Commit 9db1d56ab902b3b119eeeb8d7365ecbc91c80049

Authored by Arthur HUGEAT
Exists in master

Merge branch 'master' of https://lxsd.femto-st.fr/gitlab/jfriedt/ifcs2018-article

Showing 2 changed files Inline Diff

@thesis{gwen-cogen, 1 1 @thesis{gwen-cogen,
author = {Gwenhaël Goavec-Merou}, 2 2 author = {Gwenhaël Goavec-Merou},
title = {Générateur de coprocesseur pour le traitement de données en flux (vidéo ou similaire) sur {FPGA}}, 3 3 title = {Générateur de coprocesseur pour le traitement de données en flux (vidéo ou similaire) sur {FPGA}},
institution = {FEMTO-ST}, 4 4 institution = {FEMTO-ST},
year = {2014} 5 5 year = {2014}
} 6 6 }
7 7
@article{hide, 8 8 @article{hide,
title={HIDE: A hardware intelligent description environment}, 9 9 title={HIDE: A hardware intelligent description environment},
author={Benkrid, Khaled and Belkacemi, S and Benkrid, Abdsamad}, 10 10 author={Benkrid, Khaled and Belkacemi, S and Benkrid, Abdsamad},
journal={Microprocessors and Microsystems}, 11 11 journal={Microprocessors and Microsystems},
volume={30}, 12 12 volume={30},
number={6}, 13 13 number={6},
pages={283--300}, 14 14 pages={283--300},
year={2006}, 15 15 year={2006},
publisher={Elsevier} 16 16 publisher={Elsevier}
} 17 17 }
18 18
@inproceedings{skeleton, 19 19 @inproceedings{skeleton,
title={High level programming for {FPGA} based image and video processing using hardware skeletons}, 20 20 title={High level programming for {FPGA} based image and video processing using hardware skeletons},
author={Benkrid, Khaled and Crookes, Danny and Smith, J and Benkrid, Abdsamad}, 21 21 author={Benkrid, Khaled and Crookes, Danny and Smith, J and Benkrid, Abdsamad},
booktitle={Field-Programmable Custom Computing Machines, 2001. FCCM'01. The 9th Annual IEEE Symposium on}, 22 22 booktitle={Field-Programmable Custom Computing Machines, 2001. FCCM'01. The 9th Annual IEEE Symposium on},
pages={219--226}, 23 23 pages={219--226},
year={2001}, 24 24 year={2001},
organization={IEEE} 25 25 organization={IEEE}
} 26 26 }
27 27
@article{benkrid2004application, 28 28 @article{benkrid2004application,
title={From application descriptions to hardware in seconds: a logic-based approach to bridging the gap}, 29 29 title={From application descriptions to hardware in seconds: a logic-based approach to bridging the gap},
author={Benkrid, Khaled and Crookes, Danny}, 30 30 author={Benkrid, Khaled and Crookes, Danny},
journal={Very Large Scale Integration (VLSI) Systems, IEEE Transactions on}, 31 31 journal={Very Large Scale Integration (VLSI) Systems, IEEE Transactions on},
volume={12}, 32 32 volume={12},
number={4}, 33 33 number={4},
pages={420--436}, 34 34 pages={420--436},
year={2004}, 35 35 year={2004},
publisher={IEEE} 36 36 publisher={IEEE}
} 37 37 }
38 38
@phdthesis{these-dsp-fpga, 39 39 @phdthesis{these-dsp-fpga,
title={Design methodologies and architectures for digital signal processing on {FPGA}s}, 40 40 title={Design methodologies and architectures for digital signal processing on {FPGA}s},
author={Mirzaei, Shahnam}, 41 41 author={Mirzaei, Shahnam},
year={2010}, 42 42 year={2010},
school={UNIVERSITY OF CALIFORNIA SANTA BARBARA} 43 43 school={UNIVERSITY OF CALIFORNIA SANTA BARBARA}
} 44 44 }
45 45
@article{def1-ordo, 46 46 @article{def1-ordo,
title={Algorithmique Parallèle-Cours Et Exercices Corrigés}, 47 47 title={Algorithmique Parallèle-Cours Et Exercices Corrigés},
author={Legrand, Arnaud and Robert, Yves}, 48 48 author={Legrand, Arnaud and Robert, Yves},
year={2003}, 49 49 year={2003},
publisher={Dunod} 50 50 publisher={Dunod}
} 51 51 }
52 52
@article{these-mathias, 53 53 @article{these-mathias,
title={Optimisation du débit pour des applications linéaires multi-tâches sur plateformes distribuées incluant des temps de reconfiguration}, 54 54 title={Optimisation du débit pour des applications linéaires multi-tâches sur plateformes distribuées incluant des temps de reconfiguration},
author={Coqblin, Mathias}, 55 55 author={Coqblin, Mathias},
institution = {FEMTO-ST}, 56 56 institution = {FEMTO-ST},
year={2012} 57 57 year={2012}
} 58 58 }
59 59
@thesis{these-alex, 60 60 @thesis{these-alex,
author = {Alexandru Dobrila}, 61 61 author = {Alexandru Dobrila},
title = {Optimisation du débit en environnement distribué incertain}, 62 62 title = {Optimisation du débit en environnement distribué incertain},
institution = {FEMTO-ST}, 63 63 institution = {FEMTO-ST},
year = {2011} 64 64 year = {2011}
} 65 65 }
66 66
@book{def2-ordo, 67 67 @book{def2-ordo,
title={Handbook of scheduling: algorithms, models, and performance analysis}, 68 68 title={Handbook of scheduling: algorithms, models, and performance analysis},
author={Leung, Joseph YT}, 69 69 author={Leung, Joseph YT},
year={2004}, 70 70 year={2004},
publisher={CRC Press} 71 71 publisher={CRC Press}
} 72 72 }
73 73
@inproceedings{def-ordo-en-ligne, 74 74 @inproceedings{def-ordo-en-ligne,
title={On the Definition of "On-Line" in Job Scheduling Problems}, 75 75 title={On the Definition of "On-Line" in Job Scheduling Problems},
author={Feitelson, Dror G and Mu'alem, Ahuva W}, 76 76 author={Feitelson, Dror G and Mu'alem, Ahuva W},
booktitle={SIGACT NEWS}, 77 77 booktitle={SIGACT NEWS},
year={2000}, 78 78 year={2000},
organization={Citeseer} 79 79 organization={Citeseer}
} 80 80 }
81 81
@article{shmueli2005backfilling, 82 82 @article{shmueli2005backfilling,
title={Backfilling with lookahead to optimize the packing of parallel jobs}, 83 83 title={Backfilling with lookahead to optimize the packing of parallel jobs},
author={Shmueli, Edi and Feitelson, Dror G}, 84 84 author={Shmueli, Edi and Feitelson, Dror G},
journal={Journal of Parallel and Distributed Computing}, 85 85 journal={Journal of Parallel and Distributed Computing},
volume={65}, 86 86 volume={65},
number={9}, 87 87 number={9},
pages={1090--1107}, 88 88 pages={1090--1107},
year={2005}, 89 89 year={2005},
publisher={Elsevier} 90 90 publisher={Elsevier}
} 91 91 }
92 92
@article{graham1979optimization, 93 93 @article{graham1979optimization,
title={Optimization and approximation in deterministic sequencing and scheduling: a survey}, 94 94 title={Optimization and approximation in deterministic sequencing and scheduling: a survey},
author={Graham, Ronald L and Lawler, Eugene L and Lenstra, Jan Karel and Kan, AHG Rinnooy}, 95 95 author={Graham, Ronald L and Lawler, Eugene L and Lenstra, Jan Karel and Kan, AHG Rinnooy},
