Blame view
ifcs2018_journal.tex
60.9 KB
a5c9e7b94 Rajout de la pyra... |
1 2 |
% fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de |
c9c460c6b menage article IFCS |
3 4 |
% rejection par bit et perte si moins de bits que rejection/6 % developper programme lineaire en incluant le decalage de bits |
a5c9e7b94 Rajout de la pyra... |
5 6 |
% insister que avant on etait synthetisable mais pas implementable, alors que maintenant on % implemente et on demontre que ca tourne |
c9c460c6b menage article IFCS |
7 8 9 |
% gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ? % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer % (zedboard ou redpit) |
c9c460c6b menage article IFCS |
10 |
% label schema : verifier que "argumenter de la cascade de FIR" est fait |
32b45e8e1 change type de pa... |
11 |
\documentclass[a4paper,journal]{IEEEtran/IEEEtran} |
27f5f4108 Article étendu. |
12 13 14 15 16 17 18 19 |
\usepackage{graphicx,color,hyperref} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amssymb} \usepackage{amsmath} \usepackage{algorithm2e} \usepackage{url,balance} \usepackage[normalem]{ulem} |
842e804be Permier pas vers ... |
20 21 22 23 |
\usepackage{tikz} \usetikzlibrary{positioning,fit} \usepackage{multirow} \usepackage{scalefnt} |
b43d41ac2 Première partie d... |
24 25 |
\usepackage{caption} \usepackage{subcaption} |
842e804be Permier pas vers ... |
26 |
|
27f5f4108 Article étendu. |
27 28 29 30 31 32 33 34 35 36 37 |
% correct bad hyphenation here \hyphenation{op-tical net-works semi-conduc-tor} \textheight=26cm \setlength{\footskip}{30pt} \pagenumbering{gobble} \begin{document} \title{Filter optimization for real time digital processing of radiofrequency signals: application to oscillator metrology} \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, G. Goavec-M\'erou\IEEEauthorrefmark{1}, |
b43d41ac2 Première partie d... |
38 39 |
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\ \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\ |
27f5f4108 Article étendu. |
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ Email: \{pyb2,jmfriedt\}@femto-st.fr} } \maketitle \thispagestyle{plain} \pagestyle{plain} ewtheorem{definition}{Definition} \begin{abstract} Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to radiofrequency signal processing. Applied to oscillator characterization in the context of ultrastable clocks, stringent filtering requirements are defined by spurious signal or noise rejection needs. Since real time radiofrequency processing must be performed in a Field Programmable Array to meet timing constraints, we investigate optimization strategies to design filters meeting rejection characteristics while limiting the hardware resources |
0642fff00 relecture journal |
56 57 58 59 60 |
required and keeping timing constraints within the targeted measurement bandwidths. The presented technique is applicable to scheduling any sequence of processing blocks characterized by a throughput, resource occupation and performance tabulated as a function of configuration characateristics, as is the case for filters with their coefficients and resolution yielding rejection and number of multipliers. |
27f5f4108 Article étendu. |
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
\end{abstract} \begin{IEEEkeywords} Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter \end{IEEEkeywords} \section{Digital signal processing of ultrastable clock signals} Analog oscillator phase noise characteristics are classically performed by downconverting the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. \begin{figure}[h!tb] \begin{center} \includegraphics[width=.8\linewidth]{images/schema} \end{center} \caption{Fully digital oscillator phase noise characterization: the Device Under Test (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays the spectral characteristics of the phase fluctuations.} \label{schema} \end{figure} As with the analog mixer, the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as well as the generation of the frequency sum signal in addition to the frequency difference. These unwanted spectral characteristics must be rejected before decimating the data stream for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the downconverter and the decimation processing blocks are core characteristics of an oscillator characterization system, and must reject out-of-band signals below the targeted phase noise -- typically in the sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency datastream: optimizing the performance of the filter while reducing the needed resources is hence tackled in a systematic approach using optimization techniques. Most significantly, we tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with tunable number of coefficients and tunable number of bits representing the coefficients and the data being processed. \section{Finite impulse response filter} |
0642fff00 relecture journal |
105 |
We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined |
27f5f4108 Article étendu. |
106 107 |
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the outputs $y_k$ |
842e804be Permier pas vers ... |
108 109 110 111 |
\begin{align} y_n=\sum_{k=0}^N b_k x_{n-k} \label{eq:fir_equation} \end{align} |
27f5f4108 Article étendu. |
112 113 |
As opposed to an implementation on a general purpose processor in which word size is defined by the |
0642fff00 relecture journal |
114 |
processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since |
27f5f4108 Article étendu. |
115 116 117 118 |
not only the coefficient values and number of taps must be defined, but also the number of bits defining the coefficients and the sample size. For this reason, and because we consider pipeline processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but |
5e2bf244b Suppression d'un ... |
119 |
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language |
0642fff00 relecture journal |
120 |
(VHDL) level. |
ec91065ab Ajout du tableau ... |
121 |
{\color{red}Since latency is not an issue in a openloop phase noise characterization instrument, |
90c55845a relecture JMF |
122 |
the large |
27f5f4108 Article étendu. |
123 |
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, |
90c55845a relecture JMF |
124 |
is not considered as an issue as would be in a closed loop system.} % r2.4 |
27f5f4108 Article étendu. |
125 126 127 128 129 |
The coefficients are classically expressed as floating point values. However, this binary number representation is not efficient for fast arithmetic computation by an FPGA. Instead, we select to quantify these floating point values into integer values. This quantization will result in some precision loss. |
27f5f4108 Article étendu. |
130 |
\begin{figure}[h!tb] |
46ae3f9cf Final draft. |
131 |
\includegraphics[width=\linewidth]{images/zero_values} |
27f5f4108 Article étendu. |
132 133 134 135 136 137 138 139 140 141 142 143 |
\caption{Impact of the quantization resolution of the coefficients: the quantization is set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting the 30~first and 30~last coefficients out of the initial 128~band-pass filter coefficients to 0 (red dots).} \label{float_vs_int} \end{figure} The tradeoff between quantization resolution and number of coefficients when considering integer operations is not trivial. As an illustration of the issue related to the relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the |
ec91065ab Ajout du tableau ... |
144 |
taps become null, {\color{red}making the large number of coefficients irrelevant: processing |
90c55845a relecture JMF |
145 146 |
resources % r1.1 are hence saved by shrinking the filter length.} This tradeoff aimed at minimizing resources |
