fvnlib.f90
58 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
module fvn
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! fvn : a f95 module replacement for some imsl routines
! it uses lapack for linear algebra
! it uses modified quadpack for integration
!
! William Daniau 2007
! william.daniau@femto-st.fr
!
! Routines naming scheme :
!
! fvn_x_name
! where x can be s : real
! d : real double precision
! c : complex
! z : double complex
!
!
! This piece of code is totally free! Do whatever you want with it. However
! if you find it usefull it would be kind to give credits ;-) Nevertheless, you
! may give credits to quadpack authors.
!
! svn version
! June 2007 : added some complex trigonometric functions
!
! TO DO LIST :
! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm
! eigenvalues are given with no particular order.
! + Generic interface for fvn_x_name family -> fvn_name
! + Make some parameters optional, status for example
! + use f95 kinds "double complex" -> complex(kind=8)
! + unify quadpack routines
! + ...
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
implicit none
! We define pi and i for the module
real(kind=8),parameter :: fvn_pi = 3.141592653589793_8
complex(kind=8),parameter :: fvn_i = (0._8,1._8)
! All quadpack routines are private to the module
private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, &
dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, &
dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, &
dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt
contains
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Matrix inversion subroutines
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fvn_s_matinv(d,a,inva,status)
!
! Matrix inversion of a real matrix using BLAS and LAPACK
!
! d (in) : matrix rank
! a (in) : input matrix
! inva (out) : inversed matrix
! status (ou) : =0 if something failed
!
integer, intent(in) :: d
real, intent(in) :: a(d,d)
real, intent(out) :: inva(d,d)
integer, intent(out) :: status
integer, allocatable :: ipiv(:)
real, allocatable :: work(:)
real twork(1)
integer :: info
integer :: lwork
status=1
allocate(ipiv(d))
! copy a into inva using BLAS
!call scopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:)
! LU factorization using LAPACK
call sgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then
status=0
deallocate(ipiv)
return
end if
! we use the query fonction of xxxtri to obtain the optimal workspace size
call sgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1))
allocate(work(lwork))
! Matrix inversion using LAPACK
call sgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then
status=0
end if
deallocate(work)
deallocate(ipiv)
end subroutine
subroutine fvn_d_matinv(d,a,inva,status)
!
! Matrix inversion of a double precision matrix using BLAS and LAPACK
!
! d (in) : matrix rank
! a (in) : input matrix
! inva (out) : inversed matrix
! status (ou) : =0 if something failed
!
integer, intent(in) :: d
double precision, intent(in) :: a(d,d)
double precision, intent(out) :: inva(d,d)
integer, intent(out) :: status
integer, allocatable :: ipiv(:)
double precision, allocatable :: work(:)
double precision :: twork(1)
integer :: info
integer :: lwork
status=1
allocate(ipiv(d))
! copy a into inva using BLAS
!call dcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:)
! LU factorization using LAPACK
call dgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then
status=0
deallocate(ipiv)
return
end if
! we use the query fonction of xxxtri to obtain the optimal workspace size
call dgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1))
allocate(work(lwork))
! Matrix inversion using LAPACK
call dgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then
status=0
end if
deallocate(work)
deallocate(ipiv)
end subroutine
subroutine fvn_c_matinv(d,a,inva,status)
!
! Matrix inversion of a complex matrix using BLAS and LAPACK
!
! d (in) : matrix rank
! a (in) : input matrix
! inva (out) : inversed matrix
! status (ou) : =0 if something failed
!
integer, intent(in) :: d
complex, intent(in) :: a(d,d)
complex, intent(out) :: inva(d,d)
integer, intent(out) :: status
integer, allocatable :: ipiv(:)
complex, allocatable :: work(:)
complex :: twork(1)
integer :: info
integer :: lwork
status=1
allocate(ipiv(d))
! copy a into inva using BLAS
!call ccopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:)
! LU factorization using LAPACK
call cgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then
status=0
deallocate(ipiv)
return
end if
! we use the query fonction of xxxtri to obtain the optimal workspace size
call cgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1))
allocate(work(lwork))
! Matrix inversion using LAPACK
call cgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then
status=0
end if
deallocate(work)
deallocate(ipiv)
end subroutine
subroutine fvn_z_matinv(d,a,inva,status)
!
! Matrix inversion of a double complex matrix using BLAS and LAPACK
!
! d (in) : matrix rank
! a (in) : input matrix
! inva (out) : inversed matrix
! status (ou) : =0 if something failed
!
integer, intent(in) :: d
double complex, intent(in) :: a(d,d)
double complex, intent(out) :: inva(d,d)
integer, intent(out) :: status
integer, allocatable :: ipiv(:)
double complex, allocatable :: work(:)
double complex :: twork(1)
integer :: info
integer :: lwork
status=1
allocate(ipiv(d))
! copy a into inva using BLAS
!call zcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:)
! LU factorization using LAPACK
call zgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then
status=0
deallocate(ipiv)
return
end if
! we use the query fonction of xxxtri to obtain the optimal workspace size
call zgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1))
allocate(work(lwork))
! Matrix inversion using LAPACK
call zgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then
status=0
end if
deallocate(work)
deallocate(ipiv)
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Determinants
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function fvn_s_det(d,a,status)
!
