Commit 1a0e88f0ce6e736bf1f59e7b02cc394896768bff
1 parent
183c460e4e
Exists in
master
replace 4-spaces by tab
Showing 8 changed files with 1688 additions and 1680 deletions Side-by-side Diff
allan.m
... | ... | @@ -5,33 +5,33 @@ |
5 | 5 | % Inputs: |
6 | 6 | % DATA should be a structure and have the following fields: |
7 | 7 | % DATA.freq or DATA.phase |
8 | -% A vector of fractional frequency measurements (df/f) in | |
9 | -% DATA.freq *or* phase offset data (seconds) in DATA.phase . | |
10 | -% If frequency data is not present, it will be generated by | |
11 | -% differentiating the phase data. | |
12 | -% If both fields are present, then DATA.freq will be used. | |
13 | -% Note: for general-purpose calculations of Allan deviation, | |
14 | -% (i.e. a two-sample variance) use DATA.freq . | |
8 | +% A vector of fractional frequency measurements (df/f) in | |
9 | +% DATA.freq *or* phase offset data (seconds) in DATA.phase . | |
10 | +% If frequency data is not present, it will be generated by | |
11 | +% differentiating the phase data. | |
12 | +% If both fields are present, then DATA.freq will be used. | |
13 | +% Note: for general-purpose calculations of Allan deviation, | |
14 | +% (i.e. a two-sample variance) use DATA.freq . | |
15 | 15 | % |
16 | 16 | % DATA.rate or DATA.time |
17 | -% The sampling rate in Hertz (DATA.rate) or a vector of | |
18 | -% timestamps for each measurement in seconds (DATA.time). | |
19 | -% DATA.rate is used if both fields are present. | |
20 | -% If DATA.rate == 0, then the timestamps are used. | |
17 | +% The sampling rate in Hertz (DATA.rate) or a vector of | |
18 | +% timestamps for each measurement in seconds (DATA.time). | |
19 | +% DATA.rate is used if both fields are present. | |
20 | +% If DATA.rate == 0, then the timestamps are used. | |
21 | 21 | % |
22 | 22 | % DATA.units (optional) |
23 | -% The units for the data. If present, the string DATA.units | |
24 | -% is added to the plot y-axis label. | |
23 | +% The units for the data. If present, the string DATA.units | |
24 | +% is added to the plot y-axis label. | |
25 | 25 | % |
26 | 26 | % TAU is an array of tau values for computing Allan deviation. |
27 | -% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
28 | -% grouped in fractional quantities!) and invalid values are ignored. | |
29 | -% Leave empty to use default values. | |
27 | +% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
28 | +% grouped in fractional quantities!) and invalid values are ignored. | |
29 | +% Leave empty to use default values. | |
30 | 30 | % NAME is an optional label that is added to the plot titles. |
31 | 31 | % VERBOSE sets the level of status messages: |
32 | -% 0 = silent & no data plots; | |
33 | -% 1 = status messages & minimum plots; | |
34 | -% 2 = all messages and plots (default) | |
32 | +% 0 = silent & no data plots; | |
33 | +% 1 = status messages & minimum plots; | |
34 | +% 2 = all messages and plots (default) | |
35 | 35 | % |
36 | 36 | % Outputs: |
37 | 37 | % RETVAL is the array of Allan deviation values at each TAU. |
... | ... | @@ -46,8 +46,8 @@ |
46 | 46 | % To compute the Allan deviation for the data in the variable "lt": |
47 | 47 | % >> lt |
48 | 48 | % lt = |
49 | -% freq: [1x86400 double] | |
50 | -% rate: 0.5 | |
49 | +% freq: [1x86400 double] | |
50 | +% rate: 0.5 | |
51 | 51 | % |
52 | 52 | % Use: |
53 | 53 | % |
54 | 54 | |
55 | 55 | |
... | ... | @@ -94,16 +94,16 @@ |
94 | 94 | % |
95 | 95 | % |
96 | 96 | % M.A. Hopcroft |
97 | -% mhopeng at gmail dot com | |
97 | +% mhopeng at gmail dot com | |
98 | 98 | % |
99 | 99 | % I welcome your comments and feedback! |
100 | 100 | % |
101 | 101 | % MH Mar2014 |
102 | 102 | % v2.24 fix bug related to generating freq data from phase with timestamps |
103 | -% (thanks to S. David-Grignot for finding the bug) | |
103 | +% (thanks to S. David-Grignot for finding the bug) | |
104 | 104 | % MH Oct2010 |
105 | 105 | % v2.22 tau truncation to integer groups; tau sort |
106 | -% plotting bugfix | |
106 | +% plotting bugfix | |
107 | 107 | % v2.20 sychronize updates across allan, allan_overlap, allan_modified |
108 | 108 | % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 |
109 | 109 | % v2.14 update plotting behaviour, default tau values |
110 | 110 | |
111 | 111 | |
112 | 112 | |
113 | 113 | |
114 | 114 | |
115 | 115 | |
116 | 116 | |
117 | 117 | |
118 | 118 | |
... | ... | @@ -113,53 +113,53 @@ |
113 | 113 | |
114 | 114 | % MH Jun2010 |
115 | 115 | % v2.12 bugfix for rate data row/col orientation |
116 | -% add DATA.units for plotting | |
117 | -% use dsplot.m for plotting | |
116 | +% add DATA.units for plotting | |
117 | +% use dsplot.m for plotting | |
118 | 118 | % |
119 | 119 | % MH MAR2010 |
120 | 120 | % v2.1 minor interface and bugfixes |
121 | -% update data consistency check | |
121 | +% update data consistency check | |
122 | 122 | % |
123 | 123 | % MH FEB2010 |
124 | 124 | % v2.0 Consistent code behaviour for all "allan_x.m" functions: |
125 | -% accept phase data | |
126 | -% verbose levels | |
125 | +% accept phase data | |
126 | +% verbose levels | |
127 | 127 | % |
128 | 128 | % |
129 | 129 | % MH JAN2010 |
130 | 130 | % v1.84 code cleanup |
131 | 131 | % v1.82 typos in comments and code cleanup |
132 | -% tau bin plotting changed for performance improvement | |
132 | +% tau bin plotting changed for performance improvement | |
133 | 133 | % v1.8 Performance improvements: |
134 | -% vectorize code for rate data | |
135 | -% logical indexing for irregular rate data | |
134 | +% vectorize code for rate data | |
135 | +% logical indexing for irregular rate data | |
136 | 136 | % MH APR2008 |
137 | 137 | % v1.62 loglog plot option |
138 | 138 | % v1.61 improve error handling, plotting |
139 | -% fix bug in regular data calc for high-rate data | |
140 | -% fix bug in timestamp data calc for large starting gap | |
141 | -% (thanks to C. B. Ruiz for identifying these bugs) | |
142 | -% uses timestamps for DATA.rate=0 | |
143 | -% progress indicator for large timestamp data processing | |
139 | +% fix bug in regular data calc for high-rate data | |
140 | +% fix bug in timestamp data calc for large starting gap | |
141 | +% (thanks to C. B. Ruiz for identifying these bugs) | |
142 | +% uses timestamps for DATA.rate=0 | |
143 | +% progress indicator for large timestamp data processing | |
144 | 144 | % MH JUN2007 |
145 | 145 | % v1.54 Improve data plotting and optional bin plotting |
146 | 146 | % MH FEB2007 |
147 | 147 | % v1.5 use difference from median for plotting |
148 | -% added MAD calculation for outlier detection | |
148 | +% added MAD calculation for outlier detection | |
149 | 149 | % MH JAN2007 |
150 | 150 | % v1.48 plotting typos fixes |
151 | 151 | % MH DEC2006 |
152 | 152 | % v1.46 hack to plot error bars |
153 | 153 | % v1.44 further validation (Riley 1000-pt) |
154 | -% plot mean and std | |
154 | +% plot mean and std | |
155 | 155 | % MH NOV2006 |
156 | 156 | % v1.42 typo fix comments |
157 | 157 | % v1.4 fix irregular rate algorithm |
158 | -% irregular algorithm rejects tau less than max gap in time data | |
159 | -% validate both algorithms using test data from NBS Monograph 140 | |
158 | +% irregular algorithm rejects tau less than max gap in time data | |
159 | +% validate both algorithms using test data from NBS Monograph 140 | |
160 | 160 | % v1.3 fix time calc if data.time not present |
161 | -% add error bars (not possible due to bug in MATLAB R14SP3) | |
162 | -% remove offset calculation | |
161 | +% add error bars (not possible due to bug in MATLAB R14SP3) | |
162 | +% remove offset calculation | |
163 | 163 | % v1.24 improve feedback |
164 | 164 | % MH SEP2006 |
165 | 165 | % v1.22 updated comments |
166 | 166 | |
... | ... | @@ -184,25 +184,25 @@ |
184 | 184 | |
185 | 185 | %% Data consistency checks |
186 | 186 | if ~(isfield(data,'phase') || isfield(data,'freq')) |
187 | - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
187 | + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
188 | 188 | end |
189 | 189 | if isfield(data,'time') |
190 | - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
191 | - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
192 | - error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
193 | - else | |
194 | - error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
195 | - end | |
196 | - end | |
197 | - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
198 | - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
199 | - end | |
200 | - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
201 | - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
202 | - end | |
203 | - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
204 | - error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
205 | - end | |
190 | + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
191 | + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
192 | + error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
193 | + else | |
194 | + error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
195 | + end | |
196 | + end | |
197 | + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
198 | + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
199 | + end | |
200 | + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
201 | + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
202 | + end | |
203 | + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
204 | + error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
205 | + end | |
206 | 206 | end |
207 | 207 | |
208 | 208 | % sort tau vector |
209 | 209 | |
210 | 210 | |
211 | 211 | |
212 | 212 | |
213 | 213 | |
... | ... | @@ -211,34 +211,34 @@ |
211 | 211 | |
212 | 212 | %% Basic statistical tests on the data set |
213 | 213 | if ~isfield(data,'freq') |
214 | - if isfield(data,'rate') && data.rate ~= 0 | |
215 | - data.freq=diff(data.phase).*data.rate; | |
216 | - elseif isfield(data,'time') | |
217 | - data.freq=diff(data.phase)./diff(data.time); | |
218 | - end | |
219 | - if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
220 | - data.time(1)=[]; % make time stamps correspond to freq data | |
214 | + if isfield(data,'rate') && data.rate ~= 0 | |
215 | + data.freq=diff(data.phase).*data.rate; | |
216 | + elseif isfield(data,'time') | |
217 | + data.freq=diff(data.phase)./diff(data.time); | |
218 | + end | |
219 | + if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
220 | + data.time(1)=[]; % make time stamps correspond to freq data | |
221 | 221 | end |
222 | 222 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns |
223 | - | |
223 | + | |
224 | 224 | s.numpoints=length(data.freq); |
225 | 225 | s.max=max(data.freq); |
226 | 226 | s.min=min(data.freq); |
227 | 227 | s.mean=mean(data.freq); |
228 | 228 | s.median=median(data.freq); |
229 | 229 | if isfield(data,'time') |
230 | - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
231 | - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
230 | + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
231 | + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
232 | 232 | elseif isfield(data,'rate') && data.rate ~= 0; |
233 | - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
233 | + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
234 | 234 | else |
235 | - error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |
235 | + error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |
236 | 236 | end |
237 | 237 | s.std=std(data.freq); |
238 | 238 | |
239 | 239 | if verbose >= 2 |
240 | - fprintf(1,'allan: input data statistics:\n'); | |
241 | - disp(s); | |
240 | + fprintf(1,'allan: input data statistics:\n'); | |
241 | + disp(s); | |
242 | 242 | end |
243 | 243 | |
244 | 244 | |
245 | 245 | |
... | ... | @@ -249,10 +249,10 @@ |
249 | 249 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria |
250 | 250 | s.MAD = median(abs(medianfreq)/0.6745); |
251 | 251 | if verbose >= 2 |
252 | - fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |
252 | + fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |
253 | 253 | end |
254 | 254 | if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) |
255 | - fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
255 | + fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
256 | 256 | end |
257 | 257 | |
258 | 258 | |
259 | 259 | |
260 | 260 | |
261 | 261 | |
262 | 262 | |
263 | 263 | |
264 | 264 | |
265 | 265 | |
266 | 266 | |
267 | 267 | |
268 | 268 | |
269 | 269 | |
270 | 270 | |
271 | 271 | |
272 | 272 | |
273 | 273 | |
... | ... | @@ -263,199 +263,199 @@ |
263 | 263 | % If there is a regular interval between measurements, calculation is much |
264 | 264 | % easier/faster |
265 | 265 | if isfield(data,'rate') && data.rate > 0 % if data rate was given |
266 | - if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |
267 | - | |
268 | - % string for plot title | |
269 | - name=[name ' (' num2str(data.rate) ' Hz)']; | |
270 | - | |
271 | - % what is the time interval between data points? | |
272 | - tmstep = 1/data.rate; | |
266 | + if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |
267 | + | |
268 | + % string for plot title | |
269 | + name=[name ' (' num2str(data.rate) ' Hz)']; | |
270 | + | |
271 | + % what is the time interval between data points? | |
272 | + tmstep = 1/data.rate; | |
273 | 273 | |
274 | - % Is there time data? Just for curiosity/plotting, does not impact calculation | |
275 | - if isfield(data,'time') | |
276 | - % adjust time data to remove any starting gap; first time step | |
277 | - % should not be zero for comparison with freq data | |
278 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
279 | - if verbose >= 2 | |
280 | - fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |
281 | - if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
282 | - fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
283 | - end | |
284 | - end | |
285 | - else | |
286 | - % create time axis data using rate (for plotting only) | |
287 | - dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |
288 | - end | |
274 | + % Is there time data? Just for curiosity/plotting, does not impact calculation | |
275 | + if isfield(data,'time') | |
276 | + % adjust time data to remove any starting gap; first time step | |
277 | + % should not be zero for comparison with freq data | |
278 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
279 | + if verbose >= 2 | |
280 | + fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |
281 | + if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
282 | + fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
283 | + end | |
284 | + end | |
285 | + else | |
286 | + % create time axis data using rate (for plotting only) | |
287 | + dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |
288 | + end | |
289 | 289 | |
290 | - % check the range of tau values and truncate if necessary | |
291 | - % find halfway point of time record | |
292 | - halftime = round(tmstep*length(data.freq)/2); | |
293 | - % truncate tau to appropriate values | |
294 | - tau = tau(tau >= tmstep & tau <= halftime); | |
295 | - if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
296 | - | |
297 | - % save the freq data for the loop | |
298 | - dfreq=data.freq; | |
299 | - % find the number of data points in each tau group | |
300 | - m = data.rate.*tau; | |
301 | - % only integer values allowed (no fractional groups of points) | |
302 | - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
303 | - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
304 | - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
305 | - m = m(m==round(m)); | |
306 | - %m=round(m); | |
307 | - | |
308 | - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |
309 | - | |
310 | - % calculate the Allan deviation for each value of tau | |
311 | - k=0; tic; | |
312 | - for i = tau | |
313 | - if verbose >= 2, fprintf(1,'%g ',i); end | |
314 | - k=k+1; | |
290 | + % check the range of tau values and truncate if necessary | |
291 | + % find halfway point of time record | |
292 | + halftime = round(tmstep*length(data.freq)/2); | |
293 | + % truncate tau to appropriate values | |
294 | + tau = tau(tau >= tmstep & tau <= halftime); | |
295 | + if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
296 | + | |
297 | + % save the freq data for the loop | |
298 | + dfreq=data.freq; | |
299 | + % find the number of data points in each tau group | |
300 | + m = data.rate.*tau; | |
301 | + % only integer values allowed (no fractional groups of points) | |
302 | + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
303 | + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
304 | + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
305 | + m = m(m==round(m)); | |
306 | + %m=round(m); | |
307 | + | |
308 | + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |
309 | + | |
310 | + % calculate the Allan deviation for each value of tau | |
311 | + k=0; tic; | |
312 | + for i = tau | |
313 | + if verbose >= 2, fprintf(1,'%g ',i); end | |
314 | + k=k+1; | |
315 | 315 | |
316 | - % truncate frequency set to an even multiple of this tau value | |
317 | - freq=dfreq(1:end-rem(length(dfreq),m(k))); | |
318 | - % group the data into tau-length groups or bins | |
319 | - f = reshape(freq,m(k),[]); % Vectorize! | |
320 | - % find average in each "tau group", y_k (each colummn of f) | |
321 | - fa=mean(f,1); | |
322 | - % first finite difference | |
323 | - fd=diff(fa); | |
324 | - % calculate two-sample variance for this tau | |
325 | - M=length(fa); | |
326 | - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
316 | + % truncate frequency set to an even multiple of this tau value | |
317 | + freq=dfreq(1:end-rem(length(dfreq),m(k))); | |
318 | + % group the data into tau-length groups or bins | |
319 | + f = reshape(freq,m(k),[]); % Vectorize! | |
320 | + % find average in each "tau group", y_k (each colummn of f) | |
321 | + fa=mean(f,1); | |
322 | + % first finite difference | |
323 | + fd=diff(fa); | |
324 | + % calculate two-sample variance for this tau | |
325 | + M=length(fa); | |
326 | + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
327 | 327 | |
328 | - % estimate error bars | |
329 | - sme(k)=sm(k)/sqrt(M+1); | |
330 | - | |
331 | - if TAUBIN == 1 | |
332 | - % save the binning points for plotting | |
333 | - fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |
334 | - end | |
335 | - | |
336 | - end % repeat for each value of tau | |
337 | - | |
338 | - if verbose >= 2, fprintf(1,'\n'); end | |
339 | - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
340 | - | |
341 | - | |
342 | - | |
328 | + % estimate error bars | |
329 | + sme(k)=sm(k)/sqrt(M+1); | |
330 | + | |
331 | + if TAUBIN == 1 | |
332 | + % save the binning points for plotting | |
333 | + fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |
334 | + end | |
335 | + | |
336 | + end % repeat for each value of tau | |
337 | + | |
338 | + if verbose >= 2, fprintf(1,'\n'); end | |
339 | + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
340 | + | |
341 | + | |
342 | + | |
343 | 343 | %% Irregular data (timestamp) |
344 | 344 | elseif isfield(data,'time') |
345 | - % the interval between measurements is irregular | |
346 | - % so we must group the data by time | |
347 | - if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |
348 | - | |
349 | - % string for plot title | |
350 | - name=[name ' (timestamp)']; | |
351 | - | |
352 | - % adjust time to remove any initial offset or zero | |
353 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
354 | - %dtime=data.time; | |
355 | - % where is the maximum gap in time record? | |
356 | - gap_pos=find(diff(dtime)==max(diff(dtime))); | |
357 | - % what is average data spacing? | |
358 | - avg_gap = mean(diff(dtime)); | |
359 | - | |
360 | - if verbose >= 2 | |
361 | - fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
362 | - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
363 | - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