27f5f4108 Article étendu. |
147 148 149 150 151 152 153 154 155 156 |
to reach a given rejection level, or maximizing out of band rejection for a given computational resource, will drive the investigation on cascading filters designed with varying tap resolution and tap length, as will be shown in the next section. Indeed, our development strategy closely follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} in which basic blocks are defined and characterized before being assembled \cite{hide} in a complete processing chain. In our case, assembling the filter blocks is a simpler block combination process since we assume a single value to be processed and a single value to be generated at each clock cycle. The FIR filters will not be considered to decimate in the current implementation: the decimation is assumed to be located after the FIR cascade at the moment. |
842e804be Permier pas vers ... |
157 |
\section{Methodology description} |
0642fff00 relecture journal |
158 |
|
5e2bf244b Suppression d'un ... |
159 160 |
Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP) chain obtained by assembling basic processing blocks, with hardware and manufacturer independence. |
0642fff00 relecture journal |
161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
Achieving such a target requires defining an abstract model to represent some basic properties of DSP blocks such as perfomance (i.e. rejection or ripples in the bandpass for filters) and resource occupation. These abstract properties, not necessarily related to the detailed hardware implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum target, whether in terms of maximizing performance for a given arbitrary resource occupation, or minimizing resource occupation for a given perfomance. In our approach, the solution of the solver is then synthesized using the dedicated tool provided by each platform manufacturer to assess the validity of our abstract resource occupation indicator, and the result of running the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize that all solutions found by the solver are synthesized and executed on hardware at the end of the analysis. In this demonstration , we focus on only two operations: filtering and shifting the number of bits needed to represent the data along the processing chain. |
5e2bf244b Suppression d'un ... |
175 |
We have chosen these basic operations because shifting and the filtering have already been studied |
0642fff00 relecture journal |
176 |
in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for |
5e2bf244b Suppression d'un ... |
177 178 |
assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend requiring pipelined processing at full bandwidth for the earliest steps, including for |
0642fff00 relecture journal |
179 180 181 182 |
time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}. Addressing only two operations allows for demonstrating the methodology but should not be considered as a limitation of the framework which can be extended to assembling any number |
90c55845a relecture JMF |
183 184 185 186 187 |
of skeleton blocks as long as perfomance and resource occupation can be determined. {\color{red} Hence, in this paper we will apply our methodology on simple DSP chains: a white noise input signal % r1.2 is generated using a Pseudo-Random Number (PRN) generator or by sampling a wideband (125~MS/s) 14-bit Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor.} Once samples have been |
0642fff00 relecture journal |
188 189 190 |
digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance -- practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing, |
5e2bf244b Suppression d'un ... |
191 |
allowing to assess either filter rejection for a given resource usage, or validating the rejection |
0642fff00 relecture journal |
192 |
when implementing a solution minimizing resource occupation. |
842e804be Permier pas vers ... |
193 |
|
90c55845a relecture JMF |
194 195 |
{\color{red} The first step of our approach is to model the DSP chain. Since we aim at only optimizing % r1.3 |
ec91065ab Ajout du tableau ... |
196 197 |
the filtering part of the signal processing chain, we have not included the PRN generator or the ADC in the model: the input data size and rate are considered fixed and defined by the hardware. |
90c55845a relecture JMF |
198 |
The filtering can be done in two ways, either by considering a single monolithic FIR filter |
ec91065ab Ajout du tableau ... |
199 |
requiring many coefficients to reach the targeted noise rejection ratio, or by |
90c55845a relecture JMF |
200 |
cascading multiple FIR filters, each with fewer coefficients than found in the monolithic filter.} |
842e804be Permier pas vers ... |
201 202 203 204 205 206 |
After each filter we leave the possibility of shifting the filtered data to consume less resources. Hence in the case of cascaded filter, we define a stage as a filter and a shifter (the shift could be omitted if we do not need to divide the filtered data). \subsection{Model of a FIR filter} |
0642fff00 relecture journal |
207 208 209 210 |
A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$) the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$ bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as |
842e804be Permier pas vers ... |
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage} shows a filtering stage. \begin{figure} \centering \begin{tikzpicture}[node distance=2cm] ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ; ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ; ode (Start) [left of=FIR] { } ; ode (End) [right of=Shift] { } ; ode[draw,fit=(FIR) (Shift)] (Filter) { } ; \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ; \draw[->] (FIR) -- (Shift) ; \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ; \end{tikzpicture} \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)} \label{fig:fir_stage} \end{figure} |
27f5f4108 Article étendu. |
236 |
|
0642fff00 relecture journal |
237 238 239 |
FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB. This rejection has been computed using GNU Octave software FIR coefficient design functions (\texttt{firls} and \texttt{fir1}). |
842e804be Permier pas vers ... |
240 241 242 |
For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients. Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively, the coefficients are normalized by their absolute maximum before being scaled to integer coefficients. |
0642fff00 relecture journal |
243 |
At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits. |
842e804be Permier pas vers ... |
244 |
|
0642fff00 relecture journal |
245 246 247 |
With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter transfer function. Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag}, |
5e2bf244b Suppression d'un ... |
248 |
the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the |
90c55845a relecture JMF |
249 250 251 252 |
bandpass ripples as emphasized in \cite{lim_1988,lim_1996}. {\color{red}Throughout this demonstration, we arbitrarily set a bandpass of 40\% of the Nyquist frequency and a bandstop from 60\% of the Nyquist frequency to the end of the band, as would be typically selected to prevent aliasing before decimating the dataflow by 2. The method is however generalized to any filter |
959bbc540 re-relecture JMF |
253 254 |
shape as long as it is defined from the initial modelling steps: Fig. \ref{fig:rejection_pyramid} as described below is indeed unique for each filter shape.} |
842e804be Permier pas vers ... |
255 256 |
\begin{figure} |
0642fff00 relecture journal |
257 258 |
\begin{center} \scalebox{0.8}{ |