! Evaluate the determinant of a square matrix using lapack LU factorization
!
! d (in) : matrix rank
! a (in) : The Matrix
! status (out) : =0 if LU factorization failed
!
integer, intent(in) :: d
real, intent(in) :: a(d,d)
integer, intent(out) :: status
real :: fvn_s_det
real, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:)
integer :: info,i
status=1
allocate(wc_a(d,d))
allocate(ipiv(d))
wc_a(:,:)=a(:,:)
call sgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then
status=0
fvn_s_det=0.e0
deallocate(ipiv)
deallocate(wc_a)
return
end if
fvn_s_det=1.e0
do i=1,d
if (ipiv(i)==i) then
fvn_s_det=fvn_s_det*wc_a(i,i)
else
fvn_s_det=-fvn_s_det*wc_a(i,i)
end if
end do
deallocate(ipiv)
deallocate(wc_a)
end function
function fvn_d_det(d,a,status)
!
! Evaluate the determinant of a square matrix using lapack LU factorization
!
! d (in) : matrix rank
! a (in) : The Matrix
! status (out) : =0 if LU factorization failed
!
integer, intent(in) :: d
double precision, intent(in) :: a(d,d)
integer, intent(out) :: status
double precision :: fvn_d_det
double precision, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:)
integer :: info,i
status=1
allocate(wc_a(d,d))
allocate(ipiv(d))
wc_a(:,:)=a(:,:)
call dgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then
status=0
fvn_d_det=0.d0
deallocate(ipiv)
deallocate(wc_a)
return
end if
fvn_d_det=1.d0
do i=1,d
if (ipiv(i)==i) then
fvn_d_det=fvn_d_det*wc_a(i,i)
else
fvn_d_det=-fvn_d_det*wc_a(i,i)
end if
end do
deallocate(ipiv)
deallocate(wc_a)
end function
function fvn_c_det(d,a,status) !
! Evaluate the determinant of a square matrix using lapack LU factorization
!
! d (in) : matrix rank
! a (in) : The Matrix
! status (out) : =0 if LU factorization failed
!
integer, intent(in) :: d
complex, intent(in) :: a(d,d)
integer, intent(out) :: status
complex :: fvn_c_det
complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:)
integer :: info,i
status=1
allocate(wc_a(d,d))
allocate(ipiv(d))
wc_a(:,:)=a(:,:)
call cgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then
status=0
fvn_c_det=(0.e0,0.e0)
deallocate(ipiv)
deallocate(wc_a)
return
end if
fvn_c_det=(1.e0,0.e0)
do i=1,d
if (ipiv(i)==i) then
fvn_c_det=fvn_c_det*wc_a(i,i)
else
fvn_c_det=-fvn_c_det*wc_a(i,i)
end if
end do
deallocate(ipiv)
deallocate(wc_a)
end function
function fvn_z_det(d,a,status)
!
! Evaluate the determinant of a square matrix using lapack LU factorization
!
! d (in) : matrix rank
! a (in) : The Matrix
! det (out) : determinant
! status (out) : =0 if LU factorization failed
!
integer, intent(in) :: d
double complex, intent(in) :: a(d,d)
integer, intent(out) :: status
double complex :: fvn_z_det
double complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:)
integer :: info,i
status=1
allocate(wc_a(d,d))
allocate(ipiv(d))
wc_a(:,:)=a(:,:)
call zgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then
status=0
fvn_z_det=(0.d0,0.d0)
deallocate(ipiv)
deallocate(wc_a)
return
end if
fvn_z_det=(1.d0,0.d0)
do i=1,d
if (ipiv(i)==i) then
fvn_z_det=fvn_z_det*wc_a(i,i)
else
fvn_z_det=-fvn_z_det*wc_a(i,i)
end if
end do
deallocate(ipiv)
deallocate(wc_a)
end function
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Condition test
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1-norm
! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm
! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond
!
subroutine fvn_s_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number)
!
! d (in) : matrix rank
! a (in) : The Matrix
! rcond (out) : guess what
! status (out) : =0 if something went wrong
!
integer, intent(in) :: d
real, intent(in) :: a(d,d)
real, intent(out) :: rcond
integer, intent(out) :: status
real, allocatable :: work(:)
integer, allocatable :: iwork(:)
real :: anorm
real, allocatable :: wc_a(:,:) ! working copy of a
integer :: info
integer, allocatable :: ipiv(:)
real, external :: slange
status=1
anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
allocate(ipiv(d))
call sgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then
status=0
deallocate(ipiv)
deallocate(wc_a)
return
end if
allocate(work(4*d))
allocate(iwork(d))
call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then
status=0
end if
deallocate(iwork)
deallocate(work)
deallocate(ipiv)
deallocate(wc_a)
end subroutine
subroutine fvn_d_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number)
!