journal={Annals of discrete mathematics}, 96 96 journal={Annals of discrete mathematics},
volume={5}, 97 97 volume={5},
pages={287--326}, 98 98 pages={287--326},
year={1979}, 99 99 year={1979},
publisher={Elsevier} 100 100 publisher={Elsevier}
} 101 101 }
102 102
@article{salvador2012accelerating, 103 103 @article{salvador2012accelerating,
title={Accelerating {FPGA}-based evolution of wavelet transform filters by optimized task scheduling}, 104 104 title={Accelerating {FPGA}-based evolution of wavelet transform filters by optimized task scheduling},
author={Salvador, Ruben and Vidal, Alberto and Moreno, Felix and Riesgo, Teresa and Sekanina, Lukas}, 105 105 author={Salvador, Ruben and Vidal, Alberto and Moreno, Felix and Riesgo, Teresa and Sekanina, Lukas},
journal={Microprocessors and Microsystems}, 106 106 journal={Microprocessors and Microsystems},
volume={36}, 107 107 volume={36},
number={5}, 108 108 number={5},
pages={427--438}, 109 109 pages={427--438},
year={2012}, 110 110 year={2012},
publisher={Elsevier} 111 111 publisher={Elsevier}
} 112 112 }
113 113
@article{zhuo2007scalable, 114 114 @article{zhuo2007scalable,
title={Scalable and modular algorithms for floating-point matrix multiplication on reconfigurable computing systems}, 115 115 title={Scalable and modular algorithms for floating-point matrix multiplication on reconfigurable computing systems},
author={Zhuo, Ling and Prasanna, Viktor K}, 116 116 author={Zhuo, Ling and Prasanna, Viktor K},
journal={Parallel and Distributed Systems, IEEE Transactions on}, 117 117 journal={Parallel and Distributed Systems, IEEE Transactions on},
volume={18}, 118 118 volume={18},
number={4}, 119 119 number={4},
pages={433--448}, 120 120 pages={433--448},
year={2007}, 121 121 year={2007},
publisher={IEEE} 122 122 publisher={IEEE}
} 123 123 }
124 124
@article{olariu1993computing, 125 125 @article{olariu1993computing,
title={Computing the Hough transform on reconfigurable meshes}, 126 126 title={Computing the Hough transform on reconfigurable meshes},
author={Olariu, Stephan and Schwing, James L and Zhang, Jingyuan}, 127 127 author={Olariu, Stephan and Schwing, James L and Zhang, Jingyuan},
journal={Image and vision computing}, 128 128 journal={Image and vision computing},
volume={11}, 129 129 volume={11},
number={10}, 130 130 number={10},
pages={623--628}, 131 131 pages={623--628},
year={1993}, 132 132 year={1993},
publisher={Elsevier} 133 133 publisher={Elsevier}
} 134 134 }
135 135
@article{pan1999improved, 136 136 @article{pan1999improved,
title={An improved constant-time algorithm for computing the Radon and Hough transforms on a reconfigurable mesh}, 137 137 title={An improved constant-time algorithm for computing the Radon and Hough transforms on a reconfigurable mesh},
author={Pan, Yi and Li, Keqin and Hamdi, Mounir}, 138 138 author={Pan, Yi and Li, Keqin and Hamdi, Mounir},
journal={Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on}, 139 139 journal={Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on},
volume={29}, 140 140 volume={29},
number={4}, 141 141 number={4},
pages={417--421}, 142 142 pages={417--421},
year={1999}, 143 143 year={1999},
publisher={IEEE} 144 144 publisher={IEEE}
} 145 145 }
146 146
@article{kasbah2008multigrid, 147 147 @article{kasbah2008multigrid,
title={Multigrid solvers in reconfigurable hardware}, 148 148 title={Multigrid solvers in reconfigurable hardware},
author={Kasbah, Safaa J and Damaj, Issam W and Haraty, Ramzi A}, 149 149 author={Kasbah, Safaa J and Damaj, Issam W and Haraty, Ramzi A},
journal={Journal of Computational and Applied Mathematics}, 150 150 journal={Journal of Computational and Applied Mathematics},
volume={213}, 151 151 volume={213},
number={1}, 152 152 number={1},
pages={79--94}, 153 153 pages={79--94},
year={2008}, 154 154 year={2008},
publisher={Elsevier} 155 155 publisher={Elsevier}
} 156 156 }
157 157
@inproceedings{crookes1998environment, 158 158 @inproceedings{crookes1998environment,
title={An environment for generating {FPGA} architectures for image algebra-based algorithms}, 159 159 title={An environment for generating {FPGA} architectures for image algebra-based algorithms},
author={Crookes, Danny and Alotaibi, Khalid and Bouridane, Ahmed and Donachy, Paul and Benkrid, Abdsamad}, 160 160 author={Crookes, Danny and Alotaibi, Khalid and Bouridane, Ahmed and Donachy, Paul and Benkrid, Abdsamad},
booktitle={Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on}, 161 161 booktitle={Image Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on},
pages={990--994}, 162 162 pages={990--994},
year={1998}, 163 163 year={1998},
organization={IEEE} 164 164 organization={IEEE}
} 165 165 }
166 166
@article{crookes2000design, 167 167 @article{crookes2000design,
title={Design and implementation of a high level programming environment for {FPGA}-based image processing}, 168 168 title={Design and implementation of a high level programming environment for {FPGA}-based image processing},
author={Crookes, D and Benkrid, K and Bouridane, A and Alotaibi, K and Benkrid, A}, 169 169 author={Crookes, D and Benkrid, K and Bouridane, A and Alotaibi, K and Benkrid, A},
journal={IEE Proceedings-Vision, Image and Signal Processing}, 170 170 journal={IEE Proceedings-Vision, Image and Signal Processing},
volume={147}, 171 171 volume={147},
number={4}, 172 172 number={4},
pages={377--384}, 173 173 pages={377--384},
year={2000}, 174 174 year={2000},
publisher={IET} 175 175 publisher={IET}
} 176 176 }
ifcs2018_proceeding.tex
1 % JMF : revoir l'abstract : on y avait mis le Zynq7010 de la redpitaya en montrant
2 % comment optimiser les perfs a surface finie. Ici aussi on tombait dans le cas ou`
3 % la solution a 1 seul FIR n'etait simplement pas synthetisable => fusionner les deux
4 % contributions pour le papier TUFFC
5
\documentclass[a4paper,conference]{IEEEtran/IEEEtran} 1 6 \documentclass[a4paper,conference]{IEEEtran/IEEEtran}
\usepackage{graphicx,color,hyperref} 2 7 \usepackage{graphicx,color,hyperref}
\usepackage{amsfonts} 3 8 \usepackage{amsfonts}
\usepackage{amsthm} 4 9 \usepackage{amsthm}
\usepackage{amssymb} 5 10 \usepackage{amssymb}
\usepackage{amsmath} 6 11 \usepackage{amsmath}
\usepackage{algorithm2e} 7 12 \usepackage{algorithm2e}
\usepackage{url,balance} 8 13 \usepackage{url,balance}
\usepackage[normalem]{ulem} 9 14 \usepackage[normalem]{ulem}
% correct bad hyphenation here 10 15 % correct bad hyphenation here
