Blame view

ifcs2018_journal.tex 64.1 KB
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
1
2
  % fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
  % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
c9c460c6b   jfriedt   menage article IFCS
3
4
  %    rejection par bit et perte si moins de bits que rejection/6
  % developper programme lineaire en incluant le decalage de bits
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
5
6
  % insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
  % implemente et on demontre que ca tourne
c9c460c6b   jfriedt   menage article IFCS
7
8
9
  %   gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ?
  % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer
  %        (zedboard ou redpit)
c9c460c6b   jfriedt   menage article IFCS
10
  % label schema : verifier que "argumenter de la cascade de FIR" est fait
32b45e8e1   Arthur HUGEAT   change type de pa...
11
  \documentclass[a4paper,journal]{IEEEtran/IEEEtran}
27f5f4108   Arthur HUGEAT   Article étendu.
12
13
14
15
16
17
18
19
  \usepackage{graphicx,color,hyperref}
  \usepackage{amsfonts}
  \usepackage{amsthm}
  \usepackage{amssymb}
  \usepackage{amsmath}
  \usepackage{algorithm2e}
  \usepackage{url,balance}
  \usepackage[normalem]{ulem}
842e804be   Arthur HUGEAT   Permier pas vers ...
20
21
22
23
  \usepackage{tikz}
  \usetikzlibrary{positioning,fit}
  \usepackage{multirow}
  \usepackage{scalefnt}
b43d41ac2   Arthur HUGEAT   Première partie d...
24
25
  \usepackage{caption}
  \usepackage{subcaption}
842e804be   Arthur HUGEAT   Permier pas vers ...
26

27f5f4108   Arthur HUGEAT   Article étendu.
27
28
29
30
31
32
33
34
35
36
37
  % correct bad hyphenation here
  \hyphenation{op-tical net-works semi-conduc-tor}
  \textheight=26cm
  \setlength{\footskip}{30pt}
  \pagenumbering{gobble}
  \begin{document}
  \title{Filter optimization for real time digital processing of radiofrequency signals: application
  to oscillator metrology}
  
  \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
  G. Goavec-M\'erou\IEEEauthorrefmark{1},
b43d41ac2   Arthur HUGEAT   Première partie d...
38
39
  P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\
  \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\
27f5f4108   Arthur HUGEAT   Article étendu.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
  Email: \{pyb2,jmfriedt\}@femto-st.fr}
  }
  \maketitle
  \thispagestyle{plain}
  \pagestyle{plain}
  
  ewtheorem{definition}{Definition}
  
  \begin{abstract}
  Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
  radiofrequency signal processing. Applied to oscillator characterization in the context
  of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
  noise rejection needs. Since real time radiofrequency processing must be performed in a
  Field Programmable Array to meet timing constraints, we investigate optimization strategies
  to design filters meeting rejection characteristics while limiting the hardware resources
0642fff00   jfriedt   relecture journal
56
57
58
59
60
  required and keeping timing constraints within the targeted measurement bandwidths. The
  presented technique is applicable to scheduling any sequence of processing blocks characterized
  by a throughput, resource occupation and performance tabulated as a function of configuration
  characateristics, as is the case for filters with their coefficients and resolution yielding
  rejection and number of multipliers.
27f5f4108   Arthur HUGEAT   Article étendu.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  \end{abstract}
  
  \begin{IEEEkeywords}
  Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
  \end{IEEEkeywords}
  
  \section{Digital signal processing of ultrastable clock signals}
  
  Analog oscillator phase noise characteristics are classically performed by downconverting
  the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
  followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
  a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
  multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
  
  \begin{figure}[h!tb]
  \begin{center}
  \includegraphics[width=.8\linewidth]{images/schema}
  \end{center}
  \caption{Fully digital oscillator phase noise characterization: the Device Under Test
  (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
  downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
  and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
  Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
  the spectral characteristics of the phase fluctuations.}
  \label{schema}
  \end{figure}
  
  As with the analog mixer,
  the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
  well as the generation of the frequency sum signal in addition to the frequency difference.
  These unwanted spectral characteristics must be rejected before decimating the data stream
  for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
  downconverter
  and the decimation processing blocks are core characteristics of an oscillator characterization
  system, and must reject out-of-band signals below the targeted phase noise -- typically in the
  sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
  use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
  datastream: optimizing the performance of the filter while reducing the needed resources is
  hence tackled in a systematic approach using optimization techniques. Most significantly, we
  tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
  tunable number of coefficients and tunable number of bits representing the coefficients and the
  data being processed.
  
  \section{Finite impulse response filter}
0642fff00   jfriedt   relecture journal
105
  We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined
27f5f4108   Arthur HUGEAT   Article étendu.
106
107
  by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
  outputs $y_k$
842e804be   Arthur HUGEAT   Permier pas vers ...
108
109
110
111
  \begin{align}
      y_n=\sum_{k=0}^N b_k x_{n-k}
      \label{eq:fir_equation}
  \end{align}
27f5f4108   Arthur HUGEAT   Article étendu.
112
113
  
  As opposed to an implementation on a general purpose processor in which word size is defined by the
0642fff00   jfriedt   relecture journal
114
  processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since
27f5f4108   Arthur HUGEAT   Article étendu.
115
116
117
118
  not only the coefficient values and number of taps must be defined, but also the number of bits
  defining the coefficients and the sample size. For this reason, and because we consider pipeline
  processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
  signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
119
  the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language
0642fff00   jfriedt   relecture journal
120
  (VHDL) level.
7c951bd35   Arthur HUGEAT   Typo + texte en n...
121
  Since latency is not an issue in a openloop phase noise characterization instrument,
90c55845a   jfriedt   relecture JMF
122
  the large
27f5f4108   Arthur HUGEAT   Article étendu.
123
  numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
7c951bd35   Arthur HUGEAT   Typo + texte en n...
124
  is not considered as an issue as would be in a closed loop system.
27f5f4108   Arthur HUGEAT   Article étendu.
125
126
127
128
129
  
  The coefficients are classically expressed as floating point values. However, this binary
  number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
  we select to quantify these floating point values into integer values. This quantization
  will result in some precision loss.
27f5f4108   Arthur HUGEAT   Article étendu.
130
  \begin{figure}[h!tb]
46ae3f9cf   Arthur HUGEAT   Final draft.
131
  \includegraphics[width=\linewidth]{images/zero_values}
27f5f4108   Arthur HUGEAT   Article étendu.
132
133
134
135
136
137
138
139
140
141
142
143
  \caption{Impact of the quantization resolution of the coefficients: the quantization is
  set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
  the 30~first and 30~last coefficients out of the initial 128~band-pass
  filter coefficients to 0 (red dots).}
  \label{float_vs_int}
  \end{figure}
  
  The tradeoff between quantization resolution and number of coefficients when considering
  integer operations is not trivial. As an illustration of the issue related to the
  relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
  a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
  quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
7c951bd35   Arthur HUGEAT   Typo + texte en n...
144
145
146
  taps become null, making the large number of coefficients irrelevant: processing
  resources
  are hence saved by shrinking the filter length. This tradeoff aimed at minimizing resources
27f5f4108   Arthur HUGEAT   Article étendu.
147
148
149
150
151
152
153
154
155
156
  to reach a given rejection level, or maximizing out of band rejection for a given computational
  resource, will drive the investigation on cascading filters designed with varying tap resolution
  and tap length, as will be shown in the next section. Indeed, our development strategy closely
  follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
  in which basic blocks are defined and characterized before being assembled \cite{hide}
  in a complete processing chain. In our case, assembling the filter blocks is a simpler block
  combination process since we assume a single value to be processed and a single value to be
  generated at each clock cycle. The FIR filters will not be considered to decimate in the
  current implementation: the decimation is assumed to be located after the FIR cascade at the
  moment.
842e804be   Arthur HUGEAT   Permier pas vers ...
157
  \section{Methodology description}
0642fff00   jfriedt   relecture journal
158

