Blame view
ifcs2018_proceeding.tex
38.6 KB
30a06bd2a initial commit: I... |
1 2 3 |
\documentclass[a4paper,conference]{IEEEtran/IEEEtran} \usepackage{graphicx,color,hyperref} \usepackage{amsfonts} |
6dfba800f complement a la p... |
4 5 6 |
\usepackage{amsthm} \usepackage{amssymb} \usepackage{amsmath} |
3ca9d7dfc ajout du programm... |
7 |
\usepackage{algorithm2e} |
33bcbbbcd biblio en majuscu... |
8 |
\usepackage{url,balance} |
30a06bd2a initial commit: I... |
9 |
\usepackage[normalem]{ulem} |
30a06bd2a initial commit: I... |
10 11 12 13 14 15 16 17 |
% correct bad hyphenation here \hyphenation{op-tical net-works semi-conduc-tor} \textheight=26cm \setlength{\footskip}{30pt} \pagenumbering{gobble} \begin{document} \title{Filter optimization for real time digital processing of radiofrequency signals: application to oscillator metrology} |
970e2bac6 Ajout des valeurs... |
18 19 |
\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, G. Goavec-M\'erou\IEEEauthorrefmark{1}, |
190924a53 ajout des choix d... |
20 |
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} |
30a06bd2a initial commit: I... |
21 22 23 24 25 26 27 |
\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ Email: \{pyb2,jmfriedt\}@femto-st.fr} } \maketitle \thispagestyle{plain} \pagestyle{plain} |
6dfba800f complement a la p... |
28 29 |
ewtheorem{definition}{Definition} |
30a06bd2a initial commit: I... |
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
\begin{abstract} Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to radiofrequency signal processing. Applied to oscillator characterization in the context of ultrastable clocks, stringent filtering requirements are defined by spurious signal or noise rejection needs. Since real time radiofrequency processing must be performed in a Field Programmable Array to meet timing constraints, we investigate optimization strategies to design filters meeting rejection characteristics while limiting the hardware resources required and keeping timing constraints within the targeted measurement bandwidths. \end{abstract} \begin{IEEEkeywords} Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter \end{IEEEkeywords} \section{Digital signal processing of ultrastable clock signals} Analog oscillator phase noise characteristics are classically performed by downconverting |
970e2bac6 Ajout des valeurs... |
48 |
the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, |
30a06bd2a initial commit: I... |
49 50 |
followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by |
970e2bac6 Ajout des valeurs... |
51 |
multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. |
30a06bd2a initial commit: I... |
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
\begin{figure}[h!tb] \begin{center} \includegraphics[width=.8\linewidth]{images/schema} \end{center} \caption{Fully digital oscillator phase noise characterization: the Device Under Test (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays the spectral characteristics of the phase fluctuations.} \label{schema} \end{figure} As with the analog mixer, the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as well as the generation of the frequency sum signal in addition to the frequency difference. These unwanted spectral characteristics must be rejected before decimating the data stream |
39aa2f001 biblio 2018 |
70 |
for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the |
5c78fa3b0 FIFO et HLS |
71 |
downconverter |
30a06bd2a initial commit: I... |
72 73 74 75 76 77 78 79 80 |
and the decimation processing blocks are core characteristics of an oscillator characterization system, and must reject out-of-band signals below the targeted phase noise -- typically in the sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency datastream: optimizing the performance of the filter while reducing the needed resources is hence tackled in a systematic approach using optimization techniques. Most significantly, we tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with tunable number of coefficients and tunable number of bits representing the coefficients and the data being processed. |
7fcf1da2a ajout de la versi... |
81 82 83 |
\section{Finite impulse response filter} We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined |
4dfca2c81 merge jmf + ajout... |
84 |
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the |
5c78fa3b0 FIFO et HLS |
85 |
outputs $y_k$ |
7fcf1da2a ajout de la versi... |
86 |
$$y_n=\sum_{k=0}^N b_k x_{n-k}$$ |
190924a53 ajout des choix d... |
87 |
As opposed to an implementation on a general purpose processor in which word size is defined by the |
7fcf1da2a ajout de la versi... |
88 |
processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since |
4dfca2c81 merge jmf + ajout... |
89 |
not only the coefficient values and number of taps must be defined, but also the number of bits |
5c78fa3b0 FIFO et HLS |
90 |
defining the coefficients and the sample size. For this reason, and because we consider pipeline |
