Commit f61865f4638158170082dca249903e6f846da6be
1 parent
25c42432dc
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@14 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 195 additions and 1 deletions Side-by-side Diff
fvnlib.f90
... | ... | @@ -22,7 +22,8 @@ |
22 | 22 | ! if you find it usefull it would be kind to give credits ;-) Nevertheless, you |
23 | 23 | ! may give credits to quadpack authors. |
24 | 24 | ! |
25 | -! Version 1.1 | |
25 | +! svn version | |
26 | +! June 2007 : added some complex trigonometric functions | |
26 | 27 | ! |
27 | 28 | ! TO DO LIST : |
28 | 29 | ! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm |
... | ... | @@ -36,6 +37,11 @@ |
36 | 37 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
37 | 38 | |
38 | 39 | implicit none |
40 | +! We define pi and i for the module | |
41 | +real(kind=8),parameter :: fvn_pi = 3.141592653589793_8 | |
42 | +complex(kind=8),parameter :: fvn_i = (0._8,1._8) | |
43 | + | |
44 | + | |
39 | 45 | ! All quadpack routines are private to the module |
40 | 46 | private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & |
41 | 47 | dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & |
... | ... | @@ -1772,6 +1778,194 @@ |
1772 | 1778 | include "fvn_quadpack/dqk21_2d_inner.f" |
1773 | 1779 | include "fvn_quadpack/dqk15_2d_outer.f" |
1774 | 1780 | |
1781 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1782 | +! | |
1783 | +! Trigonometric functions | |
1784 | +! | |
1785 | +! fvn_z_acos, fvn_z_asin : complex arc cosine and sine | |
1786 | +! fvn_d_acosh : arc cosinus hyperbolic | |
1787 | +! fvn_d_asinh : arc sinus hyperbolic | |
1788 | +! | |
1789 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1790 | +function fvn_z_acos(z) | |
1791 | + ! double complex arccos function adapted from | |
1792 | + ! the c gsl library | |
1793 | + ! http://www.gnu.org/software/gsl/ | |
1794 | + implicit none | |
1795 | + complex(kind=8) :: fvn_z_acos | |
1796 | + complex(kind=8) :: z | |
1797 | + real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1 | |
1798 | + real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8 | |
1799 | + complex(kind=8),parameter :: i=(0._8,1._8) | |
1800 | + real(kind=8) :: r_res,i_res | |
1801 | + | |
1802 | + rz=dble(z) | |
1803 | + iz=aimag(z) | |
1804 | + if ( iz == 0._8 ) then | |
1805 | + fvn_z_acos=fvn_z_acos_real(rz) | |
1806 | + return | |
1807 | + end if | |
1808 | + | |
1809 | + x=dabs(rz) | |
1810 | + y=dabs(iz) | |
1811 | + r=fvn_d_hypot(x+1.,y) | |
1812 | + s=fvn_d_hypot(x-1.,y) | |
1813 | + a=0.5*(r + s) | |
1814 | + b=x/a | |
1815 | + y2=y*y | |
1816 | + | |
1817 | + if (b <= b_crossover) then | |
1818 | + r_res=dacos(b) | |
1819 | + else | |
1820 | + if (x <= 1.) then | |
1821 | + d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x))) | |
1822 | + r_res=datan(dsqrt(d)/x) | |
1823 | + else | |
1824 | + apx=a+x | |
1825 | + d=0.5*(apx/(r+x+1)+apx/(s + (x - 1))) | |
1826 | + r_res=datan((y*dsqrt(d))/x); | |
1827 | + end if | |
1828 | + end if | |
1829 | + | |
1830 | + if (a <= a_crossover) then | |
1831 | + if (x < 1.) then | |
1832 | + am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x))) | |
1833 | + else | |
1834 | + am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1))) | |
1835 | + end if | |
1836 | + i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1)))); | |
1837 | + else | |
1838 | + i_res = dlog (a + dsqrt (a*a - 1.)); | |
1839 | + end if | |
1840 | + if (rz <0.) then | |
1841 | + r_res=fvn_pi-r_res | |
1842 | + end if | |
1843 | + i_res=-sign(1._8,iz)*i_res | |
1844 | + fvn_z_acos=dcmplx(r_res)+fvn_i*dcmplx(i_res) | |
1845 | + | |
1846 | +end function fvn_z_acos | |
1847 | + | |
1848 | +function fvn_z_acos_real(r) | |
1849 | + ! return the double complex arc cosinus for a | |
1850 | + ! double precision argument | |
1851 | + implicit none | |
1852 | + real(kind=8) :: r | |
1853 | + complex(kind=8) :: fvn_z_acos_real | |
1854 | + | |