364 | - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
365 | - pause; | |
366 | - end | |
367 | - | |
368 | - if verbose >= 1 | |
369 | - fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |
370 | - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
371 | - if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
372 | - fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
373 | - end | |
374 | - if max(diff(dtime)) > 5*avg_gap | |
375 | - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
376 | - end | |
377 | - end | |
345 | + % the interval between measurements is irregular | |
346 | + % so we must group the data by time | |
347 | + if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |
348 | + | |
349 | + % string for plot title | |
350 | + name=[name ' (timestamp)']; | |
351 | + | |
352 | + % adjust time to remove any initial offset or zero | |
353 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
354 | + %dtime=data.time; | |
355 | + % where is the maximum gap in time record? | |
356 | + gap_pos=find(diff(dtime)==max(diff(dtime))); | |
357 | + % what is average data spacing? | |
358 | + avg_gap = mean(diff(dtime)); | |
359 | + | |
360 | + if verbose >= 2 | |
361 | + fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
362 | + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
363 | + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
364 | + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
365 | + pause; | |
366 | + end | |
367 | + | |
368 | + if verbose >= 1 | |
369 | + fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |
370 | + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
371 | + if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
372 | + fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
373 | + end | |
374 | + if max(diff(dtime)) > 5*avg_gap | |
375 | + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
376 | + end | |
377 | + end | |
378 | 378 | |
379 | 379 | |
380 | - % find halfway point | |
381 | - halftime = fix(dtime(end)/2); | |
382 | - % truncate tau to appropriate values | |
383 | - tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
384 | - if isempty(tau) | |
385 | - error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
386 | - end | |
387 | - | |
388 | - % save the freq data for the loop | |
389 | - dfreq=data.freq; | |
390 | - dtime=dtime(1:length(dfreq)); | |
380 | + % find halfway point | |
381 | + halftime = fix(dtime(end)/2); | |
382 | + % truncate tau to appropriate values | |
383 | + tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
384 | + if isempty(tau) | |
385 | + error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
386 | + end | |
387 | + | |
388 | + % save the freq data for the loop | |
389 | + dfreq=data.freq; | |
390 | + dtime=dtime(1:length(dfreq)); | |
391 | 391 | |
392 | - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |
392 | + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |
393 | 393 | |
394 | - k=0; tic; | |
395 | - for i = tau | |
396 | - if verbose >= 2, fprintf(1,'%d ',i); end | |
397 | - | |
398 | - k=k+1; fa=[]; %f=[]; | |
399 | - km=0; | |
400 | - | |
401 | - % truncate data set to an even multiple of this tau value | |
402 | - freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |
403 | - time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |
404 | - %freq=dfreq; | |
405 | - %time=dtime; | |
406 | - | |
407 | - % break up the data into groups of tau length in sec | |
408 | - while i*km < time(end) | |
409 | - km=km+1; | |
410 | - | |
411 | - % progress bar | |
412 | - if verbose >= 2 | |
413 | - if rem(km,100)==0, fprintf(1,'.'); end | |
414 | - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
415 | - end | |
394 | + k=0; tic; | |
395 | + for i = tau | |
396 | + if verbose >= 2, fprintf(1,'%d ',i); end | |
397 | + | |
398 | + k=k+1; fa=[]; %f=[]; | |
399 | + km=0; | |
400 | + | |
401 | + % truncate data set to an even multiple of this tau value | |
402 | + freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |
403 | + time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |
404 | + %freq=dfreq; | |
405 | + %time=dtime; | |
406 | + | |
407 | + % break up the data into groups of tau length in sec | |
408 | + while i*km < time(end) | |
409 | + km=km+1; | |
410 | + | |
411 | + % progress bar | |
412 | + if verbose >= 2 | |
413 | + if rem(km,100)==0, fprintf(1,'.'); end | |
414 | + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
415 | + end | |
416 | 416 | |
417 | - f = freq(i*(km-1) < time & time <= i*km); | |
418 | - f = f(~isnan(f)); % make sure values are valid | |
419 | - | |
420 | - if ~isempty(f) | |
421 | - fa(km)=mean(f); | |
422 | - else | |
423 | - fa(km)=0; | |
424 | - end | |
417 | + f = freq(i*(km-1) < time & time <= i*km); | |
418 | + f = f(~isnan(f)); % make sure values are valid | |
419 | + | |
420 | + if ~isempty(f) | |
421 | + fa(km)=mean(f); | |
422 | + else | |
423 | + fa(km)=0; | |
424 | + end | |
425 | 425 | |
426 | - if TAUBIN == 1 % WARNING: this has a significant impact on performance | |
427 | - % save the binning points for plotting | |
428 | - %if find(time <= i*km) > 0 | |
429 | - fs(k,km)=max(time(time <= i*km)); | |
430 | - %else | |
431 | - if isempty(fs(k,km)) | |
432 | - fs(k,km)=0; | |
433 | - end | |
434 | - fval{k}=fa; | |
435 | - end % save tau bin plot points | |
436 | - | |
437 | - end | |
438 | - | |
439 | - if verbose >= 2, fprintf(1,'\n'); end | |
426 | + if TAUBIN == 1 % WARNING: this has a significant impact on performance | |
427 | + % save the binning points for plotting | |
428 | + %if find(time <= i*km) > 0 | |
429 | + fs(k,km)=max(time(time <= i*km)); | |
430 | + %else | |
431 | + if isempty(fs(k,km)) | |
432 | + fs(k,km)=0; | |
433 | + end | |
434 | + fval{k}=fa; | |
435 | + end % save tau bin plot points | |
436 | + | |
437 | + end | |
438 | + | |
439 | + if verbose >= 2, fprintf(1,'\n'); end | |
440 | 440 | |
441 | - % first finite difference of the averaged results | |
442 | - fd=diff(fa); | |
443 | - % calculate Allan deviation for this tau | |
444 | - M=length(fa); | |
445 | - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
441 | + % first finite difference of the averaged results | |
442 | + fd=diff(fa); | |
443 | + % calculate Allan deviation for this tau | |
444 | + M=length(fa); | |
445 | + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
446 | 446 | |
447 | - % estimate error bars | |
448 | - sme(k)=sm(k)/sqrt(M+1); | |
449 | - | |
447 | + % estimate error bars | |
448 | + sme(k)=sm(k)/sqrt(M+1); | |
449 | + | |
450 | 450 | |
451 | - end | |
451 | + end | |
452 | 452 | |
453 | - if verbose == 2, fprintf(1,'\n'); end | |
454 | - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
455 | - | |
453 | + if verbose == 2, fprintf(1,'\n'); end | |
454 | + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
455 | + | |
456 | 456 | |
457 | 457 | else |
458 | - error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
458 | + error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
459 | 459 | end |
460 | 460 | |
461 | 461 | |
462 | 462 | |
463 | 463 | |
464 | 464 | |
465 | 465 | |
466 | 466 | |
467 | 467 | |
468 | 468 | |
... | ... | @@ -463,113 +463,113 @@ |
463 | 463 | %% Plotting |
464 | 464 | |
465 | 465 | if verbose >= 2 % show all data |
466 | - | |
467 | - % plot the frequency data, centered on median | |
468 | - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
469 | - try | |
470 | - % dsplot makes a new figure | |
471 | - hd=dsplot(dtime,medianfreq); | |
472 | - catch ME | |
473 | - figure; | |
474 | - if length(dtime) ~= length(medianfreq) | |
475 | - fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |
476 | - end | |
477 | - hd=plot(dtime,medianfreq); | |
478 | - if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
479 | - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
480 | - end | |
481 | - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
482 | - hold on; | |
466 | + | |
467 | + % plot the frequency data, centered on median | |
468 | + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
469 | + try | |
470 | + % dsplot makes a new figure | |
471 | + hd=dsplot(dtime,medianfreq); | |
472 | + catch ME | |
473 | + figure; | |
474 | + if length(dtime) ~= length(medianfreq) | |
475 | + fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |
476 | + end | |
477 | + hd=plot(dtime,medianfreq); | |
478 | + if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
479 | + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
480 | + end | |
481 | + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
482 | + hold on; | |
483 | 483 | |
484 | - % show center (0) | |
485 | - plot(xlim,[0 0],':k'); | |
486 | - % show 5x Median Absolute Deviation (MAD) values | |
487 | - hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |
488 | - plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |
489 | - % show linear fit line | |
490 | - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
491 | - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
492 | - %set(get(gca,'Title'),'Interpreter','none'); | |
493 | - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
494 | - if isfield(data,'units') | |
495 | - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
496 | - else | |
497 | - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
498 | - end | |
499 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
500 | - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
501 | - % tighten up | |
502 | - xlim([dtime(1) dtime(end)]); | |
484 | + % show center (0) | |
485 | + plot(xlim,[0 0],':k'); | |
486 | + % show 5x Median Absolute Deviation (MAD) values | |
487 | + hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |
488 | + plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |
489 | + % show linear fit line | |
490 | + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
491 | + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
492 | + %set(get(gca,'Title'),'Interpreter','none'); | |
493 | + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
494 | + if isfield(data,'units') | |
495 | + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
496 | + else | |
497 | + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
498 | + end | |
499 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
500 | + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
501 | + % tighten up | |
502 | + xlim([dtime(1) dtime(end)]); | |
503 | 503 | |
504 | 504 | |
505 | - % Optional tau bin (y_k samples) plot | |
506 | - if TAUBIN == 1 | |
507 | - % plot the tau divisions on the data plot | |
508 | - rfs=size(fs,1); | |
509 | - colororder=get(gca,'ColorOrder'); | |
510 | - axis tight; kc=2; | |
511 | - %ap=axis; | |
512 | - for j=1:rfs | |
513 | - kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | |
514 | - %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | |
515 | - for b=1:find(fs(j,:), 1, 'last' ); | |
516 | - % plot the tau division boundaries | |
517 | - %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | |
518 | - % plot tau group y values | |
519 | - if b == 1 | |
520 | - plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
521 | - else | |
522 | - plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
523 | - end | |
524 | - end | |
525 | - end | |
526 | - axis auto | |
527 | - end % End optional bin plot | |
528 | - | |
505 | + % Optional tau bin (y_k samples) plot | |
506 | + if TAUBIN == 1 | |
507 | + % plot the tau divisions on the data plot | |
508 | + rfs=size(fs,1); | |
509 | + colororder=get(gca,'ColorOrder'); | |
510 | + axis tight; kc=2; | |
511 | + %ap=axis; | |
512 | + for j=1:rfs | |
513 | + kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | |
514 | + %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | |
515 | + for b=1:find(fs(j,:), 1, 'last' ); | |
516 | + % plot the tau division boundaries | |
517 | + %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | |
518 | + % plot tau group y values | |
519 | + if b == 1 | |
520 | + plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
521 | + else | |
522 | + plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
523 | + end | |
524 | + end | |
525 | + end | |
526 | + axis auto | |
527 | + end % End optional bin plot | |
528 | + | |
529 | 529 | end % end plot raw data |
530 | 530 | |
531 | 531 | |
532 | 532 | if verbose >= 1 % show ADEV results |
533 | 533 | |
534 | - % plot Allan deviation results | |
535 | - if ~isempty(sm) | |
536 | - figure | |
534 | + % plot Allan deviation results | |
535 | + if ~isempty(sm) | |
536 | + figure | |
537 | 537 | |
538 | - % Choose loglog or semilogx plot here #PLOTLOG | |
539 | - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
540 | - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
538 | + % Choose loglog or semilogx plot here #PLOTLOG | |
539 | + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
540 | + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
541 | 541 | |
542 | - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
543 | - % When this is fixed in a future release, uncomment below to use normal errorbars | |
544 | - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
545 | - % this is a hack to approximate the error bars | |
546 | - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
542 | + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
543 | + % When this is fixed in a future release, uncomment below to use normal errorbars | |
544 | + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
545 | + % this is a hack to approximate the error bars | |
546 | + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
547 | 547 | |
548 | - grid on; | |
549 | - title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
550 | - %set(get(gca,'Title'),'Interpreter','none'); | |
551 | - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
552 | - if isfield(data,'units') | |
553 | - ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
554 | - else | |
555 | - ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
556 | - end | |
557 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
558 | - % expand the x axis a little bit so that the errors bars look nice | |
559 | - adax = axis; | |
560 | - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
561 | - | |
562 | - % display the minimum value | |
563 | - fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
564 | - | |
565 | - elseif verbose >= 1 | |
566 | - fprintf(1,'allan: WARNING: no values calculated.\n'); | |
567 | - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
568 | - fprintf(1,'Type "help allan" for more information.\n\n'); | |
569 | - end | |
548 | + grid on; | |
549 | + title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
550 | + %set(get(gca,'Title'),'Interpreter','none'); | |
551 | + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
552 | + if isfield(data,'units') | |
553 | + ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
554 | + else | |
555 | + ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
556 | + end | |
557 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
558 | + % expand the x axis a little bit so that the errors bars look nice | |
559 | + adax = axis; | |
560 | + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
561 | + | |
562 | + % display the minimum value | |
563 | + fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
564 | + | |
565 | + elseif verbose >= 1 | |
566 | + fprintf(1,'allan: WARNING: no values calculated.\n'); | |
567 | + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
568 | + fprintf(1,'Type "help allan" for more information.\n\n'); | |
569 | + end | |
570 | 570 | |
571 | 571 | end % end plot ADEV data |
572 | - | |
572 | + | |
573 | 573 | retval = sm; |
574 | 574 | errorb = sme; |
575 | 575 |
allan_cov.m
... | ... | @@ -5,33 +5,33 @@ |
5 | 5 | % Inputs: |
6 | 6 | % DATA should be a structure and have the following fields: |
7 | 7 | % DATA.freq or DATA.phase |
8 | -% A vector of fractional frequency measurements (df/f) in | |
9 | -% DATA.freq *or* phase offset data (seconds) in DATA.phase . | |
10 | -% If frequency data is not present, it will be generated by | |
11 | -% differentiating the phase data. | |
12 | -% If both fields are present, then DATA.freq will be used. | |
13 | -% Note: for general-purpose calculations of Allan deviation, | |
14 | -% (i.e. a two-sample variance) use DATA.freq . | |
8 | +% A vector of fractional frequency measurements (df/f) in | |
9 | +% DATA.freq *or* phase offset data (seconds) in DATA.phase . | |
10 | +% If frequency data is not present, it will be generated by | |
11 | +% differentiating the phase data. | |
12 | +% If both fields are present, then DATA.freq will be used. | |
13 | +% Note: for general-purpose calculations of Allan deviation, | |
14 | +% (i.e. a two-sample variance) use DATA.freq . | |
15 | 15 | % |
16 | 16 | % DATA.rate or DATA.time |
17 | -% The sampling rate in Hertz (DATA.rate) or a vector of | |
18 | -% timestamps for each measurement in seconds (DATA.time). | |
19 | -% DATA.rate is used if both fields are present. | |
20 | -% If DATA.rate == 0, then the timestamps are used. | |
17 | +% The sampling rate in Hertz (DATA.rate) or a vector of | |
18 | +% timestamps for each measurement in seconds (DATA.time). | |
19 | +% DATA.rate is used if both fields are present. | |
20 | +% If DATA.rate == 0, then the timestamps are used. | |
21 | 21 | % |
22 | 22 | % DATA.units (optional) |
23 | -% The units for the data. If present, the string DATA.units | |
24 | -% is added to the plot y-axis label. | |
23 | +% The units for the data. If present, the string DATA.units | |
24 | +% is added to the plot y-axis label. | |
25 | 25 | % |
26 | 26 | % TAU is an array of tau values for computing Allan deviation. |
27 | -% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
28 | -% grouped in fractional quantities!) and invalid values are ignored. | |
29 | -% Leave empty to use default values. | |
27 | +% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
28 | +% grouped in fractional quantities!) and invalid values are ignored. | |
29 | +% Leave empty to use default values. | |
30 | 30 | % NAME is an optional label that is added to the plot titles. |
31 | 31 | % VERBOSE sets the level of status messages: |
32 | -% 0 = silent & no data plots; | |
33 | -% 1 = status messages & minimum plots; | |
34 | -% 2 = all messages and plots (default) | |
32 | +% 0 = silent & no data plots; | |
33 | +% 1 = status messages & minimum plots; | |
34 | +% 2 = all messages and plots (default) | |
35 | 35 | % |
36 | 36 | % Outputs: |
37 | 37 | % RETVAL is the array of Allan deviation values at each TAU. |
... | ... | @@ -46,8 +46,8 @@ |
46 | 46 | % To compute the Allan deviation for the data in the variable "lt": |
47 | 47 | % >> lt |
48 | 48 | % lt = |
49 | -% freq: [1x86400 double] | |
50 | -% rate: 0.5 | |
49 | +% freq: [1x86400 double] | |
50 | +% rate: 0.5 | |
51 | 51 | % |
52 | 52 | % Use: |
53 | 53 | % |
54 | 54 | |
55 | 55 | |
... | ... | @@ -94,16 +94,16 @@ |
94 | 94 | % |
95 | 95 | % |
96 | 96 | % M.A. Hopcroft |
97 | -% mhopeng at gmail dot com | |
97 | +% mhopeng at gmail dot com | |
98 | 98 | % |
99 | 99 | % I welcome your comments and feedback! |
100 | 100 | % |
101 | 101 | % MH Mar2014 |
102 | 102 | % v2.24 fix bug related to generating freq data from phase with timestamps |
103 | -% (thanks to S. David-Grignot for finding the bug) | |
103 | +% (thanks to S. David-Grignot for finding the bug) | |
104 | 104 | % MH Oct2010 |
105 | 105 | % v2.22 tau truncation to integer groups; tau sort |
106 | -% plotting bugfix | |
106 | +% plotting bugfix | |
107 | 107 | % v2.20 sychronize updates across allan, allan_overlap, allan_modified |
108 | 108 | % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 |
109 | 109 | % v2.14 update plotting behaviour, default tau values |
110 | 110 | |
111 | 111 | |
112 | 112 | |
113 | 113 | |
114 | 114 | |
115 | 115 | |
116 | 116 | |
117 | 117 | |
118 | 118 | |
... | ... | @@ -113,53 +113,53 @@ |