! d (in) : matrix rank
! a (in) : The Matrix
! rcond (out) : guess what
! status (out) : =0 if something went wrong
!
integer, intent(in) :: d
double precision, intent(in) :: a(d,d)
double precision, intent(out) :: rcond
integer, intent(out) :: status
double precision, allocatable :: work(:)
integer, allocatable :: iwork(:)
double precision :: anorm
double precision, allocatable :: wc_a(:,:) ! working copy of a
integer :: info
integer, allocatable :: ipiv(:)
double precision, external :: dlange
status=1
anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
allocate(ipiv(d))
call dgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then
status=0
deallocate(ipiv)
deallocate(wc_a)
return
end if
allocate(work(4*d))
allocate(iwork(d))
call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then
status=0
end if
deallocate(iwork)
deallocate(work)
deallocate(ipiv)
deallocate(wc_a)
end subroutine
subroutine fvn_c_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number)
!
! d (in) : matrix rank
! a (in) : The Matrix
! rcond (out) : guess what
! status (out) : =0 if something went wrong
!
integer, intent(in) :: d
complex, intent(in) :: a(d,d)
real, intent(out) :: rcond
integer, intent(out) :: status
real, allocatable :: rwork(:)
complex, allocatable :: work(:)
integer, allocatable :: iwork(:)
real :: anorm
complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info
integer, allocatable :: ipiv(:)
real, external :: clange
status=1
anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
allocate(ipiv(d))
call cgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then
status=0
deallocate(ipiv)
deallocate(wc_a)
return
end if
allocate(work(2*d))
allocate(rwork(2*d))
call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then
status=0
end if
deallocate(rwork)
deallocate(work)
deallocate(ipiv)
deallocate(wc_a)
end subroutine
subroutine fvn_z_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number)
!
! d (in) : matrix rank
! a (in) : The Matrix
! rcond (out) : guess what
! status (out) : =0 if something went wrong
!
integer, intent(in) :: d
double complex, intent(in) :: a(d,d)
double precision, intent(out) :: rcond
integer, intent(out) :: status
double complex, allocatable :: work(:)
double precision, allocatable :: rwork(:)
double precision :: anorm
double complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info
integer, allocatable :: ipiv(:)
double precision, external :: zlange
status=1
anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
allocate(ipiv(d))
call zgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then
status=0
deallocate(ipiv)
deallocate(wc_a)
return
end if
allocate(work(2*d))
allocate(rwork(2*d))
call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then
status=0
end if
deallocate(rwork)
deallocate(work)
deallocate(ipiv)
deallocate(wc_a)
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Valeurs propres/ Vecteurs propre
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fvn_s_matev(d,a,evala,eveca,status)
!
! integer d (in) : matrice rank
! real a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong
!
! interfacing Lapack routine SGEEV
integer, intent(in) :: d
real, intent(in) :: a(d,d)
complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status
real, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info
integer :: lwork
real, allocatable :: wr(:),wi(:)
real :: vl ! unused but necessary for the call
real, allocatable :: vr(:,:)
real, allocatable :: work(:)
real :: twork(1)
integer i
integer j
! making a working copy of a
allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
allocate(wr(d))
allocate(wi(d))
allocate(vr(d,d))
! query optimal work size
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1))
allocate(work(lwork))
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
if (info /= 0) then
status=0
deallocate(work)
deallocate(vr)
deallocate(wi)
deallocate(wr)
deallocate(wc_a)
return
end if
! now fill in the results
i=1
do while(i<=d)
evala(i)=cmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=cmplx(vr(:,i),0.)
else ! eigenvalue is complex
evala(i+1)=cmplx(wr(i+1),wi(i+1))
eveca(:,i)=cmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1))
i=i+1
end if
i=i+1
enddo
deallocate(work)
deallocate(vr)
deallocate(wi)
deallocate(wr)
deallocate(wc_a)
end subroutine
subroutine fvn_d_matev(d,a,evala,eveca,status)
!
! integer d (in) : matrice rank
! double precision a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong
!
! interfacing Lapack routine DGEEV
integer, intent(in) :: d
double precision, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status
double precision, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info
integer :: lwork
double precision, allocatable :: wr(:),wi(:)
double precision :: vl ! unused but necessary for the call
double precision, allocatable :: vr(:,:)
double precision, allocatable :: work(:)
double precision :: twork(1)
integer i
integer j
! making a working copy of a
allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
allocate(wr(d))
allocate(wi(d))
allocate(vr(d,d))
! query optimal work size
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1))
allocate(work(lwork))
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
if (info /= 0) then
status=0
deallocate(work)
deallocate(vr)
deallocate(wi)
deallocate(wr)
deallocate(wc_a)
return
end if
! now fill in the results
i=1
do while(i<=d)
evala(i)=dcmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=dcmplx(vr(:,i),0.)
else ! eigenvalue is complex
evala(i+1)=dcmplx(wr(i+1),wi(i+1))
eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1))
i=i+1
end if
i=i+1
enddo
deallocate(work)
deallocate(vr)
deallocate(wi)
deallocate(wr)
deallocate(wc_a)
end subroutine
subroutine fvn_c_matev(d,a,evala,eveca,status)
!
! integer d (in) : matrice rank
! complex a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong
!
