Commit f61865f4638158170082dca249903e6f846da6be

Authored by daniau
1 parent 25c42432dc

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@14 b657c933-2333-4658-acf2-d3c7c2708721

Showing 1 changed file with 195 additions and 1 deletions Inline Diff

1 1
module fvn 2 2 module fvn
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 4 4 !
! fvn : a f95 module replacement for some imsl routines 5 5 ! fvn : a f95 module replacement for some imsl routines
! it uses lapack for linear algebra 6 6 ! it uses lapack for linear algebra
! it uses modified quadpack for integration 7 7 ! it uses modified quadpack for integration
! 8 8 !
! William Daniau 2007 9 9 ! William Daniau 2007
! william.daniau@femto-st.fr 10 10 ! william.daniau@femto-st.fr
! 11 11 !
! Routines naming scheme : 12 12 ! Routines naming scheme :
! 13 13 !
! fvn_x_name 14 14 ! fvn_x_name
! where x can be s : real 15 15 ! where x can be s : real
! d : real double precision 16 16 ! d : real double precision
! c : complex 17 17 ! c : complex
! z : double complex 18 18 ! z : double complex
! 19 19 !
! 20 20 !
! This piece of code is totally free! Do whatever you want with it. However 21 21 ! This piece of code is totally free! Do whatever you want with it. However
! if you find it usefull it would be kind to give credits ;-) Nevertheless, you 22 22 ! if you find it usefull it would be kind to give credits ;-) Nevertheless, you
! may give credits to quadpack authors. 23 23 ! may give credits to quadpack authors.
! 24 24 !
! Version 1.1 25 25 ! svn version
26 ! June 2007 : added some complex trigonometric functions
! 26 27 !
! TO DO LIST : 27 28 ! TO DO LIST :
! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm 28 29 ! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm
! eigenvalues are given with no particular order. 29 30 ! eigenvalues are given with no particular order.
! + Generic interface for fvn_x_name family -> fvn_name 30 31 ! + Generic interface for fvn_x_name family -> fvn_name
! + Make some parameters optional, status for example 31 32 ! + Make some parameters optional, status for example
! + use f95 kinds "double complex" -> complex(kind=8) 32 33 ! + use f95 kinds "double complex" -> complex(kind=8)
! + unify quadpack routines 33 34 ! + unify quadpack routines
! + ... 34 35 ! + ...
! 35 36 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 36 37 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
37 38
implicit none 38 39 implicit none
40 ! We define pi and i for the module
41 real(kind=8),parameter :: fvn_pi = 3.141592653589793_8
42 complex(kind=8),parameter :: fvn_i = (0._8,1._8)
43
44
! All quadpack routines are private to the module 39 45 ! All quadpack routines are private to the module
private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & 40 46 private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, &
dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & 41 47 dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, &
dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, & 42 48 dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, &
dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt 43 49 dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt
44 50
45 51
contains 46 52 contains
47 53
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 48 54 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 49 55 !
! Matrix inversion subroutines 50 56 ! Matrix inversion subroutines
! 51 57 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 52 58 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fvn_s_matinv(d,a,inva,status) 53 59 subroutine fvn_s_matinv(d,a,inva,status)
! 54 60 !
! Matrix inversion of a real matrix using BLAS and LAPACK 55 61 ! Matrix inversion of a real matrix using BLAS and LAPACK
! 56 62 !
! d (in) : matrix rank 57 63 ! d (in) : matrix rank
! a (in) : input matrix 58 64 ! a (in) : input matrix
! inva (out) : inversed matrix 59 65 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 60 66 ! status (ou) : =0 if something failed
! 61 67 !
integer, intent(in) :: d 62 68 integer, intent(in) :: d
real, intent(in) :: a(d,d) 63 69 real, intent(in) :: a(d,d)
real, intent(out) :: inva(d,d) 64 70 real, intent(out) :: inva(d,d)
integer, intent(out) :: status 65 71 integer, intent(out) :: status
66 72
integer, allocatable :: ipiv(:) 67 73 integer, allocatable :: ipiv(:)
real, allocatable :: work(:) 68 74 real, allocatable :: work(:)
real twork(1) 69 75 real twork(1)
integer :: info 70 76 integer :: info
integer :: lwork 71 77 integer :: lwork
72 78
status=1 73 79 status=1
74 80
allocate(ipiv(d)) 75 81 allocate(ipiv(d))
! copy a into inva using BLAS 76 82 ! copy a into inva using BLAS
!call scopy(d*d,a,1,inva,1) 77 83 !call scopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 78 84 inva(:,:)=a(:,:)
! LU factorization using LAPACK 79 85 ! LU factorization using LAPACK
call sgetrf(d,d,inva,d,ipiv,info) 80 86 call sgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 81 87 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 82 88 if (info /= 0) then
status=0 83 89 status=0
deallocate(ipiv) 84 90 deallocate(ipiv)
return 85 91 return
end if 86 92 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 87 93 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call sgetri(d,inva,d,ipiv,twork,-1,info) 88 94 call sgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 89 95 lwork=int(twork(1))
allocate(work(lwork)) 90 96 allocate(work(lwork))
! Matrix inversion using LAPACK 91 97 ! Matrix inversion using LAPACK
call sgetri(d,inva,d,ipiv,work,lwork,info) 92 98 call sgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 93 99 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 94 100 if (info /= 0) then
status=0 95 101 status=0
end if 96 102 end if
deallocate(work) 97 103 deallocate(work)
deallocate(ipiv) 98 104 deallocate(ipiv)
end subroutine 99 105 end subroutine
100 106
subroutine fvn_d_matinv(d,a,inva,status) 101 107 subroutine fvn_d_matinv(d,a,inva,status)
! 102 108 !
! Matrix inversion of a double precision matrix using BLAS and LAPACK 103 109 ! Matrix inversion of a double precision matrix using BLAS and LAPACK
! 104 110 !
! d (in) : matrix rank 105 111 ! d (in) : matrix rank
! a (in) : input matrix 106 112 ! a (in) : input matrix
! inva (out) : inversed matrix 107 113 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 108 114 ! status (ou) : =0 if something failed
! 109 115 !
integer, intent(in) :: d 110 116 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 111 117 double precision, intent(in) :: a(d,d)
double precision, intent(out) :: inva(d,d) 112 118 double precision, intent(out) :: inva(d,d)
integer, intent(out) :: status 113 119 integer, intent(out) :: status
114 120
integer, allocatable :: ipiv(:) 115 121 integer, allocatable :: ipiv(:)
double precision, allocatable :: work(:) 116 122 double precision, allocatable :: work(:)
double precision :: twork(1) 117 123 double precision :: twork(1)
integer :: info 118 124 integer :: info
integer :: lwork 119 125 integer :: lwork
120 126
status=1 121 127 status=1
122 128
allocate(ipiv(d)) 123 129 allocate(ipiv(d))
! copy a into inva using BLAS 124 130 ! copy a into inva using BLAS
!call dcopy(d*d,a,1,inva,1) 125 131 !call dcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 126 132 inva(:,:)=a(:,:)
! LU factorization using LAPACK 127 133 ! LU factorization using LAPACK
call dgetrf(d,d,inva,d,ipiv,info) 128 134 call dgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 129 135 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 130 136 if (info /= 0) then
status=0 131 137 status=0
deallocate(ipiv) 132 138 deallocate(ipiv)
return 133 139 return
end if 134 140 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 135 141 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call dgetri(d,inva,d,ipiv,twork,-1,info) 136 142 call dgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 137 143 lwork=int(twork(1))
allocate(work(lwork)) 138 144 allocate(work(lwork))
! Matrix inversion using LAPACK 139 145 ! Matrix inversion using LAPACK
call dgetri(d,inva,d,ipiv,work,lwork,info) 140 146 call dgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 141 147 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 142 148 if (info /= 0) then
status=0 143 149 status=0
end if 144 150 end if
deallocate(work) 145 151 deallocate(work)
deallocate(ipiv) 146 152 deallocate(ipiv)
end subroutine 147 153 end subroutine
148 154
subroutine fvn_c_matinv(d,a,inva,status) 149 155 subroutine fvn_c_matinv(d,a,inva,status)
! 150 156 !
! Matrix inversion of a complex matrix using BLAS and LAPACK 151 157 ! Matrix inversion of a complex matrix using BLAS and LAPACK
! 152 158 !
! d (in) : matrix rank 153 159 ! d (in) : matrix rank
! a (in) : input matrix 154 160 ! a (in) : input matrix
! inva (out) : inversed matrix 155 161 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 156 162 ! status (ou) : =0 if something failed
! 157 163 !
integer, intent(in) :: d 158 164 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 159 165 complex, intent(in) :: a(d,d)
complex, intent(out) :: inva(d,d) 160 166 complex, intent(out) :: inva(d,d)
integer, intent(out) :: status 161 167 integer, intent(out) :: status
162 168
integer, allocatable :: ipiv(:) 163 169 integer, allocatable :: ipiv(:)
complex, allocatable :: work(:) 164 170 complex, allocatable :: work(:)
complex :: twork(1) 165 171 complex :: twork(1)
integer :: info 166 172 integer :: info
integer :: lwork 167 173 integer :: lwork
168 174
status=1 169 175 status=1
170 176
allocate(ipiv(d)) 171 177 allocate(ipiv(d))
! copy a into inva using BLAS 172 178 ! copy a into inva using BLAS
!call ccopy(d*d,a,1,inva,1) 173 179 !call ccopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 174 180 inva(:,:)=a(:,:)
175 181
! LU factorization using LAPACK 176 182 ! LU factorization using LAPACK
call cgetrf(d,d,inva,d,ipiv,info) 177 183 call cgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 178 184 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 179 185 if (info /= 0) then
status=0 180 186 status=0
deallocate(ipiv) 181 187 deallocate(ipiv)
return 182 188 return
end if 183 189 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 184 190 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call cgetri(d,inva,d,ipiv,twork,-1,info) 185 191 call cgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 186 192 lwork=int(twork(1))
allocate(work(lwork)) 187 193 allocate(work(lwork))
! Matrix inversion using LAPACK 188 194 ! Matrix inversion using LAPACK
call cgetri(d,inva,d,ipiv,work,lwork,info) 189 195 call cgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 190 196 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 191 197 if (info /= 0) then
status=0 192 198 status=0
end if 193 199 end if
deallocate(work) 194 200 deallocate(work)
deallocate(ipiv) 195 201 deallocate(ipiv)
end subroutine 196 202 end subroutine
197 203
subroutine fvn_z_matinv(d,a,inva,status) 198 204 subroutine fvn_z_matinv(d,a,inva,status)
! 199 205 !
! Matrix inversion of a double complex matrix using BLAS and LAPACK 200 206 ! Matrix inversion of a double complex matrix using BLAS and LAPACK
! 201 207 !
