jfriedt   relecture journal
205
206
207
208
  
  A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$)
  the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$
  bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as
842e804be   Arthur HUGEAT   Permier pas vers ...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage}
  shows a filtering stage.
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=2cm]
      
  ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ;
      
  ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ;
      
  ode (Start) [left of=FIR] { } ;
      
  ode (End) [right of=Shift] { } ;
  
      
  ode[draw,fit=(FIR) (Shift)] (Filter) { } ;
  
      \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ;
      \draw[->] (FIR) -- (Shift) ;
      \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ;
    \end{tikzpicture}
    \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)}
    \label{fig:fir_stage}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
234

0642fff00   jfriedt   relecture journal
235
236
237
  FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB.
  This rejection has been computed using GNU Octave software FIR coefficient design functions
  (\texttt{firls} and \texttt{fir1}).
842e804be   Arthur HUGEAT   Permier pas vers ...
238
239
240
  For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients.
  Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively,
  the coefficients are normalized by their absolute maximum before being scaled to integer coefficients.
0642fff00   jfriedt   relecture journal
241
  At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits.
842e804be   Arthur HUGEAT   Permier pas vers ...
242

0642fff00   jfriedt   relecture journal
243
244
245
  With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter
  transfer function.
  Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag},
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
246
  the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the
7c951bd35   Arthur HUGEAT   Typo + texte en n...
247
  bandpass ripples as emphasized in \cite{lim_1988,lim_1996}. Throughout this demonstration,
90c55845a   jfriedt   relecture JMF
248
249
250
  we arbitrarily set a bandpass of 40\% of the Nyquist frequency and a bandstop from 60\%
  of the Nyquist frequency to the end of the band, as would be typically selected to prevent
  aliasing before decimating the dataflow by 2. The method is however generalized to any filter
7c951bd35   Arthur HUGEAT   Typo + texte en n...
251
252
  shape as long as it is defined from the initial modeling steps: Fig. \ref{fig:rejection_pyramid}
  as described below is indeed unique for each filter shape.
842e804be   Arthur HUGEAT   Permier pas vers ...
253
254
  
  \begin{figure}
0642fff00   jfriedt   relecture journal
255
256
  \begin{center}
  \scalebox{0.8}{
842e804be   Arthur HUGEAT   Permier pas vers ...
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    \centering
    \begin{tikzpicture}[scale=0.3]
      \draw[<->] (0,15) -- (0,0) -- (21,0) ;
      \draw[thick] (0,12) -- (8,12) -- (20,0) ;
  
      \draw (0,14) node [left] { $P$ } ;
      \draw (20,0) node [below] { $f$ } ;
  
      \draw[>=latex,<->] (0,14) -- (8,14) ;
      \draw (4,14) node [above] { passband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (8,14) -- (12,14) ;
      \draw (10,14) node [above] { transition } node [below] { $20\%$ } ;
  
      \draw[>=latex,<->] (12,14) -- (20,14) ;
      \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (16,12) -- (16,8) ;
      \draw (16,10) node [right] { rejection } ;
  
      \draw[dashed] (8,-1) -- (8,14) ;
      \draw[dashed] (12,-1) -- (12,14) ;
  
      \draw[dashed] (8,12) -- (16,12) ;
      \draw[dashed] (12,8) -- (16,8) ;
  
    \end{tikzpicture}
0642fff00   jfriedt   relecture journal
284
285
  }
  \end{center}
842e804be   Arthur HUGEAT   Permier pas vers ...
286
287
288
289
  \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$:
  the passband is considered to occupy the initial 40\% of the Nyquist frequency range,
  the stopband the last 40\%, allowing 20\% transition width.}
  \label{fig:fir_mag}
27f5f4108   Arthur HUGEAT   Article étendu.
290
  \end{figure}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
291
  In the transition band, the behavior of the filter is left free, we only define the passband and the stopband characteristics.
b43d41ac2   Arthur HUGEAT   Première partie d...
292
  % r2.7
7c951bd35   Arthur HUGEAT   Typo + texte en n...
293
294
  Initial considered criteria include the mean value of the stopband rejection which yields unacceptable results since notches
  overestimate the rejection capability of the filter.
4d905253d   jfriedt   relecture finale JMF
295
  % Furthermore, the losses within
b43d41ac2   Arthur HUGEAT   Première partie d...
296
  % the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients.
a45e29d4b   jfriedt   article et lettre
297
298
299
  {\color{red} An intermediate criterion considered the maximal rejection within the stopband, to which the sum of the absolute values
  % JMF : je fais le choix de remplacer minimal par maximal rejection pour etre coherent avec caption de Fig custom_criterion mais surtout parceque
  %    rejection me semble plus convaincant si on la maximise (il me semble que -120 dB de S21 signifie 120 dB de rejection donc on veut maximiser)
c27d27105   jfriedt   relecture
300
  within the passband is subtracted to avoid filters with excessive ripples, normalized to the
b5ace9bdc   Arthur HUGEAT   Revision 2.
301
  bin width to remain consistent with the passband criterion (dBc/Hz units in all cases).
a45e29d4b   jfriedt   article et lettre
302
303
304
305
306
  In this case, cascading too many filters with individual excessive ($>$ 1~dB) passband ripples 
  led to unacceptable ($>$ 10~dB) final ripple levels, especially close to the transition band. 
  Hence, the final criterion considers the minimal rejection in the stopband to which the
  the maximal amplitude in the passband (maximum value minus the minimum value) is substracted, with
  a 1~dB threshold on the latter quantity over which the filter is discarded.}
b5ace9bdc   Arthur HUGEAT   Revision 2.
307
308
309
310
311
312
  % Our final criterion to compute the filter rejection considers
  % % r2.8 et r2.2 r2.3
  % the minimal rejection within the stopband, to which the sum of the absolute values
  % within the passband is subtracted to avoid filters with excessive ripples, normalized to the
  % bin width to remain consistent with the passband criterion (dBc/Hz units in all cases).
  With this
959bbc540   jfriedt   re-relecture JMF
313
  criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}.
b5ace9bdc   Arthur HUGEAT   Revision 2.
314
  {\color{red} The best filter has a correct rejection estimation and the worst filter
a45e29d4b   jfriedt   article et lettre
315
  is discarded based on the excessive passband ripple criterion.}
b43d41ac2   Arthur HUGEAT   Première partie d...
316
317
318
319
320
321
322
  
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/colored_mean_criterion}
  % \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters}
  % \label{fig:mean_criterion}
  % \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
323

842e804be   Arthur HUGEAT   Permier pas vers ...
324
325
  \begin{figure}
  \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
326
  \includegraphics[width=\linewidth]{images/custom_criterion}
a45e29d4b   jfriedt   article et lettre
327
328
329
  \caption{\color{red}Selected filter qualification criterion computed as the maximum rejection in the stopband 
  minus the maximal ripple amplitude in the passband with a $>$ 1~dB threshold above which the filter is discarded:
  comparison between monolithic filter (blue, rejected in this case) and cascaded filters (red).}
842e804be   Arthur HUGEAT   Permier pas vers ...
330
331
  \label{fig:custom_criterion}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
332