\hyphenation{op-tical net-works semi-conduc-tor} 11 16 \hyphenation{op-tical net-works semi-conduc-tor}
\textheight=26cm 12 17 \textheight=26cm
\setlength{\footskip}{30pt} 13 18 \setlength{\footskip}{30pt}
\pagenumbering{gobble} 14 19 \pagenumbering{gobble}
\begin{document} 15 20 \begin{document}
\title{Filter optimization for real time digital processing of radiofrequency signals: application 16 21 \title{Filter optimization for real time digital processing of radiofrequency signals: application
to oscillator metrology} 17 22 to oscillator metrology}
18 23
\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, 19 24 \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
G. Goavec-M\'erou\IEEEauthorrefmark{1}, 20 25 G. Goavec-M\'erou\IEEEauthorrefmark{1},
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} 21 26 P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } 22 27 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ 23 28 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
Email: \{pyb2,jmfriedt\}@femto-st.fr} 24 29 Email: \{pyb2,jmfriedt\}@femto-st.fr}
} 25 30 }
\maketitle 26 31 \maketitle
\thispagestyle{plain} 27 32 \thispagestyle{plain}
\pagestyle{plain} 28 33 \pagestyle{plain}
\newtheorem{definition}{Definition} 29 34 \newtheorem{definition}{Definition}
30 35
\begin{abstract} 31 36 \begin{abstract}
Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to 32 37 Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
radiofrequency signal processing. Applied to oscillator characterization in the context 33 38 radiofrequency signal processing. Applied to oscillator characterization in the context
of ultrastable clocks, stringent filtering requirements are defined by spurious signal or 34 39 of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
noise rejection needs. Since real time radiofrequency processing must be performed in a 35 40 noise rejection needs. Since real time radiofrequency processing must be performed in a
Field Programmable Array to meet timing constraints, we investigate optimization strategies 36 41 Field Programmable Array to meet timing constraints, we investigate optimization strategies
to design filters meeting rejection characteristics while limiting the hardware resources 37 42 to design filters meeting rejection characteristics while limiting the hardware resources
required and keeping timing constraints within the targeted measurement bandwidths. 38 43 required and keeping timing constraints within the targeted measurement bandwidths.
\end{abstract} 39 44 \end{abstract}
40 45
\begin{IEEEkeywords} 41 46 \begin{IEEEkeywords}
Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter 42 47 Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
\end{IEEEkeywords} 43 48 \end{IEEEkeywords}
44 49
\section{Digital signal processing of ultrastable clock signals} 45 50 \section{Digital signal processing of ultrastable clock signals}
46 51
Analog oscillator phase noise characteristics are classically performed by downconverting 47 52 Analog oscillator phase noise characteristics are classically performed by downconverting
the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, 48 53 the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In 49 54 followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by 50 55 a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. 51 56 multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
52 57
\begin{figure}[h!tb] 53 58 \begin{figure}[h!tb]
\begin{center} 54 59 \begin{center}
\includegraphics[width=.8\linewidth]{images/schema} 55 60 \includegraphics[width=.8\linewidth]{images/schema}
\end{center} 56 61 \end{center}
\caption{Fully digital oscillator phase noise characterization: the Device Under Test 57 62 \caption{Fully digital oscillator phase noise characterization: the Device Under Test
(DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and 58 63 (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals 59 64 downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite 60 65 and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays 61 66 Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
the spectral characteristics of the phase fluctuations.} 62 67 the spectral characteristics of the phase fluctuations.}
\label{schema} 63 68 \label{schema}
\end{figure} 64 69 \end{figure}
65 70
As with the analog mixer, 66 71 As with the analog mixer,
the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as 67 72 the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
well as the generation of the frequency sum signal in addition to the frequency difference. 68 73 well as the generation of the frequency sum signal in addition to the frequency difference.
These unwanted spectral characteristics must be rejected before decimating the data stream 69 74 These unwanted spectral characteristics must be rejected before decimating the data stream
for the phase noise spectral characterization. The characteristics introduced between the 70 75 for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
downconverter 71 76 downconverter
and the decimation processing blocks are core characteristics of an oscillator characterization 72 77 and the decimation processing blocks are core characteristics of an oscillator characterization
system, and must reject out-of-band signals below the targeted phase noise -- typically in the 73 78 system, and must reject out-of-band signals below the targeted phase noise -- typically in the
sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will 74 79 sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency 75 80 use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
datastream: optimizing the performance of the filter while reducing the needed resources is 76 81 datastream: optimizing the performance of the filter while reducing the needed resources is
hence tackled in a systematic approach using optimization techniques. Most significantly, we 77 82 hence tackled in a systematic approach using optimization techniques. Most significantly, we
tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with 78 83 tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
tunable number of coefficients and tunable number of bits representing the coefficients and the 79 84 tunable number of coefficients and tunable number of bits representing the coefficients and the
data being processed. 80 85 data being processed.