1855 | + if (dabs(r)<=1._8) then | |
1856 | + fvn_z_acos_real=dcmplx(dacos(r)) | |
1857 | + return | |
1858 | + end if | |
1859 | + if (r < 0._8) then | |
1860 | + fvn_z_acos_real=dcmplx(fvn_pi)-fvn_i*dcmplx(fvn_d_acosh(-r)) | |
1861 | + else | |
1862 | + fvn_z_acos_real=fvn_i*dcmplx(fvn_d_acosh(r)) | |
1863 | + end if | |
1864 | +end function | |
1865 | + | |
1866 | + | |
1867 | +function fvn_z_asin(z) | |
1868 | + ! double complex arcsin function derived from | |
1869 | + ! the c gsl library | |
1870 | + ! http://www.gnu.org/software/gsl/ | |
1871 | + implicit none | |
1872 | + complex(kind=8) :: fvn_z_asin | |
1873 | + complex(kind=8) :: z | |
1874 | + real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1 | |
1875 | + real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8 | |
1876 | + real(kind=8) :: r_res,i_res | |
1877 | + | |
1878 | + rz=dble(z) | |
1879 | + iz=aimag(z) | |
1880 | + if ( iz == 0._8 ) then | |
1881 | + ! z is real | |
1882 | + fvn_z_asin=fvn_z_asin_real(rz) | |
1883 | + return | |
1884 | + end if | |
1885 | + | |
1886 | + x=dabs(rz) | |
1887 | + y=dabs(iz) | |
1888 | + r=fvn_d_hypot(x+1.,y) | |
1889 | + s=fvn_d_hypot(x-1.,y) | |
1890 | + a=0.5*(r + s) | |
1891 | + b=x/a | |
1892 | + y2=y*y | |
1893 | + | |
1894 | + if (b <= b_crossover) then | |
1895 | + r_res=dasin(b) | |
1896 | + else | |
1897 | + if (x <= 1.) then | |
1898 | + d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x))) | |
1899 | + r_res=datan(x/dsqrt(d)) | |
1900 | + else | |
1901 | + apx=a+x | |
1902 | + d=0.5*(apx/(r+x+1)+apx/(s + (x - 1))) | |
1903 | + r_res=datan(x/(y*dsqrt(d))); | |
1904 | + end if | |
1905 | + end if | |
1906 | + | |
1907 | + if (a <= a_crossover) then | |
1908 | + if (x < 1.) then | |
1909 | + am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x))) | |
1910 | + else | |
1911 | + am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1))) | |
1912 | + end if | |
1913 | + i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1)))); | |
1914 | + else | |
1915 | + i_res = dlog (a + dsqrt (a*a - 1.)); | |
1916 | + end if | |
1917 | + r_res=sign(1._8,rz)*r_res | |
1918 | + i_res=sign(1._8,iz)*i_res | |
1919 | + fvn_z_asin=dcmplx(r_res)+fvn_i*dcmplx(i_res) | |
1920 | + | |
1921 | +end function fvn_z_asin | |
1922 | + | |
1923 | +function fvn_z_asin_real(r) | |
1924 | + ! return the double complex arc sinus for a | |
1925 | + ! double precision argument | |
1926 | + implicit none | |
1927 | + real(kind=8) :: r | |
1928 | + complex(kind=8) :: fvn_z_asin_real | |
1929 | + | |
1930 | + if (dabs(r)<=1._8) then | |
1931 | + fvn_z_asin_real=dcmplx(dasin(r)) | |
1932 | + return | |
1933 | + end if | |
1934 | + if (r < 0._8) then | |
1935 | + fvn_z_asin_real=dcmplx(-fvn_pi/2._8)+fvn_i*dcmplx(fvn_d_acosh(-r)) | |
1936 | + else | |
1937 | + fvn_z_asin_real=dcmplx(fvn_pi/2._8)-fvn_i*dcmplx(fvn_d_acosh(r)) | |
1938 | + end if | |
1939 | +end function fvn_z_asin_real | |
1940 | + | |
1941 | +function fvn_d_acosh(r) | |
1942 | + ! return the arc hyperbolic cosine | |
1943 | + implicit none | |
1944 | + real(kind=8) :: r | |
1945 | + real(kind=8) :: fvn_d_acosh | |
1946 | + if (r >=1) then | |
1947 | + fvn_d_acosh=dlog(r+dsqrt(r*r-1)) | |
1948 | + else | |
1949 | + !! TODO : Better error handling!!!!!! | |
1950 | + stop "Argument to fvn_d_acosh lesser than 1" | |
1951 | + end if | |
1952 | +end function fvn_d_acosh | |
1953 | + | |
1954 | +function fvn_d_asinh(r) | |
1955 | + ! return the arc hyperbolic sine | |
1956 | + implicit none | |
1957 | + real(kind=8) :: r | |
1958 | + real(kind=8) :: fvn_d_asinh | |
1959 | + fvn_d_asinh=dlog(r+dsqrt(r*r+1)) | |
1960 | +end function fvn_d_asinh | |
1961 | + | |
1962 | +function fvn_d_hypot(a,b) | |
1963 | + implicit none | |
1964 | + ! return the euclidian norm of vector(a,b) | |
1965 | + real(kind=8) :: a,b | |
1966 | + real(kind=8) :: fvn_d_hypot | |
1967 | + fvn_d_hypot=dsqrt(a*a+b*b) | |
1968 | +end function | |
1775 | 1969 | |
1776 | 1970 | |
1777 | 1971 |