0642fff00   jfriedt   relecture journal
333
334
335
336
  Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps
  and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the
  rejection as a function of the number of coefficients and the number of bits representing these coefficients.
  The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
337
  Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection.
0642fff00   jfriedt   relecture journal
338
  Conversely when setting the a given number of bits, increasing the number of coefficients will not improve
a45e29d4b   jfriedt   article et lettre
339
340
341
342
  the rejection. Hence the best coefficient set are on the vertex of the pyramid. {\color{red} Notice that the word length
  and number of coefficients do not start at 1: filters with too few coefficients or too little tap word size are rejected
  by the excessive ripple constraint of the criterion. Hence, the size of the pyramid is significantly reduced by discarding
  these filters and so is the solution search space.} % ajout JMF
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
343
344
345
346
  
  \begin{figure}
  \centering
  \includegraphics[width=\linewidth]{images/rejection_pyramid}
b5ace9bdc   Arthur HUGEAT   Revision 2.
347
  \caption{\color{red}Filter rejection as a function of number of coefficients and number of bits
7c951bd35   Arthur HUGEAT   Typo + texte en n...
348
  : this lookup table will be used to identify which filter parameters -- number of bits
a45e29d4b   jfriedt   article et lettre
349
350
351
  representing coefficients and number of coefficients -- best match the targeted transfer function. {\color{red}Filters
  with fewer than 10~taps or with coefficients coded on fewer than 5~bits are discarded due to excessive
  ripples in the passband.}} % ajout JMF
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
352
353
  \label{fig:rejection_pyramid}
  \end{figure}
0642fff00   jfriedt   relecture journal
354
  Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps),
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
355
  we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria.
0642fff00   jfriedt   relecture journal
356
  If the FIR filter coefficients are the same between the stages, we have:
842e804be   Arthur HUGEAT   Permier pas vers ...
357
  $$F_{total} = F_1 + F_2$$
0642fff00   jfriedt   relecture journal
358
359
360
  But selecting two different sets of coefficient will yield a more complex situation in which
  the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves
  are two different filters with maximums and notches not located at the same frequency offsets.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
361
  Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved
0642fff00   jfriedt   relecture journal
362
  with respect to a basic sum of the rejection criteria shown as a the dotted yellow line.
b43d41ac2   Arthur HUGEAT   Première partie d...
363
  % r2.9
7c951bd35   Arthur HUGEAT   Typo + texte en n...
364
365
  Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection
  criteria of each filter. However since the individual filter rejection sum underestimates the rejection capability of the cascade,
b43d41ac2   Arthur HUGEAT   Première partie d...
366
  % r2.10
7c951bd35   Arthur HUGEAT   Typo + texte en n...
367
  this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability
0642fff00   jfriedt   relecture journal
368
  of the filter cascade to meet design criteria.
842e804be   Arthur HUGEAT   Permier pas vers ...
369
370
371
  
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
372
  \includegraphics[width=\linewidth]{images/cascaded_criterion}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
373
374
  \caption{Transfer function of individual filters and after cascading the two filters,
  demonstrating that the selected criterion of maximum rejection in the bandstop (horizontal
db81f7ad9   jfriedt   captions figures
375
  lines) is met. Notice that the cascaded filter has better rejection than summing the bandstop
7c951bd35   Arthur HUGEAT   Typo + texte en n...
376
  maximum of each individual filter.
db81f7ad9   jfriedt   captions figures
377
  }
842e804be   Arthur HUGEAT   Permier pas vers ...
378
379
  \label{fig:sum_rejection}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
380

c27d27105   jfriedt   relecture
381
382
  Finally in our case, we consider that the input signal are fully known. The
  resolution of the input data stream are fixed and still the same for all experiments
7c951bd35   Arthur HUGEAT   Typo + texte en n...
383
  in this paper.
b43d41ac2   Arthur HUGEAT   Première partie d...
384

0642fff00   jfriedt   relecture journal
385
  Based on this analysis, we address the estimate of resource consumption (called
b43d41ac2   Arthur HUGEAT   Première partie d...
386
  % r2.11
7c951bd35   Arthur HUGEAT   Typo + texte en n...
387
  silicon area -- in the case of FPGAs this means processing cells) as a function of
0642fff00   jfriedt   relecture journal
388
389
390
391
392
393
  filter characteristics. As a reminder, we do not aim at matching actual hardware
  configuration but consider an arbitrary silicon area occupied by each processing function,
  and will assess after synthesis the adequation of this arbitrary unit with actual
  hardware resources provided by FPGA manufacturers. The sum of individual processing
  unit areas is constrained by a total silicon area representative of FPGA global resources.
  Formally, variable $a_i$ is the area taken by filter~$i$
46ae3f9cf   Arthur HUGEAT   Final draft.
394
395
  (in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB).
  Constant $\mathcal{A}$ is the total available area. We model our problem as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
396
397
398
399
400
401
402
403
404
405
406
  \begin{align}
  \text{Maximize } & \sum_{i=1}^n r_i  
  otag \\
  \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\
  a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\
  r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\
  \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\
  \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\
  \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\
  \pi_1^- &= \Pi^I \label{eq:init}
  \end{align}
8d9489b3b   Arthur HUGEAT   Add first draft f...
407
408
  Equation~\ref{eq:area} states that the total area taken by the filters must be
  less than the available area. Equation~\ref{eq:areadef} gives the definition of
0642fff00   jfriedt   relecture journal
409
410
  the area used by a filter, considered as the area of the FIR since the Shifter is
  assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size
8d9489b3b   Arthur HUGEAT   Add first draft f...
411
  $\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the
0642fff00   jfriedt   relecture journal
412
413
414
  input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the
  definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined
  previously. The Shifter does not introduce negative rejection as we will explain later,
8d9489b3b   Arthur HUGEAT   Add first draft f...
415
416
417
418
419
420
421
422
  so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the
  relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add
  $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes
  $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of
  a filter is the same as the input number of bits of the next filter.
  Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative
  rejection. Indeed, the results of the FIR can be right shifted without compromising
  the quality of the rejection until a threshold. Each bit of the output data
0642fff00   jfriedt   relecture journal
423
  increases the maximum rejection level by 6~dB. We add one to take the sign bit
8d9489b3b   Arthur HUGEAT   Add first draft f...
424
425
  into account. If equation~\ref{eq:maxshift} was not present, the Shifter could
  shift too much and introduce some noise in the output data. Each supplementary
0642fff00   jfriedt   relecture journal
426
427
428
  shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is:
  $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$.
  Finally, equation~\ref{eq:init} gives the number of bits of the global input.
8d9489b3b   Arthur HUGEAT   Add first draft f...
429