! d (in) : matrix rank 202 208 ! d (in) : matrix rank
! a (in) : input matrix 203 209 ! a (in) : input matrix
! inva (out) : inversed matrix 204 210 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 205 211 ! status (ou) : =0 if something failed
! 206 212 !
integer, intent(in) :: d 207 213 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 208 214 double complex, intent(in) :: a(d,d)
double complex, intent(out) :: inva(d,d) 209 215 double complex, intent(out) :: inva(d,d)
integer, intent(out) :: status 210 216 integer, intent(out) :: status
211 217
integer, allocatable :: ipiv(:) 212 218 integer, allocatable :: ipiv(:)
double complex, allocatable :: work(:) 213 219 double complex, allocatable :: work(:)
double complex :: twork(1) 214 220 double complex :: twork(1)
integer :: info 215 221 integer :: info
integer :: lwork 216 222 integer :: lwork
217 223
status=1 218 224 status=1
219 225
allocate(ipiv(d)) 220 226 allocate(ipiv(d))
! copy a into inva using BLAS 221 227 ! copy a into inva using BLAS
!call zcopy(d*d,a,1,inva,1) 222 228 !call zcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 223 229 inva(:,:)=a(:,:)
224 230
! LU factorization using LAPACK 225 231 ! LU factorization using LAPACK
call zgetrf(d,d,inva,d,ipiv,info) 226 232 call zgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 227 233 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 228 234 if (info /= 0) then
status=0 229 235 status=0
deallocate(ipiv) 230 236 deallocate(ipiv)
return 231 237 return
end if 232 238 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 233 239 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call zgetri(d,inva,d,ipiv,twork,-1,info) 234 240 call zgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 235 241 lwork=int(twork(1))
allocate(work(lwork)) 236 242 allocate(work(lwork))
! Matrix inversion using LAPACK 237 243 ! Matrix inversion using LAPACK
call zgetri(d,inva,d,ipiv,work,lwork,info) 238 244 call zgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 239 245 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 240 246 if (info /= 0) then
status=0 241 247 status=0
end if 242 248 end if
deallocate(work) 243 249 deallocate(work)
deallocate(ipiv) 244 250 deallocate(ipiv)
end subroutine 245 251 end subroutine
246 252
247 253
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 248 254 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 249 255 !
! Determinants 250 256 ! Determinants
! 251 257 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 252 258 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function fvn_s_det(d,a,status) 253 259 function fvn_s_det(d,a,status)
! 254 260 !
! Evaluate the determinant of a square matrix using lapack LU factorization 255 261 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 256 262 !
! d (in) : matrix rank 257 263 ! d (in) : matrix rank
! a (in) : The Matrix 258 264 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 259 265 ! status (out) : =0 if LU factorization failed
! 260 266 !
integer, intent(in) :: d 261 267 integer, intent(in) :: d
real, intent(in) :: a(d,d) 262 268 real, intent(in) :: a(d,d)
integer, intent(out) :: status 263 269 integer, intent(out) :: status
real :: fvn_s_det 264 270 real :: fvn_s_det
265 271
real, allocatable :: wc_a(:,:) 266 272 real, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 267 273 integer, allocatable :: ipiv(:)
integer :: info,i 268 274 integer :: info,i
269 275
status=1 270 276 status=1
allocate(wc_a(d,d)) 271 277 allocate(wc_a(d,d))
allocate(ipiv(d)) 272 278 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 273 279 wc_a(:,:)=a(:,:)
call sgetrf(d,d,wc_a,d,ipiv,info) 274 280 call sgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 275 281 if (info/= 0) then
status=0 276 282 status=0
fvn_s_det=0.e0 277 283 fvn_s_det=0.e0
deallocate(ipiv) 278 284 deallocate(ipiv)
deallocate(wc_a) 279 285 deallocate(wc_a)
return 280 286 return
end if 281 287 end if
fvn_s_det=1.e0 282 288 fvn_s_det=1.e0
do i=1,d 283 289 do i=1,d
if (ipiv(i)==i) then 284 290 if (ipiv(i)==i) then
fvn_s_det=fvn_s_det*wc_a(i,i) 285 291 fvn_s_det=fvn_s_det*wc_a(i,i)
else 286 292 else
fvn_s_det=-fvn_s_det*wc_a(i,i) 287 293 fvn_s_det=-fvn_s_det*wc_a(i,i)
end if 288 294 end if
end do 289 295 end do
deallocate(ipiv) 290 296 deallocate(ipiv)
deallocate(wc_a) 291 297 deallocate(wc_a)
292 298
end function 293 299 end function
294 300
function fvn_d_det(d,a,status) 295 301 function fvn_d_det(d,a,status)
! 296 302 !
! Evaluate the determinant of a square matrix using lapack LU factorization 297 303 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 298 304 !
! d (in) : matrix rank 299 305 ! d (in) : matrix rank
! a (in) : The Matrix 300 306 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 301 307 ! status (out) : =0 if LU factorization failed
! 302 308 !
integer, intent(in) :: d 303 309 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 304 310 double precision, intent(in) :: a(d,d)
integer, intent(out) :: status 305 311 integer, intent(out) :: status
double precision :: fvn_d_det 306 312 double precision :: fvn_d_det
307 313
double precision, allocatable :: wc_a(:,:) 308 314 double precision, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 309 315 integer, allocatable :: ipiv(:)
integer :: info,i 310 316 integer :: info,i
311 317
status=1 312 318 status=1
allocate(wc_a(d,d)) 313 319 allocate(wc_a(d,d))
allocate(ipiv(d)) 314 320 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 315 321 wc_a(:,:)=a(:,:)
call dgetrf(d,d,wc_a,d,ipiv,info) 316 322 call dgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 317 323 if (info/= 0) then
status=0 318 324 status=0
fvn_d_det=0.d0 319 325 fvn_d_det=0.d0
deallocate(ipiv) 320 326 deallocate(ipiv)
deallocate(wc_a) 321 327 deallocate(wc_a)
return 322 328 return
end if 323 329 end if
fvn_d_det=1.d0 324 330 fvn_d_det=1.d0
do i=1,d 325 331 do i=1,d
if (ipiv(i)==i) then 326 332 if (ipiv(i)==i) then
fvn_d_det=fvn_d_det*wc_a(i,i) 327 333 fvn_d_det=fvn_d_det*wc_a(i,i)
else 328 334 else
fvn_d_det=-fvn_d_det*wc_a(i,i) 329 335 fvn_d_det=-fvn_d_det*wc_a(i,i)
end if 330 336 end if
end do 331 337 end do
deallocate(ipiv) 332 338 deallocate(ipiv)
deallocate(wc_a) 333 339 deallocate(wc_a)
334 340
end function 335 341 end function
336 342
function fvn_c_det(d,a,status) ! 337 343 function fvn_c_det(d,a,status) !
! Evaluate the determinant of a square matrix using lapack LU factorization 338 344 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 339 345 !
! d (in) : matrix rank 340 346 ! d (in) : matrix rank
! a (in) : The Matrix 341 347 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 342 348 ! status (out) : =0 if LU factorization failed
! 343 349 !
integer, intent(in) :: d 344 350 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 345 351 complex, intent(in) :: a(d,d)
integer, intent(out) :: status 346 352 integer, intent(out) :: status
complex :: fvn_c_det 347 353 complex :: fvn_c_det
348 354
complex, allocatable :: wc_a(:,:) 349 355 complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 350 356 integer, allocatable :: ipiv(:)
integer :: info,i 351 357 integer :: info,i
352 358
status=1 353 359 status=1
allocate(wc_a(d,d)) 354 360 allocate(wc_a(d,d))
allocate(ipiv(d)) 355 361 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 356 362 wc_a(:,:)=a(:,:)
call cgetrf(d,d,wc_a,d,ipiv,info) 357 363 call cgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 358 364 if (info/= 0) then
status=0 359 365 status=0
fvn_c_det=(0.e0,0.e0) 360 366 fvn_c_det=(0.e0,0.e0)
deallocate(ipiv) 361 367 deallocate(ipiv)
deallocate(wc_a) 362 368 deallocate(wc_a)
return 363 369 return
end if 364 370 end if
fvn_c_det=(1.e0,0.e0) 365 371 fvn_c_det=(1.e0,0.e0)
do i=1,d 366 372 do i=1,d
if (ipiv(i)==i) then 367 373 if (ipiv(i)==i) then
fvn_c_det=fvn_c_det*wc_a(i,i) 368 374 fvn_c_det=fvn_c_det*wc_a(i,i)
else 369 375 else
fvn_c_det=-fvn_c_det*wc_a(i,i) 370 376 fvn_c_det=-fvn_c_det*wc_a(i,i)
end if 371 377 end if
end do 372 378 end do
deallocate(ipiv) 373 379 deallocate(ipiv)
deallocate(wc_a) 374 380 deallocate(wc_a)
375 381
end function 376 382 end function
377 383
function fvn_z_det(d,a,status) 378 384 function fvn_z_det(d,a,status)
! 379 385 !
! Evaluate the determinant of a square matrix using lapack LU factorization 380 386 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 381 387 !
! d (in) : matrix rank 382 388 ! d (in) : matrix rank
! a (in) : The Matrix 383 389 ! a (in) : The Matrix
! det (out) : determinant 384 390 ! det (out) : determinant
! status (out) : =0 if LU factorization failed 385 391 ! status (out) : =0 if LU factorization failed
! 386 392 !
integer, intent(in) :: d 387 393 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 388 394 double complex, intent(in) :: a(d,d)
integer, intent(out) :: status 389 395 integer, intent(out) :: status
double complex :: fvn_z_det 390 396 double complex :: fvn_z_det
391 397
double complex, allocatable :: wc_a(:,:) 392 398 double complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 393 399 integer, allocatable :: ipiv(:)
integer :: info,i 394 400 integer :: info,i
395 401
status=1 396 402 status=1
allocate(wc_a(d,d)) 397 403 allocate(wc_a(d,d))
allocate(ipiv(d)) 398 404 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 399 405 wc_a(:,:)=a(:,:)
call zgetrf(d,d,wc_a,d,ipiv,info) 400 406 call zgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 401 407 if (info/= 0) then
status=0 402 408 status=0
fvn_z_det=(0.d0,0.d0) 403 409 fvn_z_det=(0.d0,0.d0)
deallocate(ipiv) 404 410 deallocate(ipiv)
deallocate(wc_a) 405 411 deallocate(wc_a)
return 406 412 return
end if 407 413 end if
fvn_z_det=(1.d0,0.d0) 408 414 fvn_z_det=(1.d0,0.d0)
do i=1,d 409 415 do i=1,d
if (ipiv(i)==i) then 410 416 if (ipiv(i)==i) then
fvn_z_det=fvn_z_det*wc_a(i,i) 411 417 fvn_z_det=fvn_z_det*wc_a(i,i)
else 412 418 else
fvn_z_det=-fvn_z_det*wc_a(i,i) 413 419 fvn_z_det=-fvn_z_det*wc_a(i,i)
end if 414 420 end if
end do 415 421 end do
deallocate(ipiv) 416 422 deallocate(ipiv)
deallocate(wc_a) 417 423 deallocate(wc_a)
418 424
end function 419 425 end function
420 426
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 421 427 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 422 428 !
! Condition test 423 429 ! Condition test
! 424 430 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 425 431 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1-norm 426 432 ! 1-norm
! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm 427 433 ! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm
! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond 428 434 ! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond
! 429 435 !
subroutine fvn_s_matcon(d,a,rcond,status) 430 436 subroutine fvn_s_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 431 437 ! Matrix condition (reciprocal of condition number)
! 432 438 !