842e804be Permier pas vers ... |
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
\centering \begin{tikzpicture}[scale=0.3] \draw[<->] (0,15) -- (0,0) -- (21,0) ; \draw[thick] (0,12) -- (8,12) -- (20,0) ; \draw (0,14) node [left] { $P$ } ; \draw (20,0) node [below] { $f$ } ; \draw[>=latex,<->] (0,14) -- (8,14) ; \draw (4,14) node [above] { passband } node [below] { $40\%$ } ; \draw[>=latex,<->] (8,14) -- (12,14) ; \draw (10,14) node [above] { transition } node [below] { $20\%$ } ; \draw[>=latex,<->] (12,14) -- (20,14) ; \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ; \draw[>=latex,<->] (16,12) -- (16,8) ; \draw (16,10) node [right] { rejection } ; \draw[dashed] (8,-1) -- (8,14) ; \draw[dashed] (12,-1) -- (12,14) ; \draw[dashed] (8,12) -- (16,12) ; \draw[dashed] (12,8) -- (16,8) ; \end{tikzpicture} |
0642fff00 relecture journal |
286 287 |
} \end{center} |
842e804be Permier pas vers ... |
288 289 290 291 |
\caption{Shape of the filter transmitted power $P$ as a function of frequency $f$: the passband is considered to occupy the initial 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition width.} \label{fig:fir_mag} |
27f5f4108 Article étendu. |
292 |
\end{figure} |
959bbc540 re-relecture JMF |
293 |
In the transition band, the behavior of the filter is left free, we only {\color{red}define} the passband and the stopband characteristics. |
b43d41ac2 Première partie d... |
294 295 296 297 |
% r2.7 % Our initial criterion considered the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion % yields unacceptable results since notches overestimate the rejection capability of the filter. Furthermore, the losses within % the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients. |
959bbc540 re-relecture JMF |
298 |
Our criterion to compute the filter rejection considers |
b43d41ac2 Première partie d... |
299 |
% r2.8 et r2.2 r2.3 |
9c253d6d2 Correction sur le... |
300 |
the {\color{red}minimal} rejection within the stopband, to which the {\color{red}sum of the absolute values |
ec91065ab Ajout du tableau ... |
301 |
within the passband is subtracted to avoid filters with excessive ripples}. With this |
959bbc540 re-relecture JMF |
302 |
criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}. |
b43d41ac2 Première partie d... |
303 304 305 306 307 308 309 |
% \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/colored_mean_criterion} % \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters} % \label{fig:mean_criterion} % \end{figure} |
27f5f4108 Article étendu. |
310 |
|
842e804be Permier pas vers ... |
311 312 |
\begin{figure} \centering |
46ae3f9cf Final draft. |
313 |
\includegraphics[width=\linewidth]{images/colored_custom_criterion} |
5e2bf244b Suppression d'un ... |
314 |
\caption{Custom criterion (maximum rejection in the stopband minus the mean of the absolute value of the passband rejection) |
0642fff00 relecture journal |
315 |
comparison between monolithic filter and cascaded filters} |
842e804be Permier pas vers ... |
316 317 |
\label{fig:custom_criterion} \end{figure} |
27f5f4108 Article étendu. |
318 |
|
0642fff00 relecture journal |
319 320 321 322 |
Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the rejection as a function of the number of coefficients and the number of bits representing these coefficients. The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet. |
5e2bf244b Suppression d'un ... |
323 |
Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection. |
0642fff00 relecture journal |
324 325 |
Conversely when setting the a given number of bits, increasing the number of coefficients will not improve the rejection. Hence the best coefficient set are on the vertex of the pyramid. |
a5c9e7b94 Rajout de la pyra... |
326 327 328 329 330 331 332 |
\begin{figure} \centering \includegraphics[width=\linewidth]{images/rejection_pyramid} \caption{Rejection as a function of number of coefficients and number of bits} \label{fig:rejection_pyramid} \end{figure} |
0642fff00 relecture journal |
333 |
Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps), |
5e2bf244b Suppression d'un ... |
334 |
we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria. |
0642fff00 relecture journal |
335 |
If the FIR filter coefficients are the same between the stages, we have: |
842e804be Permier pas vers ... |
336 |
$$F_{total} = F_1 + F_2$$ |
0642fff00 relecture journal |
337 338 339 |
But selecting two different sets of coefficient will yield a more complex situation in which the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves are two different filters with maximums and notches not located at the same frequency offsets. |
5e2bf244b Suppression d'un ... |
340 |
Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved |
0642fff00 relecture journal |
341 |
with respect to a basic sum of the rejection criteria shown as a the dotted yellow line. |
b43d41ac2 Première partie d... |
342 343 |
% r2.9 Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection |
0642fff00 relecture journal |
344 |
criteria of each filter. However since the this sum underestimates the rejection capability of the cascade, |
b43d41ac2 Première partie d... |
345 346 |
% r2.10 this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability |
0642fff00 relecture journal |
347 |
of the filter cascade to meet design criteria. |
842e804be Permier pas vers ... |
348 349 350 |
\begin{figure} \centering |
46ae3f9cf Final draft. |
351 |
\includegraphics[width=\linewidth]{images/cascaded_criterion} |
842e804be Permier pas vers ... |
352 353 354 |
\caption{Rejection of two cascaded filters} \label{fig:sum_rejection} \end{figure} |
27f5f4108 Article étendu. |
355 |
|
b43d41ac2 Première partie d... |
356 357 358 359 |
% r2.6 Finally in our case, we consider that the input signal are fully known. So the resolution of the data stream are fixed and still the same for all experiments in this paper. |
0642fff00 relecture journal |
360 |
Based on this analysis, we address the estimate of resource consumption (called |
b43d41ac2 Première partie d... |
361 362 |
% r2.11 silicon area -- in the case of FPGAs this means processing cells) as a function of |
0642fff00 relecture journal |
363 364 365 366 367 368 |
filter characteristics. As a reminder, we do not aim at matching actual hardware configuration but consider an arbitrary silicon area occupied by each processing function, and will assess after synthesis the adequation of this arbitrary unit with actual hardware resources provided by FPGA manufacturers. The sum of individual processing unit areas is constrained by a total silicon area representative of FPGA global resources. Formally, variable $a_i$ is the area taken by filter~$i$ |
46ae3f9cf Final draft. |
369 370 |
(in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB). Constant $\mathcal{A}$ is the total available area. We model our problem as follows: |
8d9489b3b Add first draft f... |
371 372 373 374 375 376 377 378 379 380 381 |
\begin{align} \text{Maximize } & \sum_{i=1}^n r_i otag \\ \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\ a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\ r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\ \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\ \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\ \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\ \pi_1^- &= \Pi^I \label{eq:init} \end{align} |
8d9489b3b Add first draft f... |
382 383 |
Equation~\ref{eq:area} states that the total area taken by the filters must be less than the available area. Equation~\ref{eq:areadef} gives the definition of |
0642fff00 relecture journal |
384 385 |
