Commit 1a0e88f0ce6e736bf1f59e7b02cc394896768bff

Authored by bmarechal
1 parent 183c460e4e
Exists in master

replace 4-spaces by tab

Showing 8 changed files with 1688 additions and 1680 deletions Side-by-side Diff

... ... @@ -5,33 +5,33 @@
5 5 % Inputs:
6 6 % DATA should be a structure and have the following fields:
7 7 % DATA.freq or DATA.phase
8   -% A vector of fractional frequency measurements (df/f) in
9   -% DATA.freq *or* phase offset data (seconds) in DATA.phase .
10   -% If frequency data is not present, it will be generated by
11   -% differentiating the phase data.
12   -% If both fields are present, then DATA.freq will be used.
13   -% Note: for general-purpose calculations of Allan deviation,
14   -% (i.e. a two-sample variance) use DATA.freq .
  8 +% A vector of fractional frequency measurements (df/f) in
  9 +% DATA.freq *or* phase offset data (seconds) in DATA.phase .
  10 +% If frequency data is not present, it will be generated by
  11 +% differentiating the phase data.
  12 +% If both fields are present, then DATA.freq will be used.
  13 +% Note: for general-purpose calculations of Allan deviation,
  14 +% (i.e. a two-sample variance) use DATA.freq .
15 15 %
16 16 % DATA.rate or DATA.time
17   -% The sampling rate in Hertz (DATA.rate) or a vector of
18   -% timestamps for each measurement in seconds (DATA.time).
19   -% DATA.rate is used if both fields are present.
20   -% If DATA.rate == 0, then the timestamps are used.
  17 +% The sampling rate in Hertz (DATA.rate) or a vector of
  18 +% timestamps for each measurement in seconds (DATA.time).
  19 +% DATA.rate is used if both fields are present.
  20 +% If DATA.rate == 0, then the timestamps are used.
21 21 %
22 22 % DATA.units (optional)
23   -% The units for the data. If present, the string DATA.units
24   -% is added to the plot y-axis label.
  23 +% The units for the data. If present, the string DATA.units
  24 +% is added to the plot y-axis label.
25 25 %
26 26 % TAU is an array of tau values for computing Allan deviation.
27   -% TAU values must be divisible by 1/DATA.rate (data points cannot be
28   -% grouped in fractional quantities!) and invalid values are ignored.
29   -% Leave empty to use default values.
  27 +% TAU values must be divisible by 1/DATA.rate (data points cannot be
  28 +% grouped in fractional quantities!) and invalid values are ignored.
  29 +% Leave empty to use default values.
30 30 % NAME is an optional label that is added to the plot titles.
31 31 % VERBOSE sets the level of status messages:
32   -% 0 = silent & no data plots;
33   -% 1 = status messages & minimum plots;
34   -% 2 = all messages and plots (default)
  32 +% 0 = silent & no data plots;
  33 +% 1 = status messages & minimum plots;
  34 +% 2 = all messages and plots (default)
35 35 %
36 36 % Outputs:
37 37 % RETVAL is the array of Allan deviation values at each TAU.
... ... @@ -46,8 +46,8 @@
46 46 % To compute the Allan deviation for the data in the variable "lt":
47 47 % >> lt
48 48 % lt =
49   -% freq: [1x86400 double]
50   -% rate: 0.5
  49 +% freq: [1x86400 double]
  50 +% rate: 0.5
51 51 %
52 52 % Use:
53 53 %
54 54  
55 55  
... ... @@ -94,16 +94,16 @@
94 94 %
95 95 %
96 96 % M.A. Hopcroft
97   -% mhopeng at gmail dot com
  97 +% mhopeng at gmail dot com
98 98 %
99 99 % I welcome your comments and feedback!
100 100 %
101 101 % MH Mar2014
102 102 % v2.24 fix bug related to generating freq data from phase with timestamps
103   -% (thanks to S. David-Grignot for finding the bug)
  103 +% (thanks to S. David-Grignot for finding the bug)
104 104 % MH Oct2010
105 105 % v2.22 tau truncation to integer groups; tau sort
106   -% plotting bugfix
  106 +% plotting bugfix
107 107 % v2.20 sychronize updates across allan, allan_overlap, allan_modified
108 108 % v2.16 add TAU as output, fixed unusual error with dsplot v1.1
109 109 % v2.14 update plotting behaviour, default tau values
110 110  
111 111  
112 112  
113 113  
114 114  
115 115  
116 116  
117 117  
118 118  
... ... @@ -113,53 +113,53 @@
113 113  
114 114 % MH Jun2010
115 115 % v2.12 bugfix for rate data row/col orientation
116   -% add DATA.units for plotting
117   -% use dsplot.m for plotting
  116 +% add DATA.units for plotting
  117 +% use dsplot.m for plotting
118 118 %
119 119 % MH MAR2010
120 120 % v2.1 minor interface and bugfixes
121   -% update data consistency check
  121 +% update data consistency check
122 122 %
123 123 % MH FEB2010
124 124 % v2.0 Consistent code behaviour for all "allan_x.m" functions:
125   -% accept phase data
126   -% verbose levels
  125 +% accept phase data
  126 +% verbose levels
127 127 %
128 128 %
129 129 % MH JAN2010
130 130 % v1.84 code cleanup
131 131 % v1.82 typos in comments and code cleanup
132   -% tau bin plotting changed for performance improvement
  132 +% tau bin plotting changed for performance improvement
133 133 % v1.8 Performance improvements:
134   -% vectorize code for rate data
135   -% logical indexing for irregular rate data
  134 +% vectorize code for rate data
  135 +% logical indexing for irregular rate data
136 136 % MH APR2008
137 137 % v1.62 loglog plot option
138 138 % v1.61 improve error handling, plotting
139   -% fix bug in regular data calc for high-rate data
140   -% fix bug in timestamp data calc for large starting gap
141   -% (thanks to C. B. Ruiz for identifying these bugs)
142   -% uses timestamps for DATA.rate=0
143   -% progress indicator for large timestamp data processing
  139 +% fix bug in regular data calc for high-rate data
  140 +% fix bug in timestamp data calc for large starting gap
  141 +% (thanks to C. B. Ruiz for identifying these bugs)
  142 +% uses timestamps for DATA.rate=0
  143 +% progress indicator for large timestamp data processing
144 144 % MH JUN2007
145 145 % v1.54 Improve data plotting and optional bin plotting
146 146 % MH FEB2007
147 147 % v1.5 use difference from median for plotting
148   -% added MAD calculation for outlier detection
  148 +% added MAD calculation for outlier detection
149 149 % MH JAN2007
150 150 % v1.48 plotting typos fixes
151 151 % MH DEC2006
152 152 % v1.46 hack to plot error bars
153 153 % v1.44 further validation (Riley 1000-pt)
154   -% plot mean and std
  154 +% plot mean and std
155 155 % MH NOV2006
156 156 % v1.42 typo fix comments
157 157 % v1.4 fix irregular rate algorithm
158   -% irregular algorithm rejects tau less than max gap in time data
159   -% validate both algorithms using test data from NBS Monograph 140
  158 +% irregular algorithm rejects tau less than max gap in time data
  159 +% validate both algorithms using test data from NBS Monograph 140
160 160 % v1.3 fix time calc if data.time not present
161   -% add error bars (not possible due to bug in MATLAB R14SP3)
162   -% remove offset calculation
  161 +% add error bars (not possible due to bug in MATLAB R14SP3)
  162 +% remove offset calculation
163 163 % v1.24 improve feedback
164 164 % MH SEP2006
165 165 % v1.22 updated comments
166 166  
... ... @@ -184,25 +184,25 @@
184 184  
185 185 %% Data consistency checks
186 186 if ~(isfield(data,'phase') || isfield(data,'freq'))
187   - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
  187 + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
188 188 end
189 189 if isfield(data,'time')
190   - if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
191   - if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
192   - error('The time and freq vectors are not the same length. See help for details. [con2]');
193   - else
194   - error('The time and phase vectors are not the same length. See help for details. [con1]');
195   - end
196   - end
197   - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
198   - error('The phase vector contains invalid elements (NaN/Inf). [con3]');
199   - end
200   - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
201   - error('The freq vector contains invalid elements (NaN/Inf). [con4]');
202   - end
203   - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
204   - error('The time vector contains invalid elements (NaN/Inf). [con5]');
205   - end
  190 + if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
  191 + if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
  192 + error('The time and freq vectors are not the same length. See help for details. [con2]');
  193 + else
  194 + error('The time and phase vectors are not the same length. See help for details. [con1]');
  195 + end
  196 + end
  197 + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
  198 + error('The phase vector contains invalid elements (NaN/Inf). [con3]');
  199 + end
  200 + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
  201 + error('The freq vector contains invalid elements (NaN/Inf). [con4]');
  202 + end
  203 + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
  204 + error('The time vector contains invalid elements (NaN/Inf). [con5]');
  205 + end
206 206 end
207 207  
208 208 % sort tau vector
209 209  
210 210  
211 211  
212 212  
213 213  
... ... @@ -211,34 +211,34 @@
211 211  
212 212 %% Basic statistical tests on the data set
213 213 if ~isfield(data,'freq')
214   - if isfield(data,'rate') && data.rate ~= 0
215   - data.freq=diff(data.phase).*data.rate;
216   - elseif isfield(data,'time')
217   - data.freq=diff(data.phase)./diff(data.time);
218   - end
219   - if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
220   - data.time(1)=[]; % make time stamps correspond to freq data
  214 + if isfield(data,'rate') && data.rate ~= 0
  215 + data.freq=diff(data.phase).*data.rate;
  216 + elseif isfield(data,'time')
  217 + data.freq=diff(data.phase)./diff(data.time);
  218 + end
  219 + if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
  220 + data.time(1)=[]; % make time stamps correspond to freq data
221 221 end
222 222 if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns
223   -
  223 +
224 224 s.numpoints=length(data.freq);
225 225 s.max=max(data.freq);
226 226 s.min=min(data.freq);
227 227 s.mean=mean(data.freq);
228 228 s.median=median(data.freq);
229 229 if isfield(data,'time')
230   - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
231   - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
  230 + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
  231 + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
232 232 elseif isfield(data,'rate') && data.rate ~= 0;
233   - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
  233 + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
234 234 else
235   - error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]');
  235 + error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]');
236 236 end
237 237 s.std=std(data.freq);
238 238  
239 239 if verbose >= 2
240   - fprintf(1,'allan: input data statistics:\n');
241   - disp(s);
  240 + fprintf(1,'allan: input data statistics:\n');
  241 + disp(s);
242 242 end
243 243  
244 244  
245 245  
... ... @@ -249,10 +249,10 @@
249 249 % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
250 250 s.MAD = median(abs(medianfreq)/0.6745);
251 251 if verbose >= 2
252   - fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD);
  252 + fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD);
253 253 end
254 254 if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD)
255   - fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n');
  255 + fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n');
256 256 end
257 257  
258 258  
259 259  
260 260  
261 261  
262 262  
263 263  
264 264  
265 265  
266 266  
267 267  
268 268  
269 269  
270 270  
271 271  
272 272  
273 273  
... ... @@ -263,199 +263,199 @@
263 263 % If there is a regular interval between measurements, calculation is much
264 264 % easier/faster
265 265 if isfield(data,'rate') && data.rate > 0 % if data rate was given
266   - if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end
267   -
268   - % string for plot title
269   - name=[name ' (' num2str(data.rate) ' Hz)'];
270   -
271   - % what is the time interval between data points?