5e2bf244b   Arthur HUGEAT   Suppression d'un ...
159
160
  Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP)
  chain obtained by assembling basic processing blocks, with hardware and manufacturer independence.
0642fff00   jfriedt   relecture journal
161
  Achieving such a target requires defining an abstract model to represent some basic properties
7c951bd35   Arthur HUGEAT   Typo + texte en n...
162
  of DSP blocks such as performance (i.e. rejection or ripples in the bandpass for filters) and
0642fff00   jfriedt   relecture journal
163
164
165
  resource occupation. These abstract properties, not necessarily related to the detailed hardware
  implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum
  target, whether in terms of maximizing performance for a given arbitrary resource occupation, or
7c951bd35   Arthur HUGEAT   Typo + texte en n...
166
  minimizing resource occupation for a given performance. In our approach, the solution of the
0642fff00   jfriedt   relecture journal
167
168
169
170
171
  solver is then synthesized using the dedicated tool provided by each platform manufacturer
  to assess the validity of our abstract resource occupation indicator, and the result of running
  the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize
  that all solutions found by the solver are synthesized and executed on hardware at the end
  of the analysis.
c27d27105   jfriedt   relecture
172
  In this demonstration, we focus on only two operations: filtering and shifting the number of
0642fff00   jfriedt   relecture journal
173
  bits needed to represent the data along the processing chain.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
174
  We have chosen these basic operations because shifting and the filtering have already been studied
0642fff00   jfriedt   relecture journal
175
  in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
176
177
  assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend
  requiring pipelined processing at full bandwidth for the earliest steps, including for
0642fff00   jfriedt   relecture journal
178
179
180
181
  time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}.
  
  Addressing only two operations allows for demonstrating the methodology but should not be
  considered as a limitation of the framework which can be extended to assembling any number
7c951bd35   Arthur HUGEAT   Typo + texte en n...
182
  of skeleton blocks as long as performance and resource occupation can be determined.
90c55845a   jfriedt   relecture JMF
183
  Hence,
7c951bd35   Arthur HUGEAT   Typo + texte en n...
184
  in this paper we will apply our methodology on simple DSP chains: a white noise input signal
90c55845a   jfriedt   relecture JMF
185
  is generated using a Pseudo-Random Number (PRN) generator or by sampling a wideband (125~MS/s)
7c951bd35   Arthur HUGEAT   Typo + texte en n...
186
  14-bit Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor. Once samples have been
0642fff00   jfriedt   relecture journal
187
188
189
  digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance --
  practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction
  by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing,
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
190
  allowing to assess either filter rejection for a given resource usage, or validating the rejection
0642fff00   jfriedt   relecture journal
191
  when implementing a solution minimizing resource occupation.
842e804be   Arthur HUGEAT   Permier pas vers ...
192

7c951bd35   Arthur HUGEAT   Typo + texte en n...
193
  The first step of our approach is to model the DSP chain. Since we aim at only optimizing
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
194
195
  the filtering part of the signal processing chain, we have not included the PRN generator or the
  ADC in the model: the input data size and rate are considered fixed and defined by the hardware.
90c55845a   jfriedt   relecture JMF
196
  The filtering can be done in two ways, either by considering a single monolithic FIR filter
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
197
  requiring many coefficients to reach the targeted noise rejection ratio, or by
7c951bd35   Arthur HUGEAT   Typo + texte en n...
198
  cascading multiple FIR filters, each with fewer coefficients than found in the monolithic filter.
842e804be   Arthur HUGEAT   Permier pas vers ...
199
200
201
202
203
204
  
  After each filter we leave the possibility of shifting the filtered data to consume
  less resources. Hence in the case of cascaded filter, we define a stage as a filter
  and a shifter (the shift could be omitted if we do not need to divide the filtered data).
  
  \subsection{Model of a FIR filter}
0642fff00   jfriedt   relecture journal
205
206
207
208
  
  A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$)
  the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$
  bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as
842e804be   Arthur HUGEAT   Permier pas vers ...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage}
  shows a filtering stage.
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=2cm]
      
  ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ;
      
  ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ;
      
  ode (Start) [left of=FIR] { } ;
      
  ode (End) [right of=Shift] { } ;
  
      
  ode[draw,fit=(FIR) (Shift)] (Filter) { } ;
  
      \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ;
      \draw[->] (FIR) -- (Shift) ;
      \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ;
    \end{tikzpicture}
    \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)}
    \label{fig:fir_stage}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
234

0642fff00   jfriedt   relecture journal
235
236
237
  FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB.
  This rejection has been computed using GNU Octave software FIR coefficient design functions
  (\texttt{firls} and \texttt{fir1}).
842e804be   Arthur HUGEAT   Permier pas vers ...
238
239
240
  For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients.
  Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively,
  the coefficients are normalized by their absolute maximum before being scaled to integer coefficients.
0642fff00   jfriedt   relecture journal
241
  At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits.
842e804be   Arthur HUGEAT   Permier pas vers ...
242

0642fff00   jfriedt   relecture journal
243
244
245
  With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter
  transfer function.
  Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag},
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
246
  the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the
7c951bd35   Arthur HUGEAT   Typo + texte en n...
247
  bandpass ripples as emphasized in \cite{lim_1988,lim_1996}. Throughout this demonstration,
90c55845a   jfriedt   relecture JMF
248
249
250
  we arbitrarily set a bandpass of 40\% of the Nyquist frequency and a bandstop from 60\%
  of the Nyquist frequency to the end of the band, as would be typically selected to prevent
  aliasing before decimating the dataflow by 2. The method is however generalized to any filter
7c951bd35   Arthur HUGEAT   Typo + texte en n...
251
252
  shape as long as it is defined from the initial modeling steps: Fig. \ref{fig:rejection_pyramid}
  as described below is indeed unique for each filter shape.
842e804be   Arthur HUGEAT   Permier pas vers ...
253
254
  
  \begin{figure}
0642fff00   jfriedt   relecture journal
255
256
  \begin{center}
  \scalebox{0.8}{
842e804be   Arthur HUGEAT   Permier pas vers ...
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    \centering
    \begin{tikzpicture}[scale=0.3]
      \draw[<->] (0,15) -- (0,0) -- (21,0) ;
      \draw[thick] (0,12) -- (8,12) -- (20,0) ;
  
      \draw (0,14) node [left] { $P$ } ;
      \draw (20,0) node [below] { $f$ } ;
  
      \draw[>=latex,<->] (0,14) -- (8,14) ;
      \draw (4,14) node [above] { passband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (8,14) -- (12,14) ;
      \draw (10,14) node [above] { transition } node [below] { $20\%$ } ;
  
      \draw[>=latex,<->] (12,14) -- (20,14) ;
      \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (16,12) -- (16,8) ;
      \draw (16,10) node [right] { rejection } ;
  
      \draw[dashed] (8,-1) -- (8,14) ;
      \draw[dashed] (12,-1) -- (12,14) ;
  
      \draw[dashed] (8,12) -- (16,12) ;
      \draw[dashed] (12,8) -- (16,8) ;
  