the area used by a filter, considered as the area of the FIR since the Shifter is assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size |
8d9489b3b Add first draft f... |
386 |
$\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the |
0642fff00 relecture journal |
387 388 389 |
input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined previously. The Shifter does not introduce negative rejection as we will explain later, |
8d9489b3b Add first draft f... |
390 391 392 393 394 395 396 397 |
so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of a filter is the same as the input number of bits of the next filter. Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative rejection. Indeed, the results of the FIR can be right shifted without compromising the quality of the rejection until a threshold. Each bit of the output data |
0642fff00 relecture journal |
398 |
increases the maximum rejection level by 6~dB. We add one to take the sign bit |
8d9489b3b Add first draft f... |
399 400 |
into account. If equation~\ref{eq:maxshift} was not present, the Shifter could shift too much and introduce some noise in the output data. Each supplementary |
0642fff00 relecture journal |
401 402 403 |
shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is: $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$. Finally, equation~\ref{eq:init} gives the number of bits of the global input. |
8d9489b3b Add first draft f... |
404 |
|
7c78647f1 Ajout de correction. |
405 406 407 408 |
{\color{red} This model is non-linear since we multiply some variable with another variable and it is even non-quadratic, as $F$ does not have a known linear or quadratic expression. To linearize this problem, we introduce $p$ FIR configurations. |
b43d41ac2 Première partie d... |
409 410 |
This variable must be defined by the user, it represent the number of different set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1} |
9c253d6d2 Correction sur le... |
411 412 413 414 415 |
functions from GNU Octave). To choose this value, we consider a subset of the figure~\ref{fig:rejection_pyramid} to restrict the number of configurations. Indeed, it is useless to have too many coefficients or too many bits, hence we take the configurations close to edge of pyramid. Thank to theses configurations $C_{ij}$ and $\pi_{ij}^C$ ($1 \leq j \leq p$) become constant and the function $F$ can be estimate for each configurations |
7c78647f1 Ajout de correction. |
416 |
thanks our rejection criterion. We also defined binary |
46ae3f9cf Final draft. |
417 418 |
variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$ and 0 otherwise. The new equations are as follows: |
7c78647f1 Ajout de correction. |
419 |
} |
8d9489b3b Add first draft f... |
420 421 422 423 424 425 426 427 428 429 430 |
\begin{align} a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\ r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\ \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\ \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config} \end{align} Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}. Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most. |
7c78647f1 Ajout de correction. |
431 432 433 |
{\color{red} However the problem still quadratic since in the constraint~\ref{eq:areadef2} we multiply $\delta_{ij}$ and $\pi_i^-$. But like $\delta_{ij}$ is a binary variable we can |
9c253d6d2 Correction sur le... |
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
linearize this multiplication. The following formula shows how to linearize this situation in general case with $y$ a binary variable and $x$ a real variable ($0 \leq x \leq X^{max}$): \begin{equation*} m = x \times y \implies \left \{ \begin{split} m & \geq 0 \\ m & \leq y \times X^{max} \\ m & \leq x \\ m & \geq x - (1 - y) \times X^{max} \\ \end{split} \right . \end{equation*} So if we bound up $\pi_i^-$ by 128~bits to represent the maximum data size tolerated, the Gurobi (\url{www.gurobi.com}) optimization software will be able to linearize for us the quadratic problem so the model is left as is. |
7c78647f1 Ajout de correction. |
451 |
} |
9c253d6d2 Correction sur le... |
452 |
This model has $O(np)$ variables and $O(n)$ constraints. |
46ae3f9cf Final draft. |
453 |
|
7c78647f1 Ajout de correction. |
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
% This model is non-linear and even non-quadratic, as $F$ does not have a known % linear or quadratic expression. We introduce $p$ FIR configurations % $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants. % % r2.12 % This variable must be defined by the user, it represent the number of different % set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1} % functions from GNU Octave). % We define binary % variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$ % and 0 otherwise. The new equations are as follows: % % \begin{align} % a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\ % r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\ % \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\ % \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config} % \end{align} % % Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace % respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}. % Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most. % % % r2.13 % This modified model is quadratic since we multiply two variables in the % equation~\ref{eq:areadef2} ($\delta_{ij}$ by $\pi_{ij}^-$) but it can be linearised if necessary. % The Gurobi % (\url{www.gurobi.com}) optimization software is used to solve this quadratic % model, and since Gurobi is able to linearize, the model is left as is. This model % has $O(np)$ variables and $O(n)$ constraints. |
0642fff00 relecture journal |
483 484 485 486 487 |
Two problems will be addressed using the workflow described in the next section: on the one hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary silcon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the objective function is replaced with: |
8d9489b3b Add first draft f... |
488 489 490 491 |
\begin{align} \text{Minimize } & \sum_{i=1}^n a_i otag \end{align} |
0642fff00 relecture journal |
492 493 |
We adapt our constraints of quadratic program to replace equation \ref{eq:area} with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal |
8d9489b3b Add first draft f... |
494 495 496 497 498 499 500 501 |
rejection required. \begin{align} \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min} \end{align} \section{Design workflow} \label{sec:workflow} |
0642fff00 relecture journal |
502 |
In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area} |
5e2bf244b Suppression d'un ... |
503 |
and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved |
0642fff00 relecture journal |
504 |
in the computation of the results. |
8d9489b3b Add first draft f... |
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
\begin{figure} \centering \begin{tikzpicture}[node distance=0.75cm and 2cm] ode[draw,minimum size=1cm] (Solver) { Filter Solver } ; ode (Start) [left= 3cm of Solver] { } ; ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ; ode (Input) [above= of TCL] { } ; ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ; ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ; ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ; ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ; ode (Results) [left= of Postproc] { } ; \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ; \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ; \draw[->] (Solver) edge node [below] { (1a) } (TCL) ; \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ; \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ; \draw[->,dashed] (Bitstream) -- (Deploy) ; \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ; \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ; \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ; \draw[->] (Postproc) -- (Results) ; \end{tikzpicture} \caption{Design workflow from the input parameters to the results} \label{fig:workflow} \end{figure} The filter solver is a C++ program that takes as input the maximum area $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$, the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates |
0642fff00 relecture journal |
546 |
the quadratic programs and uses the Gurobi solver to estimate the optimal results. |
8d9489b3b Add first draft f... |
547 548 549 550 |
Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow}) and a deploy script ((1b) on figure~\ref{fig:workflow}). The TCL script describes the whole digital processing chain from the beginning |
0642fff00 relecture journal |
551 |
(the raw signal data) to the end (the filtered data) in a language compatible |
5e2bf244b Suppression d'un ... |
552 |
with proprietary synthesis software, namely Vivado for Xilinx and Quartus for |
0642fff00 relecture journal |
553 |
Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN) |
8d9489b3b Add first draft f... |
554 555 556 557 558 |
generator inside the FPGA and $\Pi^I$ is fixed at 16~bits. Then the script builds each stage of the chain with a generic FIR task that comes from a skeleton library. The generic FIR is highly configurable with the number of coefficients and the size of the coefficients. The coefficients themselves are not stored in the script. |
0642fff00 relecture journal |
559 560 561 562 |
As the signal is processed in real-time, the output signal is stored as consecutive bursts of data for post-processing, mainly assessing the consistency of the implemented FIR cascade transfer function with the design criteria and the expected transfer function. |
8d9489b3b Add first draft f... |
563 564 565 566 |
The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}). We use the 2018.2 version of Xilinx Vivado and we execute the synthesized bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series |
0642fff00 relecture journal |
567 568 569 570 |
FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to provide a broadband noise source. The board runs the Linux kernel and surrounding environment produced from the Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring |
5e2bf244b Suppression d'un ... |
571 |
the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and |
0642fff00 relecture journal |
572 |
fetching the results is automated. |
8d9489b3b Add first draft f... |
573 574 575 576 577 578 579 580 581 582 |
The deploy script uploads the bitstream to the board ((3) on figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers, configures the coefficients of the FIR filters. It then waits for the results and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}). Finally, an Octave post-processing script computes the final results thanks to the output data ((5) on figure~\ref{fig:workflow}). The results are normalized so that the Power Spectrum Density (PSD) starts at zero and the different configurations can be compared. |
0642fff00 relecture journal |
583 |
\section{Maximizing the rejection at fixed silicon area} |
8d9489b3b Add first draft f... |
584 585 586 |
\label{sec:fixed_area} This section presents the output of the filter solver {\em i.e.} the computed configurations for each stage, the computed rejection and the computed silicon area. |
0642fff00 relecture journal |
587 |
Such results allow for understanding the choices made by the solver to compute its solutions. |
8d9489b3b Add first draft f... |
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
The experimental setup is composed of three cases. The raw input is generated by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$. Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500 arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500. The number of configurations $p$ is 1827, with $C_i$ ranging from 3 to 60 and $\pi^C$ ranging from 2 to 22. In each case, the quadratic program has been able to give a result up to five stages ($n = 5$) in the cascaded filter. Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500. Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000. Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500. \renewcommand{\arraystretch}{1.4} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500} \label{tbl:gurobi_max_500} \centering {\scalefont{0.77} \begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (21, 7, 0) & - & - & - & - & 32~dB & 483 \\ 2 & (3, 3, 15) & (31, 9, 0) & - & - & - & 58~dB & 460 \\ 3 & (3, 3, 15) & (27, 9, 0) & (5, 3, 0) & - & - & 66~dB & 488 \\ 4 & (3, 3, 15) & (19, 7, 0) & (11, 5, 0) & (3, 3, 0) & - & 74~dB & 499 \\ 5 & (3, 3, 15) & (23, 8, 0) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & 78~dB & 489 \\ \hline \end{tabular} } \end{table} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000} \label{tbl:gurobi_max_1000} \centering {\scalefont{0.77} \begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (37, 11, 0) & - & - & - & - & 56~dB & 999 \\ 2 & (3, 3, 15) & (51, 14, 0) & - & - & - & 87~dB & 975 \\ 3 & (3, 3, 15) & (35, 11, 0) & (19, 7, 0) & - & - & 99~dB & 1000 \\ 4 & (3, 4, 16) & (27, 8, 0) & (19, 7, 1) & (11, 5, 0) & - & 103~dB & 998 \\ 5 & (3, 3, 15) & (31, 9, 0) & (19, 7, 0) & (3, 3, 1) & (3, 3, 0) & 111~dB & 984 \\ \hline \end{tabular} } \end{table} \begin{table} \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500} \label{tbl:gurobi_max_1500} \centering {\scalefont{0.77} \begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (47, 15, 0) & - & - & - & - & 71~dB & 1457 \\ 2 & (19, 6, 15) & (51, 14, 0) & - & - & - & 103~dB & 1489 \\ 3 & (3, 3, 15) & (35, 11, 0) & (35, 11, 0) & - & - & 122~dB & 1492 \\ 4 & (3, 3, 15) & (27, 8, 0) & (19, 7, 0) & (27, 9, 0) & - & 129~dB & 1498 \\ 5 & (3, 3, 15) & (23, 9, 2) & (27, 9, 0) & (19, 7, 0) & (3, 3, 0) & 136~dB & 1499 \\ \hline \end{tabular} } \end{table} \renewcommand{\arraystretch}{1} From these tables, we can first state that the more stages are used to define the cascaded FIR filters, the better the rejection. It was an expected result as it has been previously observed that many small filters are better than |
0642fff00 relecture journal |
665 |
a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions |
8d9489b3b Add first draft f... |
666 667 668 669 |
being hardly used in practice due to the lack of tools for identifying individual filter coefficients in the cascaded approach. Second, the larger the silicon area, the better the rejection. This was also an |
0642fff00 relecture journal |
670 671 |
expected result as more area means a filter of better quality with more coefficients or more bits per coefficient. |
8d9489b3b Add first draft f... |
672 673 674 675 676 677 678 679 |
Then, we also observe that the first stage can have a larger shift than the other stages. This is explained by the fact that the solver tries to use just enough bits for the computed rejection after each stage. In the first stage, a balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift} gives the relation between both values. Finally, we note that the solver consumes all the given silicon area. |
0642fff00 relecture journal |
680 |
The following graphs present the rejection for real data on the FPGA. In all the following |
8d9489b3b Add first draft f... |
681 |
figures, the solid line represents the actual rejection of the filtered |
0642fff00 relecture journal |
682 |