272   - tmstep = 1/data.rate;
  266 + if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end
  267 +
  268 + % string for plot title
  269 + name=[name ' (' num2str(data.rate) ' Hz)'];
  270 +
  271 + % what is the time interval between data points?
  272 + tmstep = 1/data.rate;
273 273  
274   - % Is there time data? Just for curiosity/plotting, does not impact calculation
275   - if isfield(data,'time')
276   - % adjust time data to remove any starting gap; first time step
277   - % should not be zero for comparison with freq data
278   - dtime=data.time-data.time(1)+mean(diff(data.time));
279   - if verbose >= 2
280   - fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end));
281   - if (data.rate - 1/mean(diff(dtime))) > 1e-6
282   - fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
283   - end
284   - end
285   - else
286   - % create time axis data using rate (for plotting only)
287   - dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented
288   - end
  274 + % Is there time data? Just for curiosity/plotting, does not impact calculation
  275 + if isfield(data,'time')
  276 + % adjust time data to remove any starting gap; first time step
  277 + % should not be zero for comparison with freq data
  278 + dtime=data.time-data.time(1)+mean(diff(data.time));
  279 + if verbose >= 2
  280 + fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end));
  281 + if (data.rate - 1/mean(diff(dtime))) > 1e-6
  282 + fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
  283 + end
  284 + end
  285 + else
  286 + % create time axis data using rate (for plotting only)
  287 + dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented
  288 + end
289 289  
290   - % check the range of tau values and truncate if necessary
291   - % find halfway point of time record
292   - halftime = round(tmstep*length(data.freq)/2);
293   - % truncate tau to appropriate values
294   - tau = tau(tau >= tmstep & tau <= halftime);
295   - if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
296   -
297   - % save the freq data for the loop
298   - dfreq=data.freq;
299   - % find the number of data points in each tau group
300   - m = data.rate.*tau;
301   - % only integer values allowed (no fractional groups of points)
302   - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
303   - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
304   - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
305   - m = m(m==round(m));
306   - %m=round(m);
307   -
308   - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end
309   -
310   - % calculate the Allan deviation for each value of tau
311   - k=0; tic;
312   - for i = tau
313   - if verbose >= 2, fprintf(1,'%g ',i); end
314   - k=k+1;
  290 + % check the range of tau values and truncate if necessary
  291 + % find halfway point of time record
  292 + halftime = round(tmstep*length(data.freq)/2);
  293 + % truncate tau to appropriate values
  294 + tau = tau(tau >= tmstep & tau <= halftime);
  295 + if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
  296 +
  297 + % save the freq data for the loop
  298 + dfreq=data.freq;
  299 + % find the number of data points in each tau group
  300 + m = data.rate.*tau;
  301 + % only integer values allowed (no fractional groups of points)
  302 + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
  303 + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
  304 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
  305 + m = m(m==round(m));
  306 + %m=round(m);
  307 +
  308 + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end
  309 +
  310 + % calculate the Allan deviation for each value of tau
  311 + k=0; tic;
  312 + for i = tau
  313 + if verbose >= 2, fprintf(1,'%g ',i); end
  314 + k=k+1;
315 315  
316   - % truncate frequency set to an even multiple of this tau value
317   - freq=dfreq(1:end-rem(length(dfreq),m(k)));
318   - % group the data into tau-length groups or bins
319   - f = reshape(freq,m(k),[]); % Vectorize!
320   - % find average in each "tau group", y_k (each colummn of f)
321   - fa=mean(f,1);
322   - % first finite difference
323   - fd=diff(fa);
324   - % calculate two-sample variance for this tau
325   - M=length(fa);
326   - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));
  316 + % truncate frequency set to an even multiple of this tau value
  317 + freq=dfreq(1:end-rem(length(dfreq),m(k)));
  318 + % group the data into tau-length groups or bins
  319 + f = reshape(freq,m(k),[]); % Vectorize!
  320 + % find average in each "tau group", y_k (each colummn of f)
  321 + fa=mean(f,1);
  322 + % first finite difference
  323 + fd=diff(fa);
  324 + % calculate two-sample variance for this tau
  325 + M=length(fa);
  326 + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));
327 327  
328   - % estimate error bars
329   - sme(k)=sm(k)/sqrt(M+1);
330   -
331   - if TAUBIN == 1
332   - % save the binning points for plotting
333   - fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1);
334   - end
335   -
336   - end % repeat for each value of tau
337   -
338   - if verbose >= 2, fprintf(1,'\n'); end
339   - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
340   -
341   -
342   -
  328 + % estimate error bars
  329 + sme(k)=sm(k)/sqrt(M+1);
  330 +
  331 + if TAUBIN == 1
  332 + % save the binning points for plotting
  333 + fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1);
  334 + end
  335 +
  336 + end % repeat for each value of tau
  337 +
  338 + if verbose >= 2, fprintf(1,'\n'); end
  339 + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
  340 +
  341 +
  342 +
343 343 %% Irregular data (timestamp)
344 344 elseif isfield(data,'time')
345   - % the interval between measurements is irregular
346   - % so we must group the data by time
347   - if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end
348   -
349   - % string for plot title
350   - name=[name ' (timestamp)'];
351   -
352   - % adjust time to remove any initial offset or zero
353   - dtime=data.time-data.time(1)+mean(diff(data.time));
354   - %dtime=data.time;
355   - % where is the maximum gap in time record?
356   - gap_pos=find(diff(dtime)==max(diff(dtime)));
357   - % what is average data spacing?
358   - avg_gap = mean(diff(dtime));
359   -
360   - if verbose >= 2
361   - fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n');
362   - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
363   - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
364   - fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
365   - pause;
366   - end
367   -
368   - if verbose >= 1
369   - fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end));
370   - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
371   - if max(diff(dtime)) ~= 1/mean(diff(dtime))
372   - fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
373   - end
374   - if max(diff(dtime)) > 5*avg_gap
375   - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
376   - end
377   - end
  345 + % the interval between measurements is irregular
  346 + % so we must group the data by time
  347 + if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end
  348 +
  349 + % string for plot title
  350 + name=[name ' (timestamp)'];
  351 +
  352 + % adjust time to remove any initial offset or zero
  353 + dtime=data.time-data.time(1)+mean(diff(data.time));
  354 + %dtime=data.time;
  355 + % where is the maximum gap in time record?
  356 + gap_pos=find(diff(dtime)==max(diff(dtime)));
  357 + % what is average data spacing?
  358 + avg_gap = mean(diff(dtime));
  359 +
  360 + if verbose >= 2
  361 + fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n');
  362 + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
  363 + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
  364 + fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
  365 + pause;
  366 + end
  367 +
  368 + if verbose >= 1
  369 + fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end));
  370 + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
  371 + if max(diff(dtime)) ~= 1/mean(diff(dtime))
  372 + fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
  373 + end
  374 + if max(diff(dtime)) > 5*avg_gap
  375 + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
  376 + end
  377 + end
378 378  
379 379  
380   - % find halfway point
381   - halftime = fix(dtime(end)/2);
382   - % truncate tau to appropriate values
383   - tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
384   - if isempty(tau)
385   - error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
386   - end
387   -
388   - % save the freq data for the loop
389   - dfreq=data.freq;
390   - dtime=dtime(1:length(dfreq));
  380 + % find halfway point
  381 + halftime = fix(dtime(end)/2);
  382 + % truncate tau to appropriate values
  383 + tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
  384 + if isempty(tau)
  385 + error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
  386 + end
  387 +
  388 + % save the freq data for the loop
  389 + dfreq=data.freq;
  390 + dtime=dtime(1:length(dfreq));
391 391  
392   - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end
  392 + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end
393 393  
394   - k=0; tic;
395   - for i = tau
396   - if verbose >= 2, fprintf(1,'%d ',i); end
397   -
398   - k=k+1; fa=[]; %f=[];
399   - km=0;
400   -
401   - % truncate data set to an even multiple of this tau value
402   - freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i));
403   - time=dtime(dtime <= dtime(end)-rem(dtime(end),i));
404   - %freq=dfreq;
405   - %time=dtime;
406   -
407   - % break up the data into groups of tau length in sec
408   - while i*km < time(end)
409   - km=km+1;
410   -
411   - % progress bar
412   - if verbose >= 2
413   - if rem(km,100)==0, fprintf(1,'.'); end
414   - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
415   - end
  394 + k=0; tic;
  395 + for i = tau
  396 + if verbose >= 2, fprintf(1,'%d ',i); end
  397 +
  398 + k=k+1; fa=[]; %f=[];
  399 + km=0;
  400 +
  401 + % truncate data set to an even multiple of this tau value
  402 + freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i));
  403 + time=dtime(dtime <= dtime(end)-rem(dtime(end),i));
  404 + %freq=dfreq;
  405 + %time=dtime;
  406 +
  407 + % break up the data into groups of tau length in sec
  408 + while i*km < time(end)
  409 + km=km+1;
  410 +
  411 + % progress bar
  412 + if verbose >= 2
  413 + if rem(km,100)==0, fprintf(1,'.'); end
  414 + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
  415 + end
416 416  
417   - f = freq(i*(km-1) < time & time <= i*km);
418   - f = f(~isnan(f)); % make sure values are valid
419   -
420   - if ~isempty(f)
421   - fa(km)=mean(f);
422   - else
423   - fa(km)=0;
424   - end
  417 + f = freq(i*(km-1) < time & time <= i*km);
  418 + f = f(~isnan(f)); % make sure values are valid
  419 +
  420 + if ~isempty(f)
  421 + fa(km)=mean(f);
  422 + else
  423 + fa(km)=0;
  424 + end
425 425  
426   - if TAUBIN == 1 % WARNING: this has a significant impact on performance
427   - % save the binning points for plotting
428   - %if find(time <= i*km) > 0
429   - fs(k,km)=max(time(time <= i*km));
430   - %else
431   - if isempty(fs(k,km))
432   - fs(k,km)=0;
433   - end
434   - fval{k}=fa;
435   - end % save tau bin plot points
436   -
437   - end
438   -
439   - if verbose >= 2, fprintf(1,'\n'); end
  426 + if TAUBIN == 1 % WARNING: this has a significant impact on performance
  427 + % save the binning points for plotting
  428 + %if find(time <= i*km) > 0
  429 + fs(k,km)=max(time(time <= i*km));
  430 + %else
  431 + if isempty(fs(k,km))
  432 + fs(k,km)=0;
  433 + end
  434 + fval{k}=fa;
  435 + end % save tau bin plot points
  436 +
  437 + end
  438 +
  439 + if verbose >= 2, fprintf(1,'\n'); end
440 440  
441   - % first finite difference of the averaged results
442   - fd=diff(fa);
443   - % calculate Allan deviation for this tau
444   - M=length(fa);
445   - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));