    \end{tikzpicture}
0642fff00   jfriedt   relecture journal
284
285
  }
  \end{center}
842e804be   Arthur HUGEAT   Permier pas vers ...
286
287
288
289
  \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$:
  the passband is considered to occupy the initial 40\% of the Nyquist frequency range,
  the stopband the last 40\%, allowing 20\% transition width.}
  \label{fig:fir_mag}
27f5f4108   Arthur HUGEAT   Article étendu.
290
  \end{figure}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
291
  In the transition band, the behavior of the filter is left free, we only define the passband and the stopband characteristics.
b43d41ac2   Arthur HUGEAT   Première partie d...
292
  % r2.7
7c951bd35   Arthur HUGEAT   Typo + texte en n...
293
294
  Initial considered criteria include the mean value of the stopband rejection which yields unacceptable results since notches
  overestimate the rejection capability of the filter.
4d905253d   jfriedt   relecture finale JMF
295
  % Furthermore, the losses within
b43d41ac2   Arthur HUGEAT   Première partie d...
296
  % the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients.
4d905253d   jfriedt   relecture finale JMF
297
  Our final criterion to compute the filter rejection considers
b43d41ac2   Arthur HUGEAT   Première partie d...
298
  % r2.8 et r2.2 r2.3
7c951bd35   Arthur HUGEAT   Typo + texte en n...
299
  the minimal rejection within the stopband, to which the sum of the absolute values
c27d27105   jfriedt   relecture
300
  within the passband is subtracted to avoid filters with excessive ripples, normalized to the
7c951bd35   Arthur HUGEAT   Typo + texte en n...
301
  bin width to remain consistent with the passband criterion (dBc/Hz units in all cases). With this
959bbc540   jfriedt   re-relecture JMF
302
  criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}.
b43d41ac2   Arthur HUGEAT   Première partie d...
303
304
305
306
307
308
309
  
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/colored_mean_criterion}
  % \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters}
  % \label{fig:mean_criterion}
  % \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
310

842e804be   Arthur HUGEAT   Permier pas vers ...
311
312
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
313
  \includegraphics[width=\linewidth]{images/colored_custom_criterion}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
314
315
  \caption{Custom criterion (maximum rejection in the stopband minus the sum of the
  absolute values of the passband rejection normalized to the bandwidth)
0642fff00   jfriedt   relecture journal
316
  comparison between monolithic filter and cascaded filters}
842e804be   Arthur HUGEAT   Permier pas vers ...
317
318
  \label{fig:custom_criterion}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
319

0642fff00   jfriedt   relecture journal
320
321
322
323
  Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps
  and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the
  rejection as a function of the number of coefficients and the number of bits representing these coefficients.
  The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
324
  Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection.
0642fff00   jfriedt   relecture journal
325
326
  Conversely when setting the a given number of bits, increasing the number of coefficients will not improve
  the rejection. Hence the best coefficient set are on the vertex of the pyramid.
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
327
328
329
330
  
  \begin{figure}
  \centering
  \includegraphics[width=\linewidth]{images/rejection_pyramid}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
331
332
333
  \caption{Filter rejection as a function of number of coefficients and number of bits
  : this lookup table will be used to identify which filter parameters -- number of bits
  representing coefficients and number of coefficients -- best match the targeted transfer function.}
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
334
335
  \label{fig:rejection_pyramid}
  \end{figure}
0642fff00   jfriedt   relecture journal
336
  Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps),
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
337
  we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria.
0642fff00   jfriedt   relecture journal
338
  If the FIR filter coefficients are the same between the stages, we have:
842e804be   Arthur HUGEAT   Permier pas vers ...
339
  $$F_{total} = F_1 + F_2$$
0642fff00   jfriedt   relecture journal
340
341
342
  But selecting two different sets of coefficient will yield a more complex situation in which
  the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves
  are two different filters with maximums and notches not located at the same frequency offsets.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
343
  Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved
0642fff00   jfriedt   relecture journal
344
  with respect to a basic sum of the rejection criteria shown as a the dotted yellow line.
b43d41ac2   Arthur HUGEAT   Première partie d...
345
  % r2.9
7c951bd35   Arthur HUGEAT   Typo + texte en n...
346
347
  Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection
  criteria of each filter. However since the individual filter rejection sum underestimates the rejection capability of the cascade,
b43d41ac2   Arthur HUGEAT   Première partie d...
348
  % r2.10
7c951bd35   Arthur HUGEAT   Typo + texte en n...
349
  this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability
0642fff00   jfriedt   relecture journal
350
  of the filter cascade to meet design criteria.
842e804be   Arthur HUGEAT   Permier pas vers ...
351
352
353
  
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
354
  \includegraphics[width=\linewidth]{images/cascaded_criterion}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
355
356
  \caption{Transfer function of individual filters and after cascading the two filters,
  demonstrating that the selected criterion of maximum rejection in the bandstop (horizontal
db81f7ad9   jfriedt   captions figures
357
  lines) is met. Notice that the cascaded filter has better rejection than summing the bandstop
7c951bd35   Arthur HUGEAT   Typo + texte en n...
358
  maximum of each individual filter.
db81f7ad9   jfriedt   captions figures
359
  }
842e804be   Arthur HUGEAT   Permier pas vers ...
360
361
  \label{fig:sum_rejection}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
362

c27d27105   jfriedt   relecture
363
364
  Finally in our case, we consider that the input signal are fully known. The
  resolution of the input data stream are fixed and still the same for all experiments
7c951bd35   Arthur HUGEAT   Typo + texte en n...
365
  in this paper.
b43d41ac2   Arthur HUGEAT   Première partie d...
366

0642fff00   jfriedt   relecture journal
367
  Based on this analysis, we address the estimate of resource consumption (called
b43d41ac2   Arthur HUGEAT   Première partie d...
368
  % r2.11
7c951bd35   Arthur HUGEAT   Typo + texte en n...
369
  silicon area -- in the case of FPGAs this means processing cells) as a function of
0642fff00   jfriedt   relecture journal
370
371
372
373
374
375
  filter characteristics. As a reminder, we do not aim at matching actual hardware
  configuration but consider an arbitrary silicon area occupied by each processing function,
  and will assess after synthesis the adequation of this arbitrary unit with actual
  hardware resources provided by FPGA manufacturers. The sum of individual processing
  unit areas is constrained by a total silicon area representative of FPGA global resources.
  Formally, variable $a_i$ is the area taken by filter~$i$
46ae3f9cf   Arthur HUGEAT   Final draft.
376
377
  (in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB).
  Constant $\mathcal{A}$ is the total available area. We model our problem as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
378
379
380
381
382
383
384
385
386
387
388
  \begin{align}
  \text{Maximize } & \sum_{i=1}^n r_i  
  otag \\
  \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\
  a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\
  r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\
  \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\
  \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\
  \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\
  \pi_1^- &= \Pi^I \label{eq:init}
  \end{align}
8d9489b3b   Arthur HUGEAT   Add first draft f...
389
390
  Equation~\ref{eq:area} states that the total area taken by the filters must be
  less than the available area. Equation~\ref{eq:areadef} gives the definition of
0642fff00   jfriedt   relecture journal
391
392
  the area used by a filter, considered as the area of the FIR since the Shifter is
  assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size
8d9489b3b   Arthur HUGEAT   Add first draft f...
393
  $\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the
0642fff00   jfriedt   relecture journal
394
395
396
  input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the
  definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined
  previously. The Shifter does not introduce negative rejection as we will explain later,
8d9489b3b   Arthur HUGEAT   Add first draft f...
397
398
399
400
401
402
403
404
  so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the
  relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add
  $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes
  $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of
  a filter is the same as the input number of bits of the next filter.
  Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative
  rejection. Indeed, the results of the FIR can be right shifted without compromising
  the quality of the rejection until a threshold. Each bit of the output data
0642fff00   jfriedt   relecture journal
405
  increases the maximum rejection level by 6~dB. We add one to take the sign bit
8d9489b3b   Arthur HUGEAT   Add first draft f...
406
407
  into account. If equation~\ref{eq:maxshift} was not present, the Shifter could
  shift too much and introduce some noise in the output data. Each supplementary
0642fff00   jfriedt   relecture journal
408
409
410
  shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is:
  $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$.
  Finally, equation~\ref{eq:init} gives the number of bits of the global input.
8d9489b3b   Arthur HUGEAT   Add first draft f...
411