! d (in) : matrix rank 433 439 ! d (in) : matrix rank
! a (in) : The Matrix 434 440 ! a (in) : The Matrix
! rcond (out) : guess what 435 441 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 436 442 ! status (out) : =0 if something went wrong
! 437 443 !
integer, intent(in) :: d 438 444 integer, intent(in) :: d
real, intent(in) :: a(d,d) 439 445 real, intent(in) :: a(d,d)
real, intent(out) :: rcond 440 446 real, intent(out) :: rcond
integer, intent(out) :: status 441 447 integer, intent(out) :: status
442 448
real, allocatable :: work(:) 443 449 real, allocatable :: work(:)
integer, allocatable :: iwork(:) 444 450 integer, allocatable :: iwork(:)
real :: anorm 445 451 real :: anorm
real, allocatable :: wc_a(:,:) ! working copy of a 446 452 real, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 447 453 integer :: info
integer, allocatable :: ipiv(:) 448 454 integer, allocatable :: ipiv(:)
449 455
real, external :: slange 450 456 real, external :: slange
451 457
452 458
status=1 453 459 status=1
454 460
anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm 455 461 anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
456 462
allocate(wc_a(d,d)) 457 463 allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1) 458 464 !call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 459 465 wc_a(:,:)=a(:,:)
460 466
allocate(ipiv(d)) 461 467 allocate(ipiv(d))
call sgetrf(d,d,wc_a,d,ipiv,info) 462 468 call sgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 463 469 if (info /= 0) then
status=0 464 470 status=0
deallocate(ipiv) 465 471 deallocate(ipiv)
deallocate(wc_a) 466 472 deallocate(wc_a)
return 467 473 return
end if 468 474 end if
allocate(work(4*d)) 469 475 allocate(work(4*d))
allocate(iwork(d)) 470 476 allocate(iwork(d))
call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) 471 477 call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then 472 478 if (info /= 0) then
status=0 473 479 status=0
end if 474 480 end if
deallocate(iwork) 475 481 deallocate(iwork)
deallocate(work) 476 482 deallocate(work)
deallocate(ipiv) 477 483 deallocate(ipiv)
deallocate(wc_a) 478 484 deallocate(wc_a)
479 485
end subroutine 480 486 end subroutine
481 487
subroutine fvn_d_matcon(d,a,rcond,status) 482 488 subroutine fvn_d_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 483 489 ! Matrix condition (reciprocal of condition number)
! 484 490 !
! d (in) : matrix rank 485 491 ! d (in) : matrix rank
! a (in) : The Matrix 486 492 ! a (in) : The Matrix
! rcond (out) : guess what 487 493 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 488 494 ! status (out) : =0 if something went wrong
! 489 495 !
integer, intent(in) :: d 490 496 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 491 497 double precision, intent(in) :: a(d,d)
double precision, intent(out) :: rcond 492 498 double precision, intent(out) :: rcond
integer, intent(out) :: status 493 499 integer, intent(out) :: status
494 500
double precision, allocatable :: work(:) 495 501 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 496 502 integer, allocatable :: iwork(:)
double precision :: anorm 497 503 double precision :: anorm
double precision, allocatable :: wc_a(:,:) ! working copy of a 498 504 double precision, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 499 505 integer :: info
integer, allocatable :: ipiv(:) 500 506 integer, allocatable :: ipiv(:)
501 507
double precision, external :: dlange 502 508 double precision, external :: dlange
503 509
504 510
status=1 505 511 status=1
506 512
anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm 507 513 anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
508 514
allocate(wc_a(d,d)) 509 515 allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1) 510 516 !call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 511 517 wc_a(:,:)=a(:,:)
512 518
allocate(ipiv(d)) 513 519 allocate(ipiv(d))
call dgetrf(d,d,wc_a,d,ipiv,info) 514 520 call dgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 515 521 if (info /= 0) then
status=0 516 522 status=0
deallocate(ipiv) 517 523 deallocate(ipiv)
deallocate(wc_a) 518 524 deallocate(wc_a)
return 519 525 return
end if 520 526 end if
521 527
allocate(work(4*d)) 522 528 allocate(work(4*d))
allocate(iwork(d)) 523 529 allocate(iwork(d))
call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) 524 530 call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then 525 531 if (info /= 0) then
status=0 526 532 status=0
end if 527 533 end if
deallocate(iwork) 528 534 deallocate(iwork)
deallocate(work) 529 535 deallocate(work)
deallocate(ipiv) 530 536 deallocate(ipiv)
deallocate(wc_a) 531 537 deallocate(wc_a)
532 538
end subroutine 533 539 end subroutine
534 540
subroutine fvn_c_matcon(d,a,rcond,status) 535 541 subroutine fvn_c_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 536 542 ! Matrix condition (reciprocal of condition number)
! 537 543 !
! d (in) : matrix rank 538 544 ! d (in) : matrix rank
! a (in) : The Matrix 539 545 ! a (in) : The Matrix
! rcond (out) : guess what 540 546 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 541 547 ! status (out) : =0 if something went wrong
! 542 548 !
integer, intent(in) :: d 543 549 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 544 550 complex, intent(in) :: a(d,d)
real, intent(out) :: rcond 545 551 real, intent(out) :: rcond
integer, intent(out) :: status 546 552 integer, intent(out) :: status
547 553
real, allocatable :: rwork(:) 548 554 real, allocatable :: rwork(:)
complex, allocatable :: work(:) 549 555 complex, allocatable :: work(:)
integer, allocatable :: iwork(:) 550 556 integer, allocatable :: iwork(:)
real :: anorm 551 557 real :: anorm
complex, allocatable :: wc_a(:,:) ! working copy of a 552 558 complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 553 559 integer :: info
integer, allocatable :: ipiv(:) 554 560 integer, allocatable :: ipiv(:)
555 561
real, external :: clange 556 562 real, external :: clange
557 563
558 564
status=1 559 565 status=1
560 566
anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm 561 567 anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
562 568
allocate(wc_a(d,d)) 563 569 allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1) 564 570 !call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 565 571 wc_a(:,:)=a(:,:)
566 572
allocate(ipiv(d)) 567 573 allocate(ipiv(d))
call cgetrf(d,d,wc_a,d,ipiv,info) 568 574 call cgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 569 575 if (info /= 0) then
status=0 570 576 status=0
deallocate(ipiv) 571 577 deallocate(ipiv)
deallocate(wc_a) 572 578 deallocate(wc_a)
return 573 579 return
end if 574 580 end if
allocate(work(2*d)) 575 581 allocate(work(2*d))
allocate(rwork(2*d)) 576 582 allocate(rwork(2*d))
call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) 577 583 call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then 578 584 if (info /= 0) then
status=0 579 585 status=0
end if 580 586 end if
deallocate(rwork) 581 587 deallocate(rwork)
deallocate(work) 582 588 deallocate(work)
deallocate(ipiv) 583 589 deallocate(ipiv)
deallocate(wc_a) 584 590 deallocate(wc_a)
end subroutine 585 591 end subroutine
586 592
subroutine fvn_z_matcon(d,a,rcond,status) 587 593 subroutine fvn_z_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 588 594 ! Matrix condition (reciprocal of condition number)
! 589 595 !
! d (in) : matrix rank 590 596 ! d (in) : matrix rank
! a (in) : The Matrix 591 597 ! a (in) : The Matrix
! rcond (out) : guess what 592 598 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 593 599 ! status (out) : =0 if something went wrong
! 594 600 !
integer, intent(in) :: d 595 601 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 596 602 double complex, intent(in) :: a(d,d)
double precision, intent(out) :: rcond 597 603 double precision, intent(out) :: rcond
integer, intent(out) :: status 598 604 integer, intent(out) :: status
599 605
double complex, allocatable :: work(:) 600 606 double complex, allocatable :: work(:)
double precision, allocatable :: rwork(:) 601 607 double precision, allocatable :: rwork(:)
double precision :: anorm 602 608 double precision :: anorm
double complex, allocatable :: wc_a(:,:) ! working copy of a 603 609 double complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 604 610 integer :: info
integer, allocatable :: ipiv(:) 605 611 integer, allocatable :: ipiv(:)
606 612
double precision, external :: zlange 607 613 double precision, external :: zlange
608 614
609 615
status=1 610 616 status=1
611 617
anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm 612 618 anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
613 619
allocate(wc_a(d,d)) 614 620 allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1) 615 621 !call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 616 622 wc_a(:,:)=a(:,:)
617 623
allocate(ipiv(d)) 618 624 allocate(ipiv(d))
call zgetrf(d,d,wc_a,d,ipiv,info) 619 625 call zgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 620 626 if (info /= 0) then
status=0 621 627 status=0
deallocate(ipiv) 622 628 deallocate(ipiv)
deallocate(wc_a) 623 629 deallocate(wc_a)
return 624 630 return
end if 625 631 end if
626 632
allocate(work(2*d)) 627 633 allocate(work(2*d))
allocate(rwork(2*d)) 628 634 allocate(rwork(2*d))
call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) 629 635 call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then 630 636 if (info /= 0) then
status=0 631 637 status=0
end if 632 638 end if
deallocate(rwork) 633 639 deallocate(rwork)
deallocate(work) 634 640 deallocate(work)
deallocate(ipiv) 635 641 deallocate(ipiv)
deallocate(wc_a) 636 642 deallocate(wc_a)
end subroutine 637 643 end subroutine
638 644
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 639 645 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 640 646 !
! Valeurs propres/ Vecteurs propre 641 647 ! Valeurs propres/ Vecteurs propre
! 642 648 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 643 649 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
644 650
subroutine fvn_s_matev(d,a,evala,eveca,status) 645 651 subroutine fvn_s_matev(d,a,evala,eveca,status)
! 646 652 !
! integer d (in) : matrice rank 647 653 ! integer d (in) : matrice rank
! real a(d,d) (in) : The Matrix 648 654 ! real a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues 649 655 ! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 650 656 ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 651 657 ! integer (out) : status =0 if something went wrong
! 652 658 !
! interfacing Lapack routine SGEEV 653 659 ! interfacing Lapack routine SGEEV
654 660
integer, intent(in) :: d 655 661 integer, intent(in) :: d
real, intent(in) :: a(d,d) 656 662 real, intent(in) :: a(d,d)
complex, intent(out) :: evala(d) 657 663 complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d) 658 664 complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 659 665 integer, intent(out) :: status
660 666
real, allocatable :: wc_a(:,:) ! a working copy of a 661 667 real, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 662 668 integer :: info
integer :: lwork 663 669 integer :: lwork
real, allocatable :: wr(:),wi(:) 664 670 real, allocatable :: wr(:),wi(:)
real :: vl ! unused but necessary for the call 665 671 real :: vl ! unused but necessary for the call
real, allocatable :: vr(:,:) 666 672 real, allocatable :: vr(:,:)
real, allocatable :: work(:) 667 673 real, allocatable :: work(:)
real :: twork(1) 668 674 real :: twork(1)
integer i 669 675 integer i
integer j 670 676 integer j
671 677
! making a working copy of a 672 678 ! making a working copy of a
allocate(wc_a(d,d)) 673 679 allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1) 674 680 !call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 675 681 wc_a(:,:)=a(:,:)
676 682
allocate(wr(d)) 677 683 allocate(wr(d))
allocate(wi(d)) 678 684 allocate(wi(d))
allocate(vr(d,d)) 679 685 allocate(vr(d,d))
! query optimal work size 680 686 ! query optimal work size
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) 681 687 call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1)) 682 688 lwork=int(twork(1))
allocate(work(lwork)) 683 689 allocate(work(lwork))
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) 684 690 call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
685 691
if (info /= 0) then 686 692 if (info /= 0) then
status=0 687 693 status=0
deallocate(work) 688 694 deallocate(work)
deallocate(vr) 689 695 deallocate(vr)
deallocate(wi) 690 696 deallocate(wi)
deallocate(wr) 691 697 deallocate(wr)
deallocate(wc_a) 692 698 deallocate(wc_a)
return 693 699 return
end if 694 700 end if
695 701
! now fill in the results 696 702 ! now fill in the results
i=1 697 703 i=1
do while(i<=d) 698 704 do while(i<=d)
evala(i)=cmplx(wr(i),wi(i)) 699 705 evala(i)=cmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real 700 706 if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=cmplx(vr(:,i),0.) 701 707 eveca(:,i)=cmplx(vr(:,i),0.)
else ! eigenvalue is complex 702 708 else ! eigenvalue is complex
evala(i+1)=cmplx(wr(i+1),wi(i+1)) 703 709 evala(i+1)=cmplx(wr(i+1),wi(i+1))
eveca(:,i)=cmplx(vr(:,i),vr(:,i+1)) 704 710 eveca(:,i)=cmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1)) 705 711 eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1))
i=i+1 706 712 i=i+1
end if 707 713 end if
i=i+1 708 714 i=i+1
enddo 709 715 enddo
deallocate(work) 710 716 deallocate(work)
deallocate(vr) 711 717 deallocate(vr)
deallocate(wi) 712 718 deallocate(wi)
deallocate(wr) 713 719 deallocate(wr)
deallocate(wc_a) 714 720 deallocate(wc_a)
715 721
end subroutine 716 722 end subroutine
717 723
subroutine fvn_d_matev(d,a,evala,eveca,status) 718 724 subroutine fvn_d_matev(d,a,evala,eveca,status)
! 719 725 !