  441 + % first finite difference of the averaged results
  442 + fd=diff(fa);
  443 + % calculate Allan deviation for this tau
  444 + M=length(fa);
  445 + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));
446 446  
447   - % estimate error bars
448   - sme(k)=sm(k)/sqrt(M+1);
449   -
  447 + % estimate error bars
  448 + sme(k)=sm(k)/sqrt(M+1);
  449 +
450 450  
451   - end
  451 + end
452 452  
453   - if verbose == 2, fprintf(1,'\n'); end
454   - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
455   -
  453 + if verbose == 2, fprintf(1,'\n'); end
  454 + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
  455 +
456 456  
457 457 else
458   - error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
  458 + error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
459 459 end
460 460  
461 461  
462 462  
463 463  
464 464  
465 465  
466 466  
467 467  
468 468  
... ... @@ -463,113 +463,113 @@
463 463 %% Plotting
464 464  
465 465 if verbose >= 2 % show all data
466   -
467   - % plot the frequency data, centered on median
468   - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
469   - try
470   - % dsplot makes a new figure
471   - hd=dsplot(dtime,medianfreq);
472   - catch ME
473   - figure;
474   - if length(dtime) ~= length(medianfreq)
475   - fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq));
476   - end
477   - hd=plot(dtime,medianfreq);
478   - if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
479   - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
480   - end
481   - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
482   - hold on;
  466 +
  467 + % plot the frequency data, centered on median
  468 + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
  469 + try
  470 + % dsplot makes a new figure
  471 + hd=dsplot(dtime,medianfreq);
  472 + catch ME
  473 + figure;
  474 + if length(dtime) ~= length(medianfreq)
  475 + fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq));
  476 + end
  477 + hd=plot(dtime,medianfreq);
  478 + if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
  479 + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
  480 + end
  481 + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
  482 + hold on;
483 483  
484   - % show center (0)
485   - plot(xlim,[0 0],':k');
486   - % show 5x Median Absolute Deviation (MAD) values
487   - hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r');
488   - plot(xlim,[-5*s.MAD -5*s.MAD],'-r');
489   - % show linear fit line
490   - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
491   - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
492   - %set(get(gca,'Title'),'Interpreter','none');
493   - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
494   - if isfield(data,'units')
495   - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
496   - else
497   - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
498   - end
499   - set(gca,'FontSize',FontSize,'FontName',FontName);
500   - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
501   - % tighten up
502   - xlim([dtime(1) dtime(end)]);
  484 + % show center (0)
  485 + plot(xlim,[0 0],':k');
  486 + % show 5x Median Absolute Deviation (MAD) values
  487 + hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r');
  488 + plot(xlim,[-5*s.MAD -5*s.MAD],'-r');
  489 + % show linear fit line
  490 + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
  491 + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
  492 + %set(get(gca,'Title'),'Interpreter','none');
  493 + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
  494 + if isfield(data,'units')
  495 + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
  496 + else
  497 + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
  498 + end
  499 + set(gca,'FontSize',FontSize,'FontName',FontName);
  500 + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
  501 + % tighten up
  502 + xlim([dtime(1) dtime(end)]);
503 503  
504 504  
505   - % Optional tau bin (y_k samples) plot
506   - if TAUBIN == 1
507   - % plot the tau divisions on the data plot
508   - rfs=size(fs,1);
509   - colororder=get(gca,'ColorOrder');
510   - axis tight; kc=2;
511   - %ap=axis;
512   - for j=1:rfs
513   - kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end
514   - %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a
515   - for b=1:find(fs(j,:), 1, 'last' );
516   - % plot the tau division boundaries
517   - %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:));
518   - % plot tau group y values
519   - if b == 1
520   - plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
521   - else
522   - plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
523   - end
524   - end
525   - end
526   - axis auto
527   - end % End optional bin plot
528   -
  505 + % Optional tau bin (y_k samples) plot
  506 + if TAUBIN == 1
  507 + % plot the tau divisions on the data plot
  508 + rfs=size(fs,1);
  509 + colororder=get(gca,'ColorOrder');
  510 + axis tight; kc=2;
  511 + %ap=axis;
  512 + for j=1:rfs
  513 + kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end
  514 + %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a
  515 + for b=1:find(fs(j,:), 1, 'last' );
  516 + % plot the tau division boundaries
  517 + %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:));
  518 + % plot tau group y values
  519 + if b == 1
  520 + plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
  521 + else
  522 + plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
  523 + end
  524 + end
  525 + end
  526 + axis auto
  527 + end % End optional bin plot
  528 +
529 529 end % end plot raw data
530 530  
531 531  
532 532 if verbose >= 1 % show ADEV results
533 533  
534   - % plot Allan deviation results
535   - if ~isempty(sm)
536   - figure
  534 + % plot Allan deviation results
  535 + if ~isempty(sm)
  536 + figure
537 537  
538   - % Choose loglog or semilogx plot here #PLOTLOG
539   - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
540   - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  538 + % Choose loglog or semilogx plot here #PLOTLOG
  539 + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  540 + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
541 541  
542   - % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
543   - % When this is fixed in a future release, uncomment below to use normal errorbars
544   - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
545   - % this is a hack to approximate the error bars
546   - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
  542 + % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
  543 + % When this is fixed in a future release, uncomment below to use normal errorbars
  544 + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
  545 + % this is a hack to approximate the error bars
  546 + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
547 547  
548   - grid on;
549   - title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
550   - %set(get(gca,'Title'),'Interpreter','none');
551   - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
552   - if isfield(data,'units')
553   - ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
554   - else
555   - ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
556   - end
557   - set(gca,'FontSize',FontSize,'FontName',FontName);
558   - % expand the x axis a little bit so that the errors bars look nice
559   - adax = axis;
560   - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
561   -
562   - % display the minimum value
563   - fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
564   -
565   - elseif verbose >= 1
566   - fprintf(1,'allan: WARNING: no values calculated.\n');
567   - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
568   - fprintf(1,'Type "help allan" for more information.\n\n');
569   - end
  548 + grid on;
  549 + title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
  550 + %set(get(gca,'Title'),'Interpreter','none');
  551 + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
  552 + if isfield(data,'units')
  553 + ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
  554 + else
  555 + ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
  556 + end
  557 + set(gca,'FontSize',FontSize,'FontName',FontName);
  558 + % expand the x axis a little bit so that the errors bars look nice
  559 + adax = axis;
  560 + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
  561 +
  562 + % display the minimum value
  563 + fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
  564 +
  565 + elseif verbose >= 1
  566 + fprintf(1,'allan: WARNING: no values calculated.\n');
  567 + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
  568 + fprintf(1,'Type "help allan" for more information.\n\n');
  569 + end
570 570  
571 571 end % end plot ADEV data
572   -
  572 +
573 573 retval = sm;
574 574 errorb = sme;
575 575  
... ... @@ -5,33 +5,33 @@
5 5 % Inputs:
6 6 % DATA should be a structure and have the following fields:
7 7 % DATA.freq or DATA.phase
8   -% A vector of fractional frequency measurements (df/f) in
9   -% DATA.freq *or* phase offset data (seconds) in DATA.phase .
10   -% If frequency data is not present, it will be generated by
11   -% differentiating the phase data.
12   -% If both fields are present, then DATA.freq will be used.
13   -% Note: for general-purpose calculations of Allan deviation,
14   -% (i.e. a two-sample variance) use DATA.freq .
  8 +% A vector of fractional frequency measurements (df/f) in
  9 +% DATA.freq *or* phase offset data (seconds) in DATA.phase .
  10 +% If frequency data is not present, it will be generated by
  11 +% differentiating the phase data.
  12 +% If both fields are present, then DATA.freq will be used.
  13 +% Note: for general-purpose calculations of Allan deviation,
  14 +% (i.e. a two-sample variance) use DATA.freq .
15 15 %
16 16 % DATA.rate or DATA.time
17   -% The sampling rate in Hertz (DATA.rate) or a vector of
18   -% timestamps for each measurement in seconds (DATA.time).
19   -% DATA.rate is used if both fields are present.
20   -% If DATA.rate == 0, then the timestamps are used.
  17 +% The sampling rate in Hertz (DATA.rate) or a vector of
  18 +% timestamps for each measurement in seconds (DATA.time).
  19 +% DATA.rate is used if both fields are present.
  20 +% If DATA.rate == 0, then the timestamps are used.
21 21 %
22 22 % DATA.units (optional)
23   -% The units for the data. If present, the string DATA.units
24   -% is added to the plot y-axis label.
  23 +% The units for the data. If present, the string DATA.units
  24 +% is added to the plot y-axis label.
25 25 %
26 26 % TAU is an array of tau values for computing Allan deviation.
27   -% TAU values must be divisible by 1/DATA.rate (data points cannot be
28   -% grouped in fractional quantities!) and invalid values are ignored.
29   -% Leave empty to use default values.
  27 +% TAU values must be divisible by 1/DATA.rate (data points cannot be
  28 +% grouped in fractional quantities!) and invalid values are ignored.
  29 +% Leave empty to use default values.
30 30 % NAME is an optional label that is added to the plot titles.
31 31 % VERBOSE sets the level of status messages:
32   -% 0 = silent & no data plots;
33   -% 1 = status messages & minimum plots;
34   -% 2 = all messages and plots (default)
  32 +% 0 = silent & no data plots;
  33 +% 1 = status messages & minimum plots;
  34 +% 2 = all messages and plots (default)
35 35 %
36 36 % Outputs:
37 37 % RETVAL is the array of Allan deviation values at each TAU.
... ... @@ -46,8 +46,8 @@
46 46 % To compute the Allan deviation for the data in the variable "lt":
47 47 % >> lt
48 48 % lt =
49   -% freq: [1x86400 double]
50   -% rate: 0.5
  49 +% freq: [1x86400 double]
  50 +% rate: 0.5
51 51 %
52 52 % Use:
53 53 %
54 54  
55 55  
... ... @@ -94,16 +94,16 @@
94 94 %
95 95 %
96 96 % M.A. Hopcroft
97   -% mhopeng at gmail dot com
  97 +% mhopeng at gmail dot com
98 98 %
99 99 % I welcome your comments and feedback!