81 86
\section{Finite impulse response filter} 82 87 \section{Finite impulse response filter}
83 88
We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined 84 89 We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the 85 90 by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
outputs $y_k$ 86 91 outputs $y_k$
$$y_n=\sum_{k=0}^N b_k x_{n-k}$$ 87 92 $$y_n=\sum_{k=0}^N b_k x_{n-k}$$
88 93
As opposed to an implementation on a general purpose processor in which word size is defined by the 89 94 As opposed to an implementation on a general purpose processor in which word size is defined by the
processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since 90 95 processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since
not only the coefficient values and number of taps must be defined, but also the number of bits 91 96 not only the coefficient values and number of taps must be defined, but also the number of bits
defining the coefficients and the sample size. For this reason, and because we consider pipeline 92 97 defining the coefficients and the sample size. For this reason, and because we consider pipeline
processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency 93 98 processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but 94 99 signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL). 95 100 the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level.
Since latency is not an issue in a openloop phase noise characterization instrument, the large 96 101 Since latency is not an issue in a openloop phase noise characterization instrument, the large
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, 97 102 numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
is not considered as an issue as would be in a closed loop system. 98 103 is not considered as an issue as would be in a closed loop system.
99 104
The coefficients are classically expressed as floating point values. However, this binary 100 105 The coefficients are classically expressed as floating point values. However, this binary
number representation is not efficient for fast arithmetic computation by an FPGA. Instead, 101 106 number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
we select to quantify these floating point values into integer values. This quantization 102 107 we select to quantify these floating point values into integer values. This quantization
will result in some precision loss. 103 108 will result in some precision loss.
104 109
%As illustrated in Fig. \ref{float_vs_int}, we see that we aren't 105 110 %As illustrated in Fig. \ref{float_vs_int}, we see that we aren't
%need too coefficients or too sample size. If we have lot of coefficients but a small sample size, 106 111 %need too coefficients or too sample size. If we have lot of coefficients but a small sample size,
%the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality. 107 112 %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality.
108 113
% JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous 109 114 % JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous
% AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi) 110 115 % AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi)
% et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler 111 116 % et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler
112 117
%\begin{figure}[h!tb] 113 118 %\begin{figure}[h!tb]
%\includegraphics[width=\linewidth]{images/float-vs-integer.pdf} 114 119 %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf}
%\caption{Impact of the quantization resolution of the coefficients} 115 120 %\caption{Impact of the quantization resolution of the coefficients}
%\label{float_vs_int} 116 121 %\label{float_vs_int}
%\end{figure} 117 122 %\end{figure}
118 123
\begin{figure}[h!tb] 119 124 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/demo_filtre} 120 125 \includegraphics[width=\linewidth]{images/demo_filtre}
\caption{Impact of the quantization resolution of the coefficients: the quantization is 121 126 \caption{Impact of the quantization resolution of the coefficients: the quantization is
set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting 122 127 set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
the 30~first and 30~last coefficients out of the initial 128~band-pass 123 128 the 30~first and 30~last coefficients out of the initial 128~band-pass
filter coefficients to 0 (red dots).} 124 129 filter coefficients to 0 (red dots).}
\label{float_vs_int} 125 130 \label{float_vs_int}
\end{figure} 126 131 \end{figure}
127 132
The tradeoff between quantization resolution and number of coefficients when considering 128 133 The tradeoff between quantization resolution and number of coefficients when considering
integer operations is not trivial. As an illustration of the issue related to the 129 134 integer operations is not trivial. As an illustration of the issue related to the
relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits 130 135 relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon 131 136 a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the 132 137 quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
taps become null, making the large number of coefficients irrelevant and allowing to save 133 138 taps become null, making the large number of coefficients irrelevant and allowing to save
processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources 134 139 processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
to reach a given rejection level, or maximizing out of band rejection for a given computational 135 140 to reach a given rejection level, or maximizing out of band rejection for a given computational
resource, will drive the investigation on cascading filters designed with varying tap resolution 136 141 resource, will drive the investigation on cascading filters designed with varying tap resolution
and tap length, as will be shown in the next section. Indeed, our development strategy closely 137 142 and tap length, as will be shown in the next section. Indeed, our development strategy closely
follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} 138 143 follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
in which basic blocks are defined and characterized before being assembled \cite{hide} 139 144 in which basic blocks are defined and characterized before being assembled \cite{hide}
in a complete processing chain. In our case, assembling the filter blocks is a simpler block 140 145 in a complete processing chain. In our case, assembling the filter blocks is a simpler block
combination process since we assume a single value to be processed and a single value to be 141 146 combination process since we assume a single value to be processed and a single value to be
generated at each clock cycle. The FIR filters will not be considered to decimate in the 142 147 generated at each clock cycle. The FIR filters will not be considered to decimate in the
current implementation: the decimation is assumed to be located after the FIR cascade at the 143 148 current implementation: the decimation is assumed to be located after the FIR cascade at the
moment. 144 149 moment.
145 150
\section{Filter optimization} 146 151 \section{Filter optimization}
147 152
A basic approach for implementing the FIR filter is to compute the transfer function of 148 153 A basic approach for implementing the FIR filter is to compute the transfer function of
a monolithic filter: this single filter defines all coefficients with the same resolution 149 154 a monolithic filter: this single filter defines all coefficients with the same resolution
(number of bits) and processes data represented with their own resolution. Meeting the 150 155 (number of bits) and processes data represented with their own resolution. Meeting the
filter shape requires a large number of coefficients, limited by resources of the FPGA since 151 156 filter shape requires a large number of coefficients, limited by resources of the FPGA since
this filter must process data stream at the radiofrequency sampling rate after the mixer. 152 157 this filter must process data stream at the radiofrequency sampling rate after the mixer.
153 158
An optimization problem \cite{leung2004handbook} aims at improving one or many 154 159 An optimization problem \cite{leung2004handbook} aims at improving one or many
performance criteria within a constrained resource environment. Amongst the tools 155 160 performance criteria within a constrained resource environment. Amongst the tools
developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to 156 161 developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to
formally define the stated problem and search for an optimal use of available 157 162 formally define the stated problem and search for an optimal use of available
resources \cite{yu2007design, kodek1980design}. 158 163 resources \cite{yu2007design, kodek1980design}.
159 164
First we need to ensure that our problem is a real optimization problem. When 160 165 First we need to ensure that our problem is a real optimization problem. When
designing a processing function in the FPGA, we aim at meeting some requirement such as 161 166 designing a processing function in the FPGA, we aim at meeting some requirement such as
the throughput, the computation time or the noise rejection noise. However, due to limited 162 167 the throughput, the computation time or the noise rejection noise. However, due to limited
resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor) 163 168 resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor)
or LUT (Look Up Table), a tradeoff must be generally searched between performance and available 164 169 or LUT (Look Up Table), a tradeoff must be generally searched between performance and available
computational resources: optimizing some criteria within finite, limited 165 170 computational resources: optimizing some criteria within finite, limited
resources indeed matches the definition of a classical optimization problem. 166 171 resources indeed matches the definition of a classical optimization problem.