7c78647f1   Arthur HUGEAT   Ajout de correction.
430
  This model is non-linear since we multiply some variable with another variable
c27d27105   jfriedt   relecture
431
  and it is even non-quadratic, as the cost function $F$ does not have a known
7c78647f1   Arthur HUGEAT   Ajout de correction.
432
  linear or quadratic expression. To linearize this problem, we introduce $p$ FIR configurations.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
433
434
435
436
437
438
439
440
441
  % AH: conflit merge
  % This variable must be defined by the user, it represent the number of different
  % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  % functions from GNU Octave). To choose this value, we consider a subset of the figure~\ref{fig:rejection_pyramid}
  % to restrict the number of configurations. Indeed, it is useless to have too many coefficients or
  % too many bits, hence we take the configurations close to edge of pyramid. Thank to theses
  % configurations $C_{ij}$ and $\pi_{ij}^C$ ($1 \leq j \leq p$) become constant
  % and the function $F$ can be estimate for each configurations
  % thanks our rejection criterion. We also defined binary
c27d27105   jfriedt   relecture
442
443
444
  This variable $p$ is defined by the user, and represents the number of different
  set of coefficients generated (remember, we use \texttt{firls} and \texttt{fir1}
  functions from GNU Octave) based on the targeted filter characteristics and implementation
efde7e849   Arthur HUGEAT   Merge branch 'mas...
445
  assumptions (estimated number of bits defining the coefficients). Hence, $C_{ij}$ and
c27d27105   jfriedt   relecture
446
  $\pi_{ij}^C$ become constants and
efde7e849   Arthur HUGEAT   Merge branch 'mas...
447
  we define $1 \leq j \leq p$ so that the function $F$ can be estimated (Look Up Table)
c27d27105   jfriedt   relecture
448
  for each configurations thanks to the rejection criterion. We also define the binary
46ae3f9cf   Arthur HUGEAT   Final draft.
449
450
  variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  and 0 otherwise. The new equations are as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
451
452
453
454
455
456
457
458
459
460
461
  
  \begin{align}
  a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  \end{align}
  
  Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
462
463
464
465
466
467
468
469
470
471
  % JM: conflict merge
  % However the problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2}
  % we multiply
  % $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can
  % linearise this multiplication if we can bound $\pi_i^-$. As $\pi_i^-$ is the data size,
  % we define $0 < \pi_i^- \leq 128$ which is the maximum data size whose estimation is
  % assumed on hardware characteristics.
  % The Gurobi (\url{www.gurobi.com}) optimization software used to solve this quadratic
  % model is able to linearize the model provided as is. This model
  % has $O(np)$ variables and $O(n)$ constraints.}
4d905253d   jfriedt   relecture finale JMF
472
  The problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2}
c27d27105   jfriedt   relecture
473
474
  we multiply
  $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can
7c951bd35   Arthur HUGEAT   Typo + texte en n...
475
  linearize this multiplication. The following formula shows how to linearize
9c253d6d2   Arthur HUGEAT   Correction sur le...
476
477
478
479
480
481
482
483
484
485
486
487
  this situation in general case with $y$ a binary variable and $x$ a real variable ($0 \leq x \leq X^{max}$):
  \begin{equation*}
    m = x \times y \implies
    \left \{
    \begin{split}
      m & \geq 0 \\
      m & \leq y \times X^{max} \\
      m & \leq x \\
      m & \geq x - (1 - y) \times X^{max} \\
    \end{split}
    \right .
  \end{equation*}
efde7e849   Arthur HUGEAT   Merge branch 'mas...
488
489
  So if we bound up $\pi_i^-$ by 128~bits which is the maximum data size whose estimation is
  assumed on hardware characteristics,
9c253d6d2   Arthur HUGEAT   Correction sur le...
490
  the Gurobi (\url{www.gurobi.com}) optimization software will be able to linearize
efde7e849   Arthur HUGEAT   Merge branch 'mas...
491
  for us the quadratic problem so the model is left as is. This model
7c951bd35   Arthur HUGEAT   Typo + texte en n...
492
  has $O(np)$ variables and $O(n)$ constraints.
46ae3f9cf   Arthur HUGEAT   Final draft.
493

7c78647f1   Arthur HUGEAT   Ajout de correction.
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
  % This model is non-linear and even non-quadratic, as $F$ does not have a known
  % linear or quadratic expression. We introduce $p$ FIR configurations
  % $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants.
  % % r2.12
  % This variable must be defined by the user, it represent the number of different
  % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  % functions from GNU Octave).
  % We define binary
  % variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  % and 0 otherwise. The new equations are as follows:
  %
  % \begin{align}
  % a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  % r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  % \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  % \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  % \end{align}
  %
  % Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  % respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  % Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
  %
  % % r2.13
  % This modified model is quadratic since we multiply two variables in the
  % equation~\ref{eq:areadef2} ($\delta_{ij}$ by $\pi_{ij}^-$) but it can be linearised if necessary.
  % The Gurobi
  % (\url{www.gurobi.com}) optimization software is used to solve this quadratic
  % model, and since Gurobi is able to linearize, the model is left as is. This model
  % has $O(np)$ variables and $O(n)$ constraints.
0642fff00   jfriedt   relecture journal
523
524
  Two problems will be addressed using the workflow described in the next section: on the one
  hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary
7c951bd35   Arthur HUGEAT   Typo + texte en n...
525
  silicon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area
0642fff00   jfriedt   relecture journal
526
527
  for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the
  objective function is replaced with:
8d9489b3b   Arthur HUGEAT   Add first draft f...
528
529
530
531
  \begin{align}
  \text{Minimize } & \sum_{i=1}^n a_i  
  otag
  \end{align}
0642fff00   jfriedt   relecture journal
532
533
  We adapt our constraints of quadratic program to replace equation \ref{eq:area}
  with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal
8d9489b3b   Arthur HUGEAT   Add first draft f...
534
535
536
537
538
539
540
541
  rejection required.
  
  \begin{align}
  \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min}
  \end{align}
  
  \section{Design workflow}
  \label{sec:workflow}
0642fff00   jfriedt   relecture journal
542
  In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area}
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
543
  and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved
0642fff00   jfriedt   relecture journal
544
  in the computation of the results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=0.75cm and 2cm]
      
  ode[draw,minimum size=1cm] (Solver) { Filter Solver } ;
      
  ode (Start) [left= 3cm of Solver] { } ;
      
  ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ;
      
  ode (Input) [above= of TCL] { } ;
      
  ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ;
      
  ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ;
      
  ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ;
      
  ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ;
      
  ode (Results) [left= of Postproc] { } ;
  
      \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ;
      \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ;
      \draw[->] (Solver) edge node [below] { (1a) } (TCL) ;
      \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ;
      \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ;
      \draw[->,dashed] (Bitstream) -- (Deploy) ;
      \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ;
      \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ;
      \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ;
      \draw[->] (Postproc) -- (Results) ;
    \end{tikzpicture}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
579
580
    \caption{Design workflow from the input parameters to the results allowing for
  a fully automated optimal solution search.}
8d9489b3b   Arthur HUGEAT   Add first draft f...
581
582
583
584
585
586
    \label{fig:workflow}
  \end{figure}
  
  The filter solver is a C++ program that takes as input the maximum area
  $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$,
  the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates
0642fff00   jfriedt   relecture journal
587
  the quadratic programs and uses the Gurobi solver to estimate the optimal results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
588
589
590
591
  Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow})
  and a deploy script ((1b) on figure~\ref{fig:workflow}).
  