! integer d (in) : matrice rank 720 726 ! integer d (in) : matrice rank
! double precision a(d,d) (in) : The Matrix 721 727 ! double precision a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues 722 728 ! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 723 729 ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 724 730 ! integer (out) : status =0 if something went wrong
! 725 731 !
! interfacing Lapack routine DGEEV 726 732 ! interfacing Lapack routine DGEEV
integer, intent(in) :: d 727 733 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 728 734 double precision, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d) 729 735 double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d) 730 736 double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 731 737 integer, intent(out) :: status
732 738
double precision, allocatable :: wc_a(:,:) ! a working copy of a 733 739 double precision, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 734 740 integer :: info
integer :: lwork 735 741 integer :: lwork
double precision, allocatable :: wr(:),wi(:) 736 742 double precision, allocatable :: wr(:),wi(:)
double precision :: vl ! unused but necessary for the call 737 743 double precision :: vl ! unused but necessary for the call
double precision, allocatable :: vr(:,:) 738 744 double precision, allocatable :: vr(:,:)
double precision, allocatable :: work(:) 739 745 double precision, allocatable :: work(:)
double precision :: twork(1) 740 746 double precision :: twork(1)
integer i 741 747 integer i
integer j 742 748 integer j
743 749
! making a working copy of a 744 750 ! making a working copy of a
allocate(wc_a(d,d)) 745 751 allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1) 746 752 !call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 747 753 wc_a(:,:)=a(:,:)
748 754
allocate(wr(d)) 749 755 allocate(wr(d))
allocate(wi(d)) 750 756 allocate(wi(d))
allocate(vr(d,d)) 751 757 allocate(vr(d,d))
! query optimal work size 752 758 ! query optimal work size
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) 753 759 call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1)) 754 760 lwork=int(twork(1))
allocate(work(lwork)) 755 761 allocate(work(lwork))
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) 756 762 call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
757 763
if (info /= 0) then 758 764 if (info /= 0) then
status=0 759 765 status=0
deallocate(work) 760 766 deallocate(work)
deallocate(vr) 761 767 deallocate(vr)
deallocate(wi) 762 768 deallocate(wi)
deallocate(wr) 763 769 deallocate(wr)
deallocate(wc_a) 764 770 deallocate(wc_a)
return 765 771 return
end if 766 772 end if
767 773
! now fill in the results 768 774 ! now fill in the results
i=1 769 775 i=1
do while(i<=d) 770 776 do while(i<=d)
evala(i)=dcmplx(wr(i),wi(i)) 771 777 evala(i)=dcmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real 772 778 if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=dcmplx(vr(:,i),0.) 773 779 eveca(:,i)=dcmplx(vr(:,i),0.)
else ! eigenvalue is complex 774 780 else ! eigenvalue is complex
evala(i+1)=dcmplx(wr(i+1),wi(i+1)) 775 781 evala(i+1)=dcmplx(wr(i+1),wi(i+1))
eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1)) 776 782 eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1)) 777 783 eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1))
i=i+1 778 784 i=i+1
end if 779 785 end if
i=i+1 780 786 i=i+1
enddo 781 787 enddo
782 788
deallocate(work) 783 789 deallocate(work)
deallocate(vr) 784 790 deallocate(vr)
deallocate(wi) 785 791 deallocate(wi)
deallocate(wr) 786 792 deallocate(wr)
deallocate(wc_a) 787 793 deallocate(wc_a)
788 794
end subroutine 789 795 end subroutine
790 796
subroutine fvn_c_matev(d,a,evala,eveca,status) 791 797 subroutine fvn_c_matev(d,a,evala,eveca,status)
! 792 798 !
! integer d (in) : matrice rank 793 799 ! integer d (in) : matrice rank
! complex a(d,d) (in) : The Matrix 794 800 ! complex a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues 795 801 ! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 796 802 ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 797 803 ! integer (out) : status =0 if something went wrong
! 798 804 !
! interfacing Lapack routine CGEEV 799 805 ! interfacing Lapack routine CGEEV
800 806
integer, intent(in) :: d 801 807 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 802 808 complex, intent(in) :: a(d,d)
complex, intent(out) :: evala(d) 803 809 complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d) 804 810 complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 805 811 integer, intent(out) :: status
806 812
complex, allocatable :: wc_a(:,:) ! a working copy of a 807 813 complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 808 814 integer :: info
integer :: lwork 809 815 integer :: lwork
complex, allocatable :: work(:) 810 816 complex, allocatable :: work(:)
complex :: twork(1) 811 817 complex :: twork(1)
real, allocatable :: rwork(:) 812 818 real, allocatable :: rwork(:)
complex :: vl ! unused but necessary for the call 813 819 complex :: vl ! unused but necessary for the call
814 820
status=1 815 821 status=1
816 822
! making a working copy of a 817 823 ! making a working copy of a
allocate(wc_a(d,d)) 818 824 allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1) 819 825 !call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 820 826 wc_a(:,:)=a(:,:)
821 827
822 828
! query optimal work size 823 829 ! query optimal work size
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) 824 830 call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1)) 825 831 lwork=int(twork(1))
allocate(work(lwork)) 826 832 allocate(work(lwork))
allocate(rwork(2*d)) 827 833 allocate(rwork(2*d))
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) 828 834 call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
829 835
if (info /= 0) then 830 836 if (info /= 0) then
status=0 831 837 status=0
end if 832 838 end if
deallocate(rwork) 833 839 deallocate(rwork)
deallocate(work) 834 840 deallocate(work)
deallocate(wc_a) 835 841 deallocate(wc_a)
836 842
end subroutine 837 843 end subroutine
838 844
subroutine fvn_z_matev(d,a,evala,eveca,status) 839 845 subroutine fvn_z_matev(d,a,evala,eveca,status)
! 840 846 !
! integer d (in) : matrice rank 841 847 ! integer d (in) : matrice rank
! double complex a(d,d) (in) : The Matrix 842 848 ! double complex a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues 843 849 ! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 844 850 ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 845 851 ! integer (out) : status =0 if something went wrong
! 846 852 !
! interfacing Lapack routine ZGEEV 847 853 ! interfacing Lapack routine ZGEEV
848 854
integer, intent(in) :: d 849 855 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 850 856 double complex, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d) 851 857 double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d) 852 858 double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 853 859 integer, intent(out) :: status
854 860
double complex, allocatable :: wc_a(:,:) ! a working copy of a 855 861 double complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 856 862 integer :: info
integer :: lwork 857 863 integer :: lwork
double complex, allocatable :: work(:) 858 864 double complex, allocatable :: work(:)
double complex :: twork(1) 859 865 double complex :: twork(1)
double precision, allocatable :: rwork(:) 860 866 double precision, allocatable :: rwork(:)
double complex :: vl ! unused but necessary for the call 861 867 double complex :: vl ! unused but necessary for the call
862 868
status=1 863 869 status=1
864 870
! making a working copy of a 865 871 ! making a working copy of a
allocate(wc_a(d,d)) 866 872 allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1) 867 873 !call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 868 874 wc_a(:,:)=a(:,:)
869 875
! query optimal work size 870 876 ! query optimal work size
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) 871 877 call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1)) 872 878 lwork=int(twork(1))
allocate(work(lwork)) 873 879 allocate(work(lwork))
allocate(rwork(2*d)) 874 880 allocate(rwork(2*d))
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) 875 881 call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
876 882
if (info /= 0) then 877 883 if (info /= 0) then
status=0 878 884 status=0
end if 879 885 end if
deallocate(rwork) 880 886 deallocate(rwork)
deallocate(work) 881 887 deallocate(work)
deallocate(wc_a) 882 888 deallocate(wc_a)
883 889
end subroutine 884 890 end subroutine
885 891
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 886 892 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 887 893 !
! Akima spline interpolation and spline evaluation 888 894 ! Akima spline interpolation and spline evaluation
! 889 895 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 890 896 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
891 897
! Single precision 892 898 ! Single precision
subroutine fvn_s_akima(n,x,y,br,co) 893 899 subroutine fvn_s_akima(n,x,y,br,co)
implicit none 894 900 implicit none
integer, intent(in) :: n 895 901 integer, intent(in) :: n
real, intent(in) :: x(n) 896 902 real, intent(in) :: x(n)
real, intent(in) :: y(n) 897 903 real, intent(in) :: y(n)
real, intent(out) :: br(n) 898 904 real, intent(out) :: br(n)
real, intent(out) :: co(4,n) 899 905 real, intent(out) :: co(4,n)
900 906
real, allocatable :: var(:),z(:) 901 907 real, allocatable :: var(:),z(:)
real :: wi_1,wi 902 908 real :: wi_1,wi
integer :: i 903 909 integer :: i
real :: dx,a,b 904 910 real :: dx,a,b
905 911
! br is just a copy of x 906 912 ! br is just a copy of x
br(:)=x(:) 907 913 br(:)=x(:)
908 914
allocate(var(n)) 909 915 allocate(var(n))
allocate(z(n)) 910 916 allocate(z(n))
! evaluate the variations 911 917 ! evaluate the variations
do i=1, n-1 912 918 do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) 913 919 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do 914 920 end do
var(n+2)=2.e0*var(n+1)-var(n) 915 921 var(n+2)=2.e0*var(n+1)-var(n)
var(n+3)=2.e0*var(n+2)-var(n+1) 916 922 var(n+3)=2.e0*var(n+2)-var(n+1)
var(2)=2.e0*var(3)-var(4) 917 923 var(2)=2.e0*var(3)-var(4)
var(1)=2.e0*var(2)-var(3) 918 924 var(1)=2.e0*var(2)-var(3)
919 925
do i = 1, n 920 926 do i = 1, n
wi_1=abs(var(i+3)-var(i+2)) 921 927 wi_1=abs(var(i+3)-var(i+2))
wi=abs(var(i+1)-var(i)) 922 928 wi=abs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.e0) then 923 929 if ((wi_1+wi).eq.0.e0) then
z(i)=(var(i+2)+var(i+1))/2.e0 924 930 z(i)=(var(i+2)+var(i+1))/2.e0
else 925 931 else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) 926 932 z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if 927 933 end if
end do 928 934 end do
929 935
do i=1, n-1 930 936 do i=1, n-1
dx=x(i+1)-x(i) 931 937 dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd 932 938 a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd 933 939 b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i) 934 940 co(1,i)=y(i)
co(2,i)=z(i) 935 941 co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd 936 942 !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd
!co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd 937 943 !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd
co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau 938 944 co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! 939 945 co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 !
! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 940 946 ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ... 941 947 ! etrangement la fonction csval corrige et donne la bonne valeur ...
end do 942 948 end do
co(1,n)=y(n) 943 949 co(1,n)=y(n)
co(2,n)=z(n) 944 950 co(2,n)=z(n)
co(3,n)=0.e0 945 951 co(3,n)=0.e0
co(4,n)=0.e0 946 952 co(4,n)=0.e0
947 953
deallocate(z) 948 954 deallocate(z)
deallocate(var) 949 955 deallocate(var)
950 956
end subroutine 951 957 end subroutine
952 958
! Double precision 953 959 ! Double precision
subroutine fvn_d_akima(n,x,y,br,co) 954 960 subroutine fvn_d_akima(n,x,y,br,co)
955 961
implicit none 956 962 implicit none
integer, intent(in) :: n 957 963 integer, intent(in) :: n
double precision, intent(in) :: x(n) 958 964 double precision, intent(in) :: x(n)
double precision, intent(in) :: y(n) 959 965 double precision, intent(in) :: y(n)
double precision, intent(out) :: br(n) 960 966 double precision, intent(out) :: br(n)
double precision, intent(out) :: co(4,n) 961 967 double precision, intent(out) :: co(4,n)
962 968
double precision, allocatable :: var(:),z(:) 963 969 double precision, allocatable :: var(:),z(:)
double precision :: wi_1,wi 964 970 double precision :: wi_1,wi
integer :: i 965 971 integer :: i
double precision :: dx,a,b 966 972 double precision :: dx,a,b
967 973
! br is just a copy of x 968 974 ! br is just a copy of x
br(:)=x(:) 969 975 br(:)=x(:)
970 976
allocate(var(n)) 971 977 allocate(var(n))
allocate(z(n)) 972 978 allocate(z(n))
! evaluate the variations 973 979 ! evaluate the variations
do i=1, n-1 974 980 do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) 975 981 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do 976 982 end do
var(n+2)=2.d0*var(n+1)-var(n) 977 983 var(n+2)=2.d0*var(n+1)-var(n)
var(n+3)=2.d0*var(n+2)-var(n+1) 978 984 var(n+3)=2.d0*var(n+2)-var(n+1)
var(2)=2.d0*var(3)-var(4) 979 985 var(2)=2.d0*var(3)-var(4)
var(1)=2.d0*var(2)-var(3) 980 986 var(1)=2.d0*var(2)-var(3)
981 987
do i = 1, n 982 988 do i = 1, n
wi_1=dabs(var(i+3)-var(i+2)) 983 989 wi_1=dabs(var(i+3)-var(i+2))
wi=dabs(var(i+1)-var(i)) 984 990 wi=dabs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.d0) then 985 991 if ((wi_1+wi).eq.0.d0) then
z(i)=(var(i+2)+var(i+1))/2.d0 986 992 z(i)=(var(i+2)+var(i+1))/2.d0
else 987 993 else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) 988 994 z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if 989 995 end if
end do 990 996 end do
991 997
do i=1, n-1 992 998 do i=1, n-1
dx=x(i+1)-x(i) 993 999 dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd 994 1000 a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd 995 1001 b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i) 996 1002 co(1,i)=y(i)
co(2,i)=z(i) 997 1003 co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd 998 1004 !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd
!co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd 999 1005 !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd
co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau 1000 1006 co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! 1001 1007 co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 !
! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 1002 1008 ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ... 1003 1009 ! etrangement la fonction csval corrige et donne la bonne valeur ...
end do 1004 1010 end do
co(1,n)=y(n) 1005 1011 co(1,n)=y(n)
co(2,n)=z(n) 1006 1012 co(2,n)=z(n)
co(3,n)=0.d0 1007 1013 co(3,n)=0.d0
co(4,n)=0.d0 1008 1014 co(4,n)=0.d0
1009 1015
deallocate(z) 1010 1016 deallocate(z)
deallocate(var) 1011 1017 deallocate(var)
1012 1018
end subroutine 1013 1019 end subroutine
1014 1020
! 1015 1021 !
! Single precision spline evaluation 1016 1022 ! Single precision spline evaluation
! 1017 1023 !
function fvn_s_spline_eval(x,n,br,co) 1018 1024 function fvn_s_spline_eval(x,n,br,co)
implicit none 1019 1025 implicit none
real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated 1020 1026 real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals 1021 1027 integer, intent(in) :: n ! number of intervals
real, intent(in) :: br(n+1) ! breakpoints 1022 1028 real, intent(in) :: br(n+1) ! breakpoints
real, intent(in) :: co(4,n+1) ! spline coeeficients 1023 1029 real, intent(in) :: co(4,n+1) ! spline coeeficients
real :: fvn_s_spline_eval 1024 1030 real :: fvn_s_spline_eval
1025 1031
integer :: i 1026 1032 integer :: i
real :: dx 1027 1033 real :: dx
1028 1034
if (x<=br(1)) then 1029 1035 if (x<=br(1)) then
i=1 1030 1036 i=1
else if (x>=br(n+1)) then 1031 1037 else if (x>=br(n+1)) then
i=n 1032 1038 i=n
else 1033 1039 else
i=1 1034 1040 i=1
do while(x>=br(i)) 1035 1041 do while(x>=br(i))
i=i+1 1036 1042 i=i+1
end do 1037 1043 end do
i=i-1 1038 1044 i=i-1
end if 1039 1045 end if
dx=x-br(i) 1040 1046 dx=x-br(i)
fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 1041 1047 fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
1042 1048
end function 1043 1049 end function
1044 1050
! Double precision spline evaluation 1045 1051 ! Double precision spline evaluation
function fvn_d_spline_eval(x,n,br,co) 1046 1052 function fvn_d_spline_eval(x,n,br,co)
implicit none 1047 1053 implicit none
double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated 1048 1054 double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals 1049 1055 integer, intent(in) :: n ! number of intervals
double precision, intent(in) :: br(n+1) ! breakpoints 1050 1056 double precision, intent(in) :: br(n+1) ! breakpoints
double precision, intent(in) :: co(4,n+1) ! spline coeeficients 1051 1057 double precision, intent(in) :: co(4,n+1) ! spline coeeficients
double precision :: fvn_d_spline_eval 1052 1058 double precision :: fvn_d_spline_eval
1053 1059
integer :: i 1054 1060 integer :: i
double precision :: dx 1055 1061 double precision :: dx
1056 1062
1057 1063
if (x<=br(1)) then 1058 1064 if (x<=br(1)) then
i=1 1059 1065 i=1
else if (x>=br(n+1)) then 1060 1066 else if (x>=br(n+1)) then
i=n 1061 1067 i=n
else 1062 1068 else
i=1 1063 1069 i=1
do while(x>=br(i)) 1064 1070 do while(x>=br(i))
i=i+1 1065 1071 i=i+1
end do 1066 1072 end do
i=i-1 1067 1073 i=i-1
end if 1068 1074 end if
1069 1075
dx=x-br(i) 1070 1076 dx=x-br(i)
fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 1071 1077 fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
1072 1078
end function 1073 1079 end function
1074 1080
1075 1081
! 1076 1082 !
! Muller 1077 1083 ! Muller
! 1078 1084 !
! 1079 1085 !
! 1080 1086 !
! William Daniau 2007 1081 1087 ! William Daniau 2007
! 1082 1088 !
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f 1083 1089 ! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f
! http://plato.asu.edu/ftp/other_software/muller.f 1084 1090 ! http://plato.asu.edu/ftp/other_software/muller.f
! 1085 1091 !
! it can be used as a replacement for imsl routine dzanly with minor changes 1086 1092 ! it can be used as a replacement for imsl routine dzanly with minor changes
! 1087 1093 !
!----------------------------------------------------------------------- 1088 1094 !-----------------------------------------------------------------------
! 1089 1095 !
! purpose - zeros of an analytic complex function 1090 1096 ! purpose - zeros of an analytic complex function
! using the muller method with deflation 1091 1097 ! using the muller method with deflation
! 1092 1098 !
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, 1093 1099 ! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax,
! infer,ier) 1094 1100 ! infer,ier)
! 1095 1101 !
! arguments f - a complex function subprogram, f(z), written 1096 1102 ! arguments f - a complex function subprogram, f(z), written
! by the user specifying the equation whose 1097 1103 ! by the user specifying the equation whose
! roots are to be found. f must appear in 1098 1104 ! roots are to be found. f must appear in
! an external statement in the calling pro- 1099 1105 ! an external statement in the calling pro-
! gram. 1100 1106 ! gram.
! eps - 1st stopping criterion. let fp(z)=f(z)/p 1101 1107 ! eps - 1st stopping criterion. let fp(z)=f(z)/p
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) 1102 1108 ! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1))
! and z(1),...,z(k-1) are previously found 1103 1109 ! and z(1),...,z(k-1) are previously found
! roots. if ((cdabs(f(z)).le.eps) .and. 1104 1110 ! roots. if ((cdabs(f(z)).le.eps) .and.
! (cdabs(fp(z)).le.eps)), then z is accepted 1105 1111 ! (cdabs(fp(z)).le.eps)), then z is accepted
! as a root. (input) 1106 1112 ! as a root. (input)
! eps1 - 2nd stopping criterion. a root is accepted 1107 1113 ! eps1 - 2nd stopping criterion. a root is accepted
! if two successive approximations to a given 1108 1114 ! if two successive approximations to a given
! root agree within eps1. (input) 1109 1115 ! root agree within eps1. (input)
! note. if either or both of the stopping 1110 1116 ! note. if either or both of the stopping
! criteria are fulfilled, the root is 1111 1117 ! criteria are fulfilled, the root is
! accepted. 1112 1118 ! accepted.
! kn - the number of known roots which must be stored 1113 1119 ! kn - the number of known roots which must be stored
! in x(1),...,x(kn), prior to entry to muller 1114 1120 ! in x(1),...,x(kn), prior to entry to muller
! nguess - the number of initial guesses provided. these 1115 1121 ! nguess - the number of initial guesses provided. these
! guesses must be stored in x(kn+1),..., 1116 1122 ! guesses must be stored in x(kn+1),...,
! x(kn+nguess). nguess must be set equal 1117 1123 ! x(kn+nguess). nguess must be set equal
! to zero if no guesses are provided. (input) 1118 1124 ! to zero if no guesses are provided. (input)
! n - the number of new roots to be found by 1119 1125 ! n - the number of new roots to be found by
! muller (input) 1120 1126 ! muller (input)
! x - a complex vector of length kn+n. x(1),..., 1121 1127 ! x - a complex vector of length kn+n. x(1),...,
! x(kn) on input must contain any known 1122 1128 ! x(kn) on input must contain any known
! roots. x(kn+1),..., x(kn+n) on input may, 1123 1129 ! roots. x(kn+1),..., x(kn+n) on input may,
! on user option, contain initial guesses for 1124 1130 ! on user option, contain initial guesses for
! the n new roots which are to be computed. 1125 1131 ! the n new roots which are to be computed.
! if the user does not provide an initial 1126 1132 ! if the user does not provide an initial
! guess, zero is used. 1127 1133 ! guess, zero is used.
! on output, x(kn+1),...,x(kn+n) contain the 1128 1134 ! on output, x(kn+1),...,x(kn+n) contain the
! approximate roots found by muller. 1129 1135 ! approximate roots found by muller.
! itmax - the maximum allowable number of iterations 1130 1136 ! itmax - the maximum allowable number of iterations
! per root (input) 1131 1137 ! per root (input)
! infer - an integer vector of length kn+n. on 1132 1138 ! infer - an integer vector of length kn+n. on
! output infer(j) contains the number of 1133 1139 ! output infer(j) contains the number of
! iterations used in finding the j-th root 1134 1140 ! iterations used in finding the j-th root
! when convergence was achieved. if 1135 1141 ! when convergence was achieved. if
! convergence was not obtained in itmax 1136 1142 ! convergence was not obtained in itmax
! iterations, infer(j) will be greater than 1137 1143 ! iterations, infer(j) will be greater than
! itmax (output). 1138 1144 ! itmax (output).