113 | 113 | |
114 | 114 | % MH Jun2010 |
115 | 115 | % v2.12 bugfix for rate data row/col orientation |
116 | -% add DATA.units for plotting | |
117 | -% use dsplot.m for plotting | |
116 | +% add DATA.units for plotting | |
117 | +% use dsplot.m for plotting | |
118 | 118 | % |
119 | 119 | % MH MAR2010 |
120 | 120 | % v2.1 minor interface and bugfixes |
121 | -% update data consistency check | |
121 | +% update data consistency check | |
122 | 122 | % |
123 | 123 | % MH FEB2010 |
124 | 124 | % v2.0 Consistent code behaviour for all "allan_x.m" functions: |
125 | -% accept phase data | |
126 | -% verbose levels | |
125 | +% accept phase data | |
126 | +% verbose levels | |
127 | 127 | % |
128 | 128 | % |
129 | 129 | % MH JAN2010 |
130 | 130 | % v1.84 code cleanup |
131 | 131 | % v1.82 typos in comments and code cleanup |
132 | -% tau bin plotting changed for performance improvement | |
132 | +% tau bin plotting changed for performance improvement | |
133 | 133 | % v1.8 Performance improvements: |
134 | -% vectorize code for rate data | |
135 | -% logical indexing for irregular rate data | |
134 | +% vectorize code for rate data | |
135 | +% logical indexing for irregular rate data | |
136 | 136 | % MH APR2008 |
137 | 137 | % v1.62 loglog plot option |
138 | 138 | % v1.61 improve error handling, plotting |
139 | -% fix bug in regular data calc for high-rate data | |
140 | -% fix bug in timestamp data calc for large starting gap | |
141 | -% (thanks to C. B. Ruiz for identifying these bugs) | |
142 | -% uses timestamps for DATA.rate=0 | |
143 | -% progress indicator for large timestamp data processing | |
139 | +% fix bug in regular data calc for high-rate data | |
140 | +% fix bug in timestamp data calc for large starting gap | |
141 | +% (thanks to C. B. Ruiz for identifying these bugs) | |
142 | +% uses timestamps for DATA.rate=0 | |
143 | +% progress indicator for large timestamp data processing | |
144 | 144 | % MH JUN2007 |
145 | 145 | % v1.54 Improve data plotting and optional bin plotting |
146 | 146 | % MH FEB2007 |
147 | 147 | % v1.5 use difference from median for plotting |
148 | -% added MAD calculation for outlier detection | |
148 | +% added MAD calculation for outlier detection | |
149 | 149 | % MH JAN2007 |
150 | 150 | % v1.48 plotting typos fixes |
151 | 151 | % MH DEC2006 |
152 | 152 | % v1.46 hack to plot error bars |
153 | 153 | % v1.44 further validation (Riley 1000-pt) |
154 | -% plot mean and std | |
154 | +% plot mean and std | |
155 | 155 | % MH NOV2006 |
156 | 156 | % v1.42 typo fix comments |
157 | 157 | % v1.4 fix irregular rate algorithm |
158 | -% irregular algorithm rejects tau less than max gap in time data | |
159 | -% validate both algorithms using test data from NBS Monograph 140 | |
158 | +% irregular algorithm rejects tau less than max gap in time data | |
159 | +% validate both algorithms using test data from NBS Monograph 140 | |
160 | 160 | % v1.3 fix time calc if data.time not present |
161 | -% add error bars (not possible due to bug in MATLAB R14SP3) | |
162 | -% remove offset calculation | |
161 | +% add error bars (not possible due to bug in MATLAB R14SP3) | |
162 | +% remove offset calculation | |
163 | 163 | % v1.24 improve feedback |
164 | 164 | % MH SEP2006 |
165 | 165 | % v1.22 updated comments |
166 | 166 | |
... | ... | @@ -184,25 +184,25 @@ |
184 | 184 | |
185 | 185 | %% Data consistency checks |
186 | 186 | if ~(isfield(data,'phase') || isfield(data,'freq')) |
187 | - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
187 | + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
188 | 188 | end |
189 | 189 | if isfield(data,'time') |
190 | - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
191 | - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
192 | - error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
193 | - else | |
194 | - error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
195 | - end | |
196 | - end | |
197 | - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
198 | - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
199 | - end | |
200 | - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
201 | - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
202 | - end | |
203 | - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
204 | - error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
205 | - end | |
190 | + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
191 | + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
192 | + error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
193 | + else | |
194 | + error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
195 | + end | |
196 | + end | |
197 | + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
198 | + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
199 | + end | |
200 | + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
201 | + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
202 | + end | |
203 | + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
204 | + error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
205 | + end | |
206 | 206 | end |
207 | 207 | |
208 | 208 | % sort tau vector |
209 | 209 | |
210 | 210 | |
211 | 211 | |
212 | 212 | |
213 | 213 | |
... | ... | @@ -211,34 +211,34 @@ |
211 | 211 | |
212 | 212 | %% Basic statistical tests on the data set |
213 | 213 | if ~isfield(data,'freq') |
214 | - if isfield(data,'rate') && data.rate ~= 0 | |
215 | - data.freq=diff(data.phase).*data.rate; | |
216 | - elseif isfield(data,'time') | |
217 | - data.freq=diff(data.phase)./diff(data.time); | |
218 | - end | |
219 | - if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
220 | - data.time(1)=[]; % make time stamps correspond to freq data | |
214 | + if isfield(data,'rate') && data.rate ~= 0 | |
215 | + data.freq=diff(data.phase).*data.rate; | |
216 | + elseif isfield(data,'time') | |
217 | + data.freq=diff(data.phase)./diff(data.time); | |
218 | + end | |
219 | + if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
220 | + data.time(1)=[]; % make time stamps correspond to freq data | |
221 | 221 | end |
222 | 222 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns |
223 | - | |
223 | + | |
224 | 224 | s.numpoints=length(data.freq); |
225 | 225 | s.max=max(data.freq); |
226 | 226 | s.min=min(data.freq); |
227 | 227 | s.mean=mean(data.freq); |
228 | 228 | s.median=median(data.freq); |
229 | 229 | if isfield(data,'time') |
230 | - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
231 | - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
230 | + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
231 | + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
232 | 232 | elseif isfield(data,'rate') && data.rate ~= 0; |
233 | - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
233 | + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
234 | 234 | else |
235 | - error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |
235 | + error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |
236 | 236 | end |
237 | 237 | s.std=std(data.freq); |
238 | 238 | |
239 | 239 | if verbose >= 2 |
240 | - fprintf(1,'allan: input data statistics:\n'); | |
241 | - disp(s); | |
240 | + fprintf(1,'allan: input data statistics:\n'); | |
241 | + disp(s); | |
242 | 242 | end |
243 | 243 | |
244 | 244 | |
245 | 245 | |
... | ... | @@ -249,10 +249,10 @@ |
249 | 249 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria |
250 | 250 | s.MAD = median(abs(medianfreq)/0.6745); |
251 | 251 | if verbose >= 2 |
252 | - fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |
252 | + fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |
253 | 253 | end |
254 | 254 | if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) |
255 | - fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
255 | + fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
256 | 256 | end |
257 | 257 | |
258 | 258 | |
259 | 259 | |
260 | 260 | |
261 | 261 | |
262 | 262 | |
263 | 263 | |
264 | 264 | |
265 | 265 | |
266 | 266 | |
267 | 267 | |
268 | 268 | |
269 | 269 | |
270 | 270 | |
271 | 271 | |
272 | 272 | |
273 | 273 | |
... | ... | @@ -263,204 +263,204 @@ |
263 | 263 | % If there is a regular interval between measurements, calculation is much |
264 | 264 | % easier/faster |
265 | 265 | if isfield(data,'rate') && data.rate > 0 % if data rate was given |
266 | - if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |
267 | - | |
268 | - % string for plot title | |
269 | - name=[name ' (' num2str(data.rate) ' Hz)']; | |
270 | - | |
271 | - % what is the time interval between data points? | |
272 | - tmstep = 1/data.rate; | |
266 | + if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |
267 | + | |
268 | + % string for plot title | |
269 | + name=[name ' (' num2str(data.rate) ' Hz)']; | |
270 | + | |
271 | + % what is the time interval between data points? | |
272 | + tmstep = 1/data.rate; | |
273 | 273 | |
274 | - % Is there time data? Just for curiosity/plotting, does not impact calculation | |
275 | - if isfield(data,'time') | |
276 | - % adjust time data to remove any starting gap; first time step | |
277 | - % should not be zero for comparison with freq data | |
278 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
279 | - if verbose >= 2 | |
280 | - fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |
281 | - if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
282 | - fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
283 | - end | |
284 | - end | |
285 | - else | |
286 | - % create time axis data using rate (for plotting only) | |
287 | - dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |
288 | - end | |
274 | + % Is there time data? Just for curiosity/plotting, does not impact calculation | |
275 | + if isfield(data,'time') | |
276 | + % adjust time data to remove any starting gap; first time step | |
277 | + % should not be zero for comparison with freq data | |
278 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
279 | + if verbose >= 2 | |
280 | + fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |
281 | + if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
282 | + fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
283 | + end | |
284 | + end | |
285 | + else | |
286 | + % create time axis data using rate (for plotting only) | |
287 | + dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |
288 | + end | |
289 | 289 | |
290 | - % check the range of tau values and truncate if necessary | |
291 | - % find halfway point of time record | |
292 | - halftime = round(tmstep*length(data.freq)/2); | |
293 | - % truncate tau to appropriate values | |
294 | - tau = tau(tau >= tmstep & tau <= halftime); | |
295 | - if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
296 | - | |
297 | - % save the freq data for the loop | |
298 | - dfreq=data.freq; | |
299 | - dfreq2=data.freq2; | |
300 | - % find the number of data points in each tau group | |
301 | - m = data.rate.*tau; | |
302 | - % only integer values allowed (no fractional groups of points) | |
303 | - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
304 | - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
305 | - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
306 | - m = m(m==round(m)); | |
307 | - %m=round(m); | |
308 | - | |
309 | - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |
310 | - | |
311 | - % calculate the Allan deviation for each value of tau | |
312 | - k=0; tic; | |
313 | - for i = tau | |
314 | - if verbose >= 2, fprintf(1,'%g ',i); end | |
315 | - k=k+1; | |
290 | + % check the range of tau values and truncate if necessary | |
291 | + % find halfway point of time record | |
292 | + halftime = round(tmstep*length(data.freq)/2); | |
293 | + % truncate tau to appropriate values | |
294 | + tau = tau(tau >= tmstep & tau <= halftime); | |
295 | + if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
296 | + | |
297 | + % save the freq data for the loop | |
298 | + dfreq=data.freq; | |
299 | + dfreq2=data.freq2; | |
300 | + % find the number of data points in each tau group | |
301 | + m = data.rate.*tau; | |
302 | + % only integer values allowed (no fractional groups of points) | |
303 | + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
304 | + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
305 | + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
306 | + m = m(m==round(m)); | |
307 | + %m=round(m); | |
308 | + | |
309 | + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |
310 | + | |
311 | + % calculate the Allan deviation for each value of tau | |
312 | + k=0; tic; | |
313 | + for i = tau | |
314 | + if verbose >= 2, fprintf(1,'%g ',i); end | |
315 | + k=k+1; | |
316 | 316 | |
317 | - % truncate frequency set to an even multiple of this tau value | |
318 | - freq=dfreq(1:end-rem(length(dfreq),m(k))); | |
319 | - freq2=dfreq2(1:end-rem(length(dfreq2),m(k))); | |
320 | - % group the data into tau-length groups or bins | |
321 | - f = reshape(freq,m(k),[]); % Vectorize! | |
322 | - f2 = reshape(freq2,m(k),[]); % Vectorize! | |
323 | - % find average in each "tau group", y_k (each colummn of f) | |
324 | - fa=mean(f,1); | |
325 | - fa2=mean(f2,1); | |
326 | - % first finite difference | |
327 | - fd=diff(fa); | |
328 | - fd2=diff(fa2); | |
329 | - % calculate two-sample variance for this tau | |
330 | - M=length(fa); | |
331 | - sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2)))); | |
317 | + % truncate frequency set to an even multiple of this tau value | |
318 | + freq=dfreq(1:end-rem(length(dfreq),m(k))); | |
319 | + freq2=dfreq2(1:end-rem(length(dfreq2),m(k))); | |
320 | + % group the data into tau-length groups or bins | |
321 | + f = reshape(freq,m(k),[]); % Vectorize! | |
322 | + f2 = reshape(freq2,m(k),[]); % Vectorize! | |
323 | + % find average in each "tau group", y_k (each colummn of f) | |
324 | + fa=mean(f,1); | |
325 | + fa2=mean(f2,1); | |
326 | + % first finite difference | |
327 | + fd=diff(fa); | |
328 | + fd2=diff(fa2); | |
329 | + % calculate two-sample variance for this tau | |
330 | + M=length(fa); | |
331 | + sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2)))); | |
332 | 332 | |
333 | - % estimate error bars | |
334 | - sme(k)=sm(k)/sqrt(M+1); | |
335 | - | |
336 | - if TAUBIN == 1 | |
337 | - % save the binning points for plotting | |
338 | - fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |
339 | - end | |
340 | - | |
341 | - end % repeat for each value of tau | |
342 | - | |
343 | - if verbose >= 2, fprintf(1,'\n'); end | |
344 | - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
345 | - | |
346 | - | |
347 | - | |
333 | + % estimate error bars | |
334 | + sme(k)=sm(k)/sqrt(M+1); | |
335 | + | |
336 | + if TAUBIN == 1 | |
337 | + % save the binning points for plotting | |
338 | + fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |
339 | + end | |
340 | + | |
341 | + end % repeat for each value of tau | |
342 | + | |
343 | + if verbose >= 2, fprintf(1,'\n'); end | |
344 | + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
345 | + | |
346 | + | |
347 | + | |
348 | 348 | %% Irregular data (timestamp) |
349 | 349 | elseif isfield(data,'time') |
350 | - % the interval between measurements is irregular | |
351 | - % so we must group the data by time | |
352 | - if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |
353 | - | |
354 | - % string for plot title | |
355 | - name=[name ' (timestamp)']; | |
356 | - | |
357 | - % adjust time to remove any initial offset or zero | |
358 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
359 | - %dtime=data.time; | |
360 | - % where is the maximum gap in time record? | |
361 | - gap_pos=find(diff(dtime)==max(diff(dtime))); | |
362 | - % what is average data spacing? | |
363 | - avg_gap = mean(diff(dtime)); | |
364 | - | |
365 | - if verbose >= 2 | |
366 | - fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
367 | - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
368 | - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
369 | - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
370 | - pause; | |
371 | - end | |
372 | - | |
373 | - if verbose >= 1 | |
374 | - fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |
375 | - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
376 | - if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
377 | - fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
378 | - end | |
379 | - if max(diff(dtime)) > 5*avg_gap | |
380 | - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
381 | - end | |
382 | - end | |
350 | + % the interval between measurements is irregular | |
351 | + % so we must group the data by time | |
352 | + if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |
353 | + | |
354 | + % string for plot title | |
355 | + name=[name ' (timestamp)']; | |
356 | + | |
357 | + % adjust time to remove any initial offset or zero | |
358 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
359 | + %dtime=data.time; | |
360 | + % where is the maximum gap in time record? | |
361 | + gap_pos=find(diff(dtime)==max(diff(dtime))); | |
362 | + % what is average data spacing? | |
363 | + avg_gap = mean(diff(dtime)); | |
364 | + | |
365 | + if verbose >= 2 | |
366 | + fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
367 | + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
368 | + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
369 | + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
370 | + pause; | |
371 | + end | |
372 | + | |
373 | + if verbose >= 1 | |
374 | + fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |
375 | + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
376 | + if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
377 | + fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
378 | + end | |
379 | + if max(diff(dtime)) > 5*avg_gap | |
380 | + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
381 | + end | |
382 | + end | |
383 | 383 | |
384 | 384 | |
385 | - % find halfway point | |
386 | - halftime = fix(dtime(end)/2); | |
387 | - % truncate tau to appropriate values | |
388 | - tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
389 | - if isempty(tau) | |
390 | - error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
391 | - end | |
392 | - | |
393 | - % save the freq data for the loop | |
394 | - dfreq=data.freq; | |
395 | - dtime=dtime(1:length(dfreq)); | |
385 | + % find halfway point | |
386 | + halftime = fix(dtime(end)/2); | |
387 | + % truncate tau to appropriate values | |
388 | + tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
389 | + if isempty(tau) | |
390 | + error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
391 | + end | |
392 | + | |
393 | + % save the freq data for the loop | |
394 | + dfreq=data.freq; | |
395 | + dtime=dtime(1:length(dfreq)); | |
396 | 396 | |
397 | - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |
397 | + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |
398 | 398 | |
399 | - k=0; tic; | |
400 | - for i = tau | |
401 | - if verbose >= 2, fprintf(1,'%d ',i); end | |
402 | - | |
403 | - k=k+1; fa=[]; %f=[]; | |
404 | - km=0; | |
405 | - | |
406 | - % truncate data set to an even multiple of this tau value | |
407 | - freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |
408 | - time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |
409 | - %freq=dfreq; | |
410 | - %time=dtime; | |
411 | - | |
412 | - % break up the data into groups of tau length in sec | |
413 | - while i*km < time(end) | |
414 | - km=km+1; | |
415 | - | |
416 | - % progress bar | |
417 | - if verbose >= 2 | |
418 | - if rem(km,100)==0, fprintf(1,'.'); end | |
419 | - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
420 | - end | |
399 | + k=0; tic; | |
400 | + for i = tau | |
401 | + if verbose >= 2, fprintf(1,'%d ',i); end | |
402 | + | |
403 | + k=k+1; fa=[]; %f=[]; | |
404 | + km=0; | |
405 | + | |
406 | + % truncate data set to an even multiple of this tau value | |
407 | + freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |
408 | + time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |
409 | + %freq=dfreq; | |
410 | + %time=dtime; | |
411 | + | |
412 | + % break up the data into groups of tau length in sec | |
413 | + while i*km < time(end) | |
414 | + km=km+1; | |
415 | + | |
416 | + % progress bar | |
417 | + if verbose >= 2 | |
418 | + if rem(km,100)==0, fprintf(1,'.'); end | |
419 | + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
420 | + end | |
421 | 421 | |
422 | - f = freq(i*(km-1) < time & time <= i*km); | |
423 | - f = f(~isnan(f)); % make sure values are valid | |
424 | - | |
425 | - if ~isempty(f) | |
426 | - fa(km)=mean(f); | |
427 | - else | |
428 | - fa(km)=0; | |
429 | - end | |
422 | + f = freq(i*(km-1) < time & time <= i*km); | |
423 | + f = f(~isnan(f)); % make sure values are valid | |
424 | + | |
425 | + if ~isempty(f) | |
426 | + fa(km)=mean(f); | |
427 | + else | |
428 | + fa(km)=0; | |
429 | + end | |
430 | 430 | |
431 | - if TAUBIN == 1 % WARNING: this has a significant impact on performance | |
432 | - % save the binning points for plotting | |
433 | - %if find(time <= i*km) > 0 | |
434 | - fs(k,km)=max(time(time <= i*km)); | |
435 | - %else | |
436 | - if isempty(fs(k,km)) | |
437 | - fs(k,km)=0; | |
438 | - end | |
439 | - fval{k}=fa; | |
440 | - end % save tau bin plot points | |
441 | - | |
442 | - end | |
443 | - | |
444 | - if verbose >= 2, fprintf(1,'\n'); end | |
431 | + if TAUBIN == 1 % WARNING: this has a significant impact on performance | |
432 | + % save the binning points for plotting | |
433 | + %if find(time <= i*km) > 0 | |
434 | + fs(k,km)=max(time(time <= i*km)); | |
435 | + %else | |
436 | + if isempty(fs(k,km)) | |
437 | + fs(k,km)=0; | |
438 | + end | |
439 | + fval{k}=fa; | |
440 | + end % save tau bin plot points | |
441 | + | |
442 | + end | |
443 | + | |
444 | + if verbose >= 2, fprintf(1,'\n'); end | |
445 | 445 | |
446 | - % first finite difference of the averaged results | |
447 | - fd=diff(fa); | |
448 | - % calculate Allan deviation for this tau | |
449 | - M=length(fa); | |
450 | - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
446 | + % first finite difference of the averaged results | |
447 | + fd=diff(fa); | |
448 | + % calculate Allan deviation for this tau | |
449 | + M=length(fa); | |
450 | + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
451 | 451 | |
452 | - % estimate error bars | |
453 | - sme(k)=sm(k)/sqrt(M+1); | |
454 | - | |
452 | + % estimate error bars | |
453 | + sme(k)=sm(k)/sqrt(M+1); | |
454 | + | |
455 | 455 | |
456 | - end | |
456 | + end | |
457 | 457 | |
458 | - if verbose == 2, fprintf(1,'\n'); end | |
459 | - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
460 | - | |
458 | + if verbose == 2, fprintf(1,'\n'); end | |
459 | + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
460 | + | |
461 | 461 | |
462 | 462 | else |
463 | - error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
463 | + error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
464 | 464 | end |
465 | 465 | |
466 | 466 | |
467 | 467 | |
468 | 468 | |
469 | 469 | |
470 | 470 | |
471 | 471 | |
472 | 472 | |
473 | 473 | |
... | ... | @@ -468,113 +468,113 @@ |
468 | 468 | %% Plotting |
469 | 469 | |
470 | 470 | if verbose >= 2 % show all data |
471 | - | |
472 | - % plot the frequency data, centered on median | |
473 | - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
474 | - try | |
475 | - % dsplot makes a new figure | |
476 | - hd=dsplot(dtime,medianfreq); | |
477 | - catch ME | |
478 | - figure; | |
479 | - if length(dtime) ~= length(medianfreq) | |
480 | - fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |
481 | - end | |
482 | - hd=plot(dtime,medianfreq); | |
483 | - if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
484 | - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
485 | - end | |
486 | - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
487 | - hold on; | |
471 | + | |
472 | + % plot the frequency data, centered on median | |
473 | + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
474 | + try | |
475 | + % dsplot makes a new figure | |
476 | + hd=dsplot(dtime,medianfreq); | |
477 | + catch ME | |
478 | + figure; | |
479 | + if length(dtime) ~= length(medianfreq) | |
480 | + fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |
481 | + end | |
482 | + hd=plot(dtime,medianfreq); | |
483 | + if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
484 | + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
485 | + end | |
486 | + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
487 | + hold on; | |
488 | 488 | |
489 | - % show center (0) | |
490 | - plot(xlim,[0 0],':k'); | |
491 | - % show 5x Median Absolute Deviation (MAD) values | |
492 | - hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |
493 | - plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |
494 | - % show linear fit line | |
495 | - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
496 | - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
497 | - %set(get(gca,'Title'),'Interpreter','none'); | |
498 | - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
499 | - if isfield(data,'units') | |
500 | - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
501 | - else | |
502 | - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
503 | - end | |
504 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
505 | - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
506 | - % tighten up | |
507 | - xlim([dtime(1) dtime(end)]); | |
489 | + % show center (0) | |
490 | + plot(xlim,[0 0],':k'); | |
491 | + % show 5x Median Absolute Deviation (MAD) values | |
492 | + hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |
493 | + plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |
494 | + % show linear fit line | |
495 | + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
496 | + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
497 | + %set(get(gca,'Title'),'Interpreter','none'); | |
498 | + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
499 | + if isfield(data,'units') | |
500 | + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
501 | + else | |
502 | + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
503 | + end | |
504 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
505 | + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
506 | + % tighten up | |
507 | + xlim([dtime(1) dtime(end)]); | |
508 | 508 | |
509 | 509 | |
510 | - % Optional tau bin (y_k samples) plot | |
511 | - if TAUBIN == 1 | |
512 | - % plot the tau divisions on the data plot | |
513 | - rfs=size(fs,1); | |
514 | - colororder=get(gca,'ColorOrder'); | |
515 | - axis tight; kc=2; | |
516 | - %ap=axis; | |
517 | - for j=1:rfs | |
518 | - kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | |
519 | - %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | |
520 | - for b=1:find(fs(j,:), 1, 'last' ); | |
521 | - % plot the tau division boundaries | |
522 | - %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | |
523 | - % plot tau group y values | |
524 | - if b == 1 | |
525 | - plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
526 | - else | |
527 | - plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
528 | - end | |
529 | - end | |
530 | - end | |
531 | - axis auto | |
532 | - end % End optional bin plot | |
533 | - | |
510 | + % Optional tau bin (y_k samples) plot | |
511 | + if TAUBIN == 1 | |
512 | + % plot the tau divisions on the data plot | |
513 | + rfs=size(fs,1); | |
514 | + colororder=get(gca,'ColorOrder'); | |
515 | + axis tight; kc=2; | |
516 | + %ap=axis; | |
517 | + for j=1:rfs | |
518 | + kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | |
519 | + %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | |
520 | + for b=1:find(fs(j,:), 1, 'last' ); | |
521 | + % plot the tau division boundaries | |
522 | + %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | |
523 | + % plot tau group y values | |
524 | + if b == 1 | |
525 | + plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
526 | + else | |
527 | + plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
528 | + end | |
529 | + end | |
530 | + end | |
531 | + axis auto | |
532 | + end % End optional bin plot | |
533 | + | |
534 | 534 | end % end plot raw data |
535 | 535 | |
536 | 536 | |
537 | 537 | if verbose >= 1 % show ADEV results |
538 | 538 | |
539 | - % plot Allan deviation results | |
540 | - if ~isempty(sm) | |
541 | - figure | |
539 | + % plot Allan deviation results | |
540 | + if ~isempty(sm) | |
541 | + figure | |
542 | 542 | |
543 | - % Choose loglog or semilogx plot here #PLOTLOG | |
544 | - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
545 | - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
543 | + % Choose loglog or semilogx plot here #PLOTLOG | |
544 | + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
545 | + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
546 | 546 | |
547 | - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
548 | - % When this is fixed in a future release, uncomment below to use normal errorbars | |
549 | - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
550 | - % this is a hack to approximate the error bars | |
551 | - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
547 | + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
548 | + % When this is fixed in a future release, uncomment below to use normal errorbars | |
549 | + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
550 | + % this is a hack to approximate the error bars | |
551 | + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
552 | 552 | |
553 | - grid on; | |
554 | - title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
555 | - %set(get(gca,'Title'),'Interpreter','none'); | |
556 | - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
557 | - if isfield(data,'units') | |
558 | - ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
559 | - else | |
560 | - ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
561 | - end | |
562 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
563 | - % expand the x axis a little bit so that the errors bars look nice | |
564 | - adax = axis; | |
565 | - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
566 | - | |
567 | - % display the minimum value | |
568 | - fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
569 | - | |
570 | - elseif verbose >= 1 | |
571 | - fprintf(1,'allan: WARNING: no values calculated.\n'); | |
572 | - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
573 | - fprintf(1,'Type "help allan" for more information.\n\n'); | |
574 | - end | |
553 | + grid on; | |
554 | + title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
555 | + %set(get(gca,'Title'),'Interpreter','none'); | |
556 | + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
557 | + if isfield(data,'units') | |
558 | + ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
559 | + else | |
560 | + ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
561 | + end | |
562 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
563 | + % expand the x axis a little bit so that the errors bars look nice | |
564 | + adax = axis; | |
565 | + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
566 | + | |
567 | + % display the minimum value | |
568 | + fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
569 | + | |
570 | + elseif verbose >= 1 | |
571 | + fprintf(1,'allan: WARNING: no values calculated.\n'); | |
572 | + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
573 | + fprintf(1,'Type "help allan" for more information.\n\n'); | |
574 | + end | |
575 | 575 | |
576 | 576 | end % end plot ADEV data |
577 | - | |
577 | + | |
578 | 578 | retval = sm; |
579 | 579 | errorb = sme; |
580 | 580 |
allan_modified.m
... | ... | @@ -6,24 +6,24 @@ |
6 | 6 | % Inputs: |
7 | 7 | % DATA should be a struct and have the following fields: |
8 | 8 | % DATA.freq or DATA.phase |
9 | -% A vector of fractional frequency measurements (df/f) in | |
10 | -% DATA.freq *or* phase offset data (seconds) in DATA.phase | |
11 | -% If phase data is not present, it will be generated by | |
12 | -% integrating the fractional frequency data. | |
13 | -% If both fields are present, then DATA.phase will be used. | |
9 | +% A vector of fractional frequency measurements (df/f) in | |
10 | +% DATA.freq *or* phase offset data (seconds) in DATA.phase | |
11 | +% If phase data is not present, it will be generated by | |
12 | +% integrating the fractional frequency data. | |
13 | +% If both fields are present, then DATA.phase will be used. | |
14 | 14 | % |
15 | 15 | % DATA.rate or DATA.time |
16 | -% The sampling rate in Hertz (DATA.rate) or a vector of | |
17 | -% timestamps for each measurement in seconds (DATA.time). | |
18 | -% DATA.rate is used if both fields are present. | |
19 | -% If DATA.rate == 0, then the timestamps are used. | |
16 | +% The sampling rate in Hertz (DATA.rate) or a vector of | |
17 | +% timestamps for each measurement in seconds (DATA.time). | |
18 | +% DATA.rate is used if both fields are present. | |
19 | +% If DATA.rate == 0, then the timestamps are used. | |
20 | 20 | % |
21 | 21 | % TAU is an array of tau values for computing Allan deviation. |
22 | -% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
23 | -% grouped in fractional quantities!). Invalid values are ignored. | |
22 | +% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
23 | +% grouped in fractional quantities!). Invalid values are ignored. | |
24 | 24 | % NAME is an optional label that is added to the plot titles. |
25 | 25 | % VERBOSE sets the level of status messages: |
26 | -% 0 = silent & no data plots; 1 = status messages; 2 = all messages | |
26 | +% 0 = silent & no data plots; 1 = status messages; 2 = all messages | |
27 | 27 | % |
28 | 28 | % Outputs: |
29 | 29 | % RETVAL is the array of modified Allan deviation values at each TAU. |
... | ... | @@ -38,8 +38,8 @@ |
38 | 38 | % To compute the modified Allan deviation for the data in the variable "lt": |
39 | 39 | % >> lt |
40 | 40 | % lt = |
41 | -% freq: [1x86400 double] | |
42 | -% rate: 0.5 | |
41 | +% freq: [1x86400 double] | |
42 | +% rate: 0.5 | |
43 | 43 | % |
44 | 44 | % Use: |
45 | 45 | % |
46 | 46 | |
47 | 47 | |
48 | 48 | |
49 | 49 | |
... | ... | @@ -83,25 +83,25 @@ |
83 | 83 | % |
84 | 84 | % |
85 | 85 | % M.A. Hopcroft |
86 | -% mhopeng at gmail dot com | |
86 | +% mhopeng at gmail dot com | |
87 | 87 | % |
88 | 88 | % I welcome your comments and feedback! |
89 | 89 | % |
90 | 90 | % MH Mar2014 |
91 | 91 | % v1.24 fix bug related to generating freq data from phase with timestamps |
92 | -% (thanks to S. David-Grignot for finding the bug) | |
92 | +% (thanks to S. David-Grignot for finding the bug) | |
93 | 93 | % MH Oct2010 |
94 | 94 | % v1.22 tau truncation to integer groups; tau sort |
95 | -% plotting bugfix | |
95 | +% plotting bugfix | |
96 | 96 | % v1.20 update to match allan.m (dsplot.m, columns) |
97 | -% discard tau values with timestamp irregularities | |
97 | +% discard tau values with timestamp irregularities | |
98 | 98 | % |
99 | 99 | |
100 | 100 | versionstr = 'allan_modified v1.24'; |
101 | 101 | |
102 | 102 | % MH MAR2010 |
103 | 103 | % v1.1 bugfixes for irregular sample rates |
104 | -% update consistency check | |
104 | +% update consistency check | |
105 | 105 | % |
106 | 106 | % MH FEB2010 |
107 | 107 | % v1.0 based on allan_overlap v2.0 |
108 | 108 | |
... | ... | @@ -125,25 +125,25 @@ |
125 | 125 | |
126 | 126 | %% Data consistency checks |
127 | 127 | if ~(isfield(data,'phase') || isfield(data,'freq')) |
128 | - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
128 | + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
129 | 129 | end |
130 | 130 | if isfield(data,'time') |
131 | - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
132 | - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
133 | - error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
134 | - else | |
135 | - error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
136 | - end | |
137 | - end | |
138 | - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
139 | - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
140 | - end | |
141 | - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
142 | - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
143 | - end | |
144 | - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
145 | - error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
146 | - end | |
131 | + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
132 | + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
133 | + error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
134 | + else | |
135 | + error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
136 | + end | |
137 | + end | |
138 | + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
139 | + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
140 | + end | |
141 | + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
142 | + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
143 | + end | |
144 | + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
145 | + error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
146 | + end | |
147 | 147 | end |
148 | 148 | |
149 | 149 | % sort tau vector |
... | ... | @@ -152,12 +152,12 @@ |
152 | 152 | |
153 | 153 | %% Basic statistical tests on the data set |
154 | 154 | if ~isfield(data,'freq') |
155 | - if isfield(data,'rate') && data.rate ~= 0 | |
156 | - data.freq=diff(data.phase).*data.rate; | |
157 | - elseif isfield(data,'time') | |
158 | - data.freq=diff(data.phase)./diff(data.time); | |
159 | - end | |
160 | - if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
155 | + if isfield(data,'rate') && data.rate ~= 0 | |
156 | + data.freq=diff(data.phase).*data.rate; | |
157 | + elseif isfield(data,'time') | |
158 | + data.freq=diff(data.phase)./diff(data.time); | |
159 | + end | |
160 | + if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
161 | 161 | end |
162 | 162 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns |
163 | 163 | |
164 | 164 | |
165 | 165 | |
166 | 166 | |
... | ... | @@ -167,18 +167,18 @@ |
167 | 167 | s.mean=mean(data.freq); |
168 | 168 | s.median=median(data.freq); |
169 | 169 | if isfield(data,'time') |
170 | - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
171 | - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
170 | + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
171 | + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
172 | 172 | elseif isfield(data,'rate') && data.rate ~= 0; |
173 | - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
173 | + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
174 | 174 | else |
175 | - error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]'); | |
175 | + error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]'); | |
176 | 176 | end |
177 | 177 | s.std=std(data.freq); |
178 | 178 | |
179 | 179 | if verbose >= 2 |
180 | - fprintf(1,'allan_modified: fractional frequency data statistics:\n'); | |
181 | - disp(s); | |
180 | + fprintf(1,'allan_modified: fractional frequency data statistics:\n'); | |
181 | + disp(s); | |
182 | 182 | end |
183 | 183 | |
184 | 184 | % scale to median for plotting |
... | ... | @@ -188,7 +188,7 @@ |
188 | 188 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria |
189 | 189 | MAD = median(abs(medianfreq)/0.6745); |
190 | 190 | if verbose >= 1 && any(abs(medianfreq) > 5*MAD) |
191 | - fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
191 | + fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
192 | 192 | end |
193 | 193 | |
194 | 194 | %%%% |
195 | 195 | |
196 | 196 | |
197 | 197 | |
198 | 198 | |
199 | 199 | |
200 | 200 | |
201 | 201 | |
202 | 202 | |
203 | 203 | |
204 | 204 | |
205 | 205 | |
206 | 206 | |
207 | 207 | |
208 | 208 | |
209 | 209 | |
210 | 210 | |
211 | 211 | |
212 | 212 | |
213 | 213 | |
214 | 214 | |
215 | 215 | |
216 | 216 | |
... | ... | @@ -198,279 +198,279 @@ |