167 172
Specifically the degrees of freedom when addressing the problem of replacing the single monolithic 168 173 Specifically the degrees of freedom when addressing the problem of replacing the single monolithic
FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$ and 169 174 FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$ and
the number of bits $C_i$ representing the coefficients. Because each FIR in the chain is fed the output of the previous stage, 170 175 the number of bits $C_i$ representing the coefficients. Because each FIR in the chain is fed the output of the previous stage,
the optimization of the complete processing chain within a constrained resource environment is not 171 176 the optimization of the complete processing chain within a constrained resource environment is not
trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which is 172 177 trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which is
the number of bits needed in a worst case condition to represent the output of the FIR. Such an 173 178 the number of bits needed in a worst case condition to represent the output of the FIR. Such an
occupied area estimate assumes that the number of gates scales as the number of bits and the number 174 179 occupied area estimate assumes that the number of gates scales as the number of bits and the number
of coefficients, but does not account for the detailed implementation of the hardware. Indeed, 175 180 of coefficients, but does not account for the detailed implementation of the hardware. Indeed,
various FPGA implementations will provide different hardware functionalities, and we shall consider 176 181 various FPGA implementations will provide different hardware functionalities, and we shall consider
at the end of the design a synthesis step using vendor software to assess the validity of the solution 177 182 at the end of the design a synthesis step using vendor software to assess the validity of the solution
found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random 178 183 found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random
Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications 179 184 Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications
are most efficiently implemented by using DSP blocks whose input word 180 185 are most efficiently implemented by using DSP blocks whose input word
size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high 181 186 size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high
abstraction on the resource occupation is nevertheless selected in the following discussion in order 182 187 abstraction on the resource occupation is nevertheless selected in the following discussion in order
to leave enough degrees of freedom in the problem to try and find original solutions: too many 183 188 to leave enough degrees of freedom in the problem to try and find original solutions: too many
constraints in the initial statement of the problem leave little room for finding an optimal solution. 184 189 constraints in the initial statement of the problem leave little room for finding an optimal solution.
185 190
\begin{figure}[h!tb] 186 191 \begin{figure}[h!tb]
\begin{center} 187 192 \begin{center}
\includegraphics[width=.5\linewidth]{schema2} 188 193 \includegraphics[width=.5\linewidth]{schema2}
\caption{Shape of the filter transmitted power $P$ as a function of frequency: 189 194 \caption{Shape of the filter transmitted power $P$ as a function of frequency:
the bandpass BP is considered to occupy the initial 190 195 the bandpass BP is considered to occupy the initial
40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition 191 196 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition
width.} 192 197 width.}
\label{rejection-shape} 193 198 \label{rejection-shape}
\end{center} 194 199 \end{center}
\end{figure} 195 200 \end{figure}
196 201
Following these considerations, the model is expressed as: 197 202 Following these considerations, the model is expressed as:
\begin{align} 198 203 \begin{align}
\begin{cases} 199 204 \begin{cases}
\mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\ 200 205 \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\
\mathcal{A}_i &= N_i * C_i\\ 201 206 \mathcal{A}_i &= N_i * C_i\\
\Delta_i &= \Delta _{i-1} + \mathcal{P}_i 202 207 \Delta_i &= \Delta _{i-1} + \mathcal{P}_i
\end{cases} 203 208 \end{cases}
\label{model-FIR} 204 209 \label{model-FIR}
\end{align} 205 210 \end{align}
To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the rejection of depending on $N_i$ and $C_i$, $\mathcal{A}$ 206 211 To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the stopband rejection dependence with $N_i$ and $C_i$, $\mathcal{A}$
is a theoretical area occupation of the processing block on the FPGA, and $\Delta_i$ is the total rejection for the current stage $i$. 207 212 is a theoretical area occupation of the processing block on the FPGA as discussed earlier, and $\Delta_i$ is the total rejection for the current stage $i$.
Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending 208 213 Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending
on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an 209 214 on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an
incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements. 210 215 incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements.
Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will 211 216 Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will
be illustrated lated (section \ref{median}), we have designed 212 217 be illustrated lated (section \ref{median}), we have designed
a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband 213 218 a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband
(Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response 214 219 (Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response
in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid 215 220 in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid
ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter 216 221 ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter
rejection capability. Weighing these two criteria allows designing the linear program to be solved. 217 222 rejection capability. Weighing these two criteria allows designing the linear program to be solved.
218 223
\begin{figure}[h!tb] 219 224 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/noise-rejection.pdf} 220 225 \includegraphics[width=\linewidth]{images/noise-rejection.pdf}
\caption{Rejection as a function of number of coefficients and number of bits} 221 226 \caption{Rejection as a function of number of coefficients and number of bits}
\label{noise-rejection} 222 227 \label{noise-rejection}
\end{figure} 223 228 \end{figure}
224 229
The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below 225 230 The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below
a user-defined threshold. The MILP solver is allowed to choose the number of successive 226 231 a user-defined threshold, or aims at minimizing the area needed to reach a given rejection ($\min(S_q)$ in
232 the forthcoming discussion, Eqs. \ref{cstr_size} and \ref{cstr_rejection}).
233 The MILP solver is allowed to choose the number of successive
filters, within an upper bound. The last problem is to model the noise rejection. Since filter 227 234 filters, within an upper bound. The last problem is to model the noise rejection. Since filter
noise rejection capability is not modeled with linear equations, a look-up-table is generated 228 235 noise rejection capability is not modeled with linear equations, a look-up-table is generated
for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each 229 236 for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each
one of these conditions, the low-pass filter rejection defined as the mean power between 230 237 one of these conditions, the low-pass filter rejection is stored as computed by the frequency response
half the Nyquist frequency and the Nyquist frequency is stored as computed by the frequency response 231 238 of the digital filter (Fig. \ref{noise-rejection}). Various rejection criteria have been investigated,
of the digital filter (Fig. \ref{noise-rejection}). An intuitive analysis of this chart hints at an optimum 232 239 including mean value of the stopband response, median value of the stopband response, or as finally
240 selected, maximum value in the stopband. An intuitive analysis of the chart of Fig. \ref{noise-rejection}
241 hints at an optimum
set of tap length and number of bit for representing the coefficients along the line of the pyramidal 233 242 set of tap length and number of bit for representing the coefficients along the line of the pyramidal
shaped rejection capability function. 234 243 shaped rejection capability function.
235 244
Linear program formalism for solving the problem is well documented: an objective function is 236 245 Linear program formalism for solving the problem is well documented: an objective function is
defined which is linearly dependent on the parameters to be optimized. Constraints are expressed 237 246 defined which is linearly dependent on the parameters to be optimized. Constraints are expressed
as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}. 238 247 as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}.