  The TCL script describes the whole digital processing chain from the beginning
0642fff00   jfriedt   relecture journal
592
  (the raw signal data) to the end (the filtered data) in a language compatible
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
593
  with proprietary synthesis software, namely Vivado for Xilinx and Quartus for
0642fff00   jfriedt   relecture journal
594
  Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN)
8d9489b3b   Arthur HUGEAT   Add first draft f...
595
596
597
598
599
  generator inside the FPGA and $\Pi^I$ is fixed at 16~bits.
  Then the script builds each stage of the chain with a generic FIR task that
  comes from a skeleton library. The generic FIR is highly configurable
  with the number of coefficients and the size of the coefficients. The coefficients
  themselves are not stored in the script.
0642fff00   jfriedt   relecture journal
600
601
602
603
  As the signal is processed in real-time, the output signal is stored as
  consecutive bursts of data for post-processing, mainly assessing the consistency of the
  implemented FIR cascade transfer function with the design criteria and the expected
  transfer function.
8d9489b3b   Arthur HUGEAT   Add first draft f...
604
605
606
607
  
  The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}).
  We use the 2018.2 version of Xilinx Vivado and we execute the synthesized
  bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series
0642fff00   jfriedt   relecture journal
608
609
610
611
  FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to
  provide a broadband noise source.
  The board runs the Linux kernel and surrounding environment produced from the
  Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
612
  the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and
0642fff00   jfriedt   relecture journal
613
  fetching the results is automated.
8d9489b3b   Arthur HUGEAT   Add first draft f...
614
615
616
617
618
619
620
621
622
623
  
  The deploy script uploads the bitstream to the board ((3) on
  figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers,
  configures the coefficients of the FIR filters. It then waits for the results
  and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}).
  
  Finally, an Octave post-processing script computes the final results thanks to
  the output data ((5) on figure~\ref{fig:workflow}).
  The results are normalized so that the Power Spectrum Density (PSD) starts at zero
  and the different configurations can be compared.
0642fff00   jfriedt   relecture journal
624
  \section{Maximizing the rejection at fixed silicon area}
8d9489b3b   Arthur HUGEAT   Add first draft f...
625
626
627
  \label{sec:fixed_area}
  This section presents the output of the filter solver {\em i.e.} the computed
  configurations for each stage, the computed rejection and the computed silicon area.
0642fff00   jfriedt   relecture journal
628
  Such results allow for understanding the choices made by the solver to compute its solutions.
8d9489b3b   Arthur HUGEAT   Add first draft f...
629
630
631
632
633
  
  The experimental setup is composed of three cases. The raw input is generated
  by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$.
  Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500
  arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500.
a45e29d4b   jfriedt   article et lettre
634
  The number of configurations $p$ is {\color{red}1133}, with $C_i$ ranging from 3 to 60 and $\pi^C$
8d9489b3b   Arthur HUGEAT   Add first draft f...
635
636
637
638
639
640
641
642
643
644
645
646
647
  ranging from 2 to 22. In each case, the quadratic program has been able to give a
  result up to five stages ($n = 5$) in the cascaded filter.
  
  Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500.
  Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000.
  Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500.
  
  \renewcommand{\arraystretch}{1.4}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500}
    \label{tbl:gurobi_max_500}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
648
649
      {\color{red}
      \scalefont{0.77}
8d9489b3b   Arthur HUGEAT   Add first draft f...
650
651
652
653
654
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (21, 7, 0)  & -           & -           & -           & -           & 32~dB           & 483   \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
655
656
657
658
              2 & (3, 5, 18)  & (33, 10, 0) & -           & -           & -           & 48~dB           & 492   \\
              3 & (3, 5, 18)  & (19, 7, 1)  & (15, 7, 0)  & -           & -           & 56~dB           & 493   \\
              4 & (3, 5, 18)  & (19, 7, 1)  & (15, 7, 0)  & -           & -           & 56~dB           & 493   \\
              5 & (3, 5, 18)  & (19, 7, 1)  & (15, 7, 0)  & -           & -           & 56~dB           & 493   \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
659
660
661
662
663
664
665
666
667
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000}
    \label{tbl:gurobi_max_1000}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
668
      {\color{red}\scalefont{0.77}
8d9489b3b   Arthur HUGEAT   Add first draft f...
669
670
671
672
673
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (37, 11, 0) & -           & -           & -           & -           & 56~dB           & 999  \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
674
675
676
677
              2 & (15, 8, 17) & (35, 11, 0) & -           & -           & -           & 80~dB           & 990  \\
              3 & (3, 13, 26) & (31,  9, 1) & (27, 9, 0)  & -           & -           & 92~dB           & 999  \\
              4 & (3, 5, 18)  & (19, 7, 1)  & (19, 7, 0)  & (19, 7, 0)  & -           & 98~dB           & 994  \\
              5 & (3, 5, 18)  & (19, 7, 1)  & (19, 7, 0)  & (19, 7, 0)  & -           & 98~dB           & 994  \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
678
679
680
681
682
683
684
685
686
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500}
    \label{tbl:gurobi_max_1500}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
687
      {\color{red}\scalefont{0.77}
8d9489b3b   Arthur HUGEAT   Add first draft f...
688
689
690
691
692
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (47, 15, 0) & -           & -           & -           & -           & 71~dB           & 1457  \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
693
694
695
696
              2 & (19, 6, 15) & (51, 14, 0) & -           & -           & -           & 102~dB          & 1489  \\
              3 & (15, 9, 18) & (31,  8, 0) & (27,  9, 0) & -           & -           & 116~dB          & 1488  \\
              4 & (3, 9, 22)  & (31, 9, 1)  & (27, 9, 0)  & (19, 7, 0)  & -           & 125~dB          & 1500  \\
              5 & (3, 9, 22)  & (31, 9, 1)  & (27, 9, 0)  & (19, 7, 0)  & -           & 125~dB          & 1500  \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
697
698
699
700
701
702
          \hline
        \end{tabular}
      }
  \end{table}
  
  \renewcommand{\arraystretch}{1}
b5ace9bdc   Arthur HUGEAT   Revision 2.
703
704
  % From these tables, we can first state that the more stages are used to define
  % the cascaded FIR filters, the better the rejection.
a45e29d4b   jfriedt   article et lettre
705
706
707
  {\color{red} By analyzing these tables, we can first state that we reach an optimal solution
  for each case : $n = 3$ for MAX/500, and $n = 4$ for MAX/1000 and MAX/1500. Moreover
  the cascaded filters always exhibit better performance than the monolithic solution.}
b5ace9bdc   Arthur HUGEAT   Revision 2.
708
  It was an expected result as it has
8d9489b3b   Arthur HUGEAT   Add first draft f...
709
  been previously observed that many small filters are better than
0642fff00   jfriedt   relecture journal
710
  a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions
8d9489b3b   Arthur HUGEAT   Add first draft f...
711
712
713
714
  being hardly used in practice due to the lack of tools for identifying individual filter
  coefficients in the cascaded approach.
  