198 | 198 | % If there is a regular interval between measurements, calculation is much |
199 | 199 | % easier/faster |
200 | 200 | if isfield(data,'rate') && data.rate > 0 % if data rate was given |
201 | - if verbose >= 1 | |
202 | - fprintf(1, 'allan_modified: regular data '); | |
203 | - if isfield(data,'freq') | |
204 | - fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |
205 | - elseif isfield(data,'phase') | |
206 | - fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |
207 | - else | |
208 | - error('\n phase or freq data missing [err10]'); | |
209 | - end | |
210 | - end | |
211 | - | |
212 | - % string for plot title | |
213 | - name=[name ' (' num2str(data.rate) ' Hz)']; | |
201 | + if verbose >= 1 | |
202 | + fprintf(1, 'allan_modified: regular data '); | |
203 | + if isfield(data,'freq') | |
204 | + fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |
205 | + elseif isfield(data,'phase') | |
206 | + fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |
207 | + else | |
208 | + error('\n phase or freq data missing [err10]'); | |
209 | + end | |
210 | + end | |
211 | + | |
212 | + % string for plot title | |
213 | + name=[name ' (' num2str(data.rate) ' Hz)']; | |
214 | 214 | |
215 | - % what is the time interval between data points? | |
216 | - tmstep = 1/data.rate; | |
217 | - | |
218 | - % Is there time data? Just for curiosity/plotting, does not impact calculation | |
219 | - if isfield(data,'time') | |
220 | - % adjust time data to remove any starting gap; first time step | |
221 | - % should not be zero for comparison with freq data | |
222 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
223 | - dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1) | |
224 | - if verbose >= 2 | |
225 | - fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end)); | |
226 | - if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
227 | - fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
228 | - end | |
229 | - end | |
230 | - else | |
231 | - % create time axis data using rate (for plotting only) | |
232 | - dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |
233 | - end | |
234 | - | |
235 | - | |
236 | - % is phase data present? If not, generate it | |
237 | - if ~isfield(data,'phase') | |
238 | - nfreq=data.freq-s.mean; | |
239 | - dphase=zeros(1,length(nfreq)+1); | |
240 | - dphase(2:end) = cumsum(nfreq).*tmstep; | |
241 | - if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
242 | - else | |
243 | - dphase=data.phase; | |
244 | - end | |
215 | + % what is the time interval between data points? | |
216 | + tmstep = 1/data.rate; | |
217 | + | |
218 | + % Is there time data? Just for curiosity/plotting, does not impact calculation | |
219 | + if isfield(data,'time') | |
220 | + % adjust time data to remove any starting gap; first time step | |
221 | + % should not be zero for comparison with freq data | |
222 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
223 | + dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1) | |
224 | + if verbose >= 2 | |
225 | + fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end)); | |
226 | + if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
227 | + fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
228 | + end | |
229 | + end | |
230 | + else | |
231 | + % create time axis data using rate (for plotting only) | |
232 | + dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |
233 | + end | |
234 | + | |
235 | + | |
236 | + % is phase data present? If not, generate it | |
237 | + if ~isfield(data,'phase') | |
238 | + nfreq=data.freq-s.mean; | |
239 | + dphase=zeros(1,length(nfreq)+1); | |
240 | + dphase(2:end) = cumsum(nfreq).*tmstep; | |
241 | + if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
242 | + else | |
243 | + dphase=data.phase; | |
244 | + end | |
245 | 245 | |
246 | - | |
247 | - % check the range of tau values and truncate if necessary | |
248 | - % find halfway point of time record | |
249 | - halftime = round(tmstep*length(data.freq)/2); | |
250 | - % truncate tau to appropriate values | |
251 | - tau = tau(tau >= tmstep & tau <= halftime); | |
252 | - if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
246 | + | |
247 | + % check the range of tau values and truncate if necessary | |
248 | + % find halfway point of time record | |
249 | + halftime = round(tmstep*length(data.freq)/2); | |
250 | + % truncate tau to appropriate values | |
251 | + tau = tau(tau >= tmstep & tau <= halftime); | |
252 | + if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
253 | 253 | |
254 | - % find the number of data points in each tau group | |
255 | - % number of samples | |
256 | - N=length(dphase); | |
257 | - m = data.rate.*tau; | |
258 | - % only integer values allowed (no fractional groups of points) | |
259 | - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1) | |
260 | - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
261 | - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22 | |
262 | - m = m(m==round(m)); | |
263 | - %m=round(m); | |
264 | - | |
265 | - if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end | |
266 | - | |
267 | - | |
268 | - % calculate the modified Allan deviation for each value of tau | |
269 | - k=0; tic; | |
270 | - for i = tau | |
271 | - k=k+1; | |
272 | - pa=[]; | |
273 | - if verbose >= 2, fprintf(1,'%d ',i); end | |
274 | - | |
275 | - mphase = dphase; | |
276 | - | |
277 | - % calculate overlapping "phase averages" (x_k) | |
278 | - for p=1:m(k) | |
279 | - | |
280 | - % truncate frequency set length to an even multiple of this tau value | |
281 | - mphase=mphase(1:end-rem(length(mphase),m(k))); | |
282 | - % group phase values | |
283 | - mp=reshape(mphase,m(k),[]); | |
284 | - % find average in each "tau group" (each column of mp) | |
285 | - pa(p,:)=mean(mp,1); | |
286 | - % shift data vector by -1 and repeat | |
287 | - mphase=circshift(dphase,(size(dphase)>1)*-p); | |
288 | - | |
289 | - end | |
290 | - | |
291 | - % create "modified" y_k freq values | |
292 | - mfreq=diff(pa,1,2)./i; | |
293 | - mfreq=reshape(mfreq,1,[]); | |
294 | - | |
295 | - % calculate modified frequency differences | |
296 | - mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |
297 | - mfreqd=diff(mfreqd,1,2); | |
298 | - mfreqd=reshape(mfreqd,1,[]); | |
299 | - | |
300 | - | |
301 | - % calculate two-sample variance for this tau | |
302 | - sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |
254 | + % find the number of data points in each tau group | |
255 | + % number of samples | |
256 | + N=length(dphase); | |
257 | + m = data.rate.*tau; | |
258 | + % only integer values allowed (no fractional groups of points) | |
259 | + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1) | |
260 | + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
261 | + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22 | |
262 | + m = m(m==round(m)); | |
263 | + %m=round(m); | |
264 | + | |
265 | + if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end | |
266 | + | |
267 | + | |
268 | + % calculate the modified Allan deviation for each value of tau | |
269 | + k=0; tic; | |
270 | + for i = tau | |
271 | + k=k+1; | |
272 | + pa=[]; | |
273 | + if verbose >= 2, fprintf(1,'%d ',i); end | |
274 | + | |
275 | + mphase = dphase; | |
276 | + | |
277 | + % calculate overlapping "phase averages" (x_k) | |
278 | + for p=1:m(k) | |
279 | + | |
280 | + % truncate frequency set length to an even multiple of this tau value | |
281 | + mphase=mphase(1:end-rem(length(mphase),m(k))); | |
282 | + % group phase values | |
283 | + mp=reshape(mphase,m(k),[]); | |
284 | + % find average in each "tau group" (each column of mp) | |
285 | + pa(p,:)=mean(mp,1); | |
286 | + % shift data vector by -1 and repeat | |
287 | + mphase=circshift(dphase,(size(dphase)>1)*-p); | |
288 | + | |
289 | + end | |
290 | + | |
291 | + % create "modified" y_k freq values | |
292 | + mfreq=diff(pa,1,2)./i; | |
293 | + mfreq=reshape(mfreq,1,[]); | |
294 | + | |
295 | + % calculate modified frequency differences | |
296 | + mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |
297 | + mfreqd=diff(mfreqd,1,2); | |
298 | + mfreqd=reshape(mfreqd,1,[]); | |
299 | + | |
300 | + | |
301 | + % calculate two-sample variance for this tau | |
302 | + sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |
303 | 303 | |
304 | - % estimate error bars | |
305 | - sme(k)=sm(k)/sqrt(N-3*m(k)+1); | |
304 | + % estimate error bars | |
305 | + sme(k)=sm(k)/sqrt(N-3*m(k)+1); | |
306 | 306 | |
307 | - | |
308 | - end % repeat for each value of tau | |
309 | - | |
310 | - if verbose >= 2, fprintf(1,'\n'); end | |
311 | - calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |
307 | + | |
308 | + end % repeat for each value of tau | |
309 | + | |
310 | + if verbose >= 2, fprintf(1,'\n'); end | |
311 | + calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |
312 | 312 | |
313 | - | |
314 | - | |
313 | + | |
314 | + | |
315 | 315 | %% Irregular data (timestamp) |
316 | 316 | elseif isfield(data,'time') |
317 | - % the interval between measurements is irregular | |
318 | - % so we must group the data by time | |
319 | - if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end | |
320 | - | |
321 | - % string for plot title | |
322 | - name=[name ' (timestamp)']; | |
323 | - | |
324 | - % adjust time to remove any initial offset | |
325 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
326 | - %dtime=data.time-data.time(1); | |
327 | - % where is the maximum gap in time record? | |
328 | - gap_pos=find(diff(dtime)==max(diff(dtime))); | |
329 | - % what is average data spacing? | |
330 | - avg_gap = mean(diff(dtime)); | |
331 | - | |
332 | - if verbose >= 2 | |
333 | - fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
334 | - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
335 | - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
336 | - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
337 | - pause; | |
338 | - end | |
339 | - | |
340 | - if verbose >= 1 | |
341 | - fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end)); | |
342 | - fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
343 | - if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
344 | - fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
345 | - end | |
346 | - if max(diff(dtime)) > 5*avg_gap | |
347 | - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
348 | - end | |
349 | - end | |
317 | + % the interval between measurements is irregular | |
318 | + % so we must group the data by time | |
319 | + if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end | |
320 | + | |
321 | + % string for plot title | |
322 | + name=[name ' (timestamp)']; | |
323 | + | |
324 | + % adjust time to remove any initial offset | |
325 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
326 | + %dtime=data.time-data.time(1); | |
327 | + % where is the maximum gap in time record? | |
328 | + gap_pos=find(diff(dtime)==max(diff(dtime))); | |
329 | + % what is average data spacing? | |
330 | + avg_gap = mean(diff(dtime)); | |
331 | + | |
332 | + if verbose >= 2 | |
333 | + fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
334 | + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
335 | + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
336 | + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
337 | + pause; | |
338 | + end | |
339 | + | |
340 | + if verbose >= 1 | |
341 | + fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end)); | |
342 | + fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
343 | + if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
344 | + fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
345 | + end | |
346 | + if max(diff(dtime)) > 5*avg_gap | |
347 | + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
348 | + end | |
349 | + end | |
350 | 350 | |
351 | - % is phase data present? If not, generate it | |
352 | - if ~isfield(data,'phase') | |
353 | - nfreq=data.freq-s.mean; | |
354 | - % NOTE: uncommenting the following two lines will artificially | |
355 | - % allow the code to give equivalent results for validation data | |
356 | - % sets using fixed rate data and timestamped data by adding a | |
357 | - % "phantom" data point for frequency integration. Use of this | |
358 | - % phantom point can skew the results of calculations on real data. | |
359 | - %nfreq(end+1)=0; % phantom freq point, with average value | |
360 | - %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step | |
361 | - dphase=zeros(1,length(nfreq)); | |
362 | - dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime); | |
363 | - if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
364 | - else | |
365 | - dphase=data.phase; | |
366 | - end | |
351 | + % is phase data present? If not, generate it | |
352 | + if ~isfield(data,'phase') | |
353 | + nfreq=data.freq-s.mean; | |
354 | + % NOTE: uncommenting the following two lines will artificially | |
355 | + % allow the code to give equivalent results for validation data | |
356 | + % sets using fixed rate data and timestamped data by adding a | |
357 | + % "phantom" data point for frequency integration. Use of this | |
358 | + % phantom point can skew the results of calculations on real data. | |
359 | + %nfreq(end+1)=0; % phantom freq point, with average value | |
360 | + %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step | |
361 | + dphase=zeros(1,length(nfreq)); | |
362 | + dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime); | |
363 | + if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
364 | + else | |
365 | + dphase=data.phase; | |
366 | + end | |
367 | 367 | |
368 | - % find halfway point | |
369 | - halftime = fix(dtime(end)/2); | |
370 | - % truncate tau to appropriate values | |
371 | - tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
372 | - if isempty(tau) | |
373 | - error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
374 | - end | |
368 | + % find halfway point | |
369 | + halftime = fix(dtime(end)/2); | |
370 | + % truncate tau to appropriate values | |
371 | + tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
372 | + if isempty(tau) | |
373 | + error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
374 | + end | |
375 | 375 | |
376 | -% % save the freq data for the loop | |
377 | -% dfreq=data.freq; | |
378 | - | |
379 | - % number of samples | |
380 | - N=length(dphase); | |
381 | - m=round(tau./mean(diff(dtime))); | |
382 | - | |
383 | - if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end | |
376 | +% % save the freq data for the loop | |
377 | +% dfreq=data.freq; | |
378 | + | |
379 | + % number of samples | |
380 | + N=length(dphase); | |
381 | + m=round(tau./mean(diff(dtime))); | |
382 | + | |
383 | + if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end | |
384 | 384 | |
385 | - k=0; tic; | |
386 | - for i = tau | |
387 | - | |
388 | - k=k+1; pa=[]; | |
389 | - | |
390 | - mphase = dphase; time = dtime; | |
385 | + k=0; tic; | |
386 | + for i = tau | |
387 | + | |
388 | + k=k+1; pa=[]; | |
389 | + | |
390 | + mphase = dphase; time = dtime; | |
391 | 391 | |
392 | - if verbose >= 2, fprintf(1,'%d ',i); end | |
393 | - | |
394 | - % calculate overlapping "phase averages" (x_k) | |
395 | - %for j = 1:i | |
396 | - for j = 1:m(k) % (v1.1) | |
397 | - km=0; | |
398 | - %fprintf(1,'j: %d ',j); | |
399 | - | |
400 | - % (v1.1) truncating not correct for overlapping samples | |
401 | - % truncate data set to an even multiple of this tau value | |
402 | - %mphase = mphase(time <= time(end)-rem(time(end),i)); | |
403 | - %time = time(time <= time(end)-rem(time(end),i)); | |
404 | - | |
405 | - | |
406 | - % break up the data into overlapping groups of tau length | |
407 | - while i*km < time(end) | |
408 | - km=km+1; | |
392 | + if verbose >= 2, fprintf(1,'%d ',i); end | |
393 | + | |
394 | + % calculate overlapping "phase averages" (x_k) | |
395 | + %for j = 1:i | |
396 | + for j = 1:m(k) % (v1.1) | |
397 | + km=0; | |
398 | + %fprintf(1,'j: %d ',j); | |
399 | + | |
400 | + % (v1.1) truncating not correct for overlapping samples | |
401 | + % truncate data set to an even multiple of this tau value | |
402 | + %mphase = mphase(time <= time(end)-rem(time(end),i)); | |
403 | + %time = time(time <= time(end)-rem(time(end),i)); | |
404 | + | |
405 | + | |
406 | + % break up the data into overlapping groups of tau length | |
407 | + while i*km < time(end) | |
408 | + km=km+1; | |
409 | 409 | |
410 | - % progress bar | |
411 | - if verbose >= 2 | |
412 | - if rem(km,100)==0, fprintf(1,'.'); end | |
413 | - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
414 | - end | |
410 | + % progress bar | |
411 | + if verbose >= 2 | |
412 | + if rem(km,100)==0, fprintf(1,'.'); end | |
413 | + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
414 | + end | |
415 | 415 | |
416 | - mp = mphase(i*(km-1) < (time) & (time) <= i*km); | |
416 | + mp = mphase(i*(km-1) < (time) & (time) <= i*km); | |
417 | 417 | |
418 | - if ~isempty(mp) | |
419 | - pa(j,km)=mean(mp); | |
420 | - else | |
421 | - pa(j,km)=0; | |
422 | - end | |
418 | + if ~isempty(mp) | |
419 | + pa(j,km)=mean(mp); | |
420 | + else | |
421 | + pa(j,km)=0; | |
422 | + end | |
423 | 423 | |
424 | - end | |
425 | - | |
426 | - % shift data vector by -1 and repeat | |
427 | - mphase=circshift(dphase,(size(mphase)>1)*-j); | |
428 | - mphase(end-j+1:end)=[]; | |
429 | - time=circshift(dtime,(size(time)>1)*-j); | |
430 | - time(end-j+1:end)=[]; | |
431 | - time=time-time(1)+avg_gap; % remove time offset | |
432 | - | |
433 | - end | |
424 | + end | |
425 | + | |
426 | + % shift data vector by -1 and repeat | |
427 | + mphase=circshift(dphase,(size(mphase)>1)*-j); | |
428 | + mphase(end-j+1:end)=[]; | |
429 | + time=circshift(dtime,(size(time)>1)*-j); | |
430 | + time(end-j+1:end)=[]; | |
431 | + time=time-time(1)+avg_gap; % remove time offset | |
432 | + | |
433 | + end | |
434 | 434 | |
435 | - % create "modified" y_k freq values | |
436 | - mfreq=diff(pa,1,2)./i; | |
437 | - mfreq=reshape(mfreq,1,[]); | |
438 | - | |
439 | - % calculate modified frequency differences | |
440 | - mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |
441 | - mfreqd=diff(mfreqd,1,2); | |
442 | - mfreqd=reshape(mfreqd,1,[]); | |
435 | + % create "modified" y_k freq values | |
436 | + mfreq=diff(pa,1,2)./i; | |
437 | + mfreq=reshape(mfreq,1,[]); | |
438 | + | |
439 | + % calculate modified frequency differences | |
440 | + mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |
441 | + mfreqd=diff(mfreqd,1,2); | |
442 | + mfreqd=reshape(mfreqd,1,[]); | |
443 | 443 | |
444 | - % calculate two-sample variance for this tau | |
445 | - % only the first N-3*m(k)+1 samples are valid | |
446 | - if length(mfreqd) >= N-3*m(k)+1 | |
447 | - sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |
444 | + % calculate two-sample variance for this tau | |
445 | + % only the first N-3*m(k)+1 samples are valid | |
446 | + if length(mfreqd) >= N-3*m(k)+1 | |
447 | + sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |
448 | 448 | |
449 | - % estimate error bars | |
450 | - sme(k)=sm(k)/sqrt(N); | |
451 | - | |
452 | - if verbose >= 2, fprintf(1,'\n'); end | |
453 | - else | |
454 | - if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |
455 | - sm(k)=0; sme(k)=0; | |
456 | - end | |
457 | - | |
449 | + % estimate error bars | |
450 | + sme(k)=sm(k)/sqrt(N); | |
451 | + | |
452 | + if verbose >= 2, fprintf(1,'\n'); end | |
453 | + else | |
454 | + if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |
455 | + sm(k)=0; sme(k)=0; | |
456 | + end | |
457 | + | |
458 | 458 | |
459 | - end | |
459 | + end | |
460 | 460 | |
461 | - if verbose >= 2, fprintf(1,'\n'); end | |
462 | - calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |
463 | - | |
464 | - % remove any points that were dropped | |
465 | - tau(sm==0)=[]; | |
466 | - sm(sm==0)=[]; | |
467 | - sme(sme==0)=[]; | |
468 | - | |
469 | - % modify time vector for plotting | |
470 | - dtime=dtime(1:length(medianfreq)); | |