e3580faae relecture/correct... |
91 |
processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency |
4dfca2c81 merge jmf + ajout... |
92 |
signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but |
5c78fa3b0 FIFO et HLS |
93 94 |
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL). Since latency is not an issue in a openloop phase noise characterization instrument, the large |
4dfca2c81 merge jmf + ajout... |
95 |
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, |
5c78fa3b0 FIFO et HLS |
96 |
is not considered as an issue as would be in a closed loop system. |
7fcf1da2a ajout de la versi... |
97 |
|
76ebb20ed relecture proceed... |
98 99 100 |
The coefficients are classically expressed as floating point values. However, this binary number representation is not efficient for fast arithmetic computation by an FPGA. Instead, we select to quantify these floating point values into integer values. This quantization |
4dfca2c81 merge jmf + ajout... |
101 |
will result in some precision loss. |
6dfba800f complement a la p... |
102 103 104 105 |
%As illustrated in Fig. \ref{float_vs_int}, we see that we aren't %need too coefficients or too sample size. If we have lot of coefficients but a small sample size, %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality. |
190924a53 ajout des choix d... |
106 |
|
76ebb20ed relecture proceed... |
107 |
% JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous |
4dfca2c81 merge jmf + ajout... |
108 109 |
% AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi) % et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler |
6dfba800f complement a la p... |
110 111 112 |
%\begin{figure}[h!tb] %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf} %\caption{Impact of the quantization resolution of the coefficients} |
ee2ff04c6 illustration quan... |
113 |
%\label{float_vs_int} |
6dfba800f complement a la p... |
114 |
%\end{figure} |
e3580faae relecture/correct... |
115 116 117 |
\begin{figure}[h!tb] \includegraphics[width=\linewidth]{images/demo_filtre} \caption{Impact of the quantization resolution of the coefficients: the quantization is |
df9d66a38 Redimension des f... |
118 |
set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting |
33bcbbbcd biblio en majuscu... |
119 120 |
the 30~first and 30~last coefficients out of the initial 128~band-pass filter coefficients to 0 (red dots).} |
e3580faae relecture/correct... |
121 122 |
\label{float_vs_int} \end{figure} |
6dfba800f complement a la p... |
123 124 125 126 127 128 129 130 131 |
The tradeoff between quantization resolution and number of coefficients when considering integer operations is not trivial. As an illustration of the issue related to the relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the taps become null, making the large number of coefficients irrelevant and allowing to save processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources to reach a given rejection level, or maximizing out of band rejection for a given computational resource, will drive the investigation on cascading filters designed with varying tap resolution |
e3580faae relecture/correct... |
132 133 134 135 |
and tap length, as will be shown in the next section. Indeed, our development strategy closely follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} in which basic blocks are defined and characterized before being assembled \cite{hide} in a complete processing chain. In our case, assembling the filter blocks is a simpler block |
bee7a1f72 fix typo |
136 |
combination process since we assume a single value to be processed and a single value to be |
e3580faae relecture/correct... |
137 138 139 |
generated at each clock cycle. The FIR filters will not be considered to decimate in the current implementation: the decimation is assumed to be located after the FIR cascade at the moment. |
190924a53 ajout des choix d... |
140 |
|
30a06bd2a initial commit: I... |
141 142 143 144 145 146 147 148 149 150 151 |
\section{Filter optimization} A basic approach for implementing the FIR filter is to compute the transfer function of a monolithic filter: this single filter defines all coefficients with the same resolution (number of bits) and processes data represented with their own resolution. Meeting the filter shape requires a large number of coefficients, limited by resources of the FPGA since this filter must process data stream at the radiofrequency sampling rate after the mixer. An optimization problem \cite{leung2004handbook} aims at improving one or many performance criteria within a constrained resource environment. Amongst the tools developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to |
33bcbbbcd biblio en majuscu... |
152 |
formally define the stated problem and search for an optimal use of available |
30a06bd2a initial commit: I... |
153 |
resources \cite{yu2007design, kodek1980design}. |
3ca9d7dfc ajout du programm... |
154 |
First we need to ensure that our problem is a real optimization problem. When |