  Second, the larger the silicon area, the better the rejection. This was also an
0642fff00   jfriedt   relecture journal
715
716
  expected result as more area means a filter of better quality with more coefficients
  or more bits per coefficient.
8d9489b3b   Arthur HUGEAT   Add first draft f...
717
718
719
720
721
722
723
724
  
  Then, we also observe that the first stage can have a larger shift than the other
  stages. This is explained by the fact that the solver tries to use just enough
  bits for the computed rejection after each stage. In the first stage, a
  balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift}
  gives the relation between both values.
  
  Finally, we note that the solver consumes all the given silicon area.
0642fff00   jfriedt   relecture journal
725
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
726
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
727
  data on the FPGA as measured experimentally and the dashed line are the noise levels
8d9489b3b   Arthur HUGEAT   Add first draft f...
728
729
730
731
732
  given by the quadratic solver. The configurations are those computed in the previous section.
  
  Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500.
  Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000.
  Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500.
27f5f4108   Arthur HUGEAT   Article étendu.
733

b43d41ac2   Arthur HUGEAT   Première partie d...
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_500}
  % \caption{Signal spectrum for MAX/500}
  % \label{fig:max_500_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1000}
  % \caption{Signal spectrum for MAX/1000}
  % \label{fig:max_1000_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1500}
  % \caption{Signal spectrum for MAX/1500}
  % \label{fig:max_1500_result}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
756
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
757
758
759
    \centering
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_500}
b5ace9bdc   Arthur HUGEAT   Revision 2.
760
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
761
  the MAX/500 problem of maximizing rejection for a given resource allocation (500~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
762
763
764
765
766
      \label{fig:max_500_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1000}
b5ace9bdc   Arthur HUGEAT   Revision 2.
767
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
768
  the MAX/1000 problem of maximizing rejection for a given resource allocation (1000~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
769
770
771
772
773
      \label{fig:max_1000_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1500}
b5ace9bdc   Arthur HUGEAT   Revision 2.
774
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
775
  the MAX/1500 problem of maximizing rejection for a given resource allocation (1500~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
776
777
      \label{fig:max_1500_result}
    \end{subfigure}
b5ace9bdc   Arthur HUGEAT   Revision 2.
778
    \caption{\color{red}Solutions for the MAX/500, MAX/1000 and MAX/1500 problems of maximizing
db81f7ad9   jfriedt   captions figures
779
  rejection for a given resource allocation.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
780
  The filter shape constraint (bandpass and bandstop) is shown as thick
db81f7ad9   jfriedt   captions figures
781
  horizontal lines on each chart.}
842e804be   Arthur HUGEAT   Permier pas vers ...
782
  \end{figure}
8d9489b3b   Arthur HUGEAT   Add first draft f...
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
  In all cases, we observe that the actual rejection is close to the rejection computed by the solver.
  
  We compare the actual silicon resources given by Vivado to the
  resources in arbitrary units.
  The goal is to check that our arbitrary units of silicon area models well enough
  the real resources on the FPGA. Especially we want to verify that, for a given
  number of arbitrary units, the actual silicon resources do not depend on the
  number of stages $n$. Most significantly, our approach aims
  at remaining far enough from the practical logic gate implementation used by
  various vendors to remain platform independent and be portable from one
  architecture to another.
  
  Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and
  MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000
  and 1500 arbitrary units. We have taken care to extract solely the resources used by
0642fff00   jfriedt   relecture journal
798
799
  the FIR filters and remove additional processing blocks including FIFO and Programmable
  Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication.
27f5f4108   Arthur HUGEAT   Article étendu.
800

0642fff00   jfriedt   relecture journal
801
  \begin{table}[h!tb]
7c951bd35   Arthur HUGEAT   Typo + texte en n...
802
803
    \caption{Resource occupation following synthesis of the solutions found for
  the problem of maximizing rejection for a given resource allocation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
8d9489b3b   Arthur HUGEAT   Add first draft f...
804
    \label{tbl:resources_usage}
b5ace9bdc   Arthur HUGEAT   Revision 2.
805
    \color{red}
8d9489b3b   Arthur HUGEAT   Add first draft f...
806
807
808
809
810
811
812
    \centering
        \begin{tabular}{|c|c|ccc|c|}
          \hline
          $n$ &          & MAX/500  & MAX/1000 & MAX/1500 & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 249      & 453      & 627      & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & \emph{120}               \\
              & DSP      & 21       & 37       & 47       & \emph{80}                \\ \hline
b5ace9bdc   Arthur HUGEAT   Revision 2.
813
              & LUT      & 2253     & 474      & 691      & \emph{17600}             \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
814
          2   & BRAM     & 2        & 2        & 2        & \emph{120}               \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
815
816
              & DSP      & 0        & 50       & 70       & \emph{80}                \\ \hline
              & LUT      & 1329     & 2006     & 3158     & \emph{17600}             \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
817
          3   & BRAM     & 3        & 3        & 3        & \emph{120}               \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
818
819
820
821
822
823
824
              & DSP      & 15       & 30       & 42       & \emph{80}                \\ \hline
              & LUT      & 1329     & 1600     & 2260     & \emph{17600}             \\
          4   & BRAM     & 3        & 4        & 4        & \emph{120}               \\
              & DPS      & 15       & 38       & 49       & \emph{80}                \\ \hline
              & LUT      & 1329     & 1600     & 2260     & \emph{17600}             \\
          5   & BRAM     & 3        & 4        & 4        & \emph{120}               \\
              & DPS      & 15       & 38       & 49       & \emph{80}                \\ \hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
825
        \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
826
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
827

b5ace9bdc   Arthur HUGEAT   Revision 2.
828
  {\color{red} In case $n = 2$ for MAX/500}, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that,
0642fff00   jfriedt   relecture journal
829
830
  when the filter coefficients are small enough, or when the input size is small
  enough, Vivado optimizes resource consumption by selecting multiplexers to
8d9489b3b   Arthur HUGEAT   Add first draft f...
831
832
  implement the multiplications instead of a DSP. In this case, it is quite difficult
  to compare the whole silicon budget.
0642fff00   jfriedt   relecture journal
833
  However, a rough estimation can be made with a simple equivalence: looking at
8d9489b3b   Arthur HUGEAT   Add first draft f...
834
835
  the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$,
  we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon
7c951bd35   Arthur HUGEAT   Typo + texte en n...
836
  area use. With this equivalence, our 500 arbitrary units correspond to 2500 LUTs,
0642fff00   jfriedt   relecture journal
837
  1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond
8d9489b3b   Arthur HUGEAT   Add first draft f...
838
  to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary
0642fff00   jfriedt   relecture journal
839
  unit map well to actual hardware resources. The relatively small differences can probably be explained
8d9489b3b   Arthur HUGEAT   Add first draft f...
840
  by the optimizations done by Vivado based on the detailed map of available processing resources.
0642fff00   jfriedt   relecture journal
841
842
843
844
  We now present the computation time needed to solve the quadratic problem.
  For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606
  clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve
  the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic
8d9489b3b   Arthur HUGEAT   Add first draft f...
845
  problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units.
0642fff00   jfriedt   relecture journal
846
847
  \begin{table}[h!tb]
  \caption{Time needed to solve the quadratic program with Gurobi}
8d9489b3b   Arthur HUGEAT   Add first draft f...
848
  \label{tbl:area_time}
842e804be   Arthur HUGEAT   Permier pas vers ...
849
  \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
850
  \color{red}
8d9489b3b   Arthur HUGEAT   Add first draft f...
851
852
  \begin{tabular}{|c|c|c|c|}\hline
  $n$ & Time (MAX/500)          & Time (MAX/1000)             & Time (MAX/1500)              \\\hline\hline
b5ace9bdc   Arthur HUGEAT   Revision 2.
853
854
855
856
857
  1   & 0.01~s                  & 0.02~s                      & 0.03~s                       \\
  2   & 0.1~s                   & 1~s                         & 2~s                          \\
  3   & 5~s                     & 27~s                        & 351~s ($\approx$ 6~min)      \\
  4   & 4~s                     & 141~s ($\approx$ 3~min)     & 1134~s ($\approx$ 18~min)    \\
  5   & 6~s                     & 630~s ($\approx$ 10~min)    & 49400~s ($\approx$ 13~h)     \\\hline
842e804be   Arthur HUGEAT   Permier pas vers ...
858
  \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
859
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
860