! ier - error parameter (output) 1139 1145 ! ier - error parameter (output)
! warning error 1140 1146 ! warning error
! ier = 33 indicates failure to converge with- 1141 1147 ! ier = 33 indicates failure to converge with-
! in itmax iterations for at least one of 1142 1148 ! in itmax iterations for at least one of
! the (n) new roots. 1143 1149 ! the (n) new roots.
! 1144 1150 !
! 1145 1151 !
! remarks muller always returns the last approximation for root j 1146 1152 ! remarks muller always returns the last approximation for root j
! in x(j). if the convergence criterion is satisfied, 1147 1153 ! in x(j). if the convergence criterion is satisfied,
! then infer(j) is less than or equal to itmax. if the 1148 1154 ! then infer(j) is less than or equal to itmax. if the
! convergence criterion is not satisified, then infer(j) 1149 1155 ! convergence criterion is not satisified, then infer(j)
! is set to either itmax+1 or itmax+k, with k greater 1150 1156 ! is set to either itmax+1 or itmax+k, with k greater
! than 1. infer(j) = itmax+1 indicates that muller did 1151 1157 ! than 1. infer(j) = itmax+1 indicates that muller did
! not obtain convergence in the allowed number of iter- 1152 1158 ! not obtain convergence in the allowed number of iter-
! ations. in this case, the user may wish to set itmax 1153 1159 ! ations. in this case, the user may wish to set itmax
! to a larger value. infer(j) = itmax+k means that con- 1154 1160 ! to a larger value. infer(j) = itmax+k means that con-
! vergence was obtained (on iteration k) for the defla- 1155 1161 ! vergence was obtained (on iteration k) for the defla-
! ted function 1156 1162 ! ted function
! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) 1157 1163 ! fp(z) = f(z)/((z-z(1)...(z-z(j-1)))
! 1158 1164 !
! but failed for f(z). in this case, better initial 1159 1165 ! but failed for f(z). in this case, better initial
! guesses might help or, it might be necessary to relax 1160 1166 ! guesses might help or, it might be necessary to relax
! the convergence criterion. 1161 1167 ! the convergence criterion.
! 1162 1168 !
!----------------------------------------------------------------------- 1163 1169 !-----------------------------------------------------------------------
! 1164 1170 !
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) 1165 1171 subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
implicit none 1166 1172 implicit none
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq 1167 1173 double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & 1168 1174 double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, &
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & 1169 1175 tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, &
zero,p1,one,four,p5 1170 1176 zero,p1,one,four,p5
1171 1177
double complex, external :: f 1172 1178 double complex, external :: f
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & 1173 1179 integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, &
knpng,jk,ick,nn,lm1,errcode 1174 1180 knpng,jk,ick,nn,lm1,errcode
double complex :: x(kn+n) 1175 1181 double complex :: x(kn+n)
integer :: infer(kn+n) 1176 1182 integer :: infer(kn+n)
1177 1183
1178 1184
data zero/(0.0,0.0)/,p1/(0.1,0.0)/, & 1179 1185 data zero/(0.0,0.0)/,p1/(0.1,0.0)/, &
one/(1.0,0.0)/,four/(4.0,0.0)/, & 1180 1186 one/(1.0,0.0)/,four/(4.0,0.0)/, &
p5/(0.5,0.0)/, & 1181 1187 p5/(0.5,0.0)/, &
rzero/0.0/,rten/10.0/,rhun/100.0/, & 1182 1188 rzero/0.0/,rten/10.0/,rhun/100.0/, &
ax/0.1/,ickmax/3/,rp01/0.01/ 1183 1189 ax/0.1/,ickmax/3/,rp01/0.01/
1184 1190
ier = 0 1185 1191 ier = 0
if (n .lt. 1) then ! What the hell are doing here then ... 1186 1192 if (n .lt. 1) then ! What the hell are doing here then ...
return 1187 1193 return
end if 1188 1194 end if
!eps1 = rten **(-nsig) 1189 1195 !eps1 = rten **(-nsig)
eps1 = min(eps1,rp01) 1190 1196 eps1 = min(eps1,rp01)
1191 1197
knp1 = kn+1 1192 1198 knp1 = kn+1
knpn = kn+n 1193 1199 knpn = kn+n
knpng = kn+nguess 1194 1200 knpng = kn+nguess
do i=1,knpn 1195 1201 do i=1,knpn
infer(i) = 0 1196 1202 infer(i) = 0
if (i .gt. knpng) x(i) = zero 1197 1203 if (i .gt. knpng) x(i) = zero
end do 1198 1204 end do
l= knp1 1199 1205 l= knp1
1200 1206
ic=0 1201 1207 ic=0
rloop: do while (l<=knpn) ! Main loop over new roots 1202 1208 rloop: do while (l<=knpn) ! Main loop over new roots
jk = 0 1203 1209 jk = 0
ick = 0 1204 1210 ick = 0
xl = x(l) 1205 1211 xl = x(l)
icloop: do 1206 1212 icloop: do
ic = 0 1207 1213 ic = 0
h = ax 1208 1214 h = ax
h = p1*h 1209 1215 h = p1*h
if (cdabs(xl) .gt. ax) h = p1*xl 1210 1216 if (cdabs(xl) .gt. ax) h = p1*xl
! first three points are 1211 1217 ! first three points are
! xl+h, xl-h, xl 1212 1218 ! xl+h, xl-h, xl
rt = xl+h 1213 1219 rt = xl+h
call deflated_work(errcode) 1214 1220 call deflated_work(errcode)
if (errcode == 1) then 1215 1221 if (errcode == 1) then
exit icloop 1216 1222 exit icloop
end if 1217 1223 end if
1218 1224
z0 = fprt 1219 1225 z0 = fprt
y0 = frt 1220 1226 y0 = frt
x0 = rt 1221 1227 x0 = rt
rt = xl-h 1222 1228 rt = xl-h
call deflated_work(errcode) 1223 1229 call deflated_work(errcode)
if (errcode == 1) then 1224 1230 if (errcode == 1) then
exit icloop 1225 1231 exit icloop
end if 1226 1232 end if
1227 1233
z1 = fprt 1228 1234 z1 = fprt
y1 = frt 1229 1235 y1 = frt
h = xl-rt 1230 1236 h = xl-rt
d = h/(rt-x0) 1231 1237 d = h/(rt-x0)
rt = xl 1232 1238 rt = xl
1233 1239
call deflated_work(errcode) 1234 1240 call deflated_work(errcode)
if (errcode == 1) then 1235 1241 if (errcode == 1) then
exit icloop 1236 1242 exit icloop
end if 1237 1243 end if
1238 1244
1239 1245
z2 = fprt 1240 1246 z2 = fprt
y2 = frt 1241 1247 y2 = frt
! begin main algorithm 1242 1248 ! begin main algorithm
iloop: do 1243 1249 iloop: do
dd = one + d 1244 1250 dd = one + d
t1 = z0*d*d 1245 1251 t1 = z0*d*d
t2 = z1*dd*dd 1246 1252 t2 = z1*dd*dd
xx = z2*dd 1247 1253 xx = z2*dd
t3 = z2*d 1248 1254 t3 = z2*d
bi = t1-t2+xx+t3 1249 1255 bi = t1-t2+xx+t3
den = bi*bi-four*(xx*t1-t3*(t2-xx)) 1250 1256 den = bi*bi-four*(xx*t1-t3*(t2-xx))
! use denominator of maximum amplitude 1251 1257 ! use denominator of maximum amplitude
t1 = cdsqrt(den) 1252 1258 t1 = cdsqrt(den)
qz = rhun*max(cdabs(bi),cdabs(t1)) 1253 1259 qz = rhun*max(cdabs(bi),cdabs(t1))
t2 = bi + t1 1254 1260 t2 = bi + t1
tpq = cdabs(t2)+qz 1255 1261 tpq = cdabs(t2)+qz
if (tpq .eq. qz) t2 = zero 1256 1262 if (tpq .eq. qz) t2 = zero
t3 = bi - t1 1257 1263 t3 = bi - t1
tpq = cdabs(t3) + qz 1258 1264 tpq = cdabs(t3) + qz
if (tpq .eq. qz) t3 = zero 1259 1265 if (tpq .eq. qz) t3 = zero
den = t2 1260 1266 den = t2
qz = cdabs(t3)-cdabs(t2) 1261 1267 qz = cdabs(t3)-cdabs(t2)
if (qz .gt. rzero) den = t3 1262 1268 if (qz .gt. rzero) den = t3
! test for zero denominator 1263 1269 ! test for zero denominator
if (cdabs(den) .eq. rzero) then 1264 1270 if (cdabs(den) .eq. rzero) then
call trans_rt() 1265 1271 call trans_rt()
call deflated_work(errcode) 1266 1272 call deflated_work(errcode)
if (errcode == 1) then 1267 1273 if (errcode == 1) then
exit icloop 1268 1274 exit icloop
end if 1269 1275 end if
z2 = fprt 1270 1276 z2 = fprt
y2 = frt 1271 1277 y2 = frt
cycle iloop 1272 1278 cycle iloop
end if 1273 1279 end if
1274 1280
1275 1281
d = -xx/den 1276 1282 d = -xx/den
d = d+d 1277 1283 d = d+d
h = d*h 1278 1284 h = d*h
rt = rt + h 1279 1285 rt = rt + h
! check convergence of the first kind 1280 1286 ! check convergence of the first kind
if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then 1281 1287 if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then
if (ic .ne. 0) then 1282 1288 if (ic .ne. 0) then
exit icloop 1283 1289 exit icloop
end if 1284 1290 end if
ic = 1 1285 1291 ic = 1
z0 = y1 1286 1292 z0 = y1
z1 = y2 1287 1293 z1 = y2
z2 = f(rt) 1288 1294 z2 = f(rt)
xl = rt 1289 1295 xl = rt
ick = ick+1 1290 1296 ick = ick+1
if (ick .le. ickmax) then 1291 1297 if (ick .le. ickmax) then
cycle iloop 1292 1298 cycle iloop
end if 1293 1299 end if
! warning error, itmax = maximum 1294 1300 ! warning error, itmax = maximum
jk = itmax + jk 1295 1301 jk = itmax + jk
ier = 33 1296 1302 ier = 33
end if 1297 1303 end if
if (ic .ne. 0) then 1298 1304 if (ic .ne. 0) then
cycle icloop 1299 1305 cycle icloop
end if 1300 1306 end if
call deflated_work(errcode) 1301 1307 call deflated_work(errcode)
if (errcode == 1) then 1302 1308 if (errcode == 1) then
exit icloop 1303 1309 exit icloop
end if 1304 1310 end if
1305 1311
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) 1306 1312 do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero)
! take remedial action to induce 1307 1313 ! take remedial action to induce
! convergence 1308 1314 ! convergence
d = d*p5 1309 1315 d = d*p5
h = h*p5 1310 1316 h = h*p5
rt = rt-h 1311 1317 rt = rt-h
call deflated_work(errcode) 1312 1318 call deflated_work(errcode)
if (errcode == 1) then 1313 1319 if (errcode == 1) then
exit icloop 1314 1320 exit icloop
end if 1315 1321 end if
end do 1316 1322 end do
z0 = z1 1317 1323 z0 = z1
z1 = z2 1318 1324 z1 = z2
z2 = fprt 1319 1325 z2 = fprt
y0 = y1 1320 1326 y0 = y1
y1 = y2 1321 1327 y1 = y2
y2 = frt 1322 1328 y2 = frt
end do iloop 1323 1329 end do iloop
end do icloop 1324 1330 end do icloop
x(l) = rt 1325 1331 x(l) = rt
infer(l) = jk 1326 1332 infer(l) = jk
l = l+1 1327 1333 l = l+1
end do rloop 1328 1334 end do rloop
1329 1335
contains 1330 1336 contains
subroutine trans_rt() 1331 1337 subroutine trans_rt()
tem = rten*eps1 1332 1338 tem = rten*eps1
if (cdabs(rt) .gt. ax) tem = tem*rt 1333 1339 if (cdabs(rt) .gt. ax) tem = tem*rt
rt = rt+tem 1334 1340 rt = rt+tem
d = (h+tem)*d/h 1335 1341 d = (h+tem)*d/h
h = h+tem 1336 1342 h = h+tem
end subroutine trans_rt 1337 1343 end subroutine trans_rt
1338 1344
subroutine deflated_work(errcode) 1339 1345 subroutine deflated_work(errcode)
! errcode=0 => no errors 1340 1346 ! errcode=0 => no errors
! errcode=1 => jk>itmax or convergence of second kind achieved 1341 1347 ! errcode=1 => jk>itmax or convergence of second kind achieved
integer :: errcode,flag 1342 1348 integer :: errcode,flag
1343 1349
flag=1 1344 1350 flag=1
loop1: do while(flag==1) 1345 1351 loop1: do while(flag==1)
errcode=0 1346 1352 errcode=0
jk = jk+1 1347 1353 jk = jk+1
if (jk .gt. itmax) then 1348 1354 if (jk .gt. itmax) then
ier=33 1349 1355 ier=33
errcode=1 1350 1356 errcode=1
return 1351 1357 return
end if 1352 1358 end if
frt = f(rt) 1353 1359 frt = f(rt)
fprt = frt 1354 1360 fprt = frt
if (l /= 1) then 1355 1361 if (l /= 1) then
lm1 = l-1 1356 1362 lm1 = l-1
do i=1,lm1 1357 1363 do i=1,lm1
tem = rt - x(i) 1358 1364 tem = rt - x(i)
if (cdabs(tem) .eq. rzero) then 1359 1365 if (cdabs(tem) .eq. rzero) then
!if (ic .ne. 0) go to 15 !! ?? possible? 1360 1366 !if (ic .ne. 0) go to 15 !! ?? possible?