33bcbbbcd biblio en majuscu... |
155 156 |
designing a processing function in the FPGA, we aim at meeting some requirement such as the throughput, the computation time or the noise rejection noise. However, due to limited |
3ca9d7dfc ajout du programm... |
157 |
resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor) |
33bcbbbcd biblio en majuscu... |
158 159 160 |
or LUT (Look Up Table), a tradeoff must be generally searched between performance and available computational resources: optimizing some criteria within finite, limited resources indeed matches the definition of a classical optimization problem. |
3ca9d7dfc ajout du programm... |
161 162 |
Specifically the degrees of freedom when addressing the problem of replacing the single monolithic |
970e2bac6 Ajout des valeurs... |
163 |
FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$, |
4dfca2c81 merge jmf + ajout... |
164 |
the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ representing |
970e2bac6 Ajout des valeurs... |
165 166 |
the data fed to the filter. Because each FIR in the chain is fed the output of the previous stage, the optimization of the complete processing chain within a constrained resource environment is not |
bee7a1f72 fix typo |
167 |
trivial. The resource occupation of a FIR filter is considered as $(D_i+C_i) \times N_i$ which is |
e3580faae relecture/correct... |
168 169 170 171 172 173 174 |
the number of bits needed in a worst case condition to represent the output of the FIR. Such an occupied area estimate assumes that the number of gates scales as the number of bits and the number of coefficients, but does not account for the detailed implementation of the hardware. Indeed, various FPGA implementations will provide different hardware functionalities, and we shall consider at the end of the design a synthesis step using vendor software to assess the validity of the solution found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications |
33bcbbbcd biblio en majuscu... |
175 |
are most efficiently implemented by using DSP blocks whose input word |
e3580faae relecture/correct... |
176 177 178 179 |
size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high abstraction on the resource occupation is nevertheless selected in the following discussion in order to leave enough degrees of freedom in the problem to try and find original solutions: too many constraints in the initial statement of the problem leave little room for finding an optimal solution. |
4dfca2c81 merge jmf + ajout... |
180 |
|
e3580faae relecture/correct... |
181 182 183 |
\begin{figure}[h!tb] \begin{center} \includegraphics[width=.5\linewidth]{schema2} |
df9d66a38 Redimension des f... |
184 |
\caption{Shape of the filter transmitted power $P$ as a function of frequency: |
33bcbbbcd biblio en majuscu... |
185 186 |
the bandpass BP is considered to occupy the initial 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition |
e3580faae relecture/correct... |
187 188 189 190 191 192 |
width.} \label{rejection-shape} \end{center} \end{figure} Following these considerations, the model is expressed as: |
4dfca2c81 merge jmf + ajout... |
193 194 195 196 197 198 199 200 |
\begin{align} \begin{cases} \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\ \mathcal{A}_i &= N_i * C_i + D_i\\ \Delta_i &= \Delta _{i-1} + \mathcal{P}_i \end{cases} \label{model-FIR} \end{align} |
e3580faae relecture/correct... |
201 |
To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the rejection of depending on $N_i$ and $C_i$, $\mathcal{A}$ |
bee7a1f72 fix typo |
202 |
is a theoretical area occupation of the processing block on the FPGA, and $\Delta_i$ is the total rejection for the current stage $i$. |
e3580faae relecture/correct... |
203 |
Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending |
df9d66a38 Redimension des f... |
204 205 |
on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements. |
33bcbbbcd biblio en majuscu... |
206 207 |
Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will be illustrated lated (section \ref{median}), we have designed |
df9d66a38 Redimension des f... |
208 |
a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband |
e3580faae relecture/correct... |
209 210 211 212 |
(Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter rejection capability. Weighing these two criteria allows designing the linear program to be solved. |
30a06bd2a initial commit: I... |
213 |
|
30a06bd2a initial commit: I... |
214 215 216 217 218 |
\begin{figure}[h!tb] \includegraphics[width=\linewidth]{images/noise-rejection.pdf} \caption{Rejection as a function of number of coefficients and number of bits} \label{noise-rejection} \end{figure} |
4dfca2c81 merge jmf + ajout... |
219 |
The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below |
30a06bd2a initial commit: I... |
220 221 |
a user-defined threshold. The MILP solver is allowed to choose the number of successive filters, within an upper bound. The last problem is to model the noise rejection. Since filter |