b5ace9bdc   Arthur HUGEAT   Revision 2.
861
  As expected, the computation time seems to rise exponentially with the number of stages.
8d9489b3b   Arthur HUGEAT   Add first draft f...
862
  When the area is limited, the design exploration space is more limited and the solver is able to
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
863
  find an optimal solution faster.
a45e29d4b   jfriedt   article et lettre
864
865
866
867
  {\color{red} We also notice that the solution with $n$ greater than the optimal value
  takes more time to be found than the optimal one. This can be explained since the search space is
  larger and we need more time to ensure that the previous solution (from the
  smaller value of $n$) still remains the optimal solution.}
0642fff00   jfriedt   relecture journal
868
869
  
  \subsection{Minimizing resource occupation at fixed rejection}\label{sec:fixed_rej}
8d9489b3b   Arthur HUGEAT   Add first draft f...
870

0642fff00   jfriedt   relecture journal
871
872
  This section presents the results of the complementary quadratic program aimed at
  minimizing the area occupation for a targeted rejection level.
8d9489b3b   Arthur HUGEAT   Add first draft f...
873

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
874
  The experimental setup is composed of four cases. The raw input is the same
0642fff00   jfriedt   relecture journal
875
  as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
876
877
  Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB.
  Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
878
879
880
881
882
  The number of configurations $p$ is the same as previous section.
  
  Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40.
  Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60.
  Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
883
  Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
884
885
  
  \renewcommand{\arraystretch}{1.4}
0642fff00   jfriedt   relecture journal
886
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
887
888
889
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40}
    \label{tbl:gurobi_min_40}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
890
      {\scalefont{0.77}\color{red}
8d9489b3b   Arthur HUGEAT   Add first draft f...
891
892
893
894
895
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (27, 8, 0)  & -           & -           & -           & -           & 41~dB           & 648   \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
896
897
898
899
              2 & (3, 5, 18)  & (27, 8, 0)  & -           & -           & -           & 42~dB           & 360   \\
              3 & (3, 5, 18)  & (27, 8, 0)  & -           & -           & -           & 42~dB           & 360   \\
              4 & (3, 5, 18)  & (27, 8, 0)  & -           & -           & -           & 42~dB           & 360   \\
              5 & (3, 5, 18)  & (27, 8, 0)  & -           & -           & -           & 42~dB           & 360   \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
900
901
902
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
903
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
904

0642fff00   jfriedt   relecture journal
905
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
906
907
908
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60}
    \label{tbl:gurobi_min_60}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
909
      {\scalefont{0.77}\color{red}
8d9489b3b   Arthur HUGEAT   Add first draft f...
910
911
912
913
914
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (39, 13, 0) & -           & -           & -           & -           & 60~dB           & 1131 \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
915
916
917
918
              2 & (15, 6, 16) & (23, 9, 0)  & -           & -           & -           & 60~dB           & 675  \\
              3 & (3, 5, 18)  & (15, 6, 2)  & (23, 8, 0)  & -           & -           & 60~dB           & 543  \\
              4 & (3, 5, 18)  & (15, 6, 2)  & (23, 8, 0)  & -           & -           & 60~dB           & 543  \\
              5 & (3, 5, 18)  & (15, 6, 2)  & (23, 8, 0)  & -           & -           & 60~dB           & 543  \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
919
920
921
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
922
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
923

0642fff00   jfriedt   relecture journal
924
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
925
926
927
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80}
    \label{tbl:gurobi_min_80}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
928
      {\scalefont{0.77}\color{red}
8d9489b3b   Arthur HUGEAT   Add first draft f...
929
930
931
932
933
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (55, 16, 0) & -           & -           & -           & -           & 81~dB           & 1760  \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
934
935
936
937
              2 & (15, 8, 17) & (35, 11, 0) & -           & -           & -           & 80~dB           & 990   \\
              3 & (3, 7, 20)  & (31, 9, 1)  & (19, 7, 0)  & -           & -           & 80~dB           & 783   \\
              4 & (3, 7, 20)  & (31, 9, 1)  & (19, 7, 0)  & -           & -           & 80~dB           & 783   \\
              5 & (3, 7, 20)  & (31, 9, 1)  & (19, 7, 0)  & -           & -           & 80~dB           & 783   \\
8d9489b3b   Arthur HUGEAT   Add first draft f...
938
939
940
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
941
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
942
943
944
945
946
  
  \begin{table}[h!tb]
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100}
    \label{tbl:gurobi_min_100}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
947
      {\scalefont{0.77}\color{red}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
948
949
950
951
952
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & -           & -           & -           & -           & -           & -               & -     \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
953
954
955
956
              2 & (27, 9, 15) & (35, 11, 0) & -           & -           & -           & 100~dB          & 1410  \\
              3 & (3, 5, 18)  & (35, 11, 1) & (27, 9, 0)  & -           & -           & 100~dB          & 1147  \\
              4 & (3, 5, 18)  & (15, 6, 2)  & (27, 9, 0)  & (19, 7, 0)  & -           & 100~dB          & 1067  \\
              5 & (3, 5, 18)  & (15, 6, 2)  & (27, 9, 0)  & (19, 7, 0)  & -           & 100~dB          & 1067  \\
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
957
958
959
960
          \hline
        \end{tabular}
      }
  \end{table}
8d9489b3b   Arthur HUGEAT   Add first draft f...
961
  \renewcommand{\arraystretch}{1}
27f5f4108   Arthur HUGEAT   Article étendu.
962

9b83af848   jfriedt   final corrections
963
  From these tables, we can first state that almost all configurations reach the targeted rejection
0642fff00   jfriedt   relecture journal
964
  level or even better thanks to our underestimate of the cascade rejection as the sum of the
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
965
  individual filter rejection. The only exception is for the monolithic case ($n = 1$) in
9b83af848   jfriedt   final corrections
966
  MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection.
7c951bd35   Arthur HUGEAT   Typo + texte en n...
967
  Furthermore, the area of the monolithic filter is twice as big as the two cascaded filters
a45e29d4b   jfriedt   article et lettre
968
  {\color{red}(675 and 1131 arbitrary units v.s 990 and 1760 arbitrary units for 60 and 80~dB rejection}
0642fff00   jfriedt   relecture journal
969
970
971
972
973
974
975
  respectively). More generally, the more filters are cascaded, the lower the occupied area.
  