! interfacing Lapack routine CGEEV
integer, intent(in) :: d
complex, intent(in) :: a(d,d)
complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status
complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info
integer :: lwork
complex, allocatable :: work(:)
complex :: twork(1)
real, allocatable :: rwork(:)
complex :: vl ! unused but necessary for the call
status=1
! making a working copy of a
allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
! query optimal work size
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1))
allocate(work(lwork))
allocate(rwork(2*d))
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
if (info /= 0) then
status=0
end if
deallocate(rwork)
deallocate(work)
deallocate(wc_a)
end subroutine
subroutine fvn_z_matev(d,a,evala,eveca,status)
!
! integer d (in) : matrice rank
! double complex a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong
!
! interfacing Lapack routine ZGEEV
integer, intent(in) :: d
double complex, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status
double complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info
integer :: lwork
double complex, allocatable :: work(:)
double complex :: twork(1)
double precision, allocatable :: rwork(:)
double complex :: vl ! unused but necessary for the call
status=1
! making a working copy of a
allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:)
! query optimal work size
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1))
allocate(work(lwork))
allocate(rwork(2*d))
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
if (info /= 0) then
status=0
end if
deallocate(rwork)
deallocate(work)
deallocate(wc_a)
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Akima spline interpolation and spline evaluation
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Single precision
subroutine fvn_s_akima(n,x,y,br,co)
implicit none
integer, intent(in) :: n
real, intent(in) :: x(n)
real, intent(in) :: y(n)
real, intent(out) :: br(n)
real, intent(out) :: co(4,n)
real, allocatable :: var(:),z(:)
real :: wi_1,wi
integer :: i
real :: dx,a,b
! br is just a copy of x
br(:)=x(:)
allocate(var(n))
allocate(z(n))
! evaluate the variations
do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do
var(n+2)=2.e0*var(n+1)-var(n)
var(n+3)=2.e0*var(n+2)-var(n+1)
var(2)=2.e0*var(3)-var(4)
var(1)=2.e0*var(2)-var(3)
do i = 1, n
wi_1=abs(var(i+3)-var(i+2))
wi=abs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.e0) then
z(i)=(var(i+2)+var(i+1))/2.e0
else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if
end do
do i=1, n-1
dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i)
co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! méthode wd
!co(4,i)=(a-2.*b)/dx**3 ! méthode wd
co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! méthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 !
! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ...
end do
co(1,n)=y(n)
co(2,n)=z(n)
co(3,n)=0.e0
co(4,n)=0.e0
deallocate(z)
deallocate(var)
end subroutine
! Double precision
subroutine fvn_d_akima(n,x,y,br,co)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(in) :: y(n)
double precision, intent(out) :: br(n)
double precision, intent(out) :: co(4,n)
double precision, allocatable :: var(:),z(:)
double precision :: wi_1,wi
integer :: i
double precision :: dx,a,b
! br is just a copy of x
br(:)=x(:)
allocate(var(n))
allocate(z(n))
! evaluate the variations
do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do
var(n+2)=2.d0*var(n+1)-var(n)
var(n+3)=2.d0*var(n+2)-var(n+1)
var(2)=2.d0*var(3)-var(4)
var(1)=2.d0*var(2)-var(3)
do i = 1, n
wi_1=dabs(var(i+3)-var(i+2))
wi=dabs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.d0) then
z(i)=(var(i+2)+var(i+1))/2.d0
else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if
end do
do i=1, n-1
dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i)
co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! méthode wd
!co(4,i)=(a-2.*b)/dx**3 ! méthode wd
co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! méthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 !
! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ...
end do
co(1,n)=y(n)
co(2,n)=z(n)
co(3,n)=0.d0
co(4,n)=0.d0
deallocate(z)
deallocate(var)
end subroutine
!
! Single precision spline evaluation
!
function fvn_s_spline_eval(x,n,br,co)
implicit none
real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals
real, intent(in) :: br(n+1) ! breakpoints
real, intent(in) :: co(4,n+1) ! spline coeeficients
real :: fvn_s_spline_eval
integer :: i
real :: dx
if (x<=br(1)) then
i=1
else if (x>=br(n+1)) then
i=n
else
i=1
do while(x>=br(i))
i=i+1
end do
i=i-1
end if
dx=x-br(i)
fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
end function
! Double precision spline evaluation
function fvn_d_spline_eval(x,n,br,co)
implicit none
double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals
double precision, intent(in) :: br(n+1) ! breakpoints
double precision, intent(in) :: co(4,n+1) ! spline coeeficients
double precision :: fvn_d_spline_eval
integer :: i
double precision :: dx
if (x<=br(1)) then
i=1
else if (x>=br(n+1)) then
i=n
else
i=1
do while(x>=br(i))
i=i+1
end do
i=i-1
end if
dx=x-br(i)
fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
end function
!
! Muller
!
!
!
! William Daniau 2007
!
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f
! http://plato.asu.edu/ftp/other_software/muller.f
!
! it can be used as a replacement for imsl routine dzanly with minor changes
!
!-----------------------------------------------------------------------
!
! purpose - zeros of an analytic complex function
! using the muller method with deflation
!
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax,
! infer,ier)
!