e3580faae relecture/correct... |
222 |
noise rejection capability is not modeled with linear equations, a look-up-table is generated |
4dfca2c81 merge jmf + ajout... |
223 |
for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each |
30a06bd2a initial commit: I... |
224 225 |
one of these conditions, the low-pass filter rejection defined as the mean power between half the Nyquist frequency and the Nyquist frequency is stored as computed by the frequency response |
33bcbbbcd biblio en majuscu... |
226 227 228 |
of the digital filter (Fig. \ref{noise-rejection}). An intuitive analysis of this chart hints at an optimum set of tap length and number of bit for representing the coefficients along the line of the pyramidal shaped rejection capability function. |
30a06bd2a initial commit: I... |
229 230 231 232 |
Linear program formalism for solving the problem is well documented: an objective function is defined which is linearly dependent on the parameters to be optimized. Constraints are expressed as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}. |
3ca9d7dfc ajout du programm... |
233 234 235 |
With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this: \paragraph{Variables} \begin{align*} |
e3580faae relecture/correct... |
236 |
x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\ |
3ca9d7dfc ajout du programm... |
237 238 239 240 241 242 243 |
& \text{ $j$ is the stage} \\ & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\ \end{align*} \paragraph{Constants} \begin{align*} \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\ & \text{ $p$ is the number of different filters} \\ |
bee7a1f72 fix typo |
244 245 |
C(i) & \text{ % Constant to let the number of coefficients %} \\ & \text{ |
e3580faae relecture/correct... |
246 |
for filter $i$}\\ |
bee7a1f72 fix typo |
247 248 |
\pi_C(i) & \text{ % Constant to let the number of bits of %}\\ & \text{ |
e3580faae relecture/correct... |
249 250 |
each coefficient for filter $i$}\\ \mathcal{A}_{\max} & \text{ Total space available inside the FPGA} |
3ca9d7dfc ajout du programm... |
251 252 |
\end{align*} \paragraph{Constraints} |
e3580faae relecture/correct... |
253 254 255 256 257 258 259 260 261 |
\begin{align} 1 \leq i \leq p & onumber\\ 1 \leq j \leq q & \text{ $q$ is the max of filter stage} onumber \\ \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} onumber\\ \mathcal{S}_0 = 0 & \text{ initial occupation} onumber\\ |
bee7a1f72 fix typo |
262 |
\forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\ |
e3580faae relecture/correct... |
263 264 265 266 |
\mathcal{S} \leq \mathcal{S}_{\max} onumber \\ \mathcal{N}_0 = 0 & \text{ initial rejection} onumber\\ |
bee7a1f72 fix typo |
267 268 269 |
\forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\ \mathcal{N}_q \geqslant 160 & \text{ an user defined bound} onumber\\ |
e3580faae relecture/correct... |
270 271 272 273 |
& \text{ (e.g. 160~dB here)} onumber\\ onumber \end{align} |
3ca9d7dfc ajout du programm... |
274 275 276 277 |
\paragraph{Goal} \begin{align*} \min \mathcal{S}_q \end{align*} |
3ca9d7dfc ajout du programm... |
278 279 280 281 282 |
The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on the previous occupation and the occupation of current selected filter (it is possible that no filter is selected for this stage). And the second one \ref{cstr_rejection} means the same thing but for the rejection, the rejection depends the previous rejection plus the rejection of selected filter. |
30a06bd2a initial commit: I... |
283 |
|
33bcbbbcd biblio en majuscu... |
284 |
\subsection{Low bandpass ripple and maximum rejection criteria} |
30a06bd2a initial commit: I... |
285 286 |
The MILP solver provides a solution to the problem by selecting a series of small FIR with increasing number of bits representing data and coefficients as well as an increasing number |
67ebe1295 tentative de desc... |
287 |
of coefficients, instead of a single monolithic filter. |
30a06bd2a initial commit: I... |
288 289 290 |
\begin{figure}[h!tb] % \includegraphics[width=\linewidth]{images/compare-fir.pdf} |
3ca9d7dfc ajout du programm... |
291 |
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf} |
30a06bd2a initial commit: I... |
292 293 294 295 |
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR with a cutoff frequency set at half the Nyquist frequency.} \label{compare-fir} \end{figure} |
67ebe1295 tentative de desc... |
296 297 298 299 300 301 |
Fig. \ref{compare-fir} exhibits the performance comparison between one solution and a monolithic FIR when selecting a cutoff frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the same space usage are provided as selected by the MILP solver. The FIR cascade provides improved rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to be tuned or compensated for. |
30a06bd2a initial commit: I... |
302 |
The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}. |
67ebe1295 tentative de desc... |