461 | + if verbose >= 2, fprintf(1,'\n'); end | |
462 | + calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |
463 | + | |
464 | + % remove any points that were dropped | |
465 | + tau(sm==0)=[]; | |
466 | + sm(sm==0)=[]; | |
467 | + sme(sme==0)=[]; | |
468 | + | |
469 | + % modify time vector for plotting | |
470 | + dtime=dtime(1:length(medianfreq)); | |
471 | 471 | |
472 | 472 | else |
473 | - error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]'); | |
473 | + error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]'); | |
474 | 474 | end |
475 | 475 | |
476 | 476 | |
477 | 477 | |
... | ... | @@ -478,41 +478,41 @@ |
478 | 478 | %% Plotting |
479 | 479 | |
480 | 480 | if verbose >= 2 % show all data |
481 | - | |
482 | - % plot the frequency data, centered on median | |
483 | - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
484 | - try | |
485 | - % dsplot makes a new figure | |
486 | - hd=dsplot(dtime,medianfreq); | |
487 | - catch ME | |
488 | - figure; | |
489 | - hd=plot(dtime,medianfreq); | |
490 | - if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
491 | - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
492 | - end | |
493 | - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
494 | - hold on; | |
481 | + | |
482 | + % plot the frequency data, centered on median | |
483 | + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
484 | + try | |
485 | + % dsplot makes a new figure | |
486 | + hd=dsplot(dtime,medianfreq); | |
487 | + catch ME | |
488 | + figure; | |
489 | + hd=plot(dtime,medianfreq); | |
490 | + if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
491 | + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
492 | + end | |
493 | + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
494 | + hold on; | |
495 | 495 | |
496 | - fx = xlim; | |
497 | - % plot([fx(1) fx(2)],[s.median s.median],'-k'); | |
498 | - plot([fx(1) fx(2)],[0 0],':k'); | |
499 | - % show 5x Median Absolute deviation (MAD) values | |
500 | - hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | |
501 | - plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | |
502 | - % show linear fit line | |
503 | - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
504 | - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
505 | - %set(get(gca,'Title'),'Interpreter','none'); | |
506 | - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
507 | - if isfield(data,'units') | |
508 | - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
509 | - else | |
510 | - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
511 | - end | |
512 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
513 | - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
514 | - % tighten up | |
515 | - xlim([dtime(1) dtime(end)]); | |
496 | + fx = xlim; | |
497 | + % plot([fx(1) fx(2)],[s.median s.median],'-k'); | |
498 | + plot([fx(1) fx(2)],[0 0],':k'); | |
499 | + % show 5x Median Absolute deviation (MAD) values | |
500 | + hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | |
501 | + plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | |
502 | + % show linear fit line | |
503 | + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
504 | + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
505 | + %set(get(gca,'Title'),'Interpreter','none'); | |
506 | + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
507 | + if isfield(data,'units') | |
508 | + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
509 | + else | |
510 | + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
511 | + end | |
512 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
513 | + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
514 | + % tighten up | |
515 | + xlim([dtime(1) dtime(end)]); | |
516 | 516 | |
517 | 517 | |
518 | 518 | end % end plot raw data |
519 | 519 | |
520 | 520 | |
521 | 521 | |
522 | 522 | |
... | ... | @@ -520,41 +520,41 @@ |
520 | 520 | |
521 | 521 | if verbose >= 1 % show analysis results |
522 | 522 | |
523 | - % plot Allan deviation results | |
524 | - if ~isempty(sm) | |
525 | - figure | |
523 | + % plot Allan deviation results | |
524 | + if ~isempty(sm) | |
525 | + figure | |
526 | 526 | |
527 | - % Choose loglog or semilogx plot here #PLOTLOG | |
528 | - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
529 | - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
527 | + % Choose loglog or semilogx plot here #PLOTLOG | |
528 | + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
529 | + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
530 | 530 | |
531 | - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
532 | - % When this is fixed, uncomment below to use normal errorbars | |
533 | - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
534 | - % this is a hack to approximate the error bars | |
535 | - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
531 | + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
532 | + % When this is fixed, uncomment below to use normal errorbars | |
533 | + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
534 | + % this is a hack to approximate the error bars | |
535 | + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
536 | 536 | |
537 | - grid on; | |
538 | - title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
539 | - %set(get(gca,'Title'),'Interpreter','none'); | |
540 | - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
541 | - ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
542 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
543 | - % expand the x axis a little bit so that the errors bars look nice | |
544 | - adax = axis; | |
545 | - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
546 | - | |
547 | - % display the minimum value | |
548 | - fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
549 | - | |
550 | - elseif verbose >= 1 | |
551 | - fprintf(1,'allan_modified: WARNING: no values calculated.\n'); | |
552 | - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
553 | - fprintf(1,'Type "help allan_modified" for more information.\n\n'); | |
554 | - end | |
537 | + grid on; | |
538 | + title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
539 | + %set(get(gca,'Title'),'Interpreter','none'); | |
540 | + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
541 | + ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
542 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
543 | + % expand the x axis a little bit so that the errors bars look nice | |
544 | + adax = axis; | |
545 | + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
546 | + | |
547 | + % display the minimum value | |
548 | + fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
549 | + | |
550 | + elseif verbose >= 1 | |
551 | + fprintf(1,'allan_modified: WARNING: no values calculated.\n'); | |
552 | + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
553 | + fprintf(1,'Type "help allan_modified" for more information.\n\n'); | |
554 | + end | |
555 | 555 | |
556 | 556 | end % end plot analysis |
557 | - | |
557 | + | |
558 | 558 | retval = sm; |
559 | 559 | errorb = sme; |
560 | 560 |
allan_overlap.m
... | ... | @@ -6,24 +6,24 @@ |
6 | 6 | % Inputs: |
7 | 7 | % DATA should be a struct and have the following fields: |
8 | 8 | % DATA.freq or DATA.phase |
9 | -% A vector of fractional frequency measurements (df/f) in | |
10 | -% DATA.freq *or* phase offset data (seconds) in DATA.phase | |
11 | -% If phase data is not present, it will be generated by | |
12 | -% integrating the fractional frequency data. | |
13 | -% If both fields are present, then DATA.phase will be used. | |
9 | +% A vector of fractional frequency measurements (df/f) in | |
10 | +% DATA.freq *or* phase offset data (seconds) in DATA.phase | |
11 | +% If phase data is not present, it will be generated by | |
12 | +% integrating the fractional frequency data. | |
13 | +% If both fields are present, then DATA.phase will be used. | |
14 | 14 | % |
15 | 15 | % DATA.rate or DATA.time |
16 | -% The sampling rate in Hertz (DATA.rate) or a vector of | |
17 | -% timestamps for each measurement in seconds (DATA.time). | |
18 | -% DATA.rate is used if both fields are present. | |
19 | -% If DATA.rate == 0, then the timestamps are used. | |
16 | +% The sampling rate in Hertz (DATA.rate) or a vector of | |
17 | +% timestamps for each measurement in seconds (DATA.time). | |
18 | +% DATA.rate is used if both fields are present. | |
19 | +% If DATA.rate == 0, then the timestamps are used. | |
20 | 20 | % |
21 | 21 | % TAU is an array of tau values for computing Allan deviation. |
22 | -% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
23 | -% grouped in fractional quantities!). Invalid values are ignored. | |
22 | +% TAU values must be divisible by 1/DATA.rate (data points cannot be | |
23 | +% grouped in fractional quantities!). Invalid values are ignored. | |
24 | 24 | % NAME is an optional label that is added to the plot titles. |
25 | 25 | % VERBOSE sets the level of status messages: |
26 | -% 0 = silent & no data plots; 1 = status messages; 2 = all messages | |
26 | +% 0 = silent & no data plots; 1 = status messages; 2 = all messages | |
27 | 27 | % |
28 | 28 | % Outputs: |
29 | 29 | % RETVAL is the array of overlapping Allan deviation values at each TAU. |
... | ... | @@ -38,8 +38,8 @@ |
38 | 38 | % To compute the overlapping Allan deviation for the data in the variable "lt": |
39 | 39 | % >> lt |
40 | 40 | % lt = |
41 | -% freq: [1x86400 double] | |
42 | -% rate: 0.5 | |
41 | +% freq: [1x86400 double] | |
42 | +% rate: 0.5 | |
43 | 43 | % |
44 | 44 | % Use: |
45 | 45 | % |
46 | 46 | |
47 | 47 | |
48 | 48 | |
49 | 49 | |
50 | 50 | |
... | ... | @@ -89,34 +89,34 @@ |
89 | 89 | % |
90 | 90 | % |
91 | 91 | % M.A. Hopcroft |
92 | -% mhopeng at gmail dot com | |
92 | +% mhopeng at gmail dot com | |
93 | 93 | % |
94 | 94 | % I welcome your comments and feedback! |
95 | 95 | % |
96 | 96 | % MH Mar2014 |
97 | 97 | % v2.24 fix bug related to generating freq data from phase with timestamps |
98 | -% (thanks to S. David-Grignot for finding the bug) | |
98 | +% (thanks to S. David-Grignot for finding the bug) | |
99 | 99 | % MH Oct2010 |
100 | 100 | % v2.22 tau truncation to integer groups; tau sort |
101 | -% plotting bugfix | |
101 | +% plotting bugfix | |
102 | 102 | % v2.20 update to match allan.m (dsplot.m, columns) |
103 | -% discard tau values with timestamp irregularities | |
103 | +% discard tau values with timestamp irregularities | |
104 | 104 | |
105 | 105 | versionstr = 'allan_overlap v2.24'; |
106 | 106 | |
107 | 107 | % |
108 | 108 | % MH MAR2010 |
109 | 109 | % v2.1 bugfixes for irregular sample rates |
110 | -% (thanks to Ryad Ben-El-Kezadri for feedback and testing) | |
111 | -% handle empty rate field | |
112 | -% fix integer comparisons for fractional sample rates | |
113 | -% update consistency check | |
110 | +% (thanks to Ryad Ben-El-Kezadri for feedback and testing) | |
111 | +% handle empty rate field | |
112 | +% fix integer comparisons for fractional sample rates | |
113 | +% update consistency check | |
114 | 114 | % |
115 | 115 | % MH FEB2010 |
116 | 116 | % v2.0 use phase data for calculation- much faster |
117 | -% Consistent code behaviour for all "allan_x.m" functions: | |
118 | -% accept phase data | |
119 | -% verbose levels | |
117 | +% Consistent code behaviour for all "allan_x.m" functions: | |
118 | +% accept phase data | |
119 | +% verbose levels | |
120 | 120 | % |
121 | 121 | % MH JAN2010 |
122 | 122 | % v1.0 based on allan v1.84 |
123 | 123 | |
... | ... | @@ -140,25 +140,25 @@ |
140 | 140 | |
141 | 141 | %% Data consistency checks v2.1 |
142 | 142 | if ~(isfield(data,'phase') || isfield(data,'freq')) |
143 | - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
143 | + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
144 | 144 | end |
145 | 145 | if isfield(data,'time') |
146 | - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
147 | - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
148 | - error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
149 | - else | |
150 | - error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
151 | - end | |
152 | - end | |
153 | - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
154 | - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
155 | - end | |
156 | - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
157 | - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
158 | - end | |
159 | - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
160 | - error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
161 | - end | |
146 | + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
147 | + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
148 | + error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
149 | + else | |
150 | + error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
151 | + end | |
152 | + end | |
153 | + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
154 | + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
155 | + end | |
156 | + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
157 | + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
158 | + end | |
159 | + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
160 | + error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
161 | + end | |
162 | 162 | end |
163 | 163 | |
164 | 164 | % sort tau vector |
165 | 165 | |
166 | 166 | |
167 | 167 | |
168 | 168 | |
169 | 169 | |
... | ... | @@ -166,33 +166,33 @@ |
166 | 166 | |
167 | 167 | %% Basic statistical tests on the data set |
168 | 168 | if ~isfield(data,'freq') |
169 | - if isfield(data,'rate') && data.rate ~= 0 | |
170 | - data.freq=diff(data.phase).*data.rate; | |
171 | - elseif isfield(data,'time') | |
172 | - data.freq=diff(data.phase)./diff(data.time); | |
173 | - end | |
174 | - if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
169 | + if isfield(data,'rate') && data.rate ~= 0 | |
170 | + data.freq=diff(data.phase).*data.rate; | |
171 | + elseif isfield(data,'time') | |
172 | + data.freq=diff(data.phase)./diff(data.time); | |
173 | + end | |
174 | + if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
175 | 175 | end |
176 | 176 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns |
177 | - | |
177 | + | |
178 | 178 | s.numpoints=length(data.freq); |
179 | 179 | s.max=max(data.freq); |
180 | 180 | s.min=min(data.freq); |
181 | 181 | s.mean=mean(data.freq); |
182 | 182 | s.median=median(data.freq); |
183 | 183 | if isfield(data,'time') |
184 | - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
185 | - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
184 | + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
185 | + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
186 | 186 | elseif isfield(data,'rate') && data.rate ~= 0; |
187 | - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
187 | + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
188 | 188 | else |
189 | - error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); | |
189 | + error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); | |
190 | 190 | end |
191 | 191 | s.std=std(data.freq); |
192 | 192 | |
193 | 193 | if verbose >= 2 |
194 | - fprintf(1,'allan_overlap: fractional frequency data statistics:\n'); | |
195 | - disp(s); | |
194 | + fprintf(1,'allan_overlap: fractional frequency data statistics:\n'); | |
195 | + disp(s); | |
196 | 196 | end |
197 | 197 | |
198 | 198 | |
... | ... | @@ -203,7 +203,7 @@ |
203 | 203 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria |
204 | 204 | MAD = median(abs(medianfreq)/0.6745); |
205 | 205 | if verbose >= 1 && any(abs(medianfreq) > 5*MAD) |
206 | - fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
206 | + fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
207 | 207 | end |
208 | 208 | |
209 | 209 | %%%% |
210 | 210 | |
211 | 211 | |
212 | 212 | |
213 | 213 | |
214 | 214 | |
215 | 215 | |
216 | 216 | |
217 | 217 | |
218 | 218 | |
219 | 219 | |
220 | 220 | |
221 | 221 | |
222 | 222 | |
223 | 223 | |
224 | 224 | |
225 | 225 | |
226 | 226 | |
227 | 227 | |
228 | 228 | |
229 | 229 | |
230 | 230 | |
231 | 231 | |
232 | 232 | |
233 | 233 | |
... | ... | @@ -213,250 +213,250 @@ |
213 | 213 | % If there is a regular interval between measurements, calculation is much |
214 | 214 | % easier/faster |
215 | 215 | if isfield(data,'rate') && data.rate > 0 % if data rate was given |
216 | - if verbose >= 1 | |
217 | - fprintf(1, 'allan_overlap: regular data '); | |
218 | - if isfield(data,'freq') | |
219 | - fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |
220 | - elseif isfield(data,'phase') | |
221 | - fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |
222 | - else | |
223 | - error('\n phase or freq data missing [err10]'); | |
224 | - end | |
225 | - end | |
216 | + if verbose >= 1 | |
217 | + fprintf(1, 'allan_overlap: regular data '); | |
218 | + if isfield(data,'freq') | |
219 | + fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |
220 | + elseif isfield(data,'phase') | |
221 | + fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |
222 | + else | |
223 | + error('\n phase or freq data missing [err10]'); | |
224 | + end | |
225 | + end | |
226 | 226 | |
227 | - % string for plot title | |
228 | - name=[name ' (' num2str(data.rate) ' Hz)']; | |
227 | + % string for plot title | |
228 | + name=[name ' (' num2str(data.rate) ' Hz)']; | |
229 | 229 | |
230 | - % what is the time interval between data points? | |
231 | - tmstep = 1/data.rate; | |
232 | - | |
233 | - % Is there time data? Just for curiosity/plotting, does not impact calculation | |
234 | - if isfield(data,'time') | |
235 | - % adjust time data to remove any starting gap; first time step | |
236 | - % should not be zero for comparison with freq data | |
237 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
238 | - dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) | |
239 | - if verbose >= 2 | |
240 | - fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end)); | |
241 | - if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
242 | - fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
243 | - end | |
244 | - end | |
245 | - else | |
246 | - % create time axis data using rate (for plotting only) | |
247 | - dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |
248 | - end | |
230 | + % what is the time interval between data points? | |
231 | + tmstep = 1/data.rate; | |
232 | + | |
233 | + % Is there time data? Just for curiosity/plotting, does not impact calculation | |
234 | + if isfield(data,'time') | |
235 | + % adjust time data to remove any starting gap; first time step | |
236 | + % should not be zero for comparison with freq data | |
237 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
238 | + dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) | |
239 | + if verbose >= 2 | |
240 | + fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end)); | |
241 | + if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
242 | + fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
243 | + end | |
244 | + end | |
245 | + else | |
246 | + % create time axis data using rate (for plotting only) | |
247 | + dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |
248 | + end | |
249 | 249 | |
250 | 250 | |
251 | - % is phase data present? If not, generate it | |
252 | - if ~isfield(data,'phase') | |
253 | - nfreq=data.freq-s.mean; | |
254 | - dphase=zeros(1,length(nfreq)+1); | |
255 | - dphase(2:end) = cumsum(nfreq)./data.rate; | |
256 | - if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
257 | - else | |
258 | - dphase=data.phase; | |
259 | - end | |
260 | - | |
261 | - % check the range of tau values and truncate if necessary | |
262 | - % find halfway point of time record | |
263 | - halftime = round(tmstep*length(data.freq)/2); | |
264 | - % truncate tau to appropriate values | |
265 | - tau = tau(tau >= tmstep & tau <= halftime); | |
266 | - if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