7c78647f1   Arthur HUGEAT   Ajout de correction.
412
  This model is non-linear since we multiply some variable with another variable
c27d27105   jfriedt   relecture
413
  and it is even non-quadratic, as the cost function $F$ does not have a known
7c78647f1   Arthur HUGEAT   Ajout de correction.
414
  linear or quadratic expression. To linearize this problem, we introduce $p$ FIR configurations.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
415
416
417
418
419
420
421
422
423
  % AH: conflit merge
  % This variable must be defined by the user, it represent the number of different
  % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  % functions from GNU Octave). To choose this value, we consider a subset of the figure~\ref{fig:rejection_pyramid}
  % to restrict the number of configurations. Indeed, it is useless to have too many coefficients or
  % too many bits, hence we take the configurations close to edge of pyramid. Thank to theses
  % configurations $C_{ij}$ and $\pi_{ij}^C$ ($1 \leq j \leq p$) become constant
  % and the function $F$ can be estimate for each configurations
  % thanks our rejection criterion. We also defined binary
c27d27105   jfriedt   relecture
424
425
426
  This variable $p$ is defined by the user, and represents the number of different
  set of coefficients generated (remember, we use \texttt{firls} and \texttt{fir1}
  functions from GNU Octave) based on the targeted filter characteristics and implementation
efde7e849   Arthur HUGEAT   Merge branch 'mas...
427
  assumptions (estimated number of bits defining the coefficients). Hence, $C_{ij}$ and
c27d27105   jfriedt   relecture
428
  $\pi_{ij}^C$ become constants and
efde7e849   Arthur HUGEAT   Merge branch 'mas...
429
  we define $1 \leq j \leq p$ so that the function $F$ can be estimated (Look Up Table)
c27d27105   jfriedt   relecture
430
  for each configurations thanks to the rejection criterion. We also define the binary
46ae3f9cf   Arthur HUGEAT   Final draft.
431
432
  variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  and 0 otherwise. The new equations are as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
433
434
435
436
437
438
439
440
441
442
443
  
  \begin{align}
  a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  \end{align}
  
  Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
444
445
446
447
448
449
450
451
452
453
  % JM: conflict merge
  % However the problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2}
  % we multiply
  % $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can
  % linearise this multiplication if we can bound $\pi_i^-$. As $\pi_i^-$ is the data size,
  % we define $0 < \pi_i^- \leq 128$ which is the maximum data size whose estimation is
  % assumed on hardware characteristics.
  % The Gurobi (\url{www.gurobi.com}) optimization software used to solve this quadratic
  % model is able to linearize the model provided as is. This model
  % has $O(np)$ variables and $O(n)$ constraints.}
4d905253d   jfriedt   relecture finale JMF
454
  The problem remains quadratic at this stage since in the constraint~\ref{eq:areadef2}
c27d27105   jfriedt   relecture
455
456
  we multiply
  $\delta_{ij}$ and $\pi_i^-$. However, since $\delta_{ij}$ is a binary variable we can
7c951bd35   Arthur HUGEAT   Typo + texte en n...
457
  linearize this multiplication. The following formula shows how to linearize
9c253d6d2   Arthur HUGEAT   Correction sur le...
458
459
460
461
462
463
464
465
466
467
468
469
  this situation in general case with $y$ a binary variable and $x$ a real variable ($0 \leq x \leq X^{max}$):
  \begin{equation*}
    m = x \times y \implies
    \left \{
    \begin{split}
      m & \geq 0 \\
      m & \leq y \times X^{max} \\
      m & \leq x \\
      m & \geq x - (1 - y) \times X^{max} \\
    \end{split}
    \right .
  \end{equation*}
efde7e849   Arthur HUGEAT   Merge branch 'mas...
470
471
  So if we bound up $\pi_i^-$ by 128~bits which is the maximum data size whose estimation is
  assumed on hardware characteristics,
9c253d6d2   Arthur HUGEAT   Correction sur le...
472
  the Gurobi (\url{www.gurobi.com}) optimization software will be able to linearize
efde7e849   Arthur HUGEAT   Merge branch 'mas...
473
  for us the quadratic problem so the model is left as is. This model
7c951bd35   Arthur HUGEAT   Typo + texte en n...
474
  has $O(np)$ variables and $O(n)$ constraints.
46ae3f9cf   Arthur HUGEAT   Final draft.
475

7c78647f1   Arthur HUGEAT   Ajout de correction.
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
  % This model is non-linear and even non-quadratic, as $F$ does not have a known
  % linear or quadratic expression. We introduce $p$ FIR configurations
  % $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants.
  % % r2.12
  % This variable must be defined by the user, it represent the number of different
  % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  % functions from GNU Octave).
  % We define binary
  % variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  % and 0 otherwise. The new equations are as follows:
  %
  % \begin{align}
  % a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  % r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  % \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  % \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  % \end{align}
  %
  % Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  % respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  % Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
  %
  % % r2.13
  % This modified model is quadratic since we multiply two variables in the
  % equation~\ref{eq:areadef2} ($\delta_{ij}$ by $\pi_{ij}^-$) but it can be linearised if necessary.
  % The Gurobi
  % (\url{www.gurobi.com}) optimization software is used to solve this quadratic
  % model, and since Gurobi is able to linearize, the model is left as is. This model
  % has $O(np)$ variables and $O(n)$ constraints.
0642fff00   jfriedt   relecture journal
505
506
  Two problems will be addressed using the workflow described in the next section: on the one
  hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary
7c951bd35   Arthur HUGEAT   Typo + texte en n...
507
  silicon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area
0642fff00   jfriedt   relecture journal
508
509
  for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the
  objective function is replaced with:
8d9489b3b   Arthur HUGEAT   Add first draft f...
510
511
512
513
  \begin{align}
  \text{Minimize } & \sum_{i=1}^n a_i  
  otag
  \end{align}
0642fff00   jfriedt   relecture journal
514
515
  We adapt our constraints of quadratic program to replace equation \ref{eq:area}
  with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal
8d9489b3b   Arthur HUGEAT   Add first draft f...
516
517
518
519
520
521
522
523
  rejection required.
  
  \begin{align}
  \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min}
  \end{align}
  
  \section{Design workflow}
  \label{sec:workflow}
0642fff00   jfriedt   relecture journal
524
  In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area}
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
525
  and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved
0642fff00   jfriedt   relecture journal
526
  in the computation of the results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=0.75cm and 2cm]
      
  ode[draw,minimum size=1cm] (Solver) { Filter Solver } ;
      
  ode (Start) [left= 3cm of Solver] { } ;
      
  ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ;
      
  ode (Input) [above= of TCL] { } ;
      
  ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ;
      
  ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ;
      
  ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ;
      
  ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ;
      
  ode (Results) [left= of Postproc] { } ;
  
      \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ;
      \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ;
      \draw[->] (Solver) edge node [below] { (1a) } (TCL) ;
      \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ;
      \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ;
      \draw[->,dashed] (Bitstream) -- (Deploy) ;
      \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ;
      \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ;
      \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ;
      \draw[->] (Postproc) -- (Results) ;
    \end{tikzpicture}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
561
562
    \caption{Design workflow from the input parameters to the results allowing for
  a fully automated optimal solution search.}
8d9489b3b   Arthur HUGEAT   Add first draft f...
563
564
565
566
567
568
    \label{fig:workflow}
  \end{figure}
  
  The filter solver is a C++ program that takes as input the maximum area
  $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$,
  the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates
0642fff00   jfriedt   relecture journal
569
  the quadratic programs and uses the Gurobi solver to estimate the optimal results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
570
571
572
573
  Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow})
  and a deploy script ((1b) on figure~\ref{fig:workflow}).
  