303 304 305 306 |
We have considered a set of resources representative of the hardware platform we work on, Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results on Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10 |
9513b4310 remplacement Tab1... |
307 |
filters fit in the available resources. However, in all cases the DSP resources are fully |
67ebe1295 tentative de desc... |
308 309 310 311 312 313 |
used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software, implementing the design fails due to the excessive resource usage preventing routing the signals on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization procedure by finding non-trivial solutions matching resource constraints, but on the other hand also illustrates the limitation of a model with an abstraction layer that does not account for the detailed architecture of the hardware. |
30a06bd2a initial commit: I... |
314 315 316 317 |
\begin{table}[h!tb] \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade identified as optimal by the MILP solver within a finite resource criterion. The last line refers |
3ca9d7dfc ajout du programm... |
318 |
to available resources on a Zynq-7020 as found on the Zedboard.} |
30a06bd2a initial commit: I... |
319 |
\begin{center} |
4103fb716 retour au tableau... |
320 321 322 323 324 325 326 327 328 329 330 331 |
\begin{tabular}{|c|cccc|}\hline FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline 1 (monolithic) & 1 & 76183 & 220 & -162 \\ 5 & 5 & 18597 & 220 & -160 \\ 10 & 8 & 24729 & 220 & -161 \\\hline\hline \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline %\begin{tabular}{|c|ccccc|}\hline %FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline %1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\ %5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\ %10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline %\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline |
30a06bd2a initial commit: I... |
332 333 334 335 336 |
\end{tabular} \end{center} %\vspace{-0.7cm} \label{t1} \end{table} |
33bcbbbcd biblio en majuscu... |
337 338 339 340 341 342 343 344 345 346 347 |
\subsection{Alternate criteria}\label{median} Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer function, namely low ripple in the bandpass defined as the first 40\% of the frequency range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for demonstrating the need to properly select the optimization criterion, two cases of poor filter shapes obtained by selecting the mean value and median value of the rejection, with no consideration for the ripples in the bandpass. The results of the optimizations, in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}. \begin{figure}[h!tb] |
df9d66a38 Redimension des f... |
348 |
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf} |
33bcbbbcd biblio en majuscu... |
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR with a cutoff frequency set at half the Nyquist frequency.} \label{compare-mean} \end{figure} In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not acceptable since the notch at the end of the transition band compensates for some unacceptable rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive high frequency spurious components to be aliased at low frequency when decimating the signal. Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and and slowly decaying transfer function starting to attenuate spectral components well before the transition band starts. Such issues are partly aleviated by replacing a mean rejection value with a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for the reasons stated previously and much poorer than those found with the maximum rejection criterion selected earlier (Fig. \ref{compare-fir}). \begin{figure}[h!tb] |
df9d66a38 Redimension des f... |
366 |
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf} |
33bcbbbcd biblio en majuscu... |
367 368 369 370 |
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR with a cutoff frequency set at half the Nyquist frequency.} \label{compare-median} \end{figure} |
30a06bd2a initial commit: I... |
371 372 373 374 375 |
\section{Filter coefficient selection} The coefficients of a single monolithic filter are computed as the impulse response of the filter transfer function, and practically approximated by a multitude of methods including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing |
bee7a1f72 fix typo |
376 |
(Matlab's {\tt fir1} function). |
30a06bd2a initial commit: I... |
377 378 379 380 381 382 383 384 |
\begin{figure}[h!tb] \includegraphics[width=\linewidth]{images/fir1-vs-firls} \caption{Evolution of the rejection capability of least-square optimized filters and Hamming FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit encoded integers.} \label{2} \end{figure} |
e3580faae relecture/correct... |
385 386 387 388 389 390 |