  Like in previous section, the solver chooses always a little filter as first
  filter stage and the second one is often the biggest filter. This choice can be explained
  as in the previous section, with the solver using just enough bits not to degrade the input
  signal and in the second filter selecting a better filter to improve rejection without
  having too many bits in the output data.
b5ace9bdc   Arthur HUGEAT   Revision 2.
976
977
  {\color{red} For each case, we found an optimal solution with $n < 5$: for MIN/40 $n=2$,
  for MIN/60 and MIN/80 $n = 3$ and for MIN/100 $n = 4$. In all cases, the solutions
a45e29d4b   jfriedt   article et lettre
978
  when $n$ is greater than this optimal $n$ remain identical to the optimal one.}
b5ace9bdc   Arthur HUGEAT   Revision 2.
979
980
981
  % For the specific case of MIN/40 for $n = 5$ the solver has determined that the optimal
  % number of filters is 4 so it did not chose any configuration for the last filter. Hence this
  % solution is equivalent to the result for $n = 4$.
8d9489b3b   Arthur HUGEAT   Add first draft f...
982

0642fff00   jfriedt   relecture journal
983
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
984
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
985
  data on the FPGA as measured experimentally and the dashed line is the noise level
8d9489b3b   Arthur HUGEAT   Add first draft f...
986
987
988
989
990
  given by the quadratic solver.
  
  Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40.
  Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60.
  Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
991
  Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100.
27f5f4108   Arthur HUGEAT   Article étendu.
992

b43d41ac2   Arthur HUGEAT   Première partie d...
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_40}
  % \caption{Signal spectrum for MIN/40}
  % \label{fig:min_40}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_60}
  % \caption{Signal spectrum for MIN/60}
  % \label{fig:min_60}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_80}
  % \caption{Signal spectrum for MIN/80}
  % \label{fig:min_80}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_100}
  % \caption{Signal spectrum for MIN/100}
  % \label{fig:min_100}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
1022
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
1023
1024
    \centering
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1025
      \includegraphics[width=.91\linewidth]{images/min_40}
b5ace9bdc   Arthur HUGEAT   Revision 2.
1026
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
1027
  the MIN/40 problem of minimizing resource allocation for reaching a 40~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1028
1029
1030
1031
      \label{fig:min_40}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1032
      \includegraphics[width=.91\linewidth]{images/min_60}
b5ace9bdc   Arthur HUGEAT   Revision 2.
1033
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
1034
  the MIN/60 problem of minimizing resource allocation for reaching a 60~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1035
1036
1037
1038
      \label{fig:min_60}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1039
      \includegraphics[width=.91\linewidth]{images/min_80}
b5ace9bdc   Arthur HUGEAT   Revision 2.
1040
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
1041
  the MIN/80 problem of minimizing resource allocation for reaching a 80~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1042
1043
1044
1045
      \label{fig:min_80}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1046
      \includegraphics[width=.91\linewidth]{images/min_100}
b5ace9bdc   Arthur HUGEAT   Revision 2.
1047
      \caption{\color{red}Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
1048
  the MIN/100 problem of minimizing resource allocation for reaching a 100~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1049
1050
      \label{fig:min_100}
    \end{subfigure}
b5ace9bdc   Arthur HUGEAT   Revision 2.
1051
    \caption{\color{red}Solutions for the MIN/40, MIN/60, MIN/80 and MIN/100 problems of reaching a
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1052
1053
  given rejection while minimizing resource allocation. The filter shape constraint (bandpass and
  bandstop) is shown as thick
db81f7ad9   jfriedt   captions figures
1054
  horizontal lines on each chart.}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1055
  \end{figure}
0642fff00   jfriedt   relecture journal
1056
1057
  We observe that all rejections given by the quadratic solver are close to the experimentally
  measured rejection. All curves prove that the constraint to reach the target rejection is
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1058
  respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1059

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1060
1061
  Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60;
  MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We
8d9489b3b   Arthur HUGEAT   Add first draft f...
1062
1063
1064
  have taken care to extract solely the resources used by
  the FIR filters and remove additional processing blocks including FIFO and PL to
  PS communication.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1065
  \renewcommand{\arraystretch}{1.2}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1066
1067
1068
1069
  \begin{table}
    \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
    \label{tbl:resources_usage_comp}
    \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
1070
    {\scalefont{0.90}\color{red}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1071
        \begin{tabular}{|c|c|cccc|c|}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1072
          \hline
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1073
1074
1075
1076
          $n$ &          & MIN/40   & MIN/60   & MIN/80   & MIN/100  & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 343      & 334      & 772      & -        & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & -        & \emph{120}               \\
              & DSP      & 27       & 39       & 55       & -        & \emph{80}                \\ \hline
b5ace9bdc   Arthur HUGEAT   Revision 2.
1077
              & LUT      & 1664     & 2329     & 474      & 620      & \emph{17600}             \\
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1078
          2   & BRAM     & 2        & 2        & 2        & 2        & \emph{120}               \\
b5ace9bdc   Arthur HUGEAT   Revision 2.
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
              & DSP      & 0        & 15       & 50       & 62       & \emph{80}                \\ \hline
              & LUT      & 1664     & 3114     & 1884     & 2873     & \emph{17600}             \\
          3   & BRAM     & 2        & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 0        & 22       & 27       & \emph{80}                \\ \hline
              & LUT      & 1664     & 3114     & 2570     & 4318     & \emph{17600}             \\
          4   & BRAM     & 2        & 3        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 15       & 19       & 19       & \emph{80}                \\ \hline
              & LUT      & 1664     & 3114     & 2570     & 4318     & \emph{17600}             \\
          5   & BRAM     & 2        & 3        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 0        & 19       & 19       & \emph{80}                \\ \hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
1089
        \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1090
    }
8d9489b3b   Arthur HUGEAT   Add first draft f...
1091
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1092
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1093

0642fff00   jfriedt   relecture journal
1094
1095
1096
  If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT)
  the real resource consumption decreases as a function of the number of stages in the cascaded
  filter according
8d9489b3b   Arthur HUGEAT   Add first draft f...
1097
1098
  to the solution given by the quadratic solver. Indeed, we have always a decreasing
  consumption even if the difference between the monolithic and the two cascaded
0642fff00   jfriedt   relecture journal
1099
  filters is less than expected.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1100