With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this: 239 248 With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this:
\paragraph{Variables} 240 249 \paragraph{Variables}
\begin{align*} 241 250 \begin{align*}
x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\ 242 251 x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\
& \text{ $j$ is the stage} \\ 243 252 & \text{ $j$ is the stage} \\
& \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\ 244 253 & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\
\end{align*} 245 254 \end{align*}
\paragraph{Constants} 246 255 \paragraph{Constants}
\begin{align*} 247 256 \begin{align*}
\mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\ 248 257 \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\
& \text{ $p$ is the number of different filters} \\ 249 258 & \text{ $p$ is the number of different filters} \\
% N(i) & \text{ % Constant to let the 250 259 % N(i) & \text{ % Constant to let the
% number of coefficients %} \\ & \text{ 251 260 % number of coefficients %} \\ & \text{
% for filter $i$}\\ 252 261 % for filter $i$}\\
% C(i) & \text{ % Constant to let the 253 262 % C(i) & \text{ % Constant to let the
% number of bits of %}\\ & \text{ 254 263 % number of bits of %}\\ & \text{
% each coefficient for filter $i$}\\ 255 264 % each coefficient for filter $i$}\\
\mathcal{S}_{\max} & \text{ Total space available inside the FPGA} 256 265 \mathcal{S}_{\max} & \text{ Total space available inside the FPGA}
\end{align*} 257 266 \end{align*}
\paragraph{Constraints} 258 267 \paragraph{Constraints}
\begin{align} 259 268 \begin{align}
1 \leq i \leq p & \nonumber\\ 260 269 1 \leq i \leq p & \nonumber\\
1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\ 261 270 1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\
\forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\ 262 271 \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\
\mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\ 263 272 \mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\
\forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\ 264 273 \forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\
\mathcal{S} \leq \mathcal{S}_{\max}\nonumber \\ 265 274 \mathcal{S} \leq \mathcal{S}_{\max}\nonumber \\
\mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\ 266 275 \mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\
\forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\ 267 276 \forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\
\mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\ 268 277 \mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\
& \text{ (e.g. 160~dB here)}\nonumber\\\nonumber 269 278 & \text{ (e.g. 160~dB here)}\nonumber\\\nonumber
\end{align} 270 279 \end{align}
\paragraph{Goal} 271 280 \paragraph{Goal}
\begin{align*} 272 281 \begin{align*}
\min \mathcal{S}_q 273 282 \min \mathcal{S}_q
\end{align*} 274 283 \end{align*}
275 284
The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on 276 285 The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on
the previous occupation and the occupation of current selected filter (it is possible 277 286 the previous occupation and the occupation of current selected filter (it is possible
that no filter is selected for this stage). And the second one \ref{cstr_rejection} 278 287 that no filter is selected for this stage). And the second one \ref{cstr_rejection}
means the same thing but for the rejection, the rejection depends the previous rejection 279 288 means the same thing but for the rejection, the rejection depends the previous rejection
plus the rejection of selected filter. 280 289 plus the rejection of selected filter.
281 290
\subsection{Low bandpass ripple and maximum rejection criteria} 282 291 \subsection{Low bandpass ripple and maximum rejection criteria}
283 292
The MILP solver provides a solution to the problem by selecting a series of small FIR with 284 293 The MILP solver provides a solution to the problem by selecting a series of small FIR with
increasing number of bits representing data and coefficients as well as an increasing number 285 294 increasing number of bits representing data and coefficients as well as an increasing number
of coefficients, instead of a single monolithic filter. 286 295 of coefficients, instead of a single monolithic filter.
287 296
\begin{figure}[h!tb] 288 297 \begin{figure}[h!tb]
% \includegraphics[width=\linewidth]{images/compare-fir.pdf} 289 298 % \includegraphics[width=\linewidth]{images/compare-fir.pdf}
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf} 290 299 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf}
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR 291 300 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
with a cutoff frequency set at half the Nyquist frequency.} 292 301 with a cutoff frequency set at half the Nyquist frequency.}
\label{compare-fir} 293 302 \label{compare-fir}
\end{figure} 294 303 \end{figure}
295 304
Fig. \ref{compare-fir} exhibits the 296 305 Fig. \ref{compare-fir} exhibits the
performance comparison between one solution and a monolithic FIR when selecting a cutoff 297 306 performance comparison between one solution and a monolithic FIR when selecting a cutoff
frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the 298 307 frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the
same space usage are provided as selected by the MILP solver. The FIR cascade provides improved 299 308 same space usage are provided as selected by the MILP solver. The FIR cascade provides improved
rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to 300 309 rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to
be tuned or compensated for. 301 310 be tuned or compensated for.
302 311
303 312
The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}. 304 313 The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}.
We have considered a set of resources representative of the hardware platform we work on, 305 314 We have considered a set of resources representative of the hardware platform we work on,
Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results on 306 315 Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results reported in
Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to 307 316 Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to
the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10 308 317 the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10
filters fit in the available resources. However, in all cases the DSP resources are fully 309 318 filters fit in the available resources. However, in all cases the DSP resources are fully
used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software, 310 319 used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software,
implementing the design fails due to the excessive resource usage preventing routing the signals 311 320 implementing the design fails due to the excessive resource usage preventing routing the signals
on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization 312 321 on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization
procedure by finding non-trivial solutions matching resource constraints, but on the other 313 322 procedure by finding non-trivial solutions matching resource constraints, but on the other
hand also illustrates the limitation of a model with an abstraction layer that does not account 314 323 hand also illustrates the limitation of a model with an abstraction layer that does not account
for the detailed architecture of the hardware. 315 324 for the detailed architecture of the hardware.