  The TCL script describes the whole digital processing chain from the beginning
0642fff00   jfriedt   relecture journal
574
  (the raw signal data) to the end (the filtered data) in a language compatible
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
575
  with proprietary synthesis software, namely Vivado for Xilinx and Quartus for
0642fff00   jfriedt   relecture journal
576
  Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN)
8d9489b3b   Arthur HUGEAT   Add first draft f...
577
578
579
580
581
  generator inside the FPGA and $\Pi^I$ is fixed at 16~bits.
  Then the script builds each stage of the chain with a generic FIR task that
  comes from a skeleton library. The generic FIR is highly configurable
  with the number of coefficients and the size of the coefficients. The coefficients
  themselves are not stored in the script.
0642fff00   jfriedt   relecture journal
582
583
584
585
  As the signal is processed in real-time, the output signal is stored as
  consecutive bursts of data for post-processing, mainly assessing the consistency of the
  implemented FIR cascade transfer function with the design criteria and the expected
  transfer function.
8d9489b3b   Arthur HUGEAT   Add first draft f...
586
587
588
589
  
  The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}).
  We use the 2018.2 version of Xilinx Vivado and we execute the synthesized
  bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series
0642fff00   jfriedt   relecture journal
590
591
592
593
  FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to
  provide a broadband noise source.
  The board runs the Linux kernel and surrounding environment produced from the
  Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
594
  the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and
0642fff00   jfriedt   relecture journal
595
  fetching the results is automated.
8d9489b3b   Arthur HUGEAT   Add first draft f...
596
597
598
599
600
601
602
603
604
605
  
  The deploy script uploads the bitstream to the board ((3) on
  figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers,
  configures the coefficients of the FIR filters. It then waits for the results
  and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}).
  
  Finally, an Octave post-processing script computes the final results thanks to
  the output data ((5) on figure~\ref{fig:workflow}).
  The results are normalized so that the Power Spectrum Density (PSD) starts at zero
  and the different configurations can be compared.
0642fff00   jfriedt   relecture journal
606
  \section{Maximizing the rejection at fixed silicon area}
8d9489b3b   Arthur HUGEAT   Add first draft f...
607
608
609
  \label{sec:fixed_area}
  This section presents the output of the filter solver {\em i.e.} the computed
  configurations for each stage, the computed rejection and the computed silicon area.
0642fff00   jfriedt   relecture journal
610
  Such results allow for understanding the choices made by the solver to compute its solutions.
8d9489b3b   Arthur HUGEAT   Add first draft f...
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
  
  The experimental setup is composed of three cases. The raw input is generated
  by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$.
  Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500
  arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500.
  The number of configurations $p$ is 1827, with $C_i$ ranging from 3 to 60 and $\pi^C$
  ranging from 2 to 22. In each case, the quadratic program has been able to give a
  result up to five stages ($n = 5$) in the cascaded filter.
  
  Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500.
  Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000.
  Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500.
  
  \renewcommand{\arraystretch}{1.4}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500}
    \label{tbl:gurobi_max_500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (21, 7, 0)  & -           & -           & -           & -           & 32~dB           & 483   \\
              2 & (3, 3, 15)  & (31, 9, 0)  & -           & -           & -           & 58~dB           & 460   \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (5, 3, 0)   & -           & -           & 66~dB           & 488   \\
              4 & (3, 3, 15)  & (19, 7, 0)  & (11, 5, 0)  & (3, 3, 0)   & -           & 74~dB           & 499   \\
              5 & (3, 3, 15)  & (23, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 78~dB           & 489   \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000}
    \label{tbl:gurobi_max_1000}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (37, 11, 0) & -           & -           & -           & -           & 56~dB           & 999  \\
              2 & (3, 3, 15)  & (51, 14, 0) & -           & -           & -           & 87~dB           & 975  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (19, 7, 0)  & -           & -           & 99~dB           & 1000 \\
              4 & (3, 4, 16)  & (27, 8, 0)  & (19, 7, 1)  & (11, 5, 0)  & -           & 103~dB          & 998  \\
              5 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 1)   & (3, 3, 0)   & 111~dB          & 984  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500}
    \label{tbl:gurobi_max_1500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (47, 15, 0) & -           & -           & -           & -           & 71~dB           & 1457  \\
              2 & (19, 6, 15) & (51, 14, 0) & -           & -           & -           & 103~dB          & 1489  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (35, 11, 0) & -           & -           & 122~dB          & 1492  \\
              4 & (3, 3, 15)  & (27, 8, 0)  & (19, 7, 0)  & (27, 9, 0)  & -           & 129~dB          & 1498  \\
              5 & (3, 3, 15)  & (23, 9, 2)  & (27, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & 136~dB          & 1499  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \renewcommand{\arraystretch}{1}
  
  From these tables, we can first state that the more stages are used to define
  the cascaded FIR filters, the better the rejection. It was an expected result as it has
  been previously observed that many small filters are better than
0642fff00   jfriedt   relecture journal
688
  a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions
8d9489b3b   Arthur HUGEAT   Add first draft f...
689
690
691
692
  being hardly used in practice due to the lack of tools for identifying individual filter
  coefficients in the cascaded approach.
  
  Second, the larger the silicon area, the better the rejection. This was also an
0642fff00   jfriedt   relecture journal
693
694
  expected result as more area means a filter of better quality with more coefficients
  or more bits per coefficient.
8d9489b3b   Arthur HUGEAT   Add first draft f...
695
696
697
698
699
700
701
702
  
  Then, we also observe that the first stage can have a larger shift than the other
  stages. This is explained by the fact that the solver tries to use just enough
  bits for the computed rejection after each stage. In the first stage, a
  balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift}
  gives the relation between both values.
  
  Finally, we note that the solver consumes all the given silicon area.
0642fff00   jfriedt   relecture journal
703
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
704
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
705
  data on the FPGA as measured experimentally and the dashed line are the noise levels
8d9489b3b   Arthur HUGEAT   Add first draft f...
706
707
708
709
710
  given by the quadratic solver. The configurations are those computed in the previous section.
  
  Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500.
  Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000.
  Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500.
27f5f4108   Arthur HUGEAT   Article étendu.
711

b43d41ac2   Arthur HUGEAT   Première partie d...
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_500}
  % \caption{Signal spectrum for MAX/500}
  % \label{fig:max_500_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1000}
  % \caption{Signal spectrum for MAX/1000}
  % \label{fig:max_1000_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1500}
  % \caption{Signal spectrum for MAX/1500}
  % \label{fig:max_1500_result}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
734
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
735
736
737
    \centering
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_500}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
738
      \caption{Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
739
  the MAX/500 problem of maximizing rejection for a given resource allocation (500~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
740
741
742
743
744
      \label{fig:max_500_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1000}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
745
      \caption{Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
746
  the MAX/1000 problem of maximizing rejection for a given resource allocation (1000~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
747
748
749
750
751
      \label{fig:max_1000_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1500}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
752
      \caption{Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
753
  the MAX/1500 problem of maximizing rejection for a given resource allocation (1500~arbitrary units).}
b43d41ac2   Arthur HUGEAT   Première partie d...
754
755
      \label{fig:max_1500_result}
    \end{subfigure}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
756
    \caption{Solutions for the MAX/500, MAX/1000 and MAX/1500 problems of maximizing
db81f7ad9   jfriedt   captions figures
757
  rejection for a given resource allocation.
efde7e849   Arthur HUGEAT   Merge branch 'mas...
758
  The filter shape constraint (bandpass and bandstop) is shown as thick
db81f7ad9   jfriedt   captions figures
759
  horizontal lines on each chart.}
842e804be   Arthur HUGEAT   Permier pas vers ...
760
  \end{figure}
8d9489b3b   Arthur HUGEAT   Add first draft f...
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
  In all cases, we observe that the actual rejection is close to the rejection computed by the solver.
  
  We compare the actual silicon resources given by Vivado to the
  resources in arbitrary units.
  The goal is to check that our arbitrary units of silicon area models well enough
  the real resources on the FPGA. Especially we want to verify that, for a given
  number of arbitrary units, the actual silicon resources do not depend on the
  number of stages $n$. Most significantly, our approach aims
  at remaining far enough from the practical logic gate implementation used by
  various vendors to remain platform independent and be portable from one
  architecture to another.
  
  Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and
  MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000
  and 1500 arbitrary units. We have taken care to extract solely the resources used by
0642fff00   jfriedt   relecture journal
776
777
  the FIR filters and remove additional processing blocks including FIFO and Programmable
  Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication.
27f5f4108   Arthur HUGEAT   Article étendu.
778

0642fff00   jfriedt   relecture journal
779
  \begin{table}[h!tb]
7c951bd35   Arthur HUGEAT   Typo + texte en n...
780
781
    \caption{Resource occupation following synthesis of the solutions found for
  the problem of maximizing rejection for a given resource allocation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
8d9489b3b   Arthur HUGEAT   Add first draft f...
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
    \label{tbl:resources_usage}
    \centering
        \begin{tabular}{|c|c|ccc|c|}
          \hline
          $n$ &          & MAX/500  & MAX/1000 & MAX/1500 & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 249      & 453      & 627      & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & \emph{120}               \\
              & DSP      & 21       & 37       & 47       & \emph{80}                \\ \hline
              & LUT      & 2374     & 5494     & 691      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 70       & \emph{80}                \\ \hline
              & LUT      & 2443     & 3304     & 3521     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 19       & 35       & \emph{80}                \\ \hline
              & LUT      & 2634     & 3753     & 2557     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 19       & 46       & \emph{80}                \\ \hline
              & LUT      & 2423     & 3047     & 2847     & \emph{17600}             \\
          5   & BRAM     & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & 0        & 22       & 46       & \emph{80}                \\ \hline
        \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
803
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
804

8d9489b3b   Arthur HUGEAT   Add first draft f...
805
  In some cases, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that,
0642fff00   jfriedt   relecture journal
806
807
  when the filter coefficients are small enough, or when the input size is small
  enough, Vivado optimizes resource consumption by selecting multiplexers to
8d9489b3b   Arthur HUGEAT   Add first draft f...
808
809
  implement the multiplications instead of a DSP. In this case, it is quite difficult
  to compare the whole silicon budget.
0642fff00   jfriedt   relecture journal
810
  However, a rough estimation can be made with a simple equivalence: looking at
8d9489b3b   Arthur HUGEAT   Add first draft f...
811
812
  the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$,
  we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon
7c951bd35   Arthur HUGEAT   Typo + texte en n...
813
  area use. With this equivalence, our 500 arbitrary units correspond to 2500 LUTs,
0642fff00   jfriedt   relecture journal
814
  1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond
8d9489b3b   Arthur HUGEAT   Add first draft f...
815
  to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary
0642fff00   jfriedt   relecture journal
816
  unit map well to actual hardware resources. The relatively small differences can probably be explained
8d9489b3b   Arthur HUGEAT   Add first draft f...
817
  by the optimizations done by Vivado based on the detailed map of available processing resources.
0642fff00   jfriedt   relecture journal
818
819
820
821
  We now present the computation time needed to solve the quadratic problem.
  For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606
  clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve
  the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic
8d9489b3b   Arthur HUGEAT   Add first draft f...
822
  problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units.
0642fff00   jfriedt   relecture journal
823
824
  \begin{table}[h!tb]
  \caption{Time needed to solve the quadratic program with Gurobi}
8d9489b3b   Arthur HUGEAT   Add first draft f...
825
  \label{tbl:area_time}
842e804be   Arthur HUGEAT   Permier pas vers ...
826
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
827
828
829
830
831
832
833
  \begin{tabular}{|c|c|c|c|}\hline
  $n$ & Time (MAX/500)          & Time (MAX/1000)             & Time (MAX/1500)              \\\hline\hline
  1   & 0.1~s                   & 0.1~s                       & 0.3~s                        \\
  2   & 1.1~s                   & 2.2~s                       & 12~s                         \\
  3   & 17~s                    & 137~s  ($\approx$ 2~min)    & 275~s ($\approx$ 4~min)      \\
  4   & 52~s                    & 5448~s ($\approx$ 90~min)   & 5505~s ($\approx$ 17~h)      \\
  5   & 286~s ($\approx$ 4~min) & 4119~s ($\approx$ 68~min)   & 235479~s ($\approx$ 3~days)  \\\hline
842e804be   Arthur HUGEAT   Permier pas vers ...
834
  \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
835
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
836

8d9489b3b   Arthur HUGEAT   Add first draft f...
837
838
  As expected, the computation time seems to rise exponentially with the number of stages. % TODO: exponentiel ?
  When the area is limited, the design exploration space is more limited and the solver is able to
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
839
  find an optimal solution faster.
0642fff00   jfriedt   relecture journal
840
841
  
  \subsection{Minimizing resource occupation at fixed rejection}\label{sec:fixed_rej}
8d9489b3b   Arthur HUGEAT   Add first draft f...
842

0642fff00   jfriedt   relecture journal
843
844
  This section presents the results of the complementary quadratic program aimed at
  minimizing the area occupation for a targeted rejection level.
8d9489b3b   Arthur HUGEAT   Add first draft f...
845

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
846
  The experimental setup is composed of four cases. The raw input is the same
0642fff00   jfriedt   relecture journal
847
  as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
848
849
  Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB.
  Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
850
851
852
853
854
  The number of configurations $p$ is the same as previous section.
  
  Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40.
  Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60.
  Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
855
  Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
856
857
  
  \renewcommand{\arraystretch}{1.4}
0642fff00   jfriedt   relecture journal
858
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40}
    \label{tbl:gurobi_min_40}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (27, 8, 0)  & -           & -           & -           & -           & 41~dB           & 648   \\
              2 & (3, 2, 14)  & (19, 7, 0)  & -           & -           & -           & 40~dB           & 263   \\
              3 & (3, 3, 15)  & (11, 5, 0)  & (3, 3, 0)   & -           & -           & 41~dB           & 192   \\
              4 & (3, 3, 15)  & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & -           & 42~dB           & 147   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
874
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
875

0642fff00   jfriedt   relecture journal
876
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60}
    \label{tbl:gurobi_min_60}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (39, 13, 0) & -           & -           & -           & -           & 60~dB           & 1131 \\
              2 & (3, 3, 15)  & (35, 10, 0) & -           & -           & -           & 60~dB           & 547  \\
              3 & (3, 3, 15)  & (27, 8, 0)  & (3, 3, 0)   & -           & -           & 62~dB           & 426  \\
              4 & (3, 2, 14)  & (11, 5, 1)  & (11, 5, 0)  & (3, 3, 0)   & -           & 60~dB           & 344  \\
              5 & (3, 2, 14)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & 60~dB           & 279  \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
893
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
894

0642fff00   jfriedt   relecture journal
895
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80}
    \label{tbl:gurobi_min_80}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (55, 16, 0) & -           & -           & -           & -           & 81~dB           & 1760  \\
              2 & (3, 3, 15)  & (47, 14, 0) & -           & -           & -           & 80~dB           & 903   \\
              3 & (3, 3, 15)  & (23, 9, 0)  & (19, 7, 0)  & -           & -           & 80~dB           & 698   \\
              4 & (3, 3, 15)  & (27, 9, 0)  & (7, 7, 4)   & (3, 3, 0)   & -           & 80~dB           & 605   \\
              5 & (3, 2, 14)  & (27, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 81~dB           & 534   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
912
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
  
  \begin{table}[h!tb]
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100}
    \label{tbl:gurobi_min_100}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & -           & -           & -           & -           & -           & -               & -     \\
              2 & (15, 7, 17) & (51, 14, 0) & -           & -           & -           & 100~dB          & 1365  \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (27, 9, 0)  & -           & -           & 100~dB          & 1002  \\
              4 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & -           & 101~dB          & 909   \\
              5 & (3, 3, 15)  & (23, 8, 1)  & (19, 7, 0)  & (3, 3, 0)   & (3, 3, 0)   & 101~dB          & 810   \\
          \hline
        \end{tabular}
      }
  \end{table}
8d9489b3b   Arthur HUGEAT   Add first draft f...
932
  \renewcommand{\arraystretch}{1}
27f5f4108   Arthur HUGEAT   Article étendu.
933

9b83af848   jfriedt   final corrections
934
  From these tables, we can first state that almost all configurations reach the targeted rejection
0642fff00   jfriedt   relecture journal
935
  level or even better thanks to our underestimate of the cascade rejection as the sum of the
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
936
  individual filter rejection. The only exception is for the monolithic case ($n = 1$) in
9b83af848   jfriedt   final corrections
937
  MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection.
7c951bd35   Arthur HUGEAT   Typo + texte en n...
938
  Furthermore, the area of the monolithic filter is twice as big as the two cascaded filters
0642fff00   jfriedt   relecture journal
939
940
941
942
943
944
945
946
947
948
949
  (1131 and 1760  arbitrary units v.s 547 and 903 arbitrary units for 60 and 80~dB rejection
  respectively). More generally, the more filters are cascaded, the lower the occupied area.
  
  Like in previous section, the solver chooses always a little filter as first
  filter stage and the second one is often the biggest filter. This choice can be explained
  as in the previous section, with the solver using just enough bits not to degrade the input
  signal and in the second filter selecting a better filter to improve rejection without
  having too many bits in the output data.
  
  For the specific case of MIN/40 for $n = 5$ the solver has determined that the optimal
  number of filters is 4 so it did not chose any configuration for the last filter. Hence this
8d9489b3b   Arthur HUGEAT   Add first draft f...
950
  solution is equivalent to the result for $n = 4$.
0642fff00   jfriedt   relecture journal
951
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
952
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
953
  data on the FPGA as measured experimentally and the dashed line is the noise level
8d9489b3b   Arthur HUGEAT   Add first draft f...
954
955
956
957
958
  given by the quadratic solver.
  
  Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40.
  Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60.
  Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
959
  Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100.
27f5f4108   Arthur HUGEAT   Article étendu.
960

b43d41ac2   Arthur HUGEAT   Première partie d...
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_40}
  % \caption{Signal spectrum for MIN/40}
  % \label{fig:min_40}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_60}
  % \caption{Signal spectrum for MIN/60}
  % \label{fig:min_60}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_80}
  % \caption{Signal spectrum for MIN/80}
  % \label{fig:min_80}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_100}
  % \caption{Signal spectrum for MIN/100}
  % \label{fig:min_100}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
990
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
991
992
    \centering
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
993
      \includegraphics[width=.91\linewidth]{images/min_40}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
994
      \caption{Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
995
  the MIN/40 problem of minimizing resource allocation for reaching a 40~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
996
997
998
999
      \label{fig:min_40}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1000
      \includegraphics[width=.91\linewidth]{images/min_60}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
1001
      \caption{Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
1002
  the MIN/60 problem of minimizing resource allocation for reaching a 60~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1003
1004
1005
1006
      \label{fig:min_60}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1007
      \includegraphics[width=.91\linewidth]{images/min_80}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
1008
      \caption{Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
1009
  the MIN/80 problem of minimizing resource allocation for reaching a 80~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1010
1011
1012
1013
      \label{fig:min_80}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
db81f7ad9   jfriedt   captions figures
1014
      \includegraphics[width=.91\linewidth]{images/min_100}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
1015
      \caption{Filter transfer functions for varying number of cascaded filters solving
db81f7ad9   jfriedt   captions figures
1016
  the MIN/100 problem of minimizing resource allocation for reaching a 100~dB rejection.}
b43d41ac2   Arthur HUGEAT   Première partie d...
1017
1018
      \label{fig:min_100}
    \end{subfigure}
7c951bd35   Arthur HUGEAT   Typo + texte en n...
1019
    \caption{Solutions for the MIN/40, MIN/60, MIN/80 and MIN/100 problems of reaching a
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1020
1021
  given rejection while minimizing resource allocation. The filter shape constraint (bandpass and
  bandstop) is shown as thick
db81f7ad9   jfriedt   captions figures
1022
  horizontal lines on each chart.}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1023
  \end{figure}
0642fff00   jfriedt   relecture journal
1024
1025
  We observe that all rejections given by the quadratic solver are close to the experimentally
  measured rejection. All curves prove that the constraint to reach the target rejection is
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1026
  respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1027

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1028
1029
  Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60;
  MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We
8d9489b3b   Arthur HUGEAT   Add first draft f...
1030
1031
1032
  have taken care to extract solely the resources used by
  the FIR filters and remove additional processing blocks including FIFO and PL to
  PS communication.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1033
  \renewcommand{\arraystretch}{1.2}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1034
1035
1036
1037
  \begin{table}
    \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
    \label{tbl:resources_usage_comp}
    \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1038
1039
    {\scalefont{0.90}
        \begin{tabular}{|c|c|cccc|c|}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1040
          \hline
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
          $n$ &          & MIN/40   & MIN/60   & MIN/80   & MIN/100  & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 343      & 334      & 772      & -        & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & -        & \emph{120}               \\
              & DSP      & 27       & 39       & 55       & -        & \emph{80}                \\ \hline
              & LUT      & 1252     & 2862     & 5099     & 640      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 0        & 66       & \emph{80}                \\ \hline
              & LUT      & 891      & 2148     & 2023     & 2448     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 0        & 19       & 27       & \emph{80}                \\ \hline
              & LUT      & 662      & 1729     & 2451     & 2893     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 0        & 7        & 19       & \emph{80}                \\ \hline
              & LUT      & -        & 1259     & 2602     & 2505     & \emph{17600}             \\
          5   & BRAM     & -        & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & -        & 0        & 0        & 19       & \emph{80}                \\ \hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
1057
        \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1058
    }
8d9489b3b   Arthur HUGEAT   Add first draft f...
1059
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1060
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1061