! arguments f - a complex function subprogram, f(z), written
! by the user specifying the equation whose
! roots are to be found. f must appear in
! an external statement in the calling pro-
! gram.
! eps - 1st stopping criterion. let fp(z)=f(z)/p
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1))
! and z(1),...,z(k-1) are previously found
! roots. if ((cdabs(f(z)).le.eps) .and.
! (cdabs(fp(z)).le.eps)), then z is accepted
! as a root. (input)
! eps1 - 2nd stopping criterion. a root is accepted
! if two successive approximations to a given
! root agree within eps1. (input)
! note. if either or both of the stopping
! criteria are fulfilled, the root is
! accepted.
! kn - the number of known roots which must be stored
! in x(1),...,x(kn), prior to entry to muller
! nguess - the number of initial guesses provided. these
! guesses must be stored in x(kn+1),...,
! x(kn+nguess). nguess must be set equal
! to zero if no guesses are provided. (input)
! n - the number of new roots to be found by
! muller (input)
! x - a complex vector of length kn+n. x(1),...,
! x(kn) on input must contain any known
! roots. x(kn+1),..., x(kn+n) on input may,
! on user option, contain initial guesses for
! the n new roots which are to be computed.
! if the user does not provide an initial
! guess, zero is used.
! on output, x(kn+1),...,x(kn+n) contain the
! approximate roots found by muller.
! itmax - the maximum allowable number of iterations
! per root (input)
! infer - an integer vector of length kn+n. on
! output infer(j) contains the number of
! iterations used in finding the j-th root
! when convergence was achieved. if
! convergence was not obtained in itmax
! iterations, infer(j) will be greater than
! itmax (output).
! ier - error parameter (output)
! warning error
! ier = 33 indicates failure to converge with-
! in itmax iterations for at least one of
! the (n) new roots.
!
!
! remarks muller always returns the last approximation for root j
! in x(j). if the convergence criterion is satisfied,
! then infer(j) is less than or equal to itmax. if the
! convergence criterion is not satisified, then infer(j)
! is set to either itmax+1 or itmax+k, with k greater
! than 1. infer(j) = itmax+1 indicates that muller did
! not obtain convergence in the allowed number of iter-
! ations. in this case, the user may wish to set itmax
! to a larger value. infer(j) = itmax+k means that con-
! vergence was obtained (on iteration k) for the defla-
! ted function
! fp(z) = f(z)/((z-z(1)...(z-z(j-1)))
!
! but failed for f(z). in this case, better initial
! guesses might help or, it might be necessary to relax
! the convergence criterion.
!
!-----------------------------------------------------------------------
!
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
implicit none
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, &
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, &
zero,p1,one,four,p5
double complex, external :: f
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, &
knpng,jk,ick,nn,lm1,errcode
double complex :: x(kn+n)
integer :: infer(kn+n)
data zero/(0.0,0.0)/,p1/(0.1,0.0)/, &
one/(1.0,0.0)/,four/(4.0,0.0)/, &
p5/(0.5,0.0)/, &
rzero/0.0/,rten/10.0/,rhun/100.0/, &
ax/0.1/,ickmax/3/,rp01/0.01/
ier = 0
if (n .lt. 1) then ! What the hell are doing here then ...
return
end if
!eps1 = rten **(-nsig)
eps1 = min(eps1,rp01)
knp1 = kn+1
knpn = kn+n
knpng = kn+nguess
do i=1,knpn
infer(i) = 0
if (i .gt. knpng) x(i) = zero
end do
l= knp1
ic=0
rloop: do while (l<=knpn) ! Main loop over new roots
jk = 0
ick = 0
xl = x(l)
icloop: do
ic = 0
h = ax
h = p1*h
if (cdabs(xl) .gt. ax) h = p1*xl
! first three points are
! xl+h, xl-h, xl
rt = xl+h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z0 = fprt
y0 = frt
x0 = rt
rt = xl-h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z1 = fprt
y1 = frt
h = xl-rt
d = h/(rt-x0)
rt = xl
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z2 = fprt
y2 = frt
! begin main algorithm
iloop: do
dd = one + d
t1 = z0*d*d
t2 = z1*dd*dd
xx = z2*dd
t3 = z2*d
bi = t1-t2+xx+t3
den = bi*bi-four*(xx*t1-t3*(t2-xx))
! use denominator of maximum amplitude
t1 = cdsqrt(den)
qz = rhun*max(cdabs(bi),cdabs(t1))
t2 = bi + t1
tpq = cdabs(t2)+qz
if (tpq .eq. qz) t2 = zero
t3 = bi - t1
tpq = cdabs(t3) + qz
if (tpq .eq. qz) t3 = zero
den = t2
qz = cdabs(t3)-cdabs(t2)
if (qz .gt. rzero) den = t3
! test for zero denominator
if (cdabs(den) .eq. rzero) then
call trans_rt()
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z2 = fprt
y2 = frt
cycle iloop
end if
d = -xx/den
d = d+d
h = d*h
rt = rt + h
! check convergence of the first kind
if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then
if (ic .ne. 0) then
exit icloop
end if
ic = 1
z0 = y1
z1 = y2
z2 = f(rt)
xl = rt
ick = ick+1
if (ick .le. ickmax) then
cycle iloop
end if
! warning error, itmax = maximum
jk = itmax + jk
ier = 33
end if
if (ic .ne. 0) then
cycle icloop
end if
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero)
! take remedial action to induce
! convergence
d = d*p5
h = h*p5
rt = rt-h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
end do
z0 = z1
z1 = z2
z2 = fprt
y0 = y1
y1 = y2
y2 = frt
end do iloop
end do icloop
x(l) = rt
infer(l) = jk
l = l+1
end do rloop
contains
subroutine trans_rt()
tem = rten*eps1
if (cdabs(rt) .gt. ax) tem = tem*rt
rt = rt+tem
d = (h+tem)*d/h
h = h+tem
end subroutine trans_rt
subroutine deflated_work(errcode)
! errcode=0 => no errors
! errcode=1 => jk>itmax or convergence of second kind achieved
integer :: errcode,flag
flag=1
loop1: do while(flag==1)
errcode=0
jk = jk+1
if (jk .gt. itmax) then
ier=33
errcode=1
return
end if
frt = f(rt)
fprt = frt
if (l /= 1) then
lm1 = l-1
do i=1,lm1
tem = rt - x(i)
if (cdabs(tem) .eq. rzero) then
!if (ic .ne. 0) go to 15 !! ?? possible?