100 100 %
101 101 % MH Mar2014
102 102 % v2.24 fix bug related to generating freq data from phase with timestamps
103   -% (thanks to S. David-Grignot for finding the bug)
  103 +% (thanks to S. David-Grignot for finding the bug)
104 104 % MH Oct2010
105 105 % v2.22 tau truncation to integer groups; tau sort
106   -% plotting bugfix
  106 +% plotting bugfix
107 107 % v2.20 sychronize updates across allan, allan_overlap, allan_modified
108 108 % v2.16 add TAU as output, fixed unusual error with dsplot v1.1
109 109 % v2.14 update plotting behaviour, default tau values
110 110  
111 111  
112 112  
113 113  
114 114  
115 115  
116 116  
117 117  
118 118  
... ... @@ -113,53 +113,53 @@
113 113  
114 114 % MH Jun2010
115 115 % v2.12 bugfix for rate data row/col orientation
116   -% add DATA.units for plotting
117   -% use dsplot.m for plotting
  116 +% add DATA.units for plotting
  117 +% use dsplot.m for plotting
118 118 %
119 119 % MH MAR2010
120 120 % v2.1 minor interface and bugfixes
121   -% update data consistency check
  121 +% update data consistency check
122 122 %
123 123 % MH FEB2010
124 124 % v2.0 Consistent code behaviour for all "allan_x.m" functions:
125   -% accept phase data
126   -% verbose levels
  125 +% accept phase data
  126 +% verbose levels
127 127 %
128 128 %
129 129 % MH JAN2010
130 130 % v1.84 code cleanup
131 131 % v1.82 typos in comments and code cleanup
132   -% tau bin plotting changed for performance improvement
  132 +% tau bin plotting changed for performance improvement
133 133 % v1.8 Performance improvements:
134   -% vectorize code for rate data
135   -% logical indexing for irregular rate data
  134 +% vectorize code for rate data
  135 +% logical indexing for irregular rate data
136 136 % MH APR2008
137 137 % v1.62 loglog plot option
138 138 % v1.61 improve error handling, plotting
139   -% fix bug in regular data calc for high-rate data
140   -% fix bug in timestamp data calc for large starting gap
141   -% (thanks to C. B. Ruiz for identifying these bugs)
142   -% uses timestamps for DATA.rate=0
143   -% progress indicator for large timestamp data processing
  139 +% fix bug in regular data calc for high-rate data
  140 +% fix bug in timestamp data calc for large starting gap
  141 +% (thanks to C. B. Ruiz for identifying these bugs)
  142 +% uses timestamps for DATA.rate=0
  143 +% progress indicator for large timestamp data processing
144 144 % MH JUN2007
145 145 % v1.54 Improve data plotting and optional bin plotting
146 146 % MH FEB2007
147 147 % v1.5 use difference from median for plotting
148   -% added MAD calculation for outlier detection
  148 +% added MAD calculation for outlier detection
149 149 % MH JAN2007
150 150 % v1.48 plotting typos fixes
151 151 % MH DEC2006
152 152 % v1.46 hack to plot error bars
153 153 % v1.44 further validation (Riley 1000-pt)
154   -% plot mean and std
  154 +% plot mean and std
155 155 % MH NOV2006
156 156 % v1.42 typo fix comments
157 157 % v1.4 fix irregular rate algorithm
158   -% irregular algorithm rejects tau less than max gap in time data
159   -% validate both algorithms using test data from NBS Monograph 140
  158 +% irregular algorithm rejects tau less than max gap in time data
  159 +% validate both algorithms using test data from NBS Monograph 140
160 160 % v1.3 fix time calc if data.time not present
161   -% add error bars (not possible due to bug in MATLAB R14SP3)
162   -% remove offset calculation
  161 +% add error bars (not possible due to bug in MATLAB R14SP3)
  162 +% remove offset calculation
163 163 % v1.24 improve feedback
164 164 % MH SEP2006
165 165 % v1.22 updated comments
166 166  
... ... @@ -184,25 +184,25 @@
184 184  
185 185 %% Data consistency checks
186 186 if ~(isfield(data,'phase') || isfield(data,'freq'))
187   - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
  187 + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
188 188 end
189 189 if isfield(data,'time')
190   - if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
191   - if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
192   - error('The time and freq vectors are not the same length. See help for details. [con2]');
193   - else
194   - error('The time and phase vectors are not the same length. See help for details. [con1]');
195   - end
196   - end
197   - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
198   - error('The phase vector contains invalid elements (NaN/Inf). [con3]');
199   - end
200   - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
201   - error('The freq vector contains invalid elements (NaN/Inf). [con4]');
202   - end
203   - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
204   - error('The time vector contains invalid elements (NaN/Inf). [con5]');
205   - end
  190 + if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
  191 + if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
  192 + error('The time and freq vectors are not the same length. See help for details. [con2]');
  193 + else
  194 + error('The time and phase vectors are not the same length. See help for details. [con1]');
  195 + end
  196 + end
  197 + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
  198 + error('The phase vector contains invalid elements (NaN/Inf). [con3]');
  199 + end
  200 + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
  201 + error('The freq vector contains invalid elements (NaN/Inf). [con4]');
  202 + end
  203 + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
  204 + error('The time vector contains invalid elements (NaN/Inf). [con5]');
  205 + end
206 206 end
207 207  
208 208 % sort tau vector
209 209  
210 210  
211 211  
212 212  
213 213  
... ... @@ -211,34 +211,34 @@
211 211  
212 212 %% Basic statistical tests on the data set
213 213 if ~isfield(data,'freq')
214   - if isfield(data,'rate') && data.rate ~= 0
215   - data.freq=diff(data.phase).*data.rate;
216   - elseif isfield(data,'time')
217   - data.freq=diff(data.phase)./diff(data.time);
218   - end
219   - if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
220   - data.time(1)=[]; % make time stamps correspond to freq data
  214 + if isfield(data,'rate') && data.rate ~= 0
  215 + data.freq=diff(data.phase).*data.rate;
  216 + elseif isfield(data,'time')
  217 + data.freq=diff(data.phase)./diff(data.time);
  218 + end
  219 + if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
  220 + data.time(1)=[]; % make time stamps correspond to freq data
221 221 end
222 222 if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns
223   -
  223 +
224 224 s.numpoints=length(data.freq);
225 225 s.max=max(data.freq);
226 226 s.min=min(data.freq);
227 227 s.mean=mean(data.freq);
228 228 s.median=median(data.freq);
229 229 if isfield(data,'time')
230   - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
231   - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
  230 + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
  231 + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
232 232 elseif isfield(data,'rate') && data.rate ~= 0;
233   - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
  233 + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
234 234 else
235   - error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]');
  235 + error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]');
236 236 end
237 237 s.std=std(data.freq);
238 238  
239 239 if verbose >= 2
240   - fprintf(1,'allan: input data statistics:\n');
241   - disp(s);
  240 + fprintf(1,'allan: input data statistics:\n');
  241 + disp(s);
242 242 end
243 243  
244 244  
245 245  
... ... @@ -249,10 +249,10 @@
249 249 % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
250 250 s.MAD = median(abs(medianfreq)/0.6745);
251 251 if verbose >= 2
252   - fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD);
  252 + fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD);
253 253 end
254 254 if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD)
255   - fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n');
  255 + fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n');
256 256 end
257 257  
258 258  
259 259  
260 260  
261 261  
262 262  
263 263  
264 264  
265 265  
266 266  
267 267  
268 268  
269 269  
270 270  
271 271  
272 272  
273 273  
... ... @@ -263,204 +263,204 @@
263 263 % If there is a regular interval between measurements, calculation is much
264 264 % easier/faster
265 265 if isfield(data,'rate') && data.rate > 0 % if data rate was given
266   - if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end
267   -
268   - % string for plot title
269   - name=[name ' (' num2str(data.rate) ' Hz)'];
270   -
271   - % what is the time interval between data points?
272   - tmstep = 1/data.rate;
  266 + if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end
  267 +
  268 + % string for plot title
  269 + name=[name ' (' num2str(data.rate) ' Hz)'];
  270 +
  271 + % what is the time interval between data points?
  272 + tmstep = 1/data.rate;
273 273  
274   - % Is there time data? Just for curiosity/plotting, does not impact calculation
275   - if isfield(data,'time')
276   - % adjust time data to remove any starting gap; first time step
277   - % should not be zero for comparison with freq data
278   - dtime=data.time-data.time(1)+mean(diff(data.time));
279   - if verbose >= 2
280   - fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end));
281   - if (data.rate - 1/mean(diff(dtime))) > 1e-6
282   - fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
283   - end
284   - end
285   - else
286   - % create time axis data using rate (for plotting only)
287   - dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented
288   - end
  274 + % Is there time data? Just for curiosity/plotting, does not impact calculation
  275 + if isfield(data,'time')
  276 + % adjust time data to remove any starting gap; first time step
  277 + % should not be zero for comparison with freq data
  278 + dtime=data.time-data.time(1)+mean(diff(data.time));
  279 + if verbose >= 2
  280 + fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end));
  281 + if (data.rate - 1/mean(diff(dtime))) > 1e-6
  282 + fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
  283 + end
  284 + end
  285 + else
  286 + % create time axis data using rate (for plotting only)
  287 + dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented
  288 + end
289 289  
290   - % check the range of tau values and truncate if necessary
291   - % find halfway point of time record
292   - halftime = round(tmstep*length(data.freq)/2);
293   - % truncate tau to appropriate values
294   - tau = tau(tau >= tmstep & tau <= halftime);
295   - if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
296   -
297   - % save the freq data for the loop
298   - dfreq=data.freq;
299   - dfreq2=data.freq2;
300   - % find the number of data points in each tau group
301   - m = data.rate.*tau;
302   - % only integer values allowed (no fractional groups of points)
303   - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
304   - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
305   - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
306   - m = m(m==round(m));
307   - %m=round(m);
308   -
309   - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end
310   -
311   - % calculate the Allan deviation for each value of tau
312   - k=0; tic;
313   - for i = tau
314   - if verbose >= 2, fprintf(1,'%g ',i); end
315   - k=k+1;
  290 + % check the range of tau values and truncate if necessary
  291 + % find halfway point of time record
  292 + halftime = round(tmstep*length(data.freq)/2);
  293 + % truncate tau to appropriate values
  294 + tau = tau(tau >= tmstep & tau <= halftime);
  295 + if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
  296 +
  297 + % save the freq data for the loop
  298 + dfreq=data.freq;
  299 + dfreq2=data.freq2;
  300 + % find the number of data points in each tau group
  301 + m = data.rate.*tau;
  302 + % only integer values allowed (no fractional groups of points)
  303 + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
  304 + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
  305 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
  306 + m = m(m==round(m));
  307 + %m=round(m);
  308 +
  309 + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end
  310 +
  311 + % calculate the Allan deviation for each value of tau
  312 + k=0; tic;
  313 + for i = tau
  314 + if verbose >= 2, fprintf(1,'%g ',i); end
  315 + k=k+1;
316 316  
317   - % truncate frequency set to an even multiple of this tau value
318   - freq=dfreq(1:end-rem(length(dfreq),m(k)));
319   - freq2=dfreq2(1:end-rem(length(dfreq2),m(k)));
320   - % group the data into tau-length groups or bins
321   - f = reshape(freq,m(k),[]); % Vectorize!
322   - f2 = reshape(freq2,m(k),[]); % Vectorize!
323   - % find average in each "tau group", y_k (each colummn of f)
324   - fa=mean(f,1);
325   - fa2=mean(f2,1);
326   - % first finite difference
327   - fd=diff(fa);
328   - fd2=diff(fa2);
329   - % calculate two-sample variance for this tau
330   - M=length(fa);
331   - sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2))));
  317 + % truncate frequency set to an even multiple of this tau value
  318 + freq=dfreq(1:end-rem(length(dfreq),m(k)));
  319 + freq2=dfreq2(1:end-rem(length(dfreq2),m(k)));
  320 + % group the data into tau-length groups or bins
  321 + f = reshape(freq,m(k),[]); % Vectorize!
  322 + f2 = reshape(freq2,m(k),[]); % Vectorize!
  323 + % find average in each "tau group", y_k (each colummn of f)
  324 + fa=mean(f,1);
  325 + fa2=mean(f2,1);
  326 + % first finite difference
  327 + fd=diff(fa);
  328 + fd2=diff(fa2);
  329 + % calculate two-sample variance for this tau
  330 + M=length(fa);
  331 + sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2))));
332 332  
333   - % estimate error bars
334   - sme(k)=sm(k)/sqrt(M+1);
335   -
336   - if TAUBIN == 1
337   - % save the binning points for plotting
338   - fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1);
339   - end
340   -
341   - end % repeat for each value of tau
342   -
343   - if verbose >= 2, fprintf(1,'\n'); end
344   - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
345   -
346   -
347   -
  333 + % estimate error bars
  334 + sme(k)=sm(k)/sqrt(M+1);
  335 +
  336 + if TAUBIN == 1
  337 + % save the binning points for plotting
  338 + fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1);
  339 + end
  340 +
  341 + end % repeat for each value of tau
  342 +
  343 + if verbose >= 2, fprintf(1,'\n'); end
  344 + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
  345 +
  346 +
  347 +
348 348 %% Irregular data (timestamp)
349 349 elseif isfield(data,'time')
350   - % the interval between measurements is irregular
351   - % so we must group the data by time
352   - if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end
353   -
354   - % string for plot title
355   - name=[name ' (timestamp)'];
356   -
357   - % adjust time to remove any initial offset or zero
358   - dtime=data.time-data.time(1)+mean(diff(data.time));
359   - %dtime=data.time;
360   - % where is the maximum gap in time record?