316 325
\begin{table}[h!tb] 317 326 \begin{table}[h!tb]
\caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade 318 327 \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade
identified as optimal by the MILP solver within a finite resource criterion. The last line refers 319 328 identified as optimal by the MILP solver within a finite resource criterion. The last line refers
to available resources on a Zynq-7020 as found on the Zedboard.} 320 329 to available resources on a Zynq-7020 as found on the Zedboard.}
\begin{center} 321 330 \begin{center}
\begin{tabular}{|c|cccc|}\hline 322 331 \begin{tabular}{|c|cccc|}\hline
FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline 323 332 FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline
1 (monolithic) & 1 & 76183 & 220 & -162 \\ 324 333 1 (monolithic) & 1 & 76183 & 220 & -162 \\
5 & 5 & 18597 & 220 & -160 \\ 325 334 5 & 5 & 18597 & 220 & -160 \\
10 & 8 & 24729 & 220 & -161 \\\hline\hline 326 335 10 & 8 & 24729 & 220 & -161 \\\hline\hline
\textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline 327 336 \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline
%\begin{tabular}{|c|ccccc|}\hline 328 337 %\begin{tabular}{|c|ccccc|}\hline
%FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline 329 338 %FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline
%1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\ 330 339 %1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\
%5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\ 331 340 %5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\
%10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline 332 341 %10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline
%\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline 333 342 %\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline
\end{tabular} 334 343 \end{tabular}
\end{center} 335 344 \end{center}
%\vspace{-0.7cm} 336 345 %\vspace{-0.7cm}
\label{t1} 337 346 \label{t1}
\end{table} 338 347 \end{table}
339 348
\subsection{Alternate criteria}\label{median} 340 349 \subsection{Alternate criteria}\label{median}
341 350
Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer 342 351 Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer
function, namely low ripple in the bandpass defined as the first 40\% of the frequency 343 352 function, namely low ripple in the bandpass defined as the first 40\% of the frequency
range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for 344 353 range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for
demonstrating the need to properly select the optimization criterion, two cases of poor 345 354 demonstrating the need to properly select the optimization criterion, two cases of poor
filter shapes obtained by selecting the mean value and median value of the rejection, 346 355 filter shapes obtained by selecting the mean value and median value of the rejection,
with no consideration for the ripples in the bandpass. The results of the optimizations, 347 356 with no consideration for the ripples in the bandpass. The results of the optimizations,
in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}. 348 357 in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}.
349 358
\begin{figure}[h!tb] 350 359 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf} 351 360 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf}
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR 352 361 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
with a cutoff frequency set at half the Nyquist frequency.} 353 362 with a cutoff frequency set at half the Nyquist frequency.}
\label{compare-mean} 354 363 \label{compare-mean}
\end{figure} 355 364 \end{figure}
356 365
In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not 357 366 In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not
acceptable since the notch at the end of the transition band compensates for some unacceptable 358 367 acceptable since the notch at the end of the transition band compensates for some unacceptable
rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive 359 368 rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive
high frequency spurious components to be aliased at low frequency when decimating the signal. 360 369 high frequency spurious components to be aliased at low frequency when decimating the signal.
Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and 361 370 Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and
and slowly decaying transfer function starting to attenuate spectral components well before the 362 371 and slowly decaying transfer function starting to attenuate spectral components well before the
transition band starts. Such issues are partly aleviated by replacing a mean rejection value with 363 372 transition band starts. Such issues are partly aleviated by replacing a mean rejection value with
a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for 364 373 a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for
the reasons stated previously and much poorer than those found with the maximum rejection criterion 365 374 the reasons stated previously and much poorer than those found with the maximum rejection criterion
selected earlier (Fig. \ref{compare-fir}). 366 375 selected earlier (Fig. \ref{compare-fir}).
367 376
\begin{figure}[h!tb] 368 377 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf} 369 378 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf}
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR 370 379 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
with a cutoff frequency set at half the Nyquist frequency.} 371 380 with a cutoff frequency set at half the Nyquist frequency.}
\label{compare-median} 372 381 \label{compare-median}
\end{figure} 373 382 \end{figure}
374 383
\section{Filter coefficient selection} 375 384 \section{Filter coefficient selection}
376 385
The coefficients of a single monolithic filter are computed as the impulse response 377 386 The coefficients of a single monolithic filter are computed as the impulse response
of the filter transfer function, and practically approximated by a multitude of methods 378 387 of the filter transfer function, and practically approximated by a multitude of methods
including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing 379 388 including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing
(Matlab's {\tt fir1} function). 380 389 (Matlab's {\tt fir1} function).
381 390
\begin{figure}[h!tb] 382 391 \begin{figure}[h!tb]
\includegraphics[width=\linewidth]{images/fir1-vs-firls} 383 392 \includegraphics[width=\linewidth]{images/fir1-vs-firls}
\caption{Evolution of the rejection capability of least-square optimized filters and Hamming 384 393 \caption{Evolution of the rejection capability of least-square optimized filters and Hamming
FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit 385 394 FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit
encoded integers.} 386 395 encoded integers.}
\label{2} 387 396 \label{2}
\end{figure} 388 397 \end{figure}
389 398
Cascading filters opens a new optimization opportunity by 390 399 Cascading filters opens a new optimization opportunity by
selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2} 391 400 selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2}
illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better 392 401 illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better
rejection than {\tt firls}: since the linear solver increases the number of coefficients along 393 402 rejection than {\tt firls}: since the linear solver increases the number of coefficients along
the processing chain, the type of selected filter also changes depending on the number of coefficients 394 403 the processing chain, the type of selected filter also changes depending on the number of coefficients
and evolves along the processing chain. 395 404 and evolves along the processing chain.
396 405
\section{Conclusion} 397 406 \section{Conclusion}
398 407
We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate 399 408 We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate
Array for improved noise rejection within constrained resource occupation, as needed for 400 409 Array for improved noise rejection within constrained resource occupation, as needed for
real time processing of radiofrequency signal when characterizing spectral phase noise 401 410 real time processing of radiofrequency signal when characterizing spectral phase noise
characteristics of stable oscillators. The flexibility of the digital approach makes the result 402 411 characteristics of stable oscillators. The flexibility of the digital approach makes the result
best suited for closing the loop and using the measurement output in a feedback loop for 403 412 best suited for closing the loop and using the measurement output in a feedback loop for
controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior 404 413 controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior
is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical 405 414 is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical
atomic transition). 406 415 atomic transition).
407 416
\section*{Acknowledgement} 408 417 \section*{Acknowledgement}
409 418
This work is supported by the ANR Programme d'Investissement d'Avenir in 410 419 This work is supported by the ANR Programme d'Investissement d'Avenir in
progress at the Time and Frequency Departments of the FEMTO-ST Institute 411 420 progress at the Time and Frequency Departments of the FEMTO-ST Institute
(Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. 412 421 (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and 413 422 The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and
fruitful discussions. 414 423 fruitful discussions.
415 424
\bibliographystyle{IEEEtran} 416 425 \bibliographystyle{IEEEtran}
\balance 417 426 \balance
\bibliography{references,biblio} 418 427 \bibliography{references,biblio}
\end{document} 419 428 \end{document}
420 429
\section{Contexte d'ordonnancement} 421 430 \section{Contexte d'ordonnancement}
Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement 422 431 Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement
et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait 423 432 et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait
nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement 424 433 nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement
et d'optimisation. 425 434 et d'optimisation.
426 435
\subsection{D\'efinition du vocabulaire} 427 436 \subsection{D\'efinition du vocabulaire}
Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions 428 437 Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions
importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} : 429 438 importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} :
\begin{definition} 430 439 \begin{definition}
\label{def-ordo1} 431 440 \label{def-ordo1}
Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ : 432 441 Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ :
$V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$. 433 442 $V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$.