call trans_rt()
cycle loop1
end if
fprt = fprt/tem
end do
end if
flag=0
end do loop1
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then
errcode=1
return
end if
end subroutine deflated_work
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Integration
!
! Only double precision coded atm
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fvn_d_gauss_legendre(n,qx,qw)
!
! This routine compute the n Gauss Legendre abscissas and weights
! Adapted from Numerical Recipes routine gauleg
!
! n (in) : number of points
! qx(out) : abscissas
! qw(out) : weights
!
implicit none
double precision,parameter :: pi=3.141592653589793d0
integer, intent(in) :: n
double precision, intent(out) :: qx(n),qw(n)
integer :: m,i,j
double precision :: z,z1,p1,p2,p3,pp
m=(n+1)/2
do i=1,m
z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0))
iloop: do
p1=1.d0
p2=0.d0
do j=1,n
p3=p2
p2=p1
p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j)
end do
pp=dble(n)*(z*p1-p2)/(z*z-1.d0)
z1=z
z=z1-p1/pp
if (dabs(z-z1)<=epsilon(z)) then
exit iloop
end if
end do iloop
qx(i)=-z
qx(n+1-i)=z
qw(i)=2.d0/((1.d0-z*z)*pp*pp)
qw(n+1-i)=qw(i)
end do
end subroutine
subroutine fvn_d_gl_integ(f,a,b,n,res)
!
! This is a simple non adaptative integration routine
! using n gauss legendre abscissas and weights
!
! f(in) : the function to integrate
! a(in) : lower bound
! b(in) : higher bound
! n(in) : number of gauss legendre pairs
! res(out): the evaluation of the integral
!
double precision,external :: f
double precision, intent(in) :: a,b
integer, intent(in):: n
double precision, intent(out) :: res
double precision, allocatable :: qx(:),qw(:)
double precision :: xm,xr
integer :: i
! First compute n gauss legendre abs and weight
allocate(qx(n))
allocate(qw(n))
call fvn_d_gauss_legendre(n,qx,qw)
xm=0.5d0*(b+a)
xr=0.5d0*(b-a)
res=0.d0
do i=1,n
res=res+qw(i)*f(xm+xr*qx(i))
end do
res=xr*res
deallocate(qw)
deallocate(qx)
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!
!
! Simple and double adaptative Gauss Kronrod integration based on
! a modified version of quadpack ( http://www.netlib.org/quadpack
!
! Common parameters :
!
! key (in)
! epsabs
! epsrel
!
!
!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
!
! Evaluate the integral of function f(x) between a and b
!
! f(in) : the function
! a(in) : lower bound
! b(in) : higher bound
! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule
! 1: 7 - 15 points
! 2: 10 - 21 points
! 3: 15 - 31 points
! 4: 20 - 41 points
! 5: 25 - 51 points
! 6: 30 - 61 points
!
! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag
!
! res(out) : estimated integral value
! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines
! 0 : no error
! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more
! subdivisions by increasing the value of
! limit (and taking the according dimension
! adjustments into account). however, if
! this yield no improvement it is advised
! to analyze the integrand in order to
! determine the integration difficulaties.
! if the position of a local difficulty can
! be determined (i.e.singularity,
! discontinuity within the interval) one
! will probably gain from splitting up the
! interval at this point and calling the
! integrator on the subranges. if possible,
! an appropriate special-purpose integrator
! should be used which is designed for
! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is
! detected, which prevents the requested
! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs
! at some points of the integration
! interval.
! 6 : the input is invalid, because
! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set
! to zero.
! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and
! work(limit+1) to b.
implicit none
double precision, external :: f
double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key
integer, intent(in) :: limit
double precision, intent(out) :: res,abserr
integer, intent(out) :: ier
double precision, allocatable :: work(:)
integer, allocatable :: iwork(:)
integer :: lenw,neval,last
! imsl value for limit is 500
lenw=limit*4
allocate(iwork(limit))
allocate(work(lenw))
call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
deallocate(work)
deallocate(iwork)
end subroutine
subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
!
! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x)
!
! f(in) : the function
! a(in) : lower bound
! b(in) : higher bound
! g(in) : external function describing lower bound for y
! h(in) : external function describing higher bound for y
! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule
! 1: 7 - 15 points
! 2: 10 - 21 points
! 3: 15 - 31 points
! 4: 20 - 41 points
! 5: 25 - 51 points
! 6: 30 - 61 points
!
! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag
!
! res(out) : estimated integral value
! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines
! 0 : no error
! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more
! subdivisions by increasing the value of
! limit (and taking the according dimension
! adjustments into account). however, if
! this yield no improvement it is advised
! to analyze the integrand in order to
! determine the integration difficulaties.
! if the position of a local difficulty can
! be determined (i.e.singularity,
! discontinuity within the interval) one
! will probably gain from splitting up the
! interval at this point and calling the
! integrator on the subranges. if possible,
! an appropriate special-purpose integrator
! should be used which is designed for
! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is
! detected, which prevents the requested
! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs
! at some points of the integration
! interval.
! 6 : the input is invalid, because
! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set
! to zero.
! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and
! work(limit+1) to b.
implicit none
double precision, external:: f,g,h
double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key,limit
integer, intent(out) :: ier
double precision, intent(out) :: res,abserr
double precision, allocatable :: work(:)
integer, allocatable :: iwork(:)
integer :: lenw,neval,last
! imsl value for limit is 500
lenw=limit*4
allocate(work(lenw))
allocate(iwork(limit))
call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
deallocate(iwork)
deallocate(work)
end subroutine
subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
!
! Evaluate the single integral of function f(x,y) for y between a and b with a
! given x value
!
! This function is used for the evaluation of the double integral fvn_d_integ_2_gk
!
! f(in) : the function
! x(in) : x
! a(in) : lower bound
! b(in) : higher bound
! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule
! 1: 7 - 15 points
! 2: 10 - 21 points
! 3: 15 - 31 points
! 4: 20 - 41 points
! 5: 25 - 51 points
! 6: 30 - 61 points
!
! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag
!
! res(out) : estimated integral value
! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines
! 0 : no error
! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more
! subdivisions by increasing the value of
! limit (and taking the according dimension
! adjustments into account). however, if
! this yield no improvement it is advised
! to analyze the integrand in order to
! determine the integration difficulaties.
! if the position of a local difficulty can
! be determined (i.e.singularity,
! discontinuity within the interval) one
! will probably gain from splitting up the
! interval at this point and calling the
! integrator on the subranges. if possible,
! an appropriate special-purpose integrator
! should be used which is designed for
! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is
! detected, which prevents the requested
! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs
! at some points of the integration
! interval.
! 6 : the input is invalid, because
! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set
! to zero.
! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and
! work(limit+1) to b.
implicit none
double precision, external:: f
double precision, intent(in) :: x,a,b,epsabs,epsrel
integer, intent(in) :: key,limit
integer, intent(out) :: ier
double precision, intent(out) :: res,abserr
double precision, allocatable :: work(:)
integer, allocatable :: iwork(:)
integer :: lenw,neval,last
! imsl value for limit is 500
lenw=limit*4
allocate(work(lenw))
allocate(iwork(limit))
call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
deallocate(iwork)
deallocate(work)
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Include the modified quadpack files
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
include "fvn_quadpack/dqag_2d_inner.f"
include "fvn_quadpack/dqk15_2d_inner.f"
include "fvn_quadpack/dqk31_2d_outer.f"
include "fvn_quadpack/d1mach.f"
include "fvn_quadpack/dqk31_2d_inner.f"
include "fvn_quadpack/dqage.f"
include "fvn_quadpack/dqk15.f"
include "fvn_quadpack/dqk21.f"
include "fvn_quadpack/dqk31.f"
include "fvn_quadpack/dqk41.f"
include "fvn_quadpack/dqk51.f"
include "fvn_quadpack/dqk61.f"
include "fvn_quadpack/dqk41_2d_outer.f"
include "fvn_quadpack/dqk41_2d_inner.f"
include "fvn_quadpack/dqag_2d_outer.f"
include "fvn_quadpack/dqpsrt.f"
include "fvn_quadpack/dqag.f"
include "fvn_quadpack/dqage_2d_outer.f"
include "fvn_quadpack/dqage_2d_inner.f"
include "fvn_quadpack/dqk51_2d_outer.f"
include "fvn_quadpack/dqk51_2d_inner.f"
include "fvn_quadpack/dqk61_2d_outer.f"
include "fvn_quadpack/dqk21_2d_outer.f"
include "fvn_quadpack/dqk61_2d_inner.f"
include "fvn_quadpack/dqk21_2d_inner.f"
include "fvn_quadpack/dqk15_2d_outer.f"
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Trigonometric functions
!