Cascading filters opens a new optimization opportunity by selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2} illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better rejection than {\tt firls}: since the linear solver increases the number of coefficients along the processing chain, the type of selected filter also changes depending on the number of coefficients and evolves along the processing chain. |
30a06bd2a initial commit: I... |
391 392 393 394 395 396 397 398 |
\section{Conclusion} We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate Array for improved noise rejection within constrained resource occupation, as needed for real time processing of radiofrequency signal when characterizing spectral phase noise characteristics of stable oscillators. The flexibility of the digital approach makes the result best suited for closing the loop and using the measurement output in a feedback loop for controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior |
970e2bac6 Ajout des valeurs... |
399 |
is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical |
30a06bd2a initial commit: I... |
400 401 402 |
atomic transition). \section*{Acknowledgement} |
970e2bac6 Ajout des valeurs... |
403 404 405 |
This work is supported by the ANR Programme d'Investissement d'Avenir in progress at the Time and Frequency Departments of the FEMTO-ST Institute (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. |
30a06bd2a initial commit: I... |
406 407 |
The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and fruitful discussions. |
e3580faae relecture/correct... |
408 |
\bibliographystyle{IEEEtran} |
33bcbbbcd biblio en majuscu... |
409 |
\balance |
e3580faae relecture/correct... |
410 411 |
\bibliography{references,biblio} \end{document} |
4dfca2c81 merge jmf + ajout... |
412 |
|
6dfba800f complement a la p... |
413 |
\section{Contexte d'ordonnancement} |
4dfca2c81 merge jmf + ajout... |
414 |
Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement |
6dfba800f complement a la p... |
415 |
et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait |
4dfca2c81 merge jmf + ajout... |
416 |
nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement |
6dfba800f complement a la p... |
417 |
et d'optimisation. |
4dfca2c81 merge jmf + ajout... |
418 |
|
6dfba800f complement a la p... |
419 |
\subsection{D\'efinition du vocabulaire} |
4dfca2c81 merge jmf + ajout... |
420 |
Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions |
6dfba800f complement a la p... |
421 422 423 |
importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} : \begin{definition} \label{def-ordo1} |
4dfca2c81 merge jmf + ajout... |
424 |
Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ : |
6dfba800f complement a la p... |
425 426 |
$V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$. \end{definition} |
4dfca2c81 merge jmf + ajout... |
427 428 429 430 431 |
Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son |
6dfba800f complement a la p... |
432 |
temps d'ex\'ecution. |
4dfca2c81 merge jmf + ajout... |
433 |
|
6dfba800f complement a la p... |
434 435 436 437 438 439 |
Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est : \begin{definition} \label{def-ordo2} L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec l'objectif d'optimiser un ou plusieurs critères de performance. \end{definition} |
4dfca2c81 merge jmf + ajout... |
440 |
|
6dfba800f complement a la p... |
441 442 443 |
Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}. En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches. Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement. |
4dfca2c81 merge jmf + ajout... |
444 |
|
6dfba800f complement a la p... |
445 |
En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela, |
4dfca2c81 merge jmf + ajout... |
446 |
il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles |
6dfba800f complement a la p... |
447 |
sont les m\'ethodes qu'on peut appliquer. |
4dfca2c81 merge jmf + ajout... |
448 |
|
6dfba800f complement a la p... |
449 450 |
Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories : \begin{itemize} |
4dfca2c81 merge jmf + ajout... |
451 |
\item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes |
6dfba800f complement a la p... |
452 453 |
les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e. \item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps, |
4dfca2c81 merge jmf + ajout... |
454 455 456 457 |
les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas, on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une t\^ache de fin. |
6dfba800f complement a la p... |
458 459 460 461 |
\item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème que nous traitons ici. \end{itemize} |
4dfca2c81 merge jmf + ajout... |
462 |
|
6dfba800f complement a la p... |
463 464 |
Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes. |
4dfca2c81 merge jmf + ajout... |
465 466 |
Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de |
6dfba800f complement a la p... |
467 468 469 |
critères possibles. Nous allons donc parler des principaux : \begin{itemize} \item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation |
4dfca2c81 merge jmf + ajout... |
470 |
les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des |
6dfba800f complement a la p... |
471 472 473 474 475 476 |
t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant la fin d'ex\'ecution au plus tôt. \item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches et d'optimiser ce r\'esultat. \item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees. \end{itemize} |
4dfca2c81 merge jmf + ajout... |
477 |
|
6dfba800f complement a la p... |
478 479 480 481 |
En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet de faire le meilleur compromis entre tous les critères. |
4dfca2c81 merge jmf + ajout... |
482 |
|
6dfba800f complement a la p... |
483 484 |
\subsection{Formalisation du problème} \label{formalisation} |
4dfca2c81 merge jmf + ajout... |
485 |
Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser |
6dfba800f complement a la p... |
486 487 |
formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes} et nous essayerons de les formaliser le plus finement possible. |
4dfca2c81 merge jmf + ajout... |
488 |
|
6dfba800f complement a la p... |
489 490 491 |
Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble. |
4dfca2c81 merge jmf + ajout... |
492 |
|
6dfba800f complement a la p... |
493 494 495 496 |
Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs : \begin{itemize} \item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge. En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge. |
4dfca2c81 merge jmf + ajout... |
497 498 |
Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee |
6dfba800f complement a la p... |
499 |
et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2 |
4dfca2c81 merge jmf + ajout... |
500 |
\item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements |
6dfba800f complement a la p... |
501 |
les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$. |
4dfca2c81 merge jmf + ajout... |
502 |
\item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent). |
6dfba800f complement a la p... |
503 504 505 506 |
Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$. \item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp. est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette |
4dfca2c81 merge jmf + ajout... |
507 |
fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$ |
6dfba800f complement a la p... |
508 |
et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$. |
4dfca2c81 merge jmf + ajout... |
509 510 |
\item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la |
6dfba800f complement a la p... |
511 512 513 |
t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$. \item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc. Nous nommerons $\mathcal{A}_i$ cette taille. |
4dfca2c81 merge jmf + ajout... |
514 |
\item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter |
6dfba800f complement a la p... |
515 516 517 |
la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\ %TODO Est-ce vraiment un paramètre ? \end{itemize} |
4dfca2c81 merge jmf + ajout... |
518 519 520 |
Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations que nous avons identifi\'ees : |
6dfba800f complement a la p... |
521 522 523 524 525 526 527 528 |
\begin{itemize} \item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes. \item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart et les paramètres internes de la t\^ache. \item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit sortant et des variables internes de la t\^ache. \item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$ |
4dfca2c81 merge jmf + ajout... |
529 530 531 |
\end{itemize} Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche, sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions. |
6dfba800f complement a la p... |
532 533 |
Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes : |
4dfca2c81 merge jmf + ajout... |
534 |
|
6dfba800f complement a la p... |
535 |
\paragraph{Contrainte de pr\'ecision :} |
4dfca2c81 merge jmf + ajout... |
536 |
Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre : |
6dfba800f complement a la p... |
537 538 539 |
\begin{align*} \pi _i ^+ \geq \pi _j ^- \end{align*} |
4dfca2c81 merge jmf + ajout... |
540 |
|
6dfba800f complement a la p... |
541 |
\paragraph{Contrainte de d\'ebit :} |
4dfca2c81 merge jmf + ajout... |
542 |
Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre : |
6dfba800f complement a la p... |
543 544 545 |
\begin{align*} d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache} \end{align*} |
4dfca2c81 merge jmf + ajout... |
546 |
|
6dfba800f complement a la p... |
547 |
\paragraph{Contrainte de synchronisation :} |
4dfca2c81 merge jmf + ajout... |
548 |
Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles |
6dfba800f complement a la p... |
549 550 551 |
et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même. Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors : \begin{align*} |