267 | - | |
268 | - % number of samples | |
269 | - N=length(dphase); | |
270 | - % number of samples per tau period | |
271 | - m = data.rate.*tau; | |
272 | - % only integer values allowed for m (no fractional groups of points) | |
273 | - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
274 | - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
275 | - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
276 | - m = m(m==round(m)); | |
277 | - %m=round(m); | |
278 | - %fprintf(1,'m: %.50f\n',m) | |
279 | - | |
280 | - if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end | |
281 | - | |
282 | - % calculate the Allan deviation for each value of tau | |
283 | - k=0; tic; | |
284 | - for i = tau | |
285 | - k=k+1; | |
286 | - if verbose >= 2, fprintf(1,'%d ',i); end | |
251 | + % is phase data present? If not, generate it | |
252 | + if ~isfield(data,'phase') | |
253 | + nfreq=data.freq-s.mean; | |
254 | + dphase=zeros(1,length(nfreq)+1); | |
255 | + dphase(2:end) = cumsum(nfreq)./data.rate; | |
256 | + if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
257 | + else | |
258 | + dphase=data.phase; | |
259 | + end | |
260 | + | |
261 | + % check the range of tau values and truncate if necessary | |
262 | + % find halfway point of time record | |
263 | + halftime = round(tmstep*length(data.freq)/2); | |
264 | + % truncate tau to appropriate values | |
265 | + tau = tau(tau >= tmstep & tau <= halftime); | |
266 | + if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
267 | + | |
268 | + % number of samples | |
269 | + N=length(dphase); | |
270 | + % number of samples per tau period | |
271 | + m = data.rate.*tau; | |
272 | + % only integer values allowed for m (no fractional groups of points) | |
273 | + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
274 | + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
275 | + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
276 | + m = m(m==round(m)); | |
277 | + %m=round(m); | |
278 | + %fprintf(1,'m: %.50f\n',m) | |
279 | + | |
280 | + if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end | |
281 | + | |
282 | + % calculate the Allan deviation for each value of tau | |
283 | + k=0; tic; | |
284 | + for i = tau | |
285 | + k=k+1; | |
286 | + if verbose >= 2, fprintf(1,'%d ',i); end | |
287 | 287 | |
288 | 288 | |
289 | - % pad phase data set length to an even multiple of this tau value | |
290 | - mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); | |
291 | - mphase(1:N)=dphase; | |
292 | - % group phase values | |
293 | - mp=reshape(mphase,m(k),[]); | |
294 | - % compute second differences of phase values (x_k+m - x_k) | |
295 | - md1=diff(mp,1,2); | |
296 | - md2=diff(md1,1,2); | |
297 | - md1=reshape(md2,1,[]); | |
298 | - | |
299 | - % compute overlapping ADEV from phase values | |
300 | - % only the first N-2*m(k) samples are valid | |
301 | - sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); | |
302 | - | |
303 | - % estimate error bars | |
304 | - sme(k)=sm(k)/sqrt(N-2*m(k)); | |
305 | - | |
289 | + % pad phase data set length to an even multiple of this tau value | |
290 | + mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); | |
291 | + mphase(1:N)=dphase; | |
292 | + % group phase values | |
293 | + mp=reshape(mphase,m(k),[]); | |
294 | + % compute second differences of phase values (x_k+m - x_k) | |
295 | + md1=diff(mp,1,2); | |
296 | + md2=diff(md1,1,2); | |
297 | + md1=reshape(md2,1,[]); | |
298 | + | |
299 | + % compute overlapping ADEV from phase values | |
300 | + % only the first N-2*m(k) samples are valid | |
301 | + sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); | |
302 | + | |
303 | + % estimate error bars | |
304 | + sme(k)=sm(k)/sqrt(N-2*m(k)); | |
305 | + | |
306 | 306 | |
307 | - end % repeat for each value of tau | |
308 | - | |
309 | - if verbose >= 2, fprintf(1,'\n'); end | |
310 | - calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |
307 | + end % repeat for each value of tau | |
308 | + | |
309 | + if verbose >= 2, fprintf(1,'\n'); end | |
310 | + calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |
311 | 311 | |
312 | - | |
313 | - | |
314 | -%% Irregular data, no fixed interval | |
312 | + | |
313 | + | |
314 | +%% Irregular data, no fixed interval | |
315 | 315 | elseif isfield(data,'time') |
316 | - % the interval between measurements is irregular | |
317 | - % so we must group the data by time | |
318 | - if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end | |
316 | + % the interval between measurements is irregular | |
317 | + % so we must group the data by time | |
318 | + if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end | |
319 | 319 | |
320 | - | |
321 | - % string for plot title | |
322 | - name=[name ' (timestamp)']; | |
323 | - | |
320 | + | |
321 | + % string for plot title | |
322 | + name=[name ' (timestamp)']; | |
323 | + | |
324 | 324 | |
325 | - % adjust time to remove any starting offset | |
326 | - dtime=data.time-data.time(1)+mean(diff(data.time)); | |
327 | - | |
328 | - % save the freq data for the loop | |
329 | - dfreq=data.freq; | |
330 | - dtime=dtime(1:length(dfreq)); | |
331 | - | |
332 | - dfdtime=diff(dtime); % only need to do this once (v2.1) | |
333 | - % where is the maximum gap in time record? | |
334 | - gap_pos=find(dfdtime==max(dfdtime)); | |
335 | - % what is average data spacing? | |
336 | - avg_gap = mean(dfdtime); | |
337 | - s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) | |
338 | - | |
339 | - if verbose >= 2 | |
340 | - fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
341 | - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
342 | - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
343 | - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
344 | - pause; | |
345 | - end | |
346 | - | |
347 | - if verbose >= 1 | |
348 | - fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end)); | |
349 | - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
350 | - if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
351 | - fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1)); | |
352 | - end | |
353 | - if max(diff(dtime)) > 5*avg_gap | |
354 | - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
355 | - end | |
356 | - end | |
357 | - | |
325 | + % adjust time to remove any starting offset | |
326 | + dtime=data.time-data.time(1)+mean(diff(data.time)); | |
327 | + | |
328 | + % save the freq data for the loop | |
329 | + dfreq=data.freq; | |
330 | + dtime=dtime(1:length(dfreq)); | |
331 | + | |
332 | + dfdtime=diff(dtime); % only need to do this once (v2.1) | |
333 | + % where is the maximum gap in time record? | |
334 | + gap_pos=find(dfdtime==max(dfdtime)); | |
335 | + % what is average data spacing? | |
336 | + avg_gap = mean(dfdtime); | |
337 | + s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) | |
338 | + | |
339 | + if verbose >= 2 | |
340 | + fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
341 | + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
342 | + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
343 | + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
344 | + pause; | |
345 | + end | |
346 | + | |
347 | + if verbose >= 1 | |
348 | + fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end)); | |
349 | + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
350 | + if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
351 | + fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1)); | |
352 | + end | |
353 | + if max(diff(dtime)) > 5*avg_gap | |
354 | + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
355 | + end | |
356 | + end | |
357 | + | |
358 | 358 | |
359 | - % find halfway point | |
360 | - halftime = fix(dtime(end)/2); | |
361 | - % truncate tau to appropriate values | |
362 | - tau = tau(tau >= max(dfdtime) & tau <= halftime); | |
363 | - if isempty(tau) | |
364 | - error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime); | |
365 | - end | |
366 | - | |
359 | + % find halfway point | |
360 | + halftime = fix(dtime(end)/2); | |
361 | + % truncate tau to appropriate values | |
362 | + tau = tau(tau >= max(dfdtime) & tau <= halftime); | |
363 | + if isempty(tau) | |
364 | + error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime); | |
365 | + end | |
366 | + | |
367 | 367 | |
368 | - % number of samples | |
369 | - M=length(dfreq); | |
370 | - % number of samples per tau period | |
371 | - m=round(tau./avg_gap); | |
368 | + % number of samples | |
369 | + M=length(dfreq); | |
370 | + % number of samples per tau period | |
371 | + m=round(tau./avg_gap); | |
372 | 372 | |
373 | - if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end | |
373 | + if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end | |
374 | 374 | |
375 | - k=0; tic; | |
376 | - for i = tau | |
377 | - k=k+1; | |
378 | - fa=[]; | |
375 | + k=0; tic; | |
376 | + for i = tau | |
377 | + k=k+1; | |
378 | + fa=[]; | |
379 | 379 | |
380 | - if verbose >= 2, fprintf(1,'%d ',i); end | |
381 | - | |
382 | - freq = dfreq; time = dtime; | |
383 | - | |
384 | - | |
385 | - % compute overlapping samples (y_k) for this tau | |
386 | - %for j = 1:i | |
387 | - for j = 1:m(k) % (v2.1) | |
388 | - km=0; | |
389 | - %fprintf(1,'j: %d ',j); | |
380 | + if verbose >= 2, fprintf(1,'%d ',i); end | |
381 | + | |
382 | + freq = dfreq; time = dtime; | |
383 | + | |
384 | + | |
385 | + % compute overlapping samples (y_k) for this tau | |
386 | + %for j = 1:i | |
387 | + for j = 1:m(k) % (v2.1) | |
388 | + km=0; | |
389 | + %fprintf(1,'j: %d ',j); | |
390 | 390 | |
391 | - % (v2.1) truncating not correct for overlapping samples | |
392 | - % truncate data set to an even multiple of this tau value | |
393 | - %freq = freq(time <= time(end)-rem(time(end),i)); | |
394 | - %time = time(time <= time(end)-rem(time(end),i)); | |
395 | - | |
396 | - % break up the data into overlapping groups of tau length | |
397 | - while i*km <= time(end) | |
398 | - km=km+1; | |
399 | - %i*km | |
391 | + % (v2.1) truncating not correct for overlapping samples | |
392 | + % truncate data set to an even multiple of this tau value | |
393 | + %freq = freq(time <= time(end)-rem(time(end),i)); | |
394 | + %time = time(time <= time(end)-rem(time(end),i)); | |
395 | + | |
396 | + % break up the data into overlapping groups of tau length | |
397 | + while i*km <= time(end) | |
398 | + km=km+1; | |
399 | + %i*km | |
400 | 400 | |
401 | - % progress bar | |
402 | - if verbose >= 2 | |
403 | - if rem(km,100)==0, fprintf(1,'.'); end | |
404 | - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
405 | - end | |
401 | + % progress bar | |
402 | + if verbose >= 2 | |
403 | + if rem(km,100)==0, fprintf(1,'.'); end | |
404 | + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
405 | + end | |
406 | 406 | |
407 | - f = freq(i*(km-1) < (time) & (time) <= i*km); | |
407 | + f = freq(i*(km-1) < (time) & (time) <= i*km); | |
408 | 408 | |
409 | - if ~isempty(f) | |
410 | - fa(j,km)=mean(f); | |
411 | - else | |
412 | - fa(j,km)=0; | |
413 | - end | |
409 | + if ~isempty(f) | |
410 | + fa(j,km)=mean(f); | |
411 | + else | |
412 | + fa(j,km)=0; | |
413 | + end | |
414 | 414 | |
415 | - end | |
416 | - %fa | |
417 | - | |
418 | - % shift data vector by -1 and repeat | |
419 | - freq=circshift(dfreq,(size(freq)>1)*-j); | |
420 | - freq(end-j+1:end)=[]; | |
421 | - time=circshift(dtime,(size(time)>1)*-j); | |
422 | - time(end-j+1:end)=[]; | |
423 | - time=time-time(1)+avg_gap; % remove time offset | |
424 | - | |
425 | - end | |
426 | - | |
427 | - % compute second differences of fractional frequency values (y_k+m - y_k) | |
428 | - fd1=diff(fa,1,2); | |
429 | - fd1=reshape(fd1,1,[]); | |
430 | - % compute overlapping ADEV from fractional frequency values | |
431 | - % only the first M-2*m(k)+1 samples are valid | |
432 | - if length(fd1) >= M-2*m(k)+1 | |
433 | - sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); | |
415 | + end | |
416 | + %fa | |
417 | + | |
418 | + % shift data vector by -1 and repeat | |
419 | + freq=circshift(dfreq,(size(freq)>1)*-j); | |
420 | + freq(end-j+1:end)=[]; | |
421 | + time=circshift(dtime,(size(time)>1)*-j); | |
422 | + time(end-j+1:end)=[]; | |
423 | + time=time-time(1)+avg_gap; % remove time offset | |
424 | + | |
425 | + end | |
426 | + | |
427 | + % compute second differences of fractional frequency values (y_k+m - y_k) | |
428 | + fd1=diff(fa,1,2); | |
429 | + fd1=reshape(fd1,1,[]); | |
430 | + % compute overlapping ADEV from fractional frequency values | |
431 | + % only the first M-2*m(k)+1 samples are valid | |
432 | + if length(fd1) >= M-2*m(k)+1 | |
433 | + sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); | |
434 | 434 | |
435 | - % estimate error bars | |
436 | - sme(k)=sm(k)/sqrt(M+1); | |
437 | - | |
438 | - if verbose >= 2, fprintf(1,'\n'); end | |
439 | - | |
440 | - else | |
441 | - if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |
442 | - sm(k)=0; sme(k)=0; | |
443 | - end | |
444 | - | |
435 | + % estimate error bars | |
436 | + sme(k)=sm(k)/sqrt(M+1); | |
437 | + | |
438 | + if verbose >= 2, fprintf(1,'\n'); end | |
439 | + | |
440 | + else | |
441 | + if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |
442 | + sm(k)=0; sme(k)=0; | |
443 | + end | |
444 | + | |
445 | 445 | |
446 | - end | |
446 | + end | |
447 | 447 | |
448 | - if verbose >= 2, fprintf(1,'\n'); end | |
449 | - calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |
448 | + if verbose >= 2, fprintf(1,'\n'); end | |
449 | + calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |
450 | 450 | |
451 | - % remove any points that were dropped | |
452 | - tau(sm==0)=[]; | |
453 | - sm(sm==0)=[]; | |
454 | - sme(sme==0)=[]; | |
451 | + % remove any points that were dropped | |
452 | + tau(sm==0)=[]; | |
453 | + sm(sm==0)=[]; | |
454 | + sme(sme==0)=[]; | |
455 | 455 | |
456 | 456 | |
457 | 457 | |
458 | 458 | else |
459 | - error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
459 | + error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
460 | 460 | end |
461 | 461 | |
462 | 462 | |
463 | 463 | |
464 | 464 | |
465 | 465 | |
466 | 466 | |
467 | 467 | |
468 | 468 | |
469 | 469 | |
... | ... | @@ -464,83 +464,83 @@ |
464 | 464 | %% Plotting |
465 | 465 | |
466 | 466 | if verbose >= 2 % show all data |
467 | - | |
468 | - % plot the frequency data, centered on median | |
469 | - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
470 | - try | |
471 | - % dsplot makes a new figure | |
472 | - hd=dsplot(dtime,medianfreq); | |
473 | - catch ME | |
474 | - figure; | |
475 | - hd=plot(dtime,medianfreq); | |
476 | - if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
477 | - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
478 | - end | |
479 | - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
480 | - hold on; | |
467 | + | |
468 | + % plot the frequency data, centered on median | |
469 | + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
470 | + try | |
471 | + % dsplot makes a new figure | |
472 | + hd=dsplot(dtime,medianfreq); | |
473 | + catch ME | |
474 | + figure; | |
475 | + hd=plot(dtime,medianfreq); | |
476 | + if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
477 | + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
478 | + end | |
479 | + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
480 | + hold on; | |
481 | 481 | |
482 | - fx = xlim; | |
483 | - % plot([fx(1) fx(2)],[s.median s.median],'-k'); | |
484 | - plot([fx(1) fx(2)],[0 0],':k'); | |
485 | - % show 5x Median Absolute deviation (MAD) values | |
486 | - hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | |
487 | - plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | |
488 | - % show linear fit line | |
489 | - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
490 | - title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial'); | |
491 | - %set(get(gca,'Title'),'Interpreter','none'); | |
492 | - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
493 | - if isfield(data,'units') | |
494 | - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
495 | - else | |
496 | - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
497 | - end | |
498 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
499 | - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
500 | - % tighten up | |
501 | - xlim([dtime(1) dtime(end)]); | |
482 | + fx = xlim; | |
483 | + % plot([fx(1) fx(2)],[s.median s.median],'-k'); | |
484 | + plot([fx(1) fx(2)],[0 0],':k'); | |
485 | + % show 5x Median Absolute deviation (MAD) values | |
486 | + hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | |
487 | + plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | |
488 | + % show linear fit line | |
489 | + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
490 | + title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial'); | |
491 | + %set(get(gca,'Title'),'Interpreter','none'); | |
492 | + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
493 | + if isfield(data,'units') | |
494 | + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
495 | + else | |
496 | + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
497 | + end | |
498 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
499 | + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
500 | + % tighten up | |
501 | + xlim([dtime(1) dtime(end)]); | |
502 | 502 | |
503 | - | |
503 | + | |
504 | 504 | end % end plot raw data |
505 | 505 | |
506 | 506 | |
507 | 507 | if verbose >= 1 % show analysis results |
508 | 508 | |
509 | - % plot Allan deviation results | |
510 | - if ~isempty(sm) | |
511 | - figure | |
509 | + % plot Allan deviation results | |
510 | + if ~isempty(sm) | |
511 | + figure | |
512 | 512 | |
513 | - % Choose loglog or semilogx plot here #PLOTLOG | |
514 | - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
515 | - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
513 | + % Choose loglog or semilogx plot here #PLOTLOG | |
514 | + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
515 | + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
516 | 516 | |
517 | - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
518 | - % When this is fixed, uncomment below to use normal errorbars | |
519 | - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
520 | - % this is a hack to approximate the error bars | |
521 | - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
517 | + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
518 | + % When this is fixed, uncomment below to use normal errorbars | |
519 | + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
520 | + % this is a hack to approximate the error bars | |
521 | + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
522 | 522 | |
523 | - grid on; | |
524 | - title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
525 | - %set(get(gca,'Title'),'Interpreter','none'); | |
526 | - xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial'); | |
527 | - ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
528 | - set(gca,'FontSize',FontSize,'FontName',FontName); | |
529 | - % expand the x axis a little bit so that the errors bars look nice | |
530 | - adax = axis; | |
531 | - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
532 | - | |
533 | - % display the minimum value | |
534 | - fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
535 | - | |
536 | - elseif verbose >= 1 | |
537 | - fprintf(1,'allan_overlap: WARNING: no values calculated.\n'); | |
538 | - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
539 | - fprintf(1,'Type "help allan_overlap" for more information.\n\n'); | |
540 | - end | |
541 | - | |
523 | + grid on; | |
524 | + title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
525 | + %set(get(gca,'Title'),'Interpreter','none'); | |
526 | + xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial'); | |
527 | + ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
528 | + set(gca,'FontSize',FontSize,'FontName',FontName); | |