data on the FPGA as measured experimentally and the dashed line are the noise levels |
8d9489b3b Add first draft f... |
683 684 685 686 687 |
given by the quadratic solver. The configurations are those computed in the previous section. Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500. Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000. Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500. |
27f5f4108 Article étendu. |
688 |
|
b43d41ac2 Première partie d... |
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
% \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/max_500} % \caption{Signal spectrum for MAX/500} % \label{fig:max_500_result} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/max_1000} % \caption{Signal spectrum for MAX/1000} % \label{fig:max_1000_result} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/max_1500} % \caption{Signal spectrum for MAX/1500} % \label{fig:max_1500_result} % \end{figure} % r2.14 et r2.15 et r2.16 |
842e804be Permier pas vers ... |
711 |
\begin{figure} |
b43d41ac2 Première partie d... |
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
\centering \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_500} \caption{Signal spectrum for MAX/500} \label{fig:max_500_result} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_1000} \caption{Signal spectrum for MAX/1000} \label{fig:max_1000_result} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/max_1500} \caption{Signal spectrum for MAX/1500} \label{fig:max_1500_result} \end{subfigure} \caption{Signal spectrum of each experimental configurations MAX/500, MAX/1000 and MAX/1500} |
842e804be Permier pas vers ... |
731 |
\end{figure} |
8d9489b3b Add first draft f... |
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
In all cases, we observe that the actual rejection is close to the rejection computed by the solver. We compare the actual silicon resources given by Vivado to the resources in arbitrary units. The goal is to check that our arbitrary units of silicon area models well enough the real resources on the FPGA. Especially we want to verify that, for a given number of arbitrary units, the actual silicon resources do not depend on the number of stages $n$. Most significantly, our approach aims at remaining far enough from the practical logic gate implementation used by various vendors to remain platform independent and be portable from one architecture to another. Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000 and 1500 arbitrary units. We have taken care to extract solely the resources used by |
0642fff00 relecture journal |
747 748 |
the FIR filters and remove additional processing blocks including FIFO and Programmable Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication. |
27f5f4108 Article étendu. |
749 |
|
0642fff00 relecture journal |
750 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
\caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} \label{tbl:resources_usage} \centering \begin{tabular}{|c|c|ccc|c|} \hline $n$ & & MAX/500 & MAX/1000 & MAX/1500 & \emph{Zynq 7010} \\ \hline\hline & LUT & 249 & 453 & 627 & \emph{17600} \\ 1 & BRAM & 1 & 1 & 1 & \emph{120} \\ & DSP & 21 & 37 & 47 & \emph{80} \\ \hline & LUT & 2374 & 5494 & 691 & \emph{17600} \\ 2 & BRAM & 2 & 2 & 2 & \emph{120} \\ & DSP & 0 & 0 & 70 & \emph{80} \\ \hline & LUT & 2443 & 3304 & 3521 & \emph{17600} \\ 3 & BRAM & 3 & 3 & 3 & \emph{120} \\ & DSP & 0 & 19 & 35 & \emph{80} \\ \hline & LUT & 2634 & 3753 & 2557 & \emph{17600} \\ 4 & BRAM & 4 & 4 & 4 & \emph{120} \\ & DPS & 0 & 19 & 46 & \emph{80} \\ \hline & LUT & 2423 & 3047 & 2847 & \emph{17600} \\ 5 & BRAM & 5 & 5 & 5 & \emph{120} \\ & DPS & 0 & 22 & 46 & \emph{80} \\ \hline \end{tabular} |
842e804be Permier pas vers ... |
773 |
\end{table} |
27f5f4108 Article étendu. |
774 |
|
8d9489b3b Add first draft f... |
775 |
In some cases, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that, |
0642fff00 relecture journal |
776 777 |
when the filter coefficients are small enough, or when the input size is small enough, Vivado optimizes resource consumption by selecting multiplexers to |
8d9489b3b Add first draft f... |
778 779 |
implement the multiplications instead of a DSP. In this case, it is quite difficult to compare the whole silicon budget. |
0642fff00 relecture journal |
780 |
However, a rough estimation can be made with a simple equivalence: looking at |
8d9489b3b Add first draft f... |
781 782 |
the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$, we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon |
0642fff00 relecture journal |
783 784 |
area use. With this equivalence, our 500 arbitraty units correspond to 2500 LUTs, 1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond |
8d9489b3b Add first draft f... |
785 |
to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary |
0642fff00 relecture journal |
786 |
unit map well to actual hardware resources. The relatively small differences can probably be explained |
8d9489b3b Add first draft f... |
787 |
by the optimizations done by Vivado based on the detailed map of available processing resources. |
0642fff00 relecture journal |
788 789 790 791 |
We now present the computation time needed to solve the quadratic problem. For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606 clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic |
8d9489b3b Add first draft f... |
792 |
problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units. |
0642fff00 relecture journal |
793 794 |
\begin{table}[h!tb] \caption{Time needed to solve the quadratic program with Gurobi} |
8d9489b3b Add first draft f... |
795 |
\label{tbl:area_time} |
842e804be Permier pas vers ... |
796 |
\centering |
8d9489b3b Add first draft f... |
797 798 799 800 801 802 803 |
\begin{tabular}{|c|c|c|c|}\hline $n$ & Time (MAX/500) & Time (MAX/1000) & Time (MAX/1500) \\\hline\hline 1 & 0.1~s & 0.1~s & 0.3~s \\ 2 & 1.1~s & 2.2~s & 12~s \\ 3 & 17~s & 137~s ($\approx$ 2~min) & 275~s ($\approx$ 4~min) \\ 4 & 52~s & 5448~s ($\approx$ 90~min) & 5505~s ($\approx$ 17~h) \\ 5 & 286~s ($\approx$ 4~min) & 4119~s ($\approx$ 68~min) & 235479~s ($\approx$ 3~days) \\\hline |
842e804be Permier pas vers ... |
804 |
\end{tabular} |
842e804be Permier pas vers ... |
805 |
\end{table} |
27f5f4108 Article étendu. |
806 |
|
8d9489b3b Add first draft f... |
807 808 |
As expected, the computation time seems to rise exponentially with the number of stages. % TODO: exponentiel ? When the area is limited, the design exploration space is more limited and the solver is able to |
5e2bf244b Suppression d'un ... |
809 |
find an optimal solution faster. |
0642fff00 relecture journal |
810 811 |
\subsection{Minimizing resource occupation at fixed rejection}\label{sec:fixed_rej} |
8d9489b3b Add first draft f... |
812 |
|
0642fff00 relecture journal |
813 814 |
This section presents the results of the complementary quadratic program aimed at minimizing the area occupation for a targeted rejection level. |
8d9489b3b Add first draft f... |
815 |
|
b312dca6a Ajout de MIN/100. |
816 |
The experimental setup is composed of four cases. The raw input is the same |
0642fff00 relecture journal |
817 |
as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$. |
b312dca6a Ajout de MIN/100. |
818 819 |
Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB. Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100. |
8d9489b3b Add first draft f... |
820 821 822 823 824 |
The number of configurations $p$ is the same as previous section. Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40. Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60. Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80. |