! fvn_z_acos, fvn_z_asin : complex arc cosine and sine
! fvn_d_acosh : arc cosinus hyperbolic
! fvn_d_asinh : arc sinus hyperbolic
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function fvn_z_acos(z)
! double complex arccos function adapted from
! the c gsl library
! http://www.gnu.org/software/gsl/
implicit none
complex(kind=8) :: fvn_z_acos
complex(kind=8) :: z
real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1
real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8
complex(kind=8),parameter :: i=(0._8,1._8)
real(kind=8) :: r_res,i_res
rz=dble(z)
iz=aimag(z)
if ( iz == 0._8 ) then
fvn_z_acos=fvn_z_acos_real(rz)
return
end if
x=dabs(rz)
y=dabs(iz)
r=fvn_d_hypot(x+1.,y)
s=fvn_d_hypot(x-1.,y)
a=0.5*(r + s)
b=x/a
y2=y*y
if (b <= b_crossover) then
r_res=dacos(b)
else
if (x <= 1.) then
d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x)))
r_res=datan(dsqrt(d)/x)
else
apx=a+x
d=0.5*(apx/(r+x+1)+apx/(s + (x - 1)))
r_res=datan((y*dsqrt(d))/x);
end if
end if
if (a <= a_crossover) then
if (x < 1.) then
am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x)))
else
am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1)))
end if
i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1))));
else
i_res = dlog (a + dsqrt (a*a - 1.));
end if
if (rz <0.) then
r_res=fvn_pi-r_res
end if
i_res=-sign(1._8,iz)*i_res
fvn_z_acos=dcmplx(r_res)+fvn_i*dcmplx(i_res)
end function fvn_z_acos
function fvn_z_acos_real(r)
! return the double complex arc cosinus for a
! double precision argument
implicit none
real(kind=8) :: r
complex(kind=8) :: fvn_z_acos_real
if (dabs(r)<=1._8) then
fvn_z_acos_real=dcmplx(dacos(r))
return
end if
if (r < 0._8) then
fvn_z_acos_real=dcmplx(fvn_pi)-fvn_i*dcmplx(fvn_d_acosh(-r))
else
fvn_z_acos_real=fvn_i*dcmplx(fvn_d_acosh(r))
end if
end function
function fvn_z_asin(z)
! double complex arcsin function derived from
! the c gsl library
! http://www.gnu.org/software/gsl/
implicit none
complex(kind=8) :: fvn_z_asin
complex(kind=8) :: z
real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1
real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8
real(kind=8) :: r_res,i_res
rz=dble(z)
iz=aimag(z)
if ( iz == 0._8 ) then
! z is real
fvn_z_asin=fvn_z_asin_real(rz)
return
end if
x=dabs(rz)
y=dabs(iz)
r=fvn_d_hypot(x+1.,y)
s=fvn_d_hypot(x-1.,y)
a=0.5*(r + s)
b=x/a
y2=y*y
if (b <= b_crossover) then
r_res=dasin(b)
else
if (x <= 1.) then
d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x)))
r_res=datan(x/dsqrt(d))
else
apx=a+x
d=0.5*(apx/(r+x+1)+apx/(s + (x - 1)))
r_res=datan(x/(y*dsqrt(d)));
end if
end if
if (a <= a_crossover) then
if (x < 1.) then
am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x)))
else
am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1)))
end if
i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1))));
else
i_res = dlog (a + dsqrt (a*a - 1.));
end if
r_res=sign(1._8,rz)*r_res
i_res=sign(1._8,iz)*i_res
fvn_z_asin=dcmplx(r_res)+fvn_i*dcmplx(i_res)
end function fvn_z_asin
function fvn_z_asin_real(r)
! return the double complex arc sinus for a
! double precision argument
implicit none
real(kind=8) :: r
complex(kind=8) :: fvn_z_asin_real
if (dabs(r)<=1._8) then
fvn_z_asin_real=dcmplx(dasin(r))
return
end if
if (r < 0._8) then
fvn_z_asin_real=dcmplx(-fvn_pi/2._8)+fvn_i*dcmplx(fvn_d_acosh(-r))
else
fvn_z_asin_real=dcmplx(fvn_pi/2._8)-fvn_i*dcmplx(fvn_d_acosh(r))
end if
end function fvn_z_asin_real
function fvn_d_acosh(r)
! return the arc hyperbolic cosine
implicit none
real(kind=8) :: r
real(kind=8) :: fvn_d_acosh
if (r >=1) then
fvn_d_acosh=dlog(r+dsqrt(r*r-1))
else
!! TODO : Better error handling!!!!!!
stop "Argument to fvn_d_acosh lesser than 1"
end if
end function fvn_d_acosh
function fvn_d_asinh(r)
! return the arc hyperbolic sine
implicit none
real(kind=8) :: r
real(kind=8) :: fvn_d_asinh
fvn_d_asinh=dlog(r+dsqrt(r*r+1))
end function fvn_d_asinh
function fvn_d_hypot(a,b)
implicit none
! return the euclidian norm of vector(a,b)
real(kind=8) :: a,b
real(kind=8) :: fvn_d_hypot
fvn_d_hypot=dsqrt(a*a+b*b)
end function
end module fvn