call trans_rt() 1361 1367 call trans_rt()
cycle loop1 1362 1368 cycle loop1
end if 1363 1369 end if
fprt = fprt/tem 1364 1370 fprt = fprt/tem
end do 1365 1371 end do
end if 1366 1372 end if
flag=0 1367 1373 flag=0
end do loop1 1368 1374 end do loop1
1369 1375
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then 1370 1376 if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then
errcode=1 1371 1377 errcode=1
return 1372 1378 return
end if 1373 1379 end if
1374 1380
end subroutine deflated_work 1375 1381 end subroutine deflated_work
1376 1382
end subroutine 1377 1383 end subroutine
1378 1384
1379 1385
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1380 1386 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1381 1387 !
! Integration 1382 1388 ! Integration
! 1383 1389 !
! Only double precision coded atm 1384 1390 ! Only double precision coded atm
! 1385 1391 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1386 1392 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1387 1393
1388 1394
subroutine fvn_d_gauss_legendre(n,qx,qw) 1389 1395 subroutine fvn_d_gauss_legendre(n,qx,qw)
! 1390 1396 !
! This routine compute the n Gauss Legendre abscissas and weights 1391 1397 ! This routine compute the n Gauss Legendre abscissas and weights
! Adapted from Numerical Recipes routine gauleg 1392 1398 ! Adapted from Numerical Recipes routine gauleg
! 1393 1399 !
! n (in) : number of points 1394 1400 ! n (in) : number of points
! qx(out) : abscissas 1395 1401 ! qx(out) : abscissas
! qw(out) : weights 1396 1402 ! qw(out) : weights
! 1397 1403 !
implicit none 1398 1404 implicit none
double precision,parameter :: pi=3.141592653589793d0 1399 1405 double precision,parameter :: pi=3.141592653589793d0
integer, intent(in) :: n 1400 1406 integer, intent(in) :: n
double precision, intent(out) :: qx(n),qw(n) 1401 1407 double precision, intent(out) :: qx(n),qw(n)
1402 1408
integer :: m,i,j 1403 1409 integer :: m,i,j
double precision :: z,z1,p1,p2,p3,pp 1404 1410 double precision :: z,z1,p1,p2,p3,pp
m=(n+1)/2 1405 1411 m=(n+1)/2
do i=1,m 1406 1412 do i=1,m
z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0)) 1407 1413 z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0))
iloop: do 1408 1414 iloop: do
p1=1.d0 1409 1415 p1=1.d0
p2=0.d0 1410 1416 p2=0.d0
do j=1,n 1411 1417 do j=1,n
p3=p2 1412 1418 p3=p2
p2=p1 1413 1419 p2=p1
p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j) 1414 1420 p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j)
end do 1415 1421 end do
pp=dble(n)*(z*p1-p2)/(z*z-1.d0) 1416 1422 pp=dble(n)*(z*p1-p2)/(z*z-1.d0)
z1=z 1417 1423 z1=z
z=z1-p1/pp 1418 1424 z=z1-p1/pp
if (dabs(z-z1)<=epsilon(z)) then 1419 1425 if (dabs(z-z1)<=epsilon(z)) then
exit iloop 1420 1426 exit iloop
end if 1421 1427 end if
end do iloop 1422 1428 end do iloop
qx(i)=-z 1423 1429 qx(i)=-z
qx(n+1-i)=z 1424 1430 qx(n+1-i)=z
qw(i)=2.d0/((1.d0-z*z)*pp*pp) 1425 1431 qw(i)=2.d0/((1.d0-z*z)*pp*pp)
qw(n+1-i)=qw(i) 1426 1432 qw(n+1-i)=qw(i)
end do 1427 1433 end do
end subroutine 1428 1434 end subroutine
1429 1435
1430 1436
1431 1437
subroutine fvn_d_gl_integ(f,a,b,n,res) 1432 1438 subroutine fvn_d_gl_integ(f,a,b,n,res)
! 1433 1439 !
! This is a simple non adaptative integration routine 1434 1440 ! This is a simple non adaptative integration routine
! using n gauss legendre abscissas and weights 1435 1441 ! using n gauss legendre abscissas and weights
! 1436 1442 !
! f(in) : the function to integrate 1437 1443 ! f(in) : the function to integrate
! a(in) : lower bound 1438 1444 ! a(in) : lower bound
! b(in) : higher bound 1439 1445 ! b(in) : higher bound
! n(in) : number of gauss legendre pairs 1440 1446 ! n(in) : number of gauss legendre pairs
! res(out): the evaluation of the integral 1441 1447 ! res(out): the evaluation of the integral
! 1442 1448 !
double precision,external :: f 1443 1449 double precision,external :: f
double precision, intent(in) :: a,b 1444 1450 double precision, intent(in) :: a,b
integer, intent(in):: n 1445 1451 integer, intent(in):: n
double precision, intent(out) :: res 1446 1452 double precision, intent(out) :: res
1447 1453
double precision, allocatable :: qx(:),qw(:) 1448 1454 double precision, allocatable :: qx(:),qw(:)
double precision :: xm,xr 1449 1455 double precision :: xm,xr
integer :: i 1450 1456 integer :: i
1451 1457
! First compute n gauss legendre abs and weight 1452 1458 ! First compute n gauss legendre abs and weight
allocate(qx(n)) 1453 1459 allocate(qx(n))
allocate(qw(n)) 1454 1460 allocate(qw(n))
call fvn_d_gauss_legendre(n,qx,qw) 1455 1461 call fvn_d_gauss_legendre(n,qx,qw)
1456 1462
xm=0.5d0*(b+a) 1457 1463 xm=0.5d0*(b+a)
xr=0.5d0*(b-a) 1458 1464 xr=0.5d0*(b-a)
1459 1465
res=0.d0 1460 1466 res=0.d0
1461 1467
do i=1,n 1462 1468 do i=1,n
res=res+qw(i)*f(xm+xr*qx(i)) 1463 1469 res=res+qw(i)*f(xm+xr*qx(i))
end do 1464 1470 end do
1465 1471
res=xr*res 1466 1472 res=xr*res
1467 1473
deallocate(qw) 1468 1474 deallocate(qw)
deallocate(qx) 1469 1475 deallocate(qx)
1470 1476
end subroutine 1471 1477 end subroutine
1472 1478
!!!!!!!!!!!!!!!!!!!!!!!! 1473 1479 !!!!!!!!!!!!!!!!!!!!!!!!
! 1474 1480 !
! Simple and double adaptative Gauss Kronrod integration based on 1475 1481 ! Simple and double adaptative Gauss Kronrod integration based on
! a modified version of quadpack ( http://www.netlib.org/quadpack 1476 1482 ! a modified version of quadpack ( http://www.netlib.org/quadpack
! 1477 1483 !
! Common parameters : 1478 1484 ! Common parameters :
! 1479 1485 !
! key (in) 1480 1486 ! key (in)
! epsabs 1481 1487 ! epsabs
! epsrel 1482 1488 ! epsrel
! 1483 1489 !
! 1484 1490 !
!!!!!!!!!!!!!!!!!!!!!!!! 1485 1491 !!!!!!!!!!!!!!!!!!!!!!!!
1486 1492
subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit) 1487 1493 subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
! 1488 1494 !
! Evaluate the integral of function f(x) between a and b 1489 1495 ! Evaluate the integral of function f(x) between a and b
! 1490 1496 !
! f(in) : the function 1491 1497 ! f(in) : the function
! a(in) : lower bound 1492 1498 ! a(in) : lower bound
! b(in) : higher bound 1493 1499 ! b(in) : higher bound
! epsabs(in) : desired absolute error 1494 1500 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1495 1501 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1496 1502 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1497 1503 ! 1: 7 - 15 points
! 2: 10 - 21 points 1498 1504 ! 2: 10 - 21 points
! 3: 15 - 31 points 1499 1505 ! 3: 15 - 31 points
! 4: 20 - 41 points 1500 1506 ! 4: 20 - 41 points
! 5: 25 - 51 points 1501 1507 ! 5: 25 - 51 points
! 6: 30 - 61 points 1502 1508 ! 6: 30 - 61 points
! 1503 1509 !
! limit(in) : maximum number of subintervals in the partition of the 1504 1510 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1505 1511 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1506 1512 ! behaviour as the imsl routine dqdag
! 1507 1513 !
! res(out) : estimated integral value 1508 1514 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1509 1515 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1510 1516 ! ier(out) : error flag from quadpack routines
! 0 : no error 1511 1517 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1512 1518 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1513 1519 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1514 1520 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1515 1521 ! limit (and taking the according dimension
! adjustments into account). however, if 1516 1522 ! adjustments into account). however, if
! this yield no improvement it is advised 1517 1523 ! this yield no improvement it is advised
! to analyze the integrand in order to 1518 1524 ! to analyze the integrand in order to
! determine the integration difficulaties. 1519 1525 ! determine the integration difficulaties.
! if the position of a local difficulty can 1520 1526 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1521 1527 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1522 1528 ! discontinuity within the interval) one
! will probably gain from splitting up the 1523 1529 ! will probably gain from splitting up the
! interval at this point and calling the 1524 1530 ! interval at this point and calling the
! integrator on the subranges. if possible, 1525 1531 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1526 1532 ! an appropriate special-purpose integrator
! should be used which is designed for 1527 1533 ! should be used which is designed for
! handling the type of difficulty involved. 1528 1534 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1529 1535 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1530 1536 ! detected, which prevents the requested
! tolerance from being achieved. 1531 1537 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1532 1538 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1533 1539 ! at some points of the integration
! interval. 1534 1540 ! interval.