b312dca6a Ajout de MIN/100. |
825 |
Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100. |
8d9489b3b Add first draft f... |
826 827 |
\renewcommand{\arraystretch}{1.4} |
0642fff00 relecture journal |
828 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40} \label{tbl:gurobi_min_40} \centering {\scalefont{0.77} \begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (27, 8, 0) & - & - & - & - & 41~dB & 648 \\ 2 & (3, 2, 14) & (19, 7, 0) & - & - & - & 40~dB & 263 \\ 3 & (3, 3, 15) & (11, 5, 0) & (3, 3, 0) & - & - & 41~dB & 192 \\ 4 & (3, 3, 15) & (3, 3, 0) & (3, 3, 0) & (3, 3, 0) & - & 42~dB & 147 \\ \hline \end{tabular} } |
842e804be Permier pas vers ... |
844 |
\end{table} |
27f5f4108 Article étendu. |
845 |
|
0642fff00 relecture journal |
846 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60} \label{tbl:gurobi_min_60} \centering {\scalefont{0.77} \begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (39, 13, 0) & - & - & - & - & 60~dB & 1131 \\ 2 & (3, 3, 15) & (35, 10, 0) & - & - & - & 60~dB & 547 \\ 3 & (3, 3, 15) & (27, 8, 0) & (3, 3, 0) & - & - & 62~dB & 426 \\ 4 & (3, 2, 14) & (11, 5, 1) & (11, 5, 0) & (3, 3, 0) & - & 60~dB & 344 \\ 5 & (3, 2, 14) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & (3, 3, 0) & 60~dB & 279 \\ \hline \end{tabular} } |
842e804be Permier pas vers ... |
863 |
\end{table} |
27f5f4108 Article étendu. |
864 |
|
0642fff00 relecture journal |
865 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
\caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80} \label{tbl:gurobi_min_80} \centering {\scalefont{0.77} \begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & (55, 16, 0) & - & - & - & - & 81~dB & 1760 \\ 2 & (3, 3, 15) & (47, 14, 0) & - & - & - & 80~dB & 903 \\ 3 & (3, 3, 15) & (23, 9, 0) & (19, 7, 0) & - & - & 80~dB & 698 \\ 4 & (3, 3, 15) & (27, 9, 0) & (7, 7, 4) & (3, 3, 0) & - & 80~dB & 605 \\ 5 & (3, 2, 14) & (27, 8, 0) & (3, 3, 1) & (3, 3, 0) & (3, 3, 0) & 81~dB & 534 \\ \hline \end{tabular} } |
842e804be Permier pas vers ... |
882 |
\end{table} |
b312dca6a Ajout de MIN/100. |
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
\begin{table}[h!tb] \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100} \label{tbl:gurobi_min_100} \centering {\scalefont{0.77} \begin{tabular}{|c|ccccc|c|c|} \hline $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\ \hline 1 & - & - & - & - & - & - & - \\ 2 & (15, 7, 17) & (51, 14, 0) & - & - & - & 100~dB & 1365 \\ 3 & (3, 3, 15) & (27, 9, 0) & (27, 9, 0) & - & - & 100~dB & 1002 \\ 4 & (3, 3, 15) & (31, 9, 0) & (19, 7, 0) & (3, 3, 0) & - & 101~dB & 909 \\ 5 & (3, 3, 15) & (23, 8, 1) & (19, 7, 0) & (3, 3, 0) & (3, 3, 0) & 101~dB & 810 \\ \hline \end{tabular} } \end{table} |
8d9489b3b Add first draft f... |
902 |
\renewcommand{\arraystretch}{1} |
27f5f4108 Article étendu. |
903 |
|
9b83af848 final corrections |
904 |
From these tables, we can first state that almost all configurations reach the targeted rejection |
0642fff00 relecture journal |
905 |
level or even better thanks to our underestimate of the cascade rejection as the sum of the |
b312dca6a Ajout de MIN/100. |
906 |
individual filter rejection. The only exception is for the monolithic case ($n = 1$) in |
9b83af848 final corrections |
907 |
MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection. |
0642fff00 relecture journal |
908 909 910 911 912 913 914 915 916 917 918 919 |
Futhermore, the area of the monolithic filter is twice as big as the two cascaded filters (1131 and 1760 arbitrary units v.s 547 and 903 arbitrary units for 60 and 80~dB rejection respectively). More generally, the more filters are cascaded, the lower the occupied area. Like in previous section, the solver chooses always a little filter as first filter stage and the second one is often the biggest filter. This choice can be explained as in the previous section, with the solver using just enough bits not to degrade the input signal and in the second filter selecting a better filter to improve rejection without having too many bits in the output data. For the specific case of MIN/40 for $n = 5$ the solver has determined that the optimal number of filters is 4 so it did not chose any configuration for the last filter. Hence this |
8d9489b3b Add first draft f... |
920 |
solution is equivalent to the result for $n = 4$. |
0642fff00 relecture journal |
921 |
The following graphs present the rejection for real data on the FPGA. In all the following |
8d9489b3b Add first draft f... |
922 |
figures, the solid line represents the actual rejection of the filtered |
0642fff00 relecture journal |
923 |
data on the FPGA as measured experimentally and the dashed line is the noise level |
8d9489b3b Add first draft f... |
924 925 926 927 928 |
given by the quadratic solver. Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40. Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60. Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80. |
b312dca6a Ajout de MIN/100. |
929 |
Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100. |
27f5f4108 Article étendu. |
930 |
|
b43d41ac2 Première partie d... |
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
% \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_40} % \caption{Signal spectrum for MIN/40} % \label{fig:min_40} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_60} % \caption{Signal spectrum for MIN/60} % \label{fig:min_60} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_80} % \caption{Signal spectrum for MIN/80} % \label{fig:min_80} % \end{figure} % % \begin{figure} % \centering % \includegraphics[width=\linewidth]{images/min_100} % \caption{Signal spectrum for MIN/100} % \label{fig:min_100} % \end{figure} % r2.14 et r2.15 et r2.16 |
842e804be Permier pas vers ... |
960 |
\begin{figure} |
b43d41ac2 Première partie d... |
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 |
\centering \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/min_40} \caption{Signal spectrum for MIN/40} \label{fig:min_40} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/min_60} \caption{Signal spectrum for MIN/60} \label{fig:min_60} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/min_80} \caption{Signal spectrum for MIN/80} \label{fig:min_80} \end{subfigure} \begin{subfigure}{\linewidth} \includegraphics[width=\linewidth]{images/min_100} \caption{Signal spectrum for MIN/100} \label{fig:min_100} \end{subfigure} \caption{Signal spectrum of each experimental configurations MIN/40, MIN/60, MIN/80 and MIN/100} |
b312dca6a Ajout de MIN/100. |
986 |
\end{figure} |
0642fff00 relecture journal |
987 988 |
We observe that all rejections given by the quadratic solver are close to the experimentally measured rejection. All curves prove that the constraint to reach the target rejection is |
b312dca6a Ajout de MIN/100. |
989 |
respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters. |
8d9489b3b Add first draft f... |
990 |
|
b312dca6a Ajout de MIN/100. |
991 992 |
Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60; MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We |
8d9489b3b Add first draft f... |
993 994 995 |
have taken care to extract solely the resources used by the FIR filters and remove additional processing blocks including FIFO and PL to PS communication. |
b312dca6a Ajout de MIN/100. |
996 |
\renewcommand{\arraystretch}{1.2} |
8d9489b3b Add first draft f... |
997 998 999 1000 |
\begin{table} \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.} \label{tbl:resources_usage_comp} \centering |
b312dca6a Ajout de MIN/100. |
1001 1002 |
{\scalefont{0.90} \begin{tabular}{|c|c|cccc|c|} |
8d9489b3b Add first draft f... |
1003 |
\hline |
b312dca6a Ajout de MIN/100. |