\end{definition} 434 443 \end{definition}
435 444
Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances 436 445 Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances
des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de 437 446 des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de
chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors 438 447 chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors
la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son 439 448 la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son
temps d'ex\'ecution. 440 449 temps d'ex\'ecution.
441 450
Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est : 442 451 Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est :
\begin{definition} 443 452 \begin{definition}
\label{def-ordo2} 444 453 \label{def-ordo2}
L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec 445 454 L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec
l'objectif d'optimiser un ou plusieurs critères de performance. 446 455 l'objectif d'optimiser un ou plusieurs critères de performance.
\end{definition} 447 456 \end{definition}
448 457
Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}. 449 458 Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}.
En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches. 450 459 En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches.
Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement. 451 460 Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement.
452 461
En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela, 453 462 En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela,
il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles 454 463 il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles
sont les m\'ethodes qu'on peut appliquer. 455 464 sont les m\'ethodes qu'on peut appliquer.
456 465
Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories : 457 466 Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories :
\begin{itemize} 458 467 \begin{itemize}
\item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes 459 468 \item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes
les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e. 460 469 les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e.
\item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps, 461 470 \item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps,
les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter 462 471 les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter
des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas, 463 472 des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas,
on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une 464 473 on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une
t\^ache de fin. 465 474 t\^ache de fin.
\item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où 466 475 \item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où
il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème 467 476 il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème
que nous traitons ici. 468 477 que nous traitons ici.
\end{itemize} 469 478 \end{itemize}
470 479
Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications 471 480 Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications
de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes. 472 481 de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes.
473 482
Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de 474 483 Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de
critères possibles. Nous allons donc parler des principaux : 475 484 critères possibles. Nous allons donc parler des principaux :
\begin{itemize} 476 485 \begin{itemize}
\item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation 477 486 \item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation
les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des 478 487 les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des
t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant 479 488 t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant
la fin d'ex\'ecution au plus tôt. 480 489 la fin d'ex\'ecution au plus tôt.
\item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches 481 490 \item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches
et d'optimiser ce r\'esultat. 482 491 et d'optimiser ce r\'esultat.
\item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees. 483 492 \item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees.
\end{itemize} 484 493 \end{itemize}
485 494
En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation 486 495 En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation
multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un 487 496 multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un
des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet 488 497 des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet
de faire le meilleur compromis entre tous les critères. 489 498 de faire le meilleur compromis entre tous les critères.
490 499
\subsection{Formalisation du problème} 491 500 \subsection{Formalisation du problème}
\label{formalisation} 492 501 \label{formalisation}
Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser 493 502 Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser
formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes} 494 503 formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes}
et nous essayerons de les formaliser le plus finement possible. 495 504 et nous essayerons de les formaliser le plus finement possible.
496 505
Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres 497 506 Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres
que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une 498 507 que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une
t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble. 499 508 t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble.
500 509
Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs : 501 510 Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs :
\begin{itemize} 502 511 \begin{itemize}
\item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge. 503 512 \item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge.
En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge. 504 513 En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge.
Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la 505 514 Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la
dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee 506 515 dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee
et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2 507 516 et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2
\item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements 508 517 \item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements
les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$. 509 518 les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$.
\item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent). 510 519 \item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent).
Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du 511 520 Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du
flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$. 512 521 flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$.
\item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp. 513 522 \item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp.
est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette 514 523 est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette
fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$ 515 524 fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$
et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$. 516 525 et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$.
\item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle 517 526 \item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle
fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la 518 527 fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la
t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$. 519 528 t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$.
\item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc. 520 529 \item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc.
Nous nommerons $\mathcal{A}_i$ cette taille. 521 530 Nous nommerons $\mathcal{A}_i$ cette taille.
\item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter 522 531 \item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter
la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\ 523 532 la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\
%TODO Est-ce vraiment un paramètre ? 524 533 %TODO Est-ce vraiment un paramètre ?
\end{itemize} 525 534 \end{itemize}
526 535
Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations 527 536 Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations
que nous avons identifi\'ees : 528 537 que nous avons identifi\'ees :
\begin{itemize} 529 538 \begin{itemize}
\item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution 530 539 \item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution
de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes. 531 540 de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes.
\item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart 532 541 \item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart
et les paramètres internes de la t\^ache. 533 542 et les paramètres internes de la t\^ache.
\item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit 534 543 \item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit
sortant et des variables internes de la t\^ache. 535 544 sortant et des variables internes de la t\^ache.
\item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$ 536 545 \item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$
\end{itemize} 537 546 \end{itemize}
Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche, 538 547 Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche,
sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions. 539 548 sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions.
540 549
Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit 541 550 Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit
un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes : 542 551 un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes :
543 552
\paragraph{Contrainte de pr\'ecision :} 544 553 \paragraph{Contrainte de pr\'ecision :}
Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre : 545 554 Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre :
\begin{align*} 546 555 \begin{align*}
\pi _i ^+ \geq \pi _j ^- 547 556 \pi _i ^+ \geq \pi _j ^-
\end{align*} 548 557 \end{align*}
549 558
\paragraph{Contrainte de d\'ebit :} 550 559 \paragraph{Contrainte de d\'ebit :}
Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre : 551 560 Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre :
\begin{align*} 552 561 \begin{align*}
d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache} 553 562 d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache}
\end{align*} 554 563 \end{align*}
555 564
\paragraph{Contrainte de synchronisation :} 556 565 \paragraph{Contrainte de synchronisation :}
Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles 557 566 Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles
et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même. 558 567 et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même.
Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors : 559 568 Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors :
\begin{align*} 560 569 \begin{align*}
\forall \text{ chemin } \mathcal{C}1(s, .., f), 561 570 \forall \text{ chemin } \mathcal{C}1(s, .., f),
\forall \text{ chemin } \mathcal{C}2(s, .., f) 562 571 \forall \text{ chemin } \mathcal{C}2(s, .., f)
\text{ tel que } \mathcal{C}1 \neq \mathcal{C}2 563 572 \text{ tel que } \mathcal{C}1 \neq \mathcal{C}2
\Rightarrow 564 573 \Rightarrow
\sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i 565 574 \sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i
\end{align*} 566 575 \end{align*}
567 576
\paragraph{Contrainte de place :} 568 577 \paragraph{Contrainte de place :}
Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ : 569 578 Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ :
\begin{align*} 570 579 \begin{align*}
\sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA} 571 580 \sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA}
\end{align*} 572 581 \end{align*}
573 582
\subsection{Exemples de mod\'elisation} 574 583 \subsection{Exemples de mod\'elisation}
\label{exemples-modeles} 575 584 \label{exemples-modeles}
Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle. 576 585 Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle.
Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit. 577 586 Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit.
578 587
Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant 579 588 Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant
que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$. 580 589 que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$.