361   - gap_pos=find(diff(dtime)==max(diff(dtime)));
362   - % what is average data spacing?
363   - avg_gap = mean(diff(dtime));
364   -
365   - if verbose >= 2
366   - fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n');
367   - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
368   - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
369   - fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
370   - pause;
371   - end
372   -
373   - if verbose >= 1
374   - fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end));
375   - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
376   - if max(diff(dtime)) ~= 1/mean(diff(dtime))
377   - fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
378   - end
379   - if max(diff(dtime)) > 5*avg_gap
380   - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
381   - end
382   - end
  350 + % the interval between measurements is irregular
  351 + % so we must group the data by time
  352 + if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end
  353 +
  354 + % string for plot title
  355 + name=[name ' (timestamp)'];
  356 +
  357 + % adjust time to remove any initial offset or zero
  358 + dtime=data.time-data.time(1)+mean(diff(data.time));
  359 + %dtime=data.time;
  360 + % where is the maximum gap in time record?
  361 + gap_pos=find(diff(dtime)==max(diff(dtime)));
  362 + % what is average data spacing?
  363 + avg_gap = mean(diff(dtime));
  364 +
  365 + if verbose >= 2
  366 + fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n');
  367 + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
  368 + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
  369 + fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
  370 + pause;
  371 + end
  372 +
  373 + if verbose >= 1
  374 + fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end));
  375 + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
  376 + if max(diff(dtime)) ~= 1/mean(diff(dtime))
  377 + fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
  378 + end
  379 + if max(diff(dtime)) > 5*avg_gap
  380 + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
  381 + end
  382 + end
383 383  
384 384  
385   - % find halfway point
386   - halftime = fix(dtime(end)/2);
387   - % truncate tau to appropriate values
388   - tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
389   - if isempty(tau)
390   - error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
391   - end
392   -
393   - % save the freq data for the loop
394   - dfreq=data.freq;
395   - dtime=dtime(1:length(dfreq));
  385 + % find halfway point
  386 + halftime = fix(dtime(end)/2);
  387 + % truncate tau to appropriate values
  388 + tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
  389 + if isempty(tau)
  390 + error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
  391 + end
  392 +
  393 + % save the freq data for the loop
  394 + dfreq=data.freq;
  395 + dtime=dtime(1:length(dfreq));
396 396  
397   - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end
  397 + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end
398 398  
399   - k=0; tic;
400   - for i = tau
401   - if verbose >= 2, fprintf(1,'%d ',i); end
402   -
403   - k=k+1; fa=[]; %f=[];
404   - km=0;
405   -
406   - % truncate data set to an even multiple of this tau value
407   - freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i));
408   - time=dtime(dtime <= dtime(end)-rem(dtime(end),i));
409   - %freq=dfreq;
410   - %time=dtime;
411   -
412   - % break up the data into groups of tau length in sec
413   - while i*km < time(end)
414   - km=km+1;
415   -
416   - % progress bar
417   - if verbose >= 2
418   - if rem(km,100)==0, fprintf(1,'.'); end
419   - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
420   - end
  399 + k=0; tic;
  400 + for i = tau
  401 + if verbose >= 2, fprintf(1,'%d ',i); end
  402 +
  403 + k=k+1; fa=[]; %f=[];
  404 + km=0;
  405 +
  406 + % truncate data set to an even multiple of this tau value
  407 + freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i));
  408 + time=dtime(dtime <= dtime(end)-rem(dtime(end),i));
  409 + %freq=dfreq;
  410 + %time=dtime;
  411 +
  412 + % break up the data into groups of tau length in sec
  413 + while i*km < time(end)
  414 + km=km+1;
  415 +
  416 + % progress bar
  417 + if verbose >= 2
  418 + if rem(km,100)==0, fprintf(1,'.'); end
  419 + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
  420 + end
421 421  
422   - f = freq(i*(km-1) < time & time <= i*km);
423   - f = f(~isnan(f)); % make sure values are valid
424   -
425   - if ~isempty(f)
426   - fa(km)=mean(f);
427   - else
428   - fa(km)=0;
429   - end
  422 + f = freq(i*(km-1) < time & time <= i*km);
  423 + f = f(~isnan(f)); % make sure values are valid
  424 +
  425 + if ~isempty(f)
  426 + fa(km)=mean(f);
  427 + else
  428 + fa(km)=0;
  429 + end
430 430  
431   - if TAUBIN == 1 % WARNING: this has a significant impact on performance
432   - % save the binning points for plotting
433   - %if find(time <= i*km) > 0
434   - fs(k,km)=max(time(time <= i*km));
435   - %else
436   - if isempty(fs(k,km))
437   - fs(k,km)=0;
438   - end
439   - fval{k}=fa;
440   - end % save tau bin plot points
441   -
442   - end
443   -
444   - if verbose >= 2, fprintf(1,'\n'); end
  431 + if TAUBIN == 1 % WARNING: this has a significant impact on performance
  432 + % save the binning points for plotting
  433 + %if find(time <= i*km) > 0
  434 + fs(k,km)=max(time(time <= i*km));
  435 + %else
  436 + if isempty(fs(k,km))
  437 + fs(k,km)=0;
  438 + end
  439 + fval{k}=fa;
  440 + end % save tau bin plot points
  441 +
  442 + end
  443 +
  444 + if verbose >= 2, fprintf(1,'\n'); end
445 445  
446   - % first finite difference of the averaged results
447   - fd=diff(fa);
448   - % calculate Allan deviation for this tau
449   - M=length(fa);
450   - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));
  446 + % first finite difference of the averaged results
  447 + fd=diff(fa);
  448 + % calculate Allan deviation for this tau
  449 + M=length(fa);
  450 + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));
451 451  
452   - % estimate error bars
453   - sme(k)=sm(k)/sqrt(M+1);
454   -
  452 + % estimate error bars
  453 + sme(k)=sm(k)/sqrt(M+1);
  454 +
455 455  
456   - end
  456 + end
457 457  
458   - if verbose == 2, fprintf(1,'\n'); end
459   - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
460   -
  458 + if verbose == 2, fprintf(1,'\n'); end
  459 + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
  460 +
461 461  
462 462 else
463   - error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
  463 + error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
464 464 end
465 465  
466 466  
467 467  
468 468  
469 469  
470 470  
471 471  
472 472  
473 473  
... ... @@ -468,113 +468,113 @@
468 468 %% Plotting
469 469  
470 470 if verbose >= 2 % show all data
471   -
472   - % plot the frequency data, centered on median
473   - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
474   - try
475   - % dsplot makes a new figure
476   - hd=dsplot(dtime,medianfreq);
477   - catch ME
478   - figure;
479   - if length(dtime) ~= length(medianfreq)
480   - fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq));
481   - end
482   - hd=plot(dtime,medianfreq);
483   - if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
484   - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
485   - end
486   - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
487   - hold on;
  471 +
  472 + % plot the frequency data, centered on median
  473 + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
  474 + try
  475 + % dsplot makes a new figure
  476 + hd=dsplot(dtime,medianfreq);
  477 + catch ME
  478 + figure;
  479 + if length(dtime) ~= length(medianfreq)
  480 + fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq));
  481 + end
  482 + hd=plot(dtime,medianfreq);
  483 + if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
  484 + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
  485 + end
  486 + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
  487 + hold on;
488 488  
489   - % show center (0)
490   - plot(xlim,[0 0],':k');
491   - % show 5x Median Absolute Deviation (MAD) values
492   - hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r');
493   - plot(xlim,[-5*s.MAD -5*s.MAD],'-r');
494   - % show linear fit line
495   - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
496   - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
497   - %set(get(gca,'Title'),'Interpreter','none');
498   - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
499   - if isfield(data,'units')
500   - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
501   - else
502   - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
503   - end
504   - set(gca,'FontSize',FontSize,'FontName',FontName);
505   - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
506   - % tighten up
507   - xlim([dtime(1) dtime(end)]);
  489 + % show center (0)
  490 + plot(xlim,[0 0],':k');
  491 + % show 5x Median Absolute Deviation (MAD) values
  492 + hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r');
  493 + plot(xlim,[-5*s.MAD -5*s.MAD],'-r');
  494 + % show linear fit line
  495 + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
  496 + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
  497 + %set(get(gca,'Title'),'Interpreter','none');
  498 + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
  499 + if isfield(data,'units')
  500 + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
  501 + else
  502 + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
  503 + end
  504 + set(gca,'FontSize',FontSize,'FontName',FontName);
  505 + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
  506 + % tighten up
  507 + xlim([dtime(1) dtime(end)]);
508 508  
509 509  
510   - % Optional tau bin (y_k samples) plot
511   - if TAUBIN == 1
512   - % plot the tau divisions on the data plot
513   - rfs=size(fs,1);
514   - colororder=get(gca,'ColorOrder');
515   - axis tight; kc=2;
516   - %ap=axis;
517   - for j=1:rfs
518   - kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end
519   - %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a
520   - for b=1:find(fs(j,:), 1, 'last' );
521   - % plot the tau division boundaries
522   - %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:));
523   - % plot tau group y values
524   - if b == 1
525   - plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
526   - else
527   - plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
528   - end
529   - end
530   - end
531   - axis auto
532   - end % End optional bin plot
533   -
  510 + % Optional tau bin (y_k samples) plot
  511 + if TAUBIN == 1
  512 + % plot the tau divisions on the data plot
  513 + rfs=size(fs,1);
  514 + colororder=get(gca,'ColorOrder');
  515 + axis tight; kc=2;
  516 + %ap=axis;
  517 + for j=1:rfs
  518 + kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end
  519 + %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a
  520 + for b=1:find(fs(j,:), 1, 'last' );
  521 + % plot the tau division boundaries
  522 + %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:));
  523 + % plot tau group y values
  524 + if b == 1
  525 + plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
  526 + else
  527 + plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
  528 + end
  529 + end
  530 + end
  531 + axis auto
  532 + end % End optional bin plot
  533 +
534 534 end % end plot raw data
535 535  
536 536  
537 537 if verbose >= 1 % show ADEV results
538 538  
539   - % plot Allan deviation results
540   - if ~isempty(sm)
541   - figure
  539 + % plot Allan deviation results
  540 + if ~isempty(sm)
  541 + figure
542 542  
543   - % Choose loglog or semilogx plot here #PLOTLOG
544   - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
545   - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  543 + % Choose loglog or semilogx plot here #PLOTLOG
  544 + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  545 + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
546 546  
547   - % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
548   - % When this is fixed in a future release, uncomment below to use normal errorbars
549   - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
550   - % this is a hack to approximate the error bars
551   - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
  547 + % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
  548 + % When this is fixed in a future release, uncomment below to use normal errorbars
  549 + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
  550 + % this is a hack to approximate the error bars
  551 + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
552 552  
553   - grid on;
554   - title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
555   - %set(get(gca,'Title'),'Interpreter','none');
556   - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
557   - if isfield(data,'units')
558   - ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
559   - else
560   - ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
561   - end
562   - set(gca,'FontSize',FontSize,'FontName',FontName);
563   - % expand the x axis a little bit so that the errors bars look nice
564   - adax = axis;
565   - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
566   -
567   - % display the minimum value
568   - fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
569   -
570   - elseif verbose >= 1
571   - fprintf(1,'allan: WARNING: no values calculated.\n');
572   - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
573   - fprintf(1,'Type "help allan" for more information.\n\n');
574   - end
  553 + grid on;
  554 + title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
  555 + %set(get(gca,'Title'),'Interpreter','none');
  556 + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
  557 + if isfield(data,'units')
  558 + ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
  559 + else
  560 + ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
  561 + end
  562 + set(gca,'FontSize',FontSize,'FontName',FontName);
  563 + % expand the x axis a little bit so that the errors bars look nice
  564 + adax = axis;
  565 + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
  566 +
  567 + % display the minimum value
  568 + fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
  569 +
  570 + elseif verbose >= 1
  571 + fprintf(1,'allan: WARNING: no values calculated.\n');
  572 + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
  573 + fprintf(1,'Type "help allan" for more information.\n\n');
  574 + end
575 575  
576 576 end % end plot ADEV data
577   -
  577 +
578 578 retval = sm;
579 579 errorb = sme;
580 580  
... ... @@ -6,24 +6,24 @@
6 6 % Inputs:
7 7 % DATA should be a struct and have the following fields:
8 8 % DATA.freq or DATA.phase
9   -% A vector of fractional frequency measurements (df/f) in
10   -% DATA.freq *or* phase offset data (seconds) in DATA.phase
11   -% If phase data is not present, it will be generated by
12   -% integrating the fractional frequency data.