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
$n$ & & MIN/40 & MIN/60 & MIN/80 & MIN/100 & \emph{Zynq 7010} \\ \hline\hline & LUT & 343 & 334 & 772 & - & \emph{17600} \\ 1 & BRAM & 1 & 1 & 1 & - & \emph{120} \\ & DSP & 27 & 39 & 55 & - & \emph{80} \\ \hline & LUT & 1252 & 2862 & 5099 & 640 & \emph{17600} \\ 2 & BRAM & 2 & 2 & 2 & 2 & \emph{120} \\ & DSP & 0 & 0 & 0 & 66 & \emph{80} \\ \hline & LUT & 891 & 2148 & 2023 & 2448 & \emph{17600} \\ 3 & BRAM & 3 & 3 & 3 & 3 & \emph{120} \\ & DSP & 0 & 0 & 19 & 27 & \emph{80} \\ \hline & LUT & 662 & 1729 & 2451 & 2893 & \emph{17600} \\ 4 & BRAM & 4 & 4 & 4 & 4 & \emph{120} \\ & DPS & 0 & 0 & 7 & 19 & \emph{80} \\ \hline & LUT & - & 1259 & 2602 & 2505 & \emph{17600} \\ 5 & BRAM & - & 5 & 5 & 5 & \emph{120} \\ & DPS & - & 0 & 0 & 19 & \emph{80} \\ \hline |
8d9489b3b Add first draft f... |
1020 |
\end{tabular} |
b312dca6a Ajout de MIN/100. |
1021 |
} |
8d9489b3b Add first draft f... |
1022 |
\end{table} |
b312dca6a Ajout de MIN/100. |
1023 |
\renewcommand{\arraystretch}{1} |
8d9489b3b Add first draft f... |
1024 |
|
0642fff00 relecture journal |
1025 1026 1027 |
If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT) the real resource consumption decreases as a function of the number of stages in the cascaded filter according |
8d9489b3b Add first draft f... |
1028 1029 |
to the solution given by the quadratic solver. Indeed, we have always a decreasing consumption even if the difference between the monolithic and the two cascaded |
0642fff00 relecture journal |
1030 |
filters is less than expected. |
8d9489b3b Add first draft f... |
1031 |
|
0642fff00 relecture journal |
1032 |
Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve |
8d9489b3b Add first draft f... |
1033 |
the quadratic program. |
b312dca6a Ajout de MIN/100. |
1034 |
\renewcommand{\arraystretch}{1.2} |
0642fff00 relecture journal |
1035 |
\begin{table}[h!tb] |
8d9489b3b Add first draft f... |
1036 1037 1038 |
\caption{Time to solve the quadratic program with Gurobi} \label{tbl:area_time_comp} \centering |
b312dca6a Ajout de MIN/100. |
1039 1040 1041 1042 1043 1044 1045 1046 |
{\scalefont{0.90} \begin{tabular}{|c|c|c|c|c|}\hline $n$ & Time (MIN/40) & Time (MIN/60) & Time (MIN/80) & Time (MIN/100) \\\hline\hline 1 & 0.07~s & 0.02~s & 0.01~s & - \\ 2 & 7.8~s & 16~s & 14~s & 1.8~s \\ 3 & 4.7~s & 14~s & 28~s & 39~s \\ 4 & 39~s & 20~s & 193~s & 522~s ($\approx$ 9~min) \\ 5 & - & 12~s & 170~s & 1048~s ($\approx$ 17~min) \\\hline |
8d9489b3b Add first draft f... |
1047 |
\end{tabular} |
b312dca6a Ajout de MIN/100. |
1048 |
} |
8d9489b3b Add first draft f... |
1049 |
\end{table} |
b312dca6a Ajout de MIN/100. |
1050 |
\renewcommand{\arraystretch}{1} |
8d9489b3b Add first draft f... |
1051 |
|
0642fff00 relecture journal |
1052 |
The time needed to solve this configuration is significantly shorter than the time |
b312dca6a Ajout de MIN/100. |
1053 |
needed in the previous section. Indeed the worst time in this case is only 17~minutes, |
0642fff00 relecture journal |
1054 1055 |
compared to 3~days in the previous section: this problem is more easily solved than the previous one. |
8d9489b3b Add first draft f... |
1056 |
|
56f7c40c9 Ajout de correcti... |
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
{\color{red} % r1.4 To conclude we have compared our monolithic filters with the FIR Compiler form Xilinx. For each experimentation we use the same coefficient set and we compare the resources consumption. The table~\ref{tbl:xilinx_resources} exhibits the results. The FIR Compiler never use BRAM while our filter use one block. This difference can be explain be our wish to have a reconfigurable FIR filter. In our case, we can configure the coefficients set without to have to change the FPGA design. With the FIR compiler, the coefficients set are given during the FPGA design conception so we have to change the coefficients, we need to regenerate the design. The difference with the LUT consumption is also related to the reconfigurability logic. However the DSP consumption, the most restricted resource, are the same between the FIR compiler end our FIR block. Our solutions are as good as the Xilinx implementation. |
ec91065ab Ajout du tableau ... |
1069 1070 1071 1072 |
\renewcommand{\arraystretch}{1.2} \begin{table} \centering \caption{Resource consumption compared between the FIR Compiler from Xilinx and our FIR block} |
56f7c40c9 Ajout de correcti... |
1073 |
\label{tbl:xilinx_resources} |
ec91065ab Ajout du tableau ... |
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
\begin{tabular}{|c|c|c|c|c|c|c|} \hline \multirow{2}{*}{} & \multicolumn{3}{c|}{Xilinx} & \multicolumn{3}{c|}{Our FIR block} \\ \cline{2-7} & LUT & BRAM & DSP & LUT & BRAM & DSP \\ \hline MAX/500 & 177 & 0 & 21 & 249 & 1 & 21 \\ \hline MAX/1000 & 306 & 0 & 37 & 453 & 1 & 37 \\ \hline MAX/1500 & 418 & 0 & 47 & 627 & 1 & 47 \\ \hline MIN/40 & 225 & 0 & 27 & 347 & 1 & 27 \\ \hline MIN/60 & 322 & 0 & 39 & 334 & 1 & 39 \\ \hline MIN/80 & 482 & 0 & 55 & 772 & 1 & 55 \\ \hline \end{tabular} \end{table} \renewcommand{\arraystretch}{1} |
56f7c40c9 Ajout de correcti... |
1087 |
} |
ec91065ab Ajout du tableau ... |
1088 |
|
27f5f4108 Article étendu. |
1089 |
\section{Conclusion} |
0642fff00 relecture journal |
1090 1091 1092 1093 1094 1095 1096 1097 |
We have proposed a new approach to schedule a set of signal processing blocks whose performances and resource consumption has been tabulated, and applied this methodology to the practical case of implementing cascaded FIR filters inside a FPGA. This method aims to be hardware independent and focuses an a high-level of abstraction. We have modeled the FIR filter operation and the impact of data shift. Thanks to this model, we have created a quadratic program to select the optimal FIR taps to reach a targeted rejection. Individual filter taps have been identified using commonly available tools and the emphasis is on FIR assembly rather than individual FIR coefficient identification. |
8d9489b3b Add first draft f... |
1098 1099 1100 |
Our experimental results are very promising in providing a rational approach to selecting the coefficients of each FIR filter in the context of a performance target for a chain of |
0642fff00 relecture journal |
1101 1102 1103 |
such filters. The FPGA design that is produced automatically by the proposed workflow is able to filter an input signal as expected, validating experimentally our model and our approach. The quadratic program can be adapted it to an other problem based on assembling skeleton blocks. |
8d9489b3b Add first draft f... |
1104 1105 |
A perspective is to model and add the decimators to the processing chain to have a classical |
0642fff00 relecture journal |
1106 1107 |
FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon area usage for subsequent stages since some hardware optimization can be applied in |
8d9489b3b Add first draft f... |
1108 1109 1110 1111 |
this case. The software used to demonstrate the concepts developed in this paper is based on the CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}. |
27f5f4108 Article étendu. |
1112 1113 1114 1115 1116 |
\section*{Acknowledgement} This work is supported by the ANR Programme d'Investissement d'Avenir in progress at the Time and Frequency Departments of the FEMTO-ST Institute (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. |
842e804be Permier pas vers ... |
1117 |
The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila |
27f5f4108 Article étendu. |
1118 1119 1120 1121 1122 1123 |
for support and fruitful discussions. \bibliographystyle{IEEEtran} \balance \bibliography{references,biblio} \end{document} |