0642fff00   jfriedt   relecture journal
1101
  Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve
8d9489b3b   Arthur HUGEAT   Add first draft f...
1102
  the quadratic program.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1103
  \renewcommand{\arraystretch}{1.2}
0642fff00   jfriedt   relecture journal
1104
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
1105
1106
1107
  \caption{Time to solve the quadratic program with Gurobi}
  \label{tbl:area_time_comp}
  \centering
b5ace9bdc   Arthur HUGEAT   Revision 2.
1108
  {\scalefont{0.90}\color{red}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1109
1110
  \begin{tabular}{|c|c|c|c|c|}\hline
  $n$ & Time (MIN/40)           & Time (MIN/60)               & Time (MIN/80) & Time (MIN/100)               \\\hline\hline
b5ace9bdc   Arthur HUGEAT   Revision 2.
1111
1112
1113
1114
1115
  1   & 0.04~s                  & 0.01~s                      & 0.01~s        & -                            \\
  2   & 2.7~s                   & 2.4~s                       & 2.4~s         & 0.8~s                        \\
  3   & 4.6~s                   & 7~s                         & 7~s           & 18~s                         \\
  4   & 3~s                     & 22~s                        & 70~s          & 220~s  ($\approx$ 3~min)     \\
  5   & 5~s                     & 122~s                       & 200~s         & 384~s ($\approx$ 5~min)      \\\hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
1116
  \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1117
  }
8d9489b3b   Arthur HUGEAT   Add first draft f...
1118
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1119
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1120

0642fff00   jfriedt   relecture journal
1121
  The time needed to solve this configuration is significantly shorter than the time
b5ace9bdc   Arthur HUGEAT   Revision 2.
1122
1123
  needed in the previous section. Indeed the worst time in this case is only {\color{red}5~minutes,
  compared to 13~hours} in the previous section: this problem is more easily solved than the
a45e29d4b   jfriedt   article et lettre
1124
  previous one. 
8d9489b3b   Arthur HUGEAT   Add first draft f...
1125

c27d27105   jfriedt   relecture
1126
  To conclude, we compare our monolithic filters with the FIR Compiler provided by
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1127
  Xilinx in the Vivado software suite (v.2018.2). For each experiment we use the
c27d27105   jfriedt   relecture
1128
  same coefficient set and we compare the resource consumption, having checked that
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1129
  the transfer functions are indeed the same with both implementations.
c27d27105   jfriedt   relecture
1130
  Table~\ref{tbl:xilinx_resources} exhibits the results.
4d905253d   jfriedt   relecture finale JMF
1131
  The FIR Compiler never uses BRAM while our filter implementation uses one block. This difference
c27d27105   jfriedt   relecture
1132
  is explained be our wish to have a dynamically reconfigurable FIR filter whose
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1133
  coefficients can be updated from the processing system without having to update the FPGA design.
c27d27105   jfriedt   relecture
1134
  With the FIR compiler, the coefficients are defined during the FPGA design so that
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1135
1136
  changing coefficients required generating a new design. The difference with the LUT consumption
  is also attributed to the reconfigurability logic. However the DSP consumption, the scarcest
c27d27105   jfriedt   relecture
1137
1138
  resource, is the same between the Xilinx FIR Compiler end
  our FIR block: we hence conclude that our solutions are as good as the Xilinx implementation.
56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1139

ec91065ab   Arthur HUGEAT   Ajout du tableau ...
1140
1141
1142
1143
  \renewcommand{\arraystretch}{1.2}
  \begin{table}
  \centering
  \caption{Resource consumption compared between the FIR Compiler from Xilinx and our FIR block}
56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1144
  \label{tbl:xilinx_resources}
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
  \begin{tabular}{|c|c|c|c|c|c|c|}
  \hline
  \multirow{2}{*}{} & \multicolumn{3}{c|}{Xilinx} & \multicolumn{3}{c|}{Our FIR block} \\ \cline{2-7}
                    & LUT     & BRAM     & DSP    & LUT       & BRAM       & DSP       \\ \hline
  MAX/500           & 177     & 0        & 21     & 249       & 1          & 21        \\ \hline
  MAX/1000          & 306     & 0        & 37     & 453       & 1          & 37        \\ \hline
  MAX/1500          & 418     & 0        & 47     & 627       & 1          & 47        \\ \hline
  MIN/40            & 225     & 0        & 27     & 347       & 1          & 27        \\ \hline
  MIN/60            & 322     & 0        & 39     & 334       & 1          & 39        \\ \hline
  MIN/80            & 482     & 0        & 55     & 772       & 1          & 55        \\ \hline
  \end{tabular}
  \end{table}
  \renewcommand{\arraystretch}{1}
27f5f4108   Arthur HUGEAT   Article étendu.
1158
  \section{Conclusion}
b5ace9bdc   Arthur HUGEAT   Revision 2.
1159
  We have proposed a new approach to optimize a set of signal processing blocks whose performances
0642fff00   jfriedt   relecture journal
1160
1161
1162
1163
1164
1165
1166
  and resource consumption has been tabulated, and applied this methodology to the practical
  case of implementing cascaded FIR filters inside a FPGA.
  This method aims to be hardware independent and focuses an a high-level of abstraction.
  We have modeled the FIR filter operation and the impact of data shift. Thanks to this model,
  we have created a quadratic program to select the optimal FIR taps to reach a targeted
  rejection. Individual filter taps have been identified using commonly available tools and the
  emphasis is on FIR assembly rather than individual FIR coefficient identification.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1167
1168
1169
  
  Our experimental results are very promising in providing a rational approach to selecting
  the coefficients of each FIR filter in the context of a performance target for a chain of
0642fff00   jfriedt   relecture journal
1170
1171
1172
  such filters. The FPGA design that is produced automatically by the proposed
  workflow is able to filter an input signal as expected, validating experimentally our model and our approach.
  The quadratic program can be adapted it to an other problem based on assembling skeleton blocks.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1173

a45e29d4b   jfriedt   article et lettre
1174
1175
1176
1177
  {\color{red}Considering that all area and rejection considerations could be explored within a reasonable
  computation duration, and that no improvement is observed when cascading more than four filters, we
  consider that this particular problem has been exhaustively investigated and optimal solutions found
  in all cases.} % JMF
8d9489b3b   Arthur HUGEAT   Add first draft f...
1178
  A perspective is to model and add the decimators to the processing chain to have a classical
0642fff00   jfriedt   relecture journal
1179
1180
  FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon
  area usage for subsequent stages since some hardware optimization can be applied in
8d9489b3b   Arthur HUGEAT   Add first draft f...
1181
1182
1183
1184
  this case.
  
  The software used to demonstrate the concepts developed in this paper is based on the
  CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}.
27f5f4108   Arthur HUGEAT   Article étendu.
1185
1186
1187
1188
1189
  \section*{Acknowledgement}
  
  This work is supported by the ANR Programme d'Investissement d'Avenir in
  progress at the Time and Frequency Departments of the FEMTO-ST Institute
  (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
842e804be   Arthur HUGEAT   Permier pas vers ...
1190
  The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila
27f5f4108   Arthur HUGEAT   Article étendu.
1191
1192
1193
1194
1195
1196
  for support and fruitful discussions.
  
  \bibliographystyle{IEEEtran}
  \balance
  \bibliography{references,biblio}
  \end{document}