13   -% If both fields are present, then DATA.phase will be used.
  9 +% A vector of fractional frequency measurements (df/f) in
  10 +% DATA.freq *or* phase offset data (seconds) in DATA.phase
  11 +% If phase data is not present, it will be generated by
  12 +% integrating the fractional frequency data.
  13 +% If both fields are present, then DATA.phase will be used.
14 14 %
15 15 % DATA.rate or DATA.time
16   -% The sampling rate in Hertz (DATA.rate) or a vector of
17   -% timestamps for each measurement in seconds (DATA.time).
18   -% DATA.rate is used if both fields are present.
19   -% If DATA.rate == 0, then the timestamps are used.
  16 +% The sampling rate in Hertz (DATA.rate) or a vector of
  17 +% timestamps for each measurement in seconds (DATA.time).
  18 +% DATA.rate is used if both fields are present.
  19 +% If DATA.rate == 0, then the timestamps are used.
20 20 %
21 21 % TAU is an array of tau values for computing Allan deviation.
22   -% TAU values must be divisible by 1/DATA.rate (data points cannot be
23   -% grouped in fractional quantities!). Invalid values are ignored.
  22 +% TAU values must be divisible by 1/DATA.rate (data points cannot be
  23 +% grouped in fractional quantities!). Invalid values are ignored.
24 24 % NAME is an optional label that is added to the plot titles.
25 25 % VERBOSE sets the level of status messages:
26   -% 0 = silent & no data plots; 1 = status messages; 2 = all messages
  26 +% 0 = silent & no data plots; 1 = status messages; 2 = all messages
27 27 %
28 28 % Outputs:
29 29 % RETVAL is the array of modified Allan deviation values at each TAU.
... ... @@ -38,8 +38,8 @@
38 38 % To compute the modified Allan deviation for the data in the variable "lt":
39 39 % >> lt
40 40 % lt =
41   -% freq: [1x86400 double]
42   -% rate: 0.5
  41 +% freq: [1x86400 double]
  42 +% rate: 0.5
43 43 %
44 44 % Use:
45 45 %
46 46  
47 47  
48 48  
49 49  
... ... @@ -83,25 +83,25 @@
83 83 %
84 84 %
85 85 % M.A. Hopcroft
86   -% mhopeng at gmail dot com
  86 +% mhopeng at gmail dot com
87 87 %
88 88 % I welcome your comments and feedback!
89 89 %
90 90 % MH Mar2014
91 91 % v1.24 fix bug related to generating freq data from phase with timestamps
92   -% (thanks to S. David-Grignot for finding the bug)
  92 +% (thanks to S. David-Grignot for finding the bug)
93 93 % MH Oct2010
94 94 % v1.22 tau truncation to integer groups; tau sort
95   -% plotting bugfix
  95 +% plotting bugfix
96 96 % v1.20 update to match allan.m (dsplot.m, columns)
97   -% discard tau values with timestamp irregularities
  97 +% discard tau values with timestamp irregularities
98 98 %
99 99  
100 100 versionstr = 'allan_modified v1.24';
101 101  
102 102 % MH MAR2010
103 103 % v1.1 bugfixes for irregular sample rates
104   -% update consistency check
  104 +% update consistency check
105 105 %
106 106 % MH FEB2010
107 107 % v1.0 based on allan_overlap v2.0
108 108  
... ... @@ -125,25 +125,25 @@
125 125  
126 126 %% Data consistency checks
127 127 if ~(isfield(data,'phase') || isfield(data,'freq'))
128   - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
  128 + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
129 129 end
130 130 if isfield(data,'time')
131   - if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
132   - if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
133   - error('The time and freq vectors are not the same length. See help for details. [con2]');
134   - else
135   - error('The time and phase vectors are not the same length. See help for details. [con1]');
136   - end
137   - end
138   - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
139   - error('The phase vector contains invalid elements (NaN/Inf). [con3]');
140   - end
141   - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
142   - error('The freq vector contains invalid elements (NaN/Inf). [con4]');
143   - end
144   - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
145   - error('The time vector contains invalid elements (NaN/Inf). [con5]');
146   - end
  131 + if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
  132 + if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
  133 + error('The time and freq vectors are not the same length. See help for details. [con2]');
  134 + else
  135 + error('The time and phase vectors are not the same length. See help for details. [con1]');
  136 + end
  137 + end
  138 + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
  139 + error('The phase vector contains invalid elements (NaN/Inf). [con3]');
  140 + end
  141 + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
  142 + error('The freq vector contains invalid elements (NaN/Inf). [con4]');
  143 + end
  144 + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
  145 + error('The time vector contains invalid elements (NaN/Inf). [con5]');
  146 + end
147 147 end
148 148  
149 149 % sort tau vector
... ... @@ -152,12 +152,12 @@
152 152  
153 153 %% Basic statistical tests on the data set
154 154 if ~isfield(data,'freq')
155   - if isfield(data,'rate') && data.rate ~= 0
156   - data.freq=diff(data.phase).*data.rate;
157   - elseif isfield(data,'time')
158   - data.freq=diff(data.phase)./diff(data.time);
159   - end
160   - if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
  155 + if isfield(data,'rate') && data.rate ~= 0
  156 + data.freq=diff(data.phase).*data.rate;
  157 + elseif isfield(data,'time')
  158 + data.freq=diff(data.phase)./diff(data.time);
  159 + end
  160 + if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
161 161 end
162 162 if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns
163 163  
164 164  
165 165  
166 166  
... ... @@ -167,18 +167,18 @@
167 167 s.mean=mean(data.freq);
168 168 s.median=median(data.freq);
169 169 if isfield(data,'time')
170   - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
171   - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
  170 + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
  171 + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
172 172 elseif isfield(data,'rate') && data.rate ~= 0;
173   - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
  173 + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
174 174 else
175   - error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]');
  175 + error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]');
176 176 end
177 177 s.std=std(data.freq);
178 178  
179 179 if verbose >= 2
180   - fprintf(1,'allan_modified: fractional frequency data statistics:\n');
181   - disp(s);
  180 + fprintf(1,'allan_modified: fractional frequency data statistics:\n');
  181 + disp(s);
182 182 end
183 183  
184 184 % scale to median for plotting
... ... @@ -188,7 +188,7 @@
188 188 % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
189 189 MAD = median(abs(medianfreq)/0.6745);
190 190 if verbose >= 1 && any(abs(medianfreq) > 5*MAD)
191   - fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n');
  191 + fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n');
192 192 end
193 193  
194 194 %%%%
195 195  
196 196  
197 197  
198 198  
199 199  
200 200  
201 201  
202 202  
203 203  
204 204  
205 205  
206 206  
207 207  
208 208  
209 209  
210 210  
211 211  
212 212  
213 213  
214 214  
215 215  
216 216  
... ... @@ -198,279 +198,279 @@
198 198 % If there is a regular interval between measurements, calculation is much
199 199 % easier/faster
200 200 if isfield(data,'rate') && data.rate > 0 % if data rate was given
201   - if verbose >= 1
202   - fprintf(1, 'allan_modified: regular data ');
203   - if isfield(data,'freq')
204   - fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate);
205   - elseif isfield(data,'phase')
206   - fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate);
207   - else
208   - error('\n phase or freq data missing [err10]');
209   - end
210   - end
211   -
212   - % string for plot title
213   - name=[name ' (' num2str(data.rate) ' Hz)'];
  201 + if verbose >= 1
  202 + fprintf(1, 'allan_modified: regular data ');
  203 + if isfield(data,'freq')
  204 + fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate);
  205 + elseif isfield(data,'phase')
  206 + fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate);
  207 + else
  208 + error('\n phase or freq data missing [err10]');
  209 + end
  210 + end
  211 +
  212 + % string for plot title
  213 + name=[name ' (' num2str(data.rate) ' Hz)'];
214 214  
215   - % what is the time interval between data points?
216   - tmstep = 1/data.rate;
217   -
218   - % Is there time data? Just for curiosity/plotting, does not impact calculation
219   - if isfield(data,'time')
220   - % adjust time data to remove any starting gap; first time step
221   - % should not be zero for comparison with freq data
222   - dtime=data.time-data.time(1)+mean(diff(data.time));
223   - dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1)
224   - if verbose >= 2
225   - fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end));
226   - if (data.rate - 1/mean(diff(dtime))) > 1e-6
227   - fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
228   - end
229   - end
230   - else
231   - % create time axis data using rate (for plotting only)
232   - dtime=(tmstep:tmstep:length(data.freq)*tmstep);
233   - end
234   -
235   -
236   - % is phase data present? If not, generate it
237   - if ~isfield(data,'phase')
238   - nfreq=data.freq-s.mean;
239   - dphase=zeros(1,length(nfreq)+1);
240   - dphase(2:end) = cumsum(nfreq).*tmstep;
241   - if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
242   - else
243   - dphase=data.phase;
244   - end
  215 + % what is the time interval between data points?