4dfca2c81 merge jmf + ajout... |
552 553 554 555 556 |
\forall \text{ chemin } \mathcal{C}1(s, .., f), \forall \text{ chemin } \mathcal{C}2(s, .., f) \text{ tel que } \mathcal{C}1 eq \mathcal{C}2 \Rightarrow |
6dfba800f complement a la p... |
557 558 |
\sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i \end{align*} |
4dfca2c81 merge jmf + ajout... |
559 |
|
6dfba800f complement a la p... |
560 |
\paragraph{Contrainte de place :} |
4dfca2c81 merge jmf + ajout... |
561 |
Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ : |
6dfba800f complement a la p... |
562 563 564 |
\begin{align*} \sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA} \end{align*} |
4dfca2c81 merge jmf + ajout... |
565 |
|
6dfba800f complement a la p... |
566 567 |
\subsection{Exemples de mod\'elisation} \label{exemples-modeles} |
4dfca2c81 merge jmf + ajout... |
568 |
Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle. |
6dfba800f complement a la p... |
569 |
Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit. |
4dfca2c81 merge jmf + ajout... |
570 |
|
6dfba800f complement a la p... |
571 572 |
Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$. |
4dfca2c81 merge jmf + ajout... |
573 |
|
6dfba800f complement a la p... |
574 575 576 577 578 579 580 581 582 583 584 585 |
Donc d'après notre mod\'elisation : \begin{itemize} \item $N \in \mathcal{P}_i$ %TODO N ou 1 ? \item $\delta _i = N\ c.h.$ (coup d'horloge) \item $\pi _i ^+ = \pi _i ^- = 16 bits$ \item $f _i ^+ = f _i ^-$ \item $q _i ^+ = q _i ^- / N$ \item $d _i ^+ = q _i ^- / N / f _i ^-$ \item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\ %TODO Je ne sais pas trouver la taille... \end{itemize} |
4dfca2c81 merge jmf + ajout... |
586 587 588 |
Un autre exemple int\'eressant que l'on peut donner, c'est le cas des spliters. Il s'agit la aussi d'un bloc très simple qui permet de dupliquer un flux. On peut donc donner un nombre de sorties à cr\'eer, on note ce paramètre |
6dfba800f complement a la p... |
589 590 591 592 593 594 595 596 597 598 599 600 |
%TODO pas très inspir\'e... $X$. Voici ce que donne notre mod\'elisation : \begin{itemize} \item $X \in \mathcal{P}_i$ \item $\delta _i = 1\ c.h.$ \item $\pi _i ^+ = \pi _i ^- = 16 bits$ \item $f _i ^+ = f _i ^-$ \item $q _i ^+ = q _i ^-$ \item $d _i ^+ = d _i ^-$ \item $\Gamma _i ^- = 1$ \item $\Gamma _i ^+ = X$\\ \end{itemize} |
4dfca2c81 merge jmf + ajout... |
601 |
|
6dfba800f complement a la p... |
602 |
L'exemple suivant traite du cas du shifter. Il s'agit d'un bloc qui a pour but de diminuer le nombre de bits des |
4dfca2c81 merge jmf + ajout... |
603 |
donn\'ees afin d'acc\'el\'erer les traitement sur les blocs suivants. On peut donc donner le nombre de bits à shifter, |
6dfba800f complement a la p... |
604 605 606 607 608 609 610 611 612 613 |
on note ce paramètre $S$. Voici ce que donne notre mod\'elisation : \begin{itemize} \item $S \in \mathcal{P}_i$ \item $\delta _i = 1\ c.h.$ \item $\pi _i ^+ = \pi _i ^- - S$ \item $f _i ^+ = f _i ^-$ \item $q _i ^+ = q _i ^-$ \item $d _i ^+ = d _i ^-$ \item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\ \end{itemize} |
4dfca2c81 merge jmf + ajout... |
614 615 |
Nous allons traiter un dernier exemple un peu plus complexe, le cas d'un filtre d\'ecimateur (ou FIR). Ce bloc |
6dfba800f complement a la p... |
616 |
est compos\'e de beaucoup de paramètres internes. On peut d\'efinir un nombre d'\'etages $E$, qui repr\'esente le nombre |
4dfca2c81 merge jmf + ajout... |
617 |
d'it\'erations à faire avant d'arrêter le traitement. Afin d'effectuer son filtrage, on doit donner au bloc un ensemble |
6dfba800f complement a la p... |
618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
de coefficients $C$ et par cons\'equent ces coefficients ont leur propre pr\'ecision $\pi _C$. Pour finir, le dernier paramètre à donner est le facteur de d\'ecimation $N$. Si on applique notre mod\'elisation, on peut obtenir cela : \begin{itemize} \item $E \in \mathcal{P}_i$ \item $C \in \mathcal{P}_i$ \item $\pi _C \in \mathcal{P}_i$ \item $N \in \mathcal{P}_i$ \item $\delta _i = E * |C| * q_i^-\ c.h.$ %Trop simpliste \item $\pi _i ^+ = \pi _i ^- * \pi _C$ \item $f _i ^+ = f _i ^-$ \item $q _i ^+ = q _i ^- / N$ \item $d _i ^+ = q _i ^- / N / f _i ^-$ \item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\ \end{itemize} |
4dfca2c81 merge jmf + ajout... |
632 633 |
Ces exemples ne sont que des modèles provisoires; pour s'assurer de leur performance, il faudra les |
6dfba800f complement a la p... |
634 |
confronter à des simulations. |
4dfca2c81 merge jmf + ajout... |
635 636 637 |
Bien que les articles sur les skeletons, \cite{gwen-cogen}, \cite{skeleton} et \cite{hide}, nous aient donn\'e des indices sur une possible |
6dfba800f complement a la p... |
638 639 |
mod\'elisation, ils \'etaient encore trop focalis\'es sur l'optimisation spatiale des blocs. Nous nous sommes donc inspir\'es de ces travaux pour proposer notre modèle, en faisant abstraction des optimisations bas niveau. |