! 6 : the input is invalid, because 1535 1541 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1536 1542 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1537 1543 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1538 1544 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1539 1545 ! result, abserr, neval, last are set
! to zero. 1540 1546 ! to zero.
! except when lenw is invalid, iwork(1), 1541 1547 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1542 1548 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1543 1549 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1544 1550 ! work(limit+1) to b.
1545 1551
implicit none 1546 1552 implicit none
double precision, external :: f 1547 1553 double precision, external :: f
double precision, intent(in) :: a,b,epsabs,epsrel 1548 1554 double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key 1549 1555 integer, intent(in) :: key
integer, intent(in) :: limit 1550 1556 integer, intent(in) :: limit
double precision, intent(out) :: res,abserr 1551 1557 double precision, intent(out) :: res,abserr
integer, intent(out) :: ier 1552 1558 integer, intent(out) :: ier
1553 1559
double precision, allocatable :: work(:) 1554 1560 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1555 1561 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1556 1562 integer :: lenw,neval,last
1557 1563
! imsl value for limit is 500 1558 1564 ! imsl value for limit is 500
lenw=limit*4 1559 1565 lenw=limit*4
1560 1566
allocate(iwork(limit)) 1561 1567 allocate(iwork(limit))
allocate(work(lenw)) 1562 1568 allocate(work(lenw))
1563 1569
call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1564 1570 call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1565 1571
deallocate(work) 1566 1572 deallocate(work)
deallocate(iwork) 1567 1573 deallocate(iwork)
1568 1574
end subroutine 1569 1575 end subroutine
1570 1576
1571 1577
1572 1578
subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit) 1573 1579 subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
! 1574 1580 !
! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x) 1575 1581 ! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x)
! 1576 1582 !
! f(in) : the function 1577 1583 ! f(in) : the function
! a(in) : lower bound 1578 1584 ! a(in) : lower bound
! b(in) : higher bound 1579 1585 ! b(in) : higher bound
! g(in) : external function describing lower bound for y 1580 1586 ! g(in) : external function describing lower bound for y
! h(in) : external function describing higher bound for y 1581 1587 ! h(in) : external function describing higher bound for y
! epsabs(in) : desired absolute error 1582 1588 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1583 1589 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1584 1590 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1585 1591 ! 1: 7 - 15 points
! 2: 10 - 21 points 1586 1592 ! 2: 10 - 21 points
! 3: 15 - 31 points 1587 1593 ! 3: 15 - 31 points
! 4: 20 - 41 points 1588 1594 ! 4: 20 - 41 points
! 5: 25 - 51 points 1589 1595 ! 5: 25 - 51 points
! 6: 30 - 61 points 1590 1596 ! 6: 30 - 61 points
! 1591 1597 !
! limit(in) : maximum number of subintervals in the partition of the 1592 1598 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1593 1599 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1594 1600 ! behaviour as the imsl routine dqdag
! 1595 1601 !
! res(out) : estimated integral value 1596 1602 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1597 1603 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1598 1604 ! ier(out) : error flag from quadpack routines
! 0 : no error 1599 1605 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1600 1606 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1601 1607 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1602 1608 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1603 1609 ! limit (and taking the according dimension
! adjustments into account). however, if 1604 1610 ! adjustments into account). however, if
! this yield no improvement it is advised 1605 1611 ! this yield no improvement it is advised
! to analyze the integrand in order to 1606 1612 ! to analyze the integrand in order to
! determine the integration difficulaties. 1607 1613 ! determine the integration difficulaties.
! if the position of a local difficulty can 1608 1614 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1609 1615 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1610 1616 ! discontinuity within the interval) one
! will probably gain from splitting up the 1611 1617 ! will probably gain from splitting up the
! interval at this point and calling the 1612 1618 ! interval at this point and calling the
! integrator on the subranges. if possible, 1613 1619 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1614 1620 ! an appropriate special-purpose integrator
! should be used which is designed for 1615 1621 ! should be used which is designed for
! handling the type of difficulty involved. 1616 1622 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1617 1623 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1618 1624 ! detected, which prevents the requested
! tolerance from being achieved. 1619 1625 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1620 1626 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1621 1627 ! at some points of the integration
! interval. 1622 1628 ! interval.
! 6 : the input is invalid, because 1623 1629 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1624 1630 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1625 1631 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1626 1632 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1627 1633 ! result, abserr, neval, last are set
! to zero. 1628 1634 ! to zero.
! except when lenw is invalid, iwork(1), 1629 1635 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1630 1636 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1631 1637 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1632 1638 ! work(limit+1) to b.
1633 1639
implicit none 1634 1640 implicit none
double precision, external:: f,g,h 1635 1641 double precision, external:: f,g,h
double precision, intent(in) :: a,b,epsabs,epsrel 1636 1642 double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key,limit 1637 1643 integer, intent(in) :: key,limit
integer, intent(out) :: ier 1638 1644 integer, intent(out) :: ier
double precision, intent(out) :: res,abserr 1639 1645 double precision, intent(out) :: res,abserr
1640 1646
1641 1647
double precision, allocatable :: work(:) 1642 1648 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1643 1649 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1644 1650 integer :: lenw,neval,last
1645 1651
! imsl value for limit is 500 1646 1652 ! imsl value for limit is 500
lenw=limit*4 1647 1653 lenw=limit*4
allocate(work(lenw)) 1648 1654 allocate(work(lenw))
allocate(iwork(limit)) 1649 1655 allocate(iwork(limit))
1650 1656
call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1651 1657 call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1652 1658
deallocate(iwork) 1653 1659 deallocate(iwork)
deallocate(work) 1654 1660 deallocate(work)
end subroutine 1655 1661 end subroutine
1656 1662
1657 1663
1658 1664
subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit) 1659 1665 subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
! 1660 1666 !
! Evaluate the single integral of function f(x,y) for y between a and b with a 1661 1667 ! Evaluate the single integral of function f(x,y) for y between a and b with a
! given x value 1662 1668 ! given x value
! 1663 1669 !
! This function is used for the evaluation of the double integral fvn_d_integ_2_gk 1664 1670 ! This function is used for the evaluation of the double integral fvn_d_integ_2_gk
! 1665 1671 !
! f(in) : the function 1666 1672 ! f(in) : the function
! x(in) : x 1667 1673 ! x(in) : x
! a(in) : lower bound 1668 1674 ! a(in) : lower bound
! b(in) : higher bound 1669 1675 ! b(in) : higher bound
! epsabs(in) : desired absolute error 1670 1676 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1671 1677 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1672 1678 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1673 1679 ! 1: 7 - 15 points
! 2: 10 - 21 points 1674 1680 ! 2: 10 - 21 points
! 3: 15 - 31 points 1675 1681 ! 3: 15 - 31 points
! 4: 20 - 41 points 1676 1682 ! 4: 20 - 41 points
! 5: 25 - 51 points 1677 1683 ! 5: 25 - 51 points
! 6: 30 - 61 points 1678 1684 ! 6: 30 - 61 points
! 1679 1685 !
! limit(in) : maximum number of subintervals in the partition of the 1680 1686 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1681 1687 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1682 1688 ! behaviour as the imsl routine dqdag
! 1683 1689 !
! res(out) : estimated integral value 1684 1690 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1685 1691 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1686 1692 ! ier(out) : error flag from quadpack routines
! 0 : no error 1687 1693 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1688 1694 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1689 1695 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1690 1696 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1691 1697 ! limit (and taking the according dimension
! adjustments into account). however, if 1692 1698 ! adjustments into account). however, if
! this yield no improvement it is advised 1693 1699 ! this yield no improvement it is advised
! to analyze the integrand in order to 1694 1700 ! to analyze the integrand in order to
! determine the integration difficulaties. 1695 1701 ! determine the integration difficulaties.
! if the position of a local difficulty can 1696 1702 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1697 1703 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1698 1704 ! discontinuity within the interval) one
! will probably gain from splitting up the 1699 1705 ! will probably gain from splitting up the
! interval at this point and calling the 1700 1706 ! interval at this point and calling the
! integrator on the subranges. if possible, 1701 1707 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1702 1708 ! an appropriate special-purpose integrator
! should be used which is designed for 1703 1709 ! should be used which is designed for
! handling the type of difficulty involved. 1704 1710 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1705 1711 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1706 1712 ! detected, which prevents the requested
! tolerance from being achieved. 1707 1713 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1708 1714 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1709 1715 ! at some points of the integration
! interval. 1710 1716 ! interval.
! 6 : the input is invalid, because 1711 1717 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1712 1718 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1713 1719 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1714 1720 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1715 1721 ! result, abserr, neval, last are set
! to zero. 1716 1722 ! to zero.
! except when lenw is invalid, iwork(1), 1717 1723 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1718 1724 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1719 1725 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1720 1726 ! work(limit+1) to b.
1721 1727
implicit none 1722 1728 implicit none
double precision, external:: f 1723 1729 double precision, external:: f
double precision, intent(in) :: x,a,b,epsabs,epsrel 1724 1730 double precision, intent(in) :: x,a,b,epsabs,epsrel
integer, intent(in) :: key,limit 1725 1731 integer, intent(in) :: key,limit
integer, intent(out) :: ier 1726 1732 integer, intent(out) :: ier
double precision, intent(out) :: res,abserr 1727 1733 double precision, intent(out) :: res,abserr
1728 1734
1729 1735
double precision, allocatable :: work(:) 1730 1736 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1731 1737 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1732 1738 integer :: lenw,neval,last
1733 1739
! imsl value for limit is 500 1734 1740 ! imsl value for limit is 500
lenw=limit*4 1735 1741 lenw=limit*4
allocate(work(lenw)) 1736 1742 allocate(work(lenw))
allocate(iwork(limit)) 1737 1743 allocate(iwork(limit))
1738 1744
call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1739 1745 call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1740 1746
deallocate(iwork) 1741 1747 deallocate(iwork)
deallocate(work) 1742 1748 deallocate(work)
end subroutine 1743 1749 end subroutine
1744 1750
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1745 1751 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Include the modified quadpack files 1746 1752 ! Include the modified quadpack files
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1747 1753 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
include "fvn_quadpack/dqag_2d_inner.f" 1748 1754 include "fvn_quadpack/dqag_2d_inner.f"
include "fvn_quadpack/dqk15_2d_inner.f" 1749 1755 include "fvn_quadpack/dqk15_2d_inner.f"
include "fvn_quadpack/dqk31_2d_outer.f" 1750 1756 include "fvn_quadpack/dqk31_2d_outer.f"
include "fvn_quadpack/d1mach.f" 1751 1757 include "fvn_quadpack/d1mach.f"
include "fvn_quadpack/dqk31_2d_inner.f" 1752 1758 include "fvn_quadpack/dqk31_2d_inner.f"
include "fvn_quadpack/dqage.f" 1753 1759 include "fvn_quadpack/dqage.f"
include "fvn_quadpack/dqk15.f" 1754 1760 include "fvn_quadpack/dqk15.f"
include "fvn_quadpack/dqk21.f" 1755 1761 include "fvn_quadpack/dqk21.f"
include "fvn_quadpack/dqk31.f" 1756 1762 include "fvn_quadpack/dqk31.f"
include "fvn_quadpack/dqk41.f" 1757 1763 include "fvn_quadpack/dqk41.f"
include "fvn_quadpack/dqk51.f" 1758 1764 include "fvn_quadpack/dqk51.f"
include "fvn_quadpack/dqk61.f" 1759 1765 include "fvn_quadpack/dqk61.f"
include "fvn_quadpack/dqk41_2d_outer.f" 1760 1766 include "fvn_quadpack/dqk41_2d_outer.f"