  216 + tmstep = 1/data.rate;
  217 +
  218 + % Is there time data? Just for curiosity/plotting, does not impact calculation
  219 + if isfield(data,'time')
  220 + % adjust time data to remove any starting gap; first time step
  221 + % should not be zero for comparison with freq data
  222 + dtime=data.time-data.time(1)+mean(diff(data.time));
  223 + dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1)
  224 + if verbose >= 2
  225 + fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end));
  226 + if (data.rate - 1/mean(diff(dtime))) > 1e-6
  227 + fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
  228 + end
  229 + end
  230 + else
  231 + % create time axis data using rate (for plotting only)
  232 + dtime=(tmstep:tmstep:length(data.freq)*tmstep);
  233 + end
  234 +
  235 +
  236 + % is phase data present? If not, generate it
  237 + if ~isfield(data,'phase')
  238 + nfreq=data.freq-s.mean;
  239 + dphase=zeros(1,length(nfreq)+1);
  240 + dphase(2:end) = cumsum(nfreq).*tmstep;
  241 + if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
  242 + else
  243 + dphase=data.phase;
  244 + end
245 245  
246   -
247   - % check the range of tau values and truncate if necessary
248   - % find halfway point of time record
249   - halftime = round(tmstep*length(data.freq)/2);
250   - % truncate tau to appropriate values
251   - tau = tau(tau >= tmstep & tau <= halftime);
252   - if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
  246 +
  247 + % check the range of tau values and truncate if necessary
  248 + % find halfway point of time record
  249 + halftime = round(tmstep*length(data.freq)/2);
  250 + % truncate tau to appropriate values
  251 + tau = tau(tau >= tmstep & tau <= halftime);
  252 + if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
253 253  
254   - % find the number of data points in each tau group
255   - % number of samples
256   - N=length(dphase);
257   - m = data.rate.*tau;
258   - % only integer values allowed (no fractional groups of points)
259   - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1)
260   - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
261   - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22
262   - m = m(m==round(m));
263   - %m=round(m);
264   -
265   - if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end
266   -
267   -
268   - % calculate the modified Allan deviation for each value of tau
269   - k=0; tic;
270   - for i = tau
271   - k=k+1;
272   - pa=[];
273   - if verbose >= 2, fprintf(1,'%d ',i); end
274   -
275   - mphase = dphase;
276   -
277   - % calculate overlapping "phase averages" (x_k)
278   - for p=1:m(k)
279   -
280   - % truncate frequency set length to an even multiple of this tau value
281   - mphase=mphase(1:end-rem(length(mphase),m(k)));
282   - % group phase values
283   - mp=reshape(mphase,m(k),[]);
284   - % find average in each "tau group" (each column of mp)
285   - pa(p,:)=mean(mp,1);
286   - % shift data vector by -1 and repeat
287   - mphase=circshift(dphase,(size(dphase)>1)*-p);
288   -
289   - end
290   -
291   - % create "modified" y_k freq values
292   - mfreq=diff(pa,1,2)./i;
293   - mfreq=reshape(mfreq,1,[]);
294   -
295   - % calculate modified frequency differences
296   - mfreqd=reshape(mfreq,m(k),[]); % Vectorize!
297   - mfreqd=diff(mfreqd,1,2);
298   - mfreqd=reshape(mfreqd,1,[]);
299   -
300   -
301   - % calculate two-sample variance for this tau
302   - sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2)));
  254 + % find the number of data points in each tau group
  255 + % number of samples
  256 + N=length(dphase);
  257 + m = data.rate.*tau;
  258 + % only integer values allowed (no fractional groups of points)
  259 + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1)
  260 + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
  261 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22
  262 + m = m(m==round(m));
  263 + %m=round(m);
  264 +
  265 + if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end
  266 +
  267 +
  268 + % calculate the modified Allan deviation for each value of tau
  269 + k=0; tic;
  270 + for i = tau
  271 + k=k+1;
  272 + pa=[];
  273 + if verbose >= 2, fprintf(1,'%d ',i); end
  274 +
  275 + mphase = dphase;
  276 +
  277 + % calculate overlapping "phase averages" (x_k)
  278 + for p=1:m(k)
  279 +
  280 + % truncate frequency set length to an even multiple of this tau value
  281 + mphase=mphase(1:end-rem(length(mphase),m(k)));
  282 + % group phase values
  283 + mp=reshape(mphase,m(k),[]);
  284 + % find average in each "tau group" (each column of mp)
  285 + pa(p,:)=mean(mp,1);
  286 + % shift data vector by -1 and repeat
  287 + mphase=circshift(dphase,(size(dphase)>1)*-p);
  288 +
  289 + end
  290 +
  291 + % create "modified" y_k freq values
  292 + mfreq=diff(pa,1,2)./i;
  293 + mfreq=reshape(mfreq,1,[]);
  294 +
  295 + % calculate modified frequency differences
  296 + mfreqd=reshape(mfreq,m(k),[]); % Vectorize!
  297 + mfreqd=diff(mfreqd,1,2);
  298 + mfreqd=reshape(mfreqd,1,[]);
  299 +
  300 +
  301 + % calculate two-sample variance for this tau
  302 + sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2)));
303 303  
304   - % estimate error bars
305   - sme(k)=sm(k)/sqrt(N-3*m(k)+1);
  304 + % estimate error bars
  305 + sme(k)=sm(k)/sqrt(N-3*m(k)+1);
306 306  
307   -
308   - end % repeat for each value of tau
309   -
310   - if verbose >= 2, fprintf(1,'\n'); end
311   - calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end
  307 +
  308 + end % repeat for each value of tau
  309 +
  310 + if verbose >= 2, fprintf(1,'\n'); end
  311 + calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end
312 312  
313   -
314   -
  313 +
  314 +
315 315 %% Irregular data (timestamp)
316 316 elseif isfield(data,'time')
317   - % the interval between measurements is irregular
318   - % so we must group the data by time
319   - if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end
320   -
321   - % string for plot title
322   - name=[name ' (timestamp)'];
323   -
324   - % adjust time to remove any initial offset
325   - dtime=data.time-data.time(1)+mean(diff(data.time));
326   - %dtime=data.time-data.time(1);
327   - % where is the maximum gap in time record?
328   - gap_pos=find(diff(dtime)==max(diff(dtime)));
329   - % what is average data spacing?
330   - avg_gap = mean(diff(dtime));
331   -
332   - if verbose >= 2
333   - fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n');
334   - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
335   - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
336   - fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
337   - pause;
338   - end
339   -
340   - if verbose >= 1
341   - fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end));
342   - fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
343   - if max(diff(dtime)) ~= 1/mean(diff(dtime))
344   - fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
345   - end
346   - if max(diff(dtime)) > 5*avg_gap
347   - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
348   - end
349   - end
  317 + % the interval between measurements is irregular
  318 + % so we must group the data by time
  319 + if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end
  320 +
  321 + % string for plot title
  322 + name=[name ' (timestamp)'];
  323 +
  324 + % adjust time to remove any initial offset
  325 + dtime=data.time-data.time(1)+mean(diff(data.time));
  326 + %dtime=data.time-data.time(1);
  327 + % where is the maximum gap in time record?
  328 + gap_pos=find(diff(dtime)==max(diff(dtime)));
  329 + % what is average data spacing?
  330 + avg_gap = mean(diff(dtime));
  331 +
  332 + if verbose >= 2
  333 + fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n');
  334 + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
  335 + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
  336 + fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
  337 + pause;
  338 + end
  339 +
  340 + if verbose >= 1
  341 + fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end));
  342 + fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
  343 + if max(diff(dtime)) ~= 1/mean(diff(dtime))
  344 + fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
  345 + end
  346 + if max(diff(dtime)) > 5*avg_gap
  347 + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
  348 + end
  349 + end
350 350  
351   - % is phase data present? If not, generate it
352   - if ~isfield(data,'phase')
353   - nfreq=data.freq-s.mean;
354   - % NOTE: uncommenting the following two lines will artificially
355   - % allow the code to give equivalent results for validation data
356   - % sets using fixed rate data and timestamped data by adding a
357   - % "phantom" data point for frequency integration. Use of this
358   - % phantom point can skew the results of calculations on real data.
359   - %nfreq(end+1)=0; % phantom freq point, with average value
360   - %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step
361   - dphase=zeros(1,length(nfreq));
362   - dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime);
363   - if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
364   - else
365   - dphase=data.phase;
366   - end
  351 + % is phase data present? If not, generate it
  352 + if ~isfield(data,'phase')
  353 + nfreq=data.freq-s.mean;
  354 + % NOTE: uncommenting the following two lines will artificially
  355 + % allow the code to give equivalent results for validation data
  356 + % sets using fixed rate data and timestamped data by adding a
  357 + % "phantom" data point for frequency integration. Use of this
  358 + % phantom point can skew the results of calculations on real data.
  359 + %nfreq(end+1)=0; % phantom freq point, with average value
  360 + %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step
  361 + dphase=zeros(1,length(nfreq));
  362 + dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime);
  363 + if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
  364 + else
  365 + dphase=data.phase;
  366 + end
367 367  
368   - % find halfway point
369   - halftime = fix(dtime(end)/2);
370   - % truncate tau to appropriate values
371   - tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
372   - if isempty(tau)
373   - error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
374   - end
  368 + % find halfway point
  369 + halftime = fix(dtime(end)/2);
  370 + % truncate tau to appropriate values
  371 + tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
  372 + if isempty(tau)
  373 + error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
  374 + end
375 375  
376   -% % save the freq data for the loop
377   -% dfreq=data.freq;
378   -
379   - % number of samples
380   - N=length(dphase);
381   - m=round(tau./mean(diff(dtime)));
382   -
383   - if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end
  376 +% % save the freq data for the loop
  377 +% dfreq=data.freq;
  378 +
  379 + % number of samples
  380 + N=length(dphase);
  381 + m=round(tau./mean(diff(dtime)));
  382 +
  383 + if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end
384 384  
385   - k=0; tic;
386   - for i = tau
387   -
388   - k=k+1; pa=[];
389   -
390   - mphase = dphase; time = dtime;
  385 + k=0; tic;
  386 + for i = tau
  387 +
  388 + k=k+1; pa=[];
  389 +
  390 + mphase = dphase; time = dtime;
391 391  
392   - if verbose >= 2, fprintf(1,'%d ',i); end
393   -
394   - % calculate overlapping "phase averages" (x_k)
395   - %for j = 1:i
396   - for j = 1:m(k) % (v1.1)
397   - km=0;
398   - %fprintf(1,'j: %d ',j);
399   -
400   - % (v1.1) truncating not correct for overlapping samples
401   - % truncate data set to an even multiple of this tau value
402   - %mphase = mphase(time <= time(end)-rem(time(end),i));
403   - %time = time(time <= time(end)-rem(time(end),i));
404   -
405   -
406   - % break up the data into overlapping groups of tau length
407   - while i*km < time(end)
408   - km=km+1;
  392 + if verbose >= 2, fprintf(1,'%d ',i); end
  393 +
  394 + % calculate overlapping "phase averages" (x_k)
  395 + %for j = 1:i
  396 + for j = 1:m(k) % (v1.1)
  397 + km=0;
  398 + %fprintf(1,'j: %d ',j);
  399 +
  400 + % (v1.1) truncating not correct for overlapping samples
  401 + % truncate data set to an even multiple of this tau value
  402 + %mphase = mphase(time <= time(end)-rem(time(end),i));
  403 + %time = time(time <= time(end)-rem(time(end),i));
  404 +
  405 +
  406 + % break up the data into overlapping groups of tau length
  407 + while i*km < time(end)
  408 + km=km+1;
409 409  
410   - % progress bar
411   - if verbose >= 2
412   - if rem(km,100)==0, fprintf(1,'.'); end
413   - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
414   - end
  410 + % progress bar
  411 + if verbose >= 2
  412 + if rem(km,100)==0, fprintf(1,'.'); end
  413 + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
  414 + end
415 415  
416   - mp = mphase(i*(km-1) < (time) & (time) <= i*km);
  416 + mp = mphase(i*(km-1) < (time) & (time) <= i*km);
417 417  
418   - if ~isempty(mp)
419   - pa(j,km)=mean(mp);
420   - else
421   - pa(j,km)=0;
422   - end
  418 + if ~isempty(mp)
  419 + pa(j,km)=mean(mp);
  420 + else
  421 + pa(j,km)=0;
  422 + end
423 423  
424   - end
425   -
426   - % shift data vector by -1 and repeat
427   - mphase=circshift(dphase,(size(mphase)>1)*-j);
428   - mphase(end-j+1:end)=[];
429   - time=circshift(dtime,(size(time)>1)*-j);
430   - time(end-j+1:end)=[];
431   - time=time-time(1)+avg_gap; % remove time offset
432   -
433   - end
  424 + end
  425 +
  426 + % shift data vector by -1 and repeat
  427 + mphase=circshift(dphase,(size(mphase)>1)*-j);
  428 + mphase(end-j+1:end)=[];
  429 + time=circshift(dtime,(size(time)>1)*-j);
  430 + time(end-j+1:end)=[];
  431 + time=time-time(1)+avg_gap; % remove time offset
  432 +
  433 + end
434 434  
435   - % create "modified" y_k freq values
436   - mfreq=diff(pa,1,2)./i;
437   - mfreq=reshape(mfreq,1,[]);
438   -
439   - % calculate modified frequency differences
440   - mfreqd=reshape(mfreq,m(k),[]); % Vectorize!