529 | + % expand the x axis a little bit so that the errors bars look nice | |
530 | + adax = axis; | |
531 | + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
532 | + | |
533 | + % display the minimum value | |
534 | + fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
535 | + | |
536 | + elseif verbose >= 1 | |
537 | + fprintf(1,'allan_overlap: WARNING: no values calculated.\n'); | |
538 | + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
539 | + fprintf(1,'Type "help allan_overlap" for more information.\n\n'); | |
540 | + end | |
541 | + | |
542 | 542 | end % end plot analysis |
543 | - | |
543 | + | |
544 | 544 | retval = sm; |
545 | 545 | errorb = sme; |
546 | 546 |
allanplot.m
... | ... | @@ -5,25 +5,33 @@ |
5 | 5 | mult = eval(argv(){3}); |
6 | 6 | |
7 | 7 | if length(col) == length(mult) |
8 | - figure | |
9 | - hold all | |
10 | - grid on | |
11 | - cc = 'bkcgmry'; | |
12 | - for i = [1:length(col)] | |
13 | - data.freq = load(filename)(:,col(i)).*mult(i); | |
14 | - if eval(argv(){4})(i) == 1 | |
15 | - printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n')) | |
16 | - data.freq = detrend(data.freq); | |
17 | - end | |
18 | - data.rate = 1; | |
19 | - [ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | |
20 | - loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | |
21 | - leg{i} = strcat(filename, ' col', num2str(col(i))); | |
22 | - axis(10.^ceil(log10([tau(1), tau(end)]))) | |
23 | - hold on | |
24 | - end | |
25 | - legend(leg) | |
26 | - input("Press to continue..."); | |
8 | + figure | |
9 | + hold all | |
10 | + grid on | |
11 | + cc = 'bkcgmry'; | |
12 | + for i = [1:length(col)] | |
13 | + data.freq = load(filename)(:,col(i)).*mult(i); | |
14 | + if nargin == 4 | |
15 | + if eval(argv(){4})(i) == 1 | |
16 | + printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n')) | |
17 | + data.freq = detrend(data.freq); | |
18 | + elseif eval(argv(){4})(i) == 2 | |
19 | + printf(strcat(filename, ' col', num2str(col(i)), ' relative ad\n\n')) | |
20 | + data.freq = data.freq./mean(data.freq); | |
21 | + elseif eval(argv(){4})(i) == 3 | |
22 | + printf(strcat(filename, ' col', num2str(col(i)), ' drift removed relative ad\n\n')) | |
23 | + data.freq = detrend(data.freq./mean(data.freq)); | |
24 | + end | |
25 | + endif | |
26 | + data.rate = 1; | |
27 | + [ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | |
28 | + loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | |
29 | + leg{i} = strcat(filename, ' col', num2str(col(i))); | |
30 | + axis(10.^ceil(log10([tau(1), tau(end)]))) | |
31 | + hold on | |
32 | + end | |
33 | + legend(leg) | |
34 | + input("Press to continue..."); | |
27 | 35 | end |
28 | 36 | exit |
allanplot_cov.m
... | ... | @@ -7,32 +7,32 @@ |
7 | 7 | mult2 = eval(argv(){5}); |
8 | 8 | |
9 | 9 | if length(col1) == length(mult1) |
10 | - figure | |
11 | - hold all | |
12 | - grid on | |
13 | - cc = 'bkcgmry'; | |
14 | - for i = [1:length(col1)] | |
15 | - data.freq = load(filename)(:,col1(i)).*mult1(i); | |
16 | - data.freq2 = load(filename)(:,col2(i)).*mult2(i); | |
17 | - data.freq = data.freq(1:min(length(data.freq), length(data.freq2))); | |
18 | - data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2))); | |
19 | - if eval(argv(){end-1}) == 1 | |
20 | - printf('\ndata1 drift removed\n\n') | |
21 | - data.freq = detrend(data.freq); | |
22 | - end | |
23 | - if eval(argv(){end}) == 1 | |
24 | - printf('\ndata2 drift removed\n\n') | |
25 | - data.freq2 = detrend(data.freq2); | |
26 | - end | |
27 | - data.rate = 1; | |
28 | - [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | |
29 | - loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | |
30 | - leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i))); | |
31 | - axis(10.^ceil(log10([tau(1), tau(end)]))) | |
32 | - hold on | |
33 | - end | |
34 | - legend(leg) | |
35 | - input("Press to continue..."); | |
10 | + figure | |
11 | + hold all | |
12 | + grid on | |
13 | + cc = 'bkcgmry'; | |
14 | + for i = [1:length(col1)] | |
15 | + data.freq = load(filename)(:,col1(i)).*mult1(i); | |
16 | + data.freq2 = load(filename)(:,col2(i)).*mult2(i); | |
17 | + data.freq = data.freq(1:min(length(data.freq), length(data.freq2))); | |
18 | + data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2))); | |
19 | + if eval(argv(){end-1}) == 1 | |
20 | + printf('\ndata1 drift removed\n\n') | |
21 | + data.freq = detrend(data.freq); | |
22 | + end | |
23 | + if eval(argv(){end}) == 1 | |
24 | + printf('\ndata2 drift removed\n\n') | |
25 | + data.freq2 = detrend(data.freq2); | |
26 | + end | |
27 | + data.rate = 1; | |
28 | + [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | |
29 | + loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | |
30 | + leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i))); | |
31 | + axis(10.^ceil(log10([tau(1), tau(end)]))) | |
32 | + hold on | |
33 | + end | |
34 | + legend(leg) | |
35 | + input("Press to continue..."); | |
36 | 36 | end |
37 | 37 | exit |
dsplot.m
... | ... | @@ -6,9 +6,9 @@ |
6 | 6 | % |
7 | 7 | % DSPLOT(X, Y) plots Y versus X by downsampling if there are large number |
8 | 8 | % of elements. X and Y needs to obey the following: |
9 | -% 1. X must be a monotonically increasing vector. | |
10 | -% 2. If Y is a vector, it must be the same size as X. | |
11 | -% 3. If Y is a matrix, one of the dimensions must line up with X. | |
9 | +% 1. X must be a monotonically increasing vector. | |
10 | +% 2. If Y is a vector, it must be the same size as X. | |
11 | +% 3. If Y is a matrix, one of the dimensions must line up with X. | |
12 | 12 | % |
13 | 13 | % DSPLOT(Y) plots the columns of Y versus their index. |
14 | 14 | % |
... | ... | @@ -58,9 +58,9 @@ |
58 | 58 | % Version: |
59 | 59 | % v1.0 - first version (Aug 1, 2007) |
60 | 60 | % v1.1 - added CreateFcn for the figure so that when the figure is saved |
61 | -% and re-loaded, the zooming and panning works. Also added a menu | |
62 | -% item for saving out the original data back to the base | |
63 | -% workspace. (Aug 10, 2007) | |
61 | +% and re-loaded, the zooming and panning works. Also added a menu | |
62 | +% item for saving out the original data back to the base | |
63 | +% workspace. (Aug 10, 2007) | |
64 | 64 | % |
65 | 65 | % Jiro Doke |
66 | 66 | % August 1, 2007 |
67 | 67 | |
... | ... | @@ -101,13 +101,13 @@ |
101 | 101 | % orientation. |
102 | 102 | if numSignals > size(y, 1) |
103 | 103 | s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ... |
104 | - numSignals), 's'); | |
104 | + numSignals), 's'); | |
105 | 105 | if ~strcmpi(s, 'y') |
106 | - disp('Canceled. You may want to transpose the matrix.'); | |
107 | - if nargout == 1 | |
108 | - hL = []; | |
109 | - end | |
110 | - return; | |
106 | + disp('Canceled. You may want to transpose the matrix.'); | |
107 | + if nargout == 1 | |
108 | + hL = []; | |
109 | + end | |
110 | + return; | |
111 | 111 | end |
112 | 112 | end |
113 | 113 | |
... | ... | @@ -120,7 +120,7 @@ |
120 | 120 | |
121 | 121 | % Always create new figure because it messes around with zoom, pan, |
122 | 122 | % datacursors. |
123 | -hFig = figure; | |
123 | +hFig = figure; | |
124 | 124 | figName = ''; |
125 | 125 | |
126 | 126 | % Create template plot using NaNs |
127 | 127 | |
128 | 128 | |
129 | 129 | |
130 | 130 | |
131 | 131 | |
132 | 132 | |
133 | 133 | |
134 | 134 | |
135 | 135 | |
136 | 136 | |
137 | 137 | |
138 | 138 | |
139 | 139 | |
140 | 140 | |
141 | 141 | |
142 | 142 | |
143 | 143 | |
144 | 144 | |
145 | 145 | |
146 | 146 | |
147 | 147 | |
... | ... | @@ -147,173 +147,173 @@ |
147 | 147 | |
148 | 148 | %-------------------------------------------------------------------------- |
149 | 149 | function myExportFcn(varargin) |
150 | - % This callback allows for extracting the actual data from the figure. | |
151 | - % This means that if you save this figure and load it back later, you | |
152 | - % can get back the data. | |
153 | - | |
154 | - % Determine the variable name | |
155 | - allVarNames = evalin('base', 'who'); | |
156 | - newVarName = genvarname('dsplotData', allVarNames); | |
157 | - | |
158 | - % X | |
159 | - if ~noXVar | |
160 | - if varTranspose | |
161 | - dat.x = x'; | |
162 | - else | |
163 | - dat.x = x; | |
164 | - end | |
165 | - end | |
166 | - | |
167 | - % Y | |
168 | - if varTranspose | |
169 | - dat.y = y'; | |
170 | - else | |
171 | - dat.y = y; | |
172 | - end | |
173 | - | |
174 | - assignin('base', newVarName, dat); | |
175 | - | |
176 | - msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... | |
177 | - newVarName), 'Saved', 'modal'); | |
178 | - | |
150 | + % This callback allows for extracting the actual data from the figure. | |
151 | + % This means that if you save this figure and load it back later, you | |
152 | + % can get back the data. | |
153 | + | |
154 | + % Determine the variable name | |
155 | + allVarNames = evalin('base', 'who'); | |
156 | + newVarName = genvarname('dsplotData', allVarNames); | |
157 | + | |
158 | + % X | |
159 | + if ~noXVar | |
160 | + if varTranspose | |
161 | + dat.x = x'; | |
162 | + else | |
163 | + dat.x = x; | |
164 | + end | |
165 | + end | |
166 | + | |
167 | + % Y | |
168 | + if varTranspose | |
169 | + dat.y = y'; | |
170 | + else | |
171 | + dat.y = y; | |
172 | + end | |
173 | + | |
174 | + assignin('base', newVarName, dat); | |
175 | + | |
176 | + msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... | |
177 | + newVarName), 'Saved', 'modal'); | |
178 | + | |
179 | 179 | end |
180 | 180 | |
181 | 181 | %-------------------------------------------------------------------------- |
182 | 182 | function mycreatefcn(varargin) |
183 | - % This callback defines the custom zoom/pan functions. It is defined as | |
184 | - % the CreateFcn of the figure, so it allows for saving and reloading of | |
185 | - % the figure. | |
183 | + % This callback defines the custom zoom/pan functions. It is defined as | |
184 | + % the CreateFcn of the figure, so it allows for saving and reloading of | |
185 | + % the figure. | |
186 | 186 | |
187 | - if nargin > 0 | |
188 | - hFig = varargin{1}; | |
189 | - end | |
190 | - hLine = findobj(hFig, 'type', 'axes'); | |
191 | - hLine(strmatch('legend', get(hLine, 'tag'))) = []; | |
192 | - hLine = get(hLine, 'Children'); | |
193 | - | |
194 | - % Create Zoom, Pan, Datacursor objects | |
195 | - hZoom = zoom(hFig); | |
196 | - hPan = pan(hFig); | |
197 | - hDc = datacursormode(hFig); | |
198 | - set(hZoom, 'ActionPostCallback', @mypostcallback); | |
199 | - set(hPan , 'ActionPostCallback', @mypostcallback); | |
200 | - set(hDc , 'UpdateFcn' , @myDCupdatefcn); | |
187 | + if nargin > 0 | |
188 | + hFig = varargin{1}; | |
189 | + end | |
190 | + hLine = findobj(hFig, 'type', 'axes'); | |
191 | + hLine(strmatch('legend', get(hLine, 'tag'))) = []; | |
192 | + hLine = get(hLine, 'Children'); | |
193 | + | |
194 | + % Create Zoom, Pan, Datacursor objects | |
195 | + hZoom = zoom(hFig); | |
196 | + hPan = pan(hFig); | |
197 | + hDc = datacursormode(hFig); | |
198 | + set(hZoom, 'ActionPostCallback', @mypostcallback); | |
199 | + set(hPan , 'ActionPostCallback', @mypostcallback); | |
200 | + set(hDc , 'UpdateFcn' , @myDCupdatefcn); | |
201 | 201 | |
202 | 202 | end |
203 | 203 | |
204 | 204 | %-------------------------------------------------------------------------- |
205 | 205 | function mypostcallback(obj, evd) %#ok |
206 | - % This callback that gets called when the mouse is released after | |
207 | - % zooming or panning. | |
206 | + % This callback that gets called when the mouse is released after | |
207 | + % zooming or panning. | |
208 | 208 | |
209 | - % single or double-click | |
210 | - switch get(hFig, 'SelectionType') | |
211 | - case {'normal', 'alt'} | |
212 | - updateLines(xlim(evd.Axes)); | |
209 | + % single or double-click | |
210 | + switch get(hFig, 'SelectionType') | |
211 | + case {'normal', 'alt'} | |
212 | + updateLines(xlim(evd.Axes)); | |
213 | 213 | |
214 | - case 'open' | |
215 | - updateLines([min(x), max(x)]); | |
214 | + case 'open' | |
215 | + updateLines([min(x), max(x)]); | |
216 | 216 | |
217 | - end | |
217 | + end | |
218 | 218 | |
219 | 219 | end |
220 | 220 | |
221 | 221 | %-------------------------------------------------------------------------- |
222 | 222 | function updateLines(rng) |
223 | - % This helper function is for determining the points to plot on the | |
224 | - % screen based on which portion is visible in the current limits. | |
223 | + % This helper function is for determining the points to plot on the | |
224 | + % screen based on which portion is visible in the current limits. | |
225 | 225 | |
226 | - % find indeces inside the range | |
227 | - id = find(x >= rng(1) & x <= rng(2)); | |
226 | + % find indeces inside the range | |
227 | + id = find(x >= rng(1) & x <= rng(2)); | |
228 | 228 | |
229 | - % if there are more points than we want | |
230 | - if length(id) > numPoints / numSignals | |
229 | + % if there are more points than we want | |
230 | + if length(id) > numPoints / numSignals | |
231 | 231 | |
232 | - % see how many outlier points are in this range | |
233 | - blah = iOutliers > id(1) & iOutliers < id(end); | |
232 | + % see how many outlier points are in this range | |
233 | + blah = iOutliers > id(1) & iOutliers < id(end); | |
234 | 234 | |
235 | - % determine indeces of points to plot. | |
236 | - idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; | |
235 | + % determine indeces of points to plot. | |
236 | + idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; | |
237 | 237 | |
238 | - x2 = cell(numSignals, 1); | |
239 | - y2 = x2; | |
240 | - for iSignals = 1:numSignals | |
241 | - % add outlier points | |
242 | - ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); | |
243 | - x2{iSignals} = x(ididid); | |
244 | - y2{iSignals} = y(ididid, iSignals); | |
245 | - end | |
238 | + x2 = cell(numSignals, 1); | |
239 | + y2 = x2; | |
240 | + for iSignals = 1:numSignals | |
241 | + % add outlier points | |
242 | + ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); | |
243 | + x2{iSignals} = x(ididid); | |
244 | + y2{iSignals} = y(ididid, iSignals); | |
245 | + end | |
246 | 246 | |
247 | - if debugMode | |
248 | - figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; | |
249 | - else | |
250 | - figName = 'downsampled'; | |
251 | - end | |
247 | + if debugMode | |
248 | + figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; | |
249 | + else | |
250 | + figName = 'downsampled'; | |
251 | + end | |
252 | 252 | |
253 | - else % no need to down sample | |
254 | - figName = 'true'; | |
253 | + else % no need to down sample | |
254 | + figName = 'true'; | |
255 | 255 | |
256 | - x2 = repmat({x(id)}, numSignals, 1); | |
257 | - y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; | |
256 | + x2 = repmat({x(id)}, numSignals, 1); | |
257 | + y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; | |
258 | 258 | |
259 | - end | |
259 | + end | |
260 | 260 | |
261 | - % Update plot | |
262 | - set(hLine, {'xdata', 'ydata'} , [x2, y2]); | |
263 | - set(hFig, 'Name', figName); | |
261 | + % Update plot | |
262 | + set(hLine, {'xdata', 'ydata'} , [x2, y2]); | |
263 | + set(hFig, 'Name', figName); | |
264 | 264 | |
265 | 265 | end |
266 | 266 | |
267 | 267 | %-------------------------------------------------------------------------- |
268 | 268 | function txt = myDCupdatefcn(empt, event_obj) %#ok |
269 | - % This function displays appropriate data cursor message based on the | |
270 | - % display type | |
269 | + % This function displays appropriate data cursor message based on the | |
270 | + % display type | |
271 | 271 | |
272 | - pos = get(event_obj,'Position'); | |
273 | - switch figName | |
274 | - case 'true' | |
275 | - txt = {['X: ',num2str(pos(1))],... | |
276 | - ['Y: ',num2str(pos(2))]}; | |
277 | - otherwise | |
278 | - txt = {['X: ',num2str(pos(1))],... | |
279 | - ['Y: ',num2str(pos(2))], ... | |
280 | - 'Warning: Downsampled', ... | |
281 | - 'May not be accurate'}; | |
282 | - end | |
272 | + pos = get(event_obj,'Position'); | |
273 | + switch figName | |
274 | + case 'true' | |
275 | + txt = {['X: ',num2str(pos(1))],... | |
276 | + ['Y: ',num2str(pos(2))]}; | |
277 | + otherwise | |
278 | + txt = {['X: ',num2str(pos(1))],... | |
279 | + ['Y: ',num2str(pos(2))], ... | |
280 | + 'Warning: Downsampled', ... | |
281 | + 'May not be accurate'}; | |
282 | + end | |
283 | 283 | end |
284 | 284 | |
285 | 285 | %-------------------------------------------------------------------------- |
286 | 286 | function myErrorCheck |
287 | - % Do some error checking on the input arguments. | |
287 | + % Do some error checking on the input arguments. | |
288 | 288 | |
289 | - if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500 | |
290 | - error('Third argument must be a scalar greater than 500'); | |
291 | - end | |
292 | - if ~isnumeric(x) || ~isnumeric(y) | |
293 | - error('Arguments must be numeric'); | |
294 | - end | |
295 | - if length(size(x)) > 2 || length(size(y)) > 2 | |
296 | - error('Only 2-D data accepted'); | |
297 | - end | |
298 | - | |
299 | - % If only one input, create index vector X | |
300 | - if isempty(x) | |
301 | - if ismember(1, size(y)) | |
302 | - x = reshape(1:numel(y), size(y)); | |
303 | - else | |
304 | - x = (1:size(y, 1))'; | |
305 | - end | |
306 | - end | |
307 | - | |
308 | - if ~ismember(1, size(x)) | |
309 | - error('First argument has to be a vector'); | |
310 | - end | |
311 | - if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2)) | |
312 | - error('One of the dimensions of the two arguments must match'); | |
313 | - end | |
314 | - if any(diff(x) <= 0) | |
315 | - error('The first argument has to be a monotonically increasing vector'); | |
316 | - end | |
289 | + if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500 | |
290 | + error('Third argument must be a scalar greater than 500'); | |
291 | + end | |
292 | + if ~isnumeric(x) || ~isnumeric(y) | |
293 | + error('Arguments must be numeric'); | |
294 | + end | |
295 | + if length(size(x)) > 2 || length(size(y)) > 2 | |
296 | + error('Only 2-D data accepted'); | |
297 | + end | |
298 | + | |
299 | + % If only one input, create index vector X | |
300 | + if isempty(x) | |
301 | + if ismember(1, size(y)) | |
302 | + x = reshape(1:numel(y), size(y)); | |
303 | + else | |
304 | + x = (1:size(y, 1))'; | |
305 | + end | |
306 | + end | |
307 | + | |
308 | + if ~ismember(1, size(x)) | |
309 | + error('First argument has to be a vector'); | |
310 | + end | |
311 | + if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2)) | |
312 | + error('One of the dimensions of the two arguments must match'); | |
313 | + end | |
314 | + if any(diff(x) <= 0) | |
315 | + error('The first argument has to be a monotonically increasing vector'); | |
316 | + end | |
317 | 317 | end |
318 | 318 | |
319 | 319 | end |
psdplot.m
... | ... | @@ -5,20 +5,20 @@ |
5 | 5 | mult = eval(argv(){3}); |
6 | 6 | |
7 | 7 | if length(col) == length(mult) |
8 | - figure | |
9 | - hold all | |
10 | - grid on | |
11 | - cc = 'bkcgmry'; | |
12 | - for i = [1:length(col)] | |
13 | - data.freq = load(filename)(:,col(i)).*mult(i); | |
14 | - data.rate = 1; | |
15 | - [p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided'); | |
16 | - semilogx(f, 10*log10(p), cc(mod(i, length(cc)))) | |
17 | - leg{i} = strcat(filename, ' col', num2str(col(i))); | |
18 | - hold on | |
19 | - end | |
20 | - legend(leg) | |
21 | - input("Press to continue..."); | |
8 | + figure | |
9 | + hold all | |
10 | + grid on | |
11 | + cc = 'bkcgmry'; | |
12 | + for i = [1:length(col)] | |
13 | + data.freq = load(filename)(:,col(i)).*mult(i); | |
14 | + data.rate = 1; | |
15 | + [p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided'); | |
16 | + semilogx(f, 10*log10(p), cc(mod(i, length(cc)))) | |
17 | + leg{i} = strcat(filename, ' col', num2str(col(i))); | |
18 | + hold on | |
19 | + end | |
20 | + legend(leg) | |
21 | + input("Press to continue..."); | |
22 | 22 | end |
23 | 23 | exit |