0642fff00   jfriedt   relecture journal
1062
1063
1064
  If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT)
  the real resource consumption decreases as a function of the number of stages in the cascaded
  filter according
8d9489b3b   Arthur HUGEAT   Add first draft f...
1065
1066
  to the solution given by the quadratic solver. Indeed, we have always a decreasing
  consumption even if the difference between the monolithic and the two cascaded
0642fff00   jfriedt   relecture journal
1067
  filters is less than expected.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1068

0642fff00   jfriedt   relecture journal
1069
  Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve
8d9489b3b   Arthur HUGEAT   Add first draft f...
1070
  the quadratic program.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1071
  \renewcommand{\arraystretch}{1.2}
0642fff00   jfriedt   relecture journal
1072
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
1073
1074
1075
  \caption{Time to solve the quadratic program with Gurobi}
  \label{tbl:area_time_comp}
  \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1076
1077
1078
1079
1080
1081
1082
1083
  {\scalefont{0.90}
  \begin{tabular}{|c|c|c|c|c|}\hline
  $n$ & Time (MIN/40)           & Time (MIN/60)               & Time (MIN/80) & Time (MIN/100)               \\\hline\hline
  1   & 0.07~s                  & 0.02~s                      & 0.01~s        & -                            \\
  2   & 7.8~s                   & 16~s                        & 14~s          & 1.8~s                        \\
  3   & 4.7~s                   & 14~s                        & 28~s          & 39~s                         \\
  4   & 39~s                    & 20~s                        & 193~s         & 522~s  ($\approx$ 9~min)     \\
  5   & -                       & 12~s                        & 170~s         & 1048~s ($\approx$ 17~min)    \\\hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
1084
  \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1085
  }
8d9489b3b   Arthur HUGEAT   Add first draft f...
1086
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1087
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1088

0642fff00   jfriedt   relecture journal
1089
  The time needed to solve this configuration is significantly shorter than the time
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1090
  needed in the previous section. Indeed the worst time in this case is only 17~minutes,
0642fff00   jfriedt   relecture journal
1091
1092
  compared to 3~days in the previous section: this problem is more easily solved than the
  previous one.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1093

c27d27105   jfriedt   relecture
1094
  To conclude, we compare our monolithic filters with the FIR Compiler provided by
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1095
  Xilinx in the Vivado software suite (v.2018.2). For each experiment we use the
c27d27105   jfriedt   relecture
1096
  same coefficient set and we compare the resource consumption, having checked that
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1097
  the transfer functions are indeed the same with both implementations.
c27d27105   jfriedt   relecture
1098
  Table~\ref{tbl:xilinx_resources} exhibits the results.
4d905253d   jfriedt   relecture finale JMF
1099
  The FIR Compiler never uses BRAM while our filter implementation uses one block. This difference
c27d27105   jfriedt   relecture
1100
  is explained be our wish to have a dynamically reconfigurable FIR filter whose
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1101
  coefficients can be updated from the processing system without having to update the FPGA design.
c27d27105   jfriedt   relecture
1102
  With the FIR compiler, the coefficients are defined during the FPGA design so that
efde7e849   Arthur HUGEAT   Merge branch 'mas...
1103
1104
  changing coefficients required generating a new design. The difference with the LUT consumption
  is also attributed to the reconfigurability logic. However the DSP consumption, the scarcest
c27d27105   jfriedt   relecture
1105
1106
  resource, is the same between the Xilinx FIR Compiler end
  our FIR block: we hence conclude that our solutions are as good as the Xilinx implementation.
56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1107

ec91065ab   Arthur HUGEAT   Ajout du tableau ...
1108
1109
1110
1111
  \renewcommand{\arraystretch}{1.2}
  \begin{table}
  \centering
  \caption{Resource consumption compared between the FIR Compiler from Xilinx and our FIR block}
56f7c40c9   Arthur HUGEAT   Ajout de correcti...
1112
  \label{tbl:xilinx_resources}
ec91065ab   Arthur HUGEAT   Ajout du tableau ...
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
  \begin{tabular}{|c|c|c|c|c|c|c|}
  \hline
  \multirow{2}{*}{} & \multicolumn{3}{c|}{Xilinx} & \multicolumn{3}{c|}{Our FIR block} \\ \cline{2-7}
                    & LUT     & BRAM     & DSP    & LUT       & BRAM       & DSP       \\ \hline
  MAX/500           & 177     & 0        & 21     & 249       & 1          & 21        \\ \hline
  MAX/1000          & 306     & 0        & 37     & 453       & 1          & 37        \\ \hline
  MAX/1500          & 418     & 0        & 47     & 627       & 1          & 47        \\ \hline
  MIN/40            & 225     & 0        & 27     & 347       & 1          & 27        \\ \hline
  MIN/60            & 322     & 0        & 39     & 334       & 1          & 39        \\ \hline
  MIN/80            & 482     & 0        & 55     & 772       & 1          & 55        \\ \hline
  \end{tabular}
  \end{table}
  \renewcommand{\arraystretch}{1}
27f5f4108   Arthur HUGEAT   Article étendu.
1126
  \section{Conclusion}
0642fff00   jfriedt   relecture journal
1127
1128
1129
1130
1131
1132
1133
1134
  We have proposed a new approach to schedule a set of signal processing blocks whose performances
  and resource consumption has been tabulated, and applied this methodology to the practical
  case of implementing cascaded FIR filters inside a FPGA.
  This method aims to be hardware independent and focuses an a high-level of abstraction.
  We have modeled the FIR filter operation and the impact of data shift. Thanks to this model,
  we have created a quadratic program to select the optimal FIR taps to reach a targeted
  rejection. Individual filter taps have been identified using commonly available tools and the
  emphasis is on FIR assembly rather than individual FIR coefficient identification.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1135
1136
1137
  
  Our experimental results are very promising in providing a rational approach to selecting
  the coefficients of each FIR filter in the context of a performance target for a chain of
0642fff00   jfriedt   relecture journal
1138
1139
1140
  such filters. The FPGA design that is produced automatically by the proposed
  workflow is able to filter an input signal as expected, validating experimentally our model and our approach.
  The quadratic program can be adapted it to an other problem based on assembling skeleton blocks.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1141
1142
  
  A perspective is to model and add the decimators to the processing chain to have a classical
0642fff00   jfriedt   relecture journal
1143
1144
  FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon
  area usage for subsequent stages since some hardware optimization can be applied in
8d9489b3b   Arthur HUGEAT   Add first draft f...
1145
1146
1147
1148
  this case.
  
  The software used to demonstrate the concepts developed in this paper is based on the
  CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}.
27f5f4108   Arthur HUGEAT   Article étendu.
1149
1150
1151
1152
1153
  \section*{Acknowledgement}
  
  This work is supported by the ANR Programme d'Investissement d'Avenir in
  progress at the Time and Frequency Departments of the FEMTO-ST Institute
  (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
842e804be   Arthur HUGEAT   Permier pas vers ...
1154
  The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila
27f5f4108   Arthur HUGEAT   Article étendu.
1155
1156
1157
1158
1159
1160
  for support and fruitful discussions.
  
  \bibliographystyle{IEEEtran}
  \balance
  \bibliography{references,biblio}
  \end{document}