441   - mfreqd=diff(mfreqd,1,2);
442   - mfreqd=reshape(mfreqd,1,[]);
  435 + % create "modified" y_k freq values
  436 + mfreq=diff(pa,1,2)./i;
  437 + mfreq=reshape(mfreq,1,[]);
  438 +
  439 + % calculate modified frequency differences
  440 + mfreqd=reshape(mfreq,m(k),[]); % Vectorize!
  441 + mfreqd=diff(mfreqd,1,2);
  442 + mfreqd=reshape(mfreqd,1,[]);
443 443  
444   - % calculate two-sample variance for this tau
445   - % only the first N-3*m(k)+1 samples are valid
446   - if length(mfreqd) >= N-3*m(k)+1
447   - sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2)));
  444 + % calculate two-sample variance for this tau
  445 + % only the first N-3*m(k)+1 samples are valid
  446 + if length(mfreqd) >= N-3*m(k)+1
  447 + sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2)));
448 448  
449   - % estimate error bars
450   - sme(k)=sm(k)/sqrt(N);
451   -
452   - if verbose >= 2, fprintf(1,'\n'); end
453   - else
454   - if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end
455   - sm(k)=0; sme(k)=0;
456   - end
457   -
  449 + % estimate error bars
  450 + sme(k)=sm(k)/sqrt(N);
  451 +
  452 + if verbose >= 2, fprintf(1,'\n'); end
  453 + else
  454 + if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end
  455 + sm(k)=0; sme(k)=0;
  456 + end
  457 +
458 458  
459   - end
  459 + end
460 460  
461   - if verbose >= 2, fprintf(1,'\n'); end
462   - calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end
463   -
464   - % remove any points that were dropped
465   - tau(sm==0)=[];
466   - sm(sm==0)=[];
467   - sme(sme==0)=[];
468   -
469   - % modify time vector for plotting
470   - dtime=dtime(1:length(medianfreq));
  461 + if verbose >= 2, fprintf(1,'\n'); end
  462 + calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end
  463 +
  464 + % remove any points that were dropped
  465 + tau(sm==0)=[];
  466 + sm(sm==0)=[];
  467 + sme(sme==0)=[];
  468 +
  469 + % modify time vector for plotting
  470 + dtime=dtime(1:length(medianfreq));
471 471  
472 472 else
473   - error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]');
  473 + error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]');
474 474 end
475 475  
476 476  
477 477  
... ... @@ -478,41 +478,41 @@
478 478 %% Plotting
479 479  
480 480 if verbose >= 2 % show all data
481   -
482   - % plot the frequency data, centered on median
483   - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
484   - try
485   - % dsplot makes a new figure
486   - hd=dsplot(dtime,medianfreq);
487   - catch ME
488   - figure;
489   - hd=plot(dtime,medianfreq);
490   - if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
491   - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
492   - end
493   - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
494   - hold on;
  481 +
  482 + % plot the frequency data, centered on median
  483 + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
  484 + try
  485 + % dsplot makes a new figure
  486 + hd=dsplot(dtime,medianfreq);
  487 + catch ME
  488 + figure;
  489 + hd=plot(dtime,medianfreq);
  490 + if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
  491 + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
  492 + end
  493 + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
  494 + hold on;
495 495  
496   - fx = xlim;
497   - % plot([fx(1) fx(2)],[s.median s.median],'-k');
498   - plot([fx(1) fx(2)],[0 0],':k');
499   - % show 5x Median Absolute deviation (MAD) values
500   - hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r');
501   - plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r');
502   - % show linear fit line
503   - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
504   - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
505   - %set(get(gca,'Title'),'Interpreter','none');
506   - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
507   - if isfield(data,'units')
508   - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
509   - else
510   - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
511   - end
512   - set(gca,'FontSize',FontSize,'FontName',FontName);
513   - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
514   - % tighten up
515   - xlim([dtime(1) dtime(end)]);
  496 + fx = xlim;
  497 + % plot([fx(1) fx(2)],[s.median s.median],'-k');
  498 + plot([fx(1) fx(2)],[0 0],':k');
  499 + % show 5x Median Absolute deviation (MAD) values
  500 + hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r');
  501 + plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r');
  502 + % show linear fit line
  503 + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
  504 + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
  505 + %set(get(gca,'Title'),'Interpreter','none');
  506 + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
  507 + if isfield(data,'units')
  508 + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
  509 + else
  510 + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
  511 + end
  512 + set(gca,'FontSize',FontSize,'FontName',FontName);
  513 + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
  514 + % tighten up
  515 + xlim([dtime(1) dtime(end)]);
516 516  
517 517  
518 518 end % end plot raw data
519 519  
520 520  
521 521  
522 522  
... ... @@ -520,41 +520,41 @@
520 520  
521 521 if verbose >= 1 % show analysis results
522 522  
523   - % plot Allan deviation results
524   - if ~isempty(sm)
525   - figure
  523 + % plot Allan deviation results
  524 + if ~isempty(sm)
  525 + figure
526 526  
527   - % Choose loglog or semilogx plot here #PLOTLOG
528   - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
529   - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  527 + % Choose loglog or semilogx plot here #PLOTLOG
  528 + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  529 + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
530 530  
531   - % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
532   - % When this is fixed, uncomment below to use normal errorbars
533   - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
534   - % this is a hack to approximate the error bars
535   - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
  531 + % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
  532 + % When this is fixed, uncomment below to use normal errorbars
  533 + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
  534 + % this is a hack to approximate the error bars
  535 + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
536 536  
537   - grid on;
538   - title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
539   - %set(get(gca,'Title'),'Interpreter','none');
540   - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
541   - ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
542   - set(gca,'FontSize',FontSize,'FontName',FontName);
543   - % expand the x axis a little bit so that the errors bars look nice
544   - adax = axis;
545   - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
546   -
547   - % display the minimum value
548   - fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
549   -
550   - elseif verbose >= 1
551   - fprintf(1,'allan_modified: WARNING: no values calculated.\n');
552   - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
553   - fprintf(1,'Type "help allan_modified" for more information.\n\n');
554   - end
  537 + grid on;
  538 + title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
  539 + %set(get(gca,'Title'),'Interpreter','none');
  540 + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
  541 + ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
  542 + set(gca,'FontSize',FontSize,'FontName',FontName);
  543 + % expand the x axis a little bit so that the errors bars look nice
  544 + adax = axis;
  545 + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
  546 +
  547 + % display the minimum value
  548 + fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
  549 +
  550 + elseif verbose >= 1
  551 + fprintf(1,'allan_modified: WARNING: no values calculated.\n');
  552 + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
  553 + fprintf(1,'Type "help allan_modified" for more information.\n\n');
  554 + end
555 555  
556 556 end % end plot analysis
557   -
  557 +
558 558 retval = sm;
559 559 errorb = sme;
560 560  
... ... @@ -6,24 +6,24 @@
6 6 % Inputs:
7 7 % DATA should be a struct and have the following fields:
8 8 % DATA.freq or DATA.phase
9   -% A vector of fractional frequency measurements (df/f) in
10   -% DATA.freq *or* phase offset data (seconds) in DATA.phase
11   -% If phase data is not present, it will be generated by
12   -% integrating the fractional frequency data.
13   -% If both fields are present, then DATA.phase will be used.
  9 +% A vector of fractional frequency measurements (df/f) in
  10 +% DATA.freq *or* phase offset data (seconds) in DATA.phase
  11 +% If phase data is not present, it will be generated by
  12 +% integrating the fractional frequency data.
  13 +% If both fields are present, then DATA.phase will be used.
14 14 %
15 15 % DATA.rate or DATA.time
16   -% The sampling rate in Hertz (DATA.rate) or a vector of
17   -% timestamps for each measurement in seconds (DATA.time).
18   -% DATA.rate is used if both fields are present.
19   -% If DATA.rate == 0, then the timestamps are used.
  16 +% The sampling rate in Hertz (DATA.rate) or a vector of
  17 +% timestamps for each measurement in seconds (DATA.time).
  18 +% DATA.rate is used if both fields are present.
  19 +% If DATA.rate == 0, then the timestamps are used.
20 20 %
21 21 % TAU is an array of tau values for computing Allan deviation.
22   -% TAU values must be divisible by 1/DATA.rate (data points cannot be
23   -% grouped in fractional quantities!). Invalid values are ignored.
  22 +% TAU values must be divisible by 1/DATA.rate (data points cannot be
  23 +% grouped in fractional quantities!). Invalid values are ignored.
24 24 % NAME is an optional label that is added to the plot titles.
25 25 % VERBOSE sets the level of status messages:
26   -% 0 = silent & no data plots; 1 = status messages; 2 = all messages
  26 +% 0 = silent & no data plots; 1 = status messages; 2 = all messages
27 27 %
28 28 % Outputs:
29 29 % RETVAL is the array of overlapping Allan deviation values at each TAU.
... ... @@ -38,8 +38,8 @@
38 38 % To compute the overlapping Allan deviation for the data in the variable "lt":
39 39 % >> lt
40 40 % lt =
41   -% freq: [1x86400 double]
42   -% rate: 0.5
  41 +% freq: [1x86400 double]
  42 +% rate: 0.5
43 43 %
44 44 % Use:
45 45 %
46 46  
47 47  
48 48  
49 49  
50 50  
... ... @@ -89,34 +89,34 @@
89 89 %
90 90 %
91 91 % M.A. Hopcroft
92   -% mhopeng at gmail dot com
  92 +% mhopeng at gmail dot com
93 93 %
94 94 % I welcome your comments and feedback!
95 95 %
96 96 % MH Mar2014
97 97 % v2.24 fix bug related to generating freq data from phase with timestamps
98   -% (thanks to S. David-Grignot for finding the bug)
  98 +% (thanks to S. David-Grignot for finding the bug)
99 99 % MH Oct2010
100 100 % v2.22 tau truncation to integer groups; tau sort
101   -% plotting bugfix
  101 +% plotting bugfix
102 102 % v2.20 update to match allan.m (dsplot.m, columns)
103   -% discard tau values with timestamp irregularities
  103 +% discard tau values with timestamp irregularities
104 104  
105 105 versionstr = 'allan_overlap v2.24';
106 106  
107 107 %
108 108 % MH MAR2010
109 109 % v2.1 bugfixes for irregular sample rates
110   -% (thanks to Ryad Ben-El-Kezadri for feedback and testing)
111   -% handle empty rate field
112   -% fix integer comparisons for fractional sample rates
113   -% update consistency check
  110 +% (thanks to Ryad Ben-El-Kezadri for feedback and testing)
  111 +% handle empty rate field
  112 +% fix integer comparisons for fractional sample rates
  113 +% update consistency check
114 114 %
115 115 % MH FEB2010
116 116 % v2.0 use phase data for calculation- much faster
117   -% Consistent code behaviour for all "allan_x.m" functions:
118   -% accept phase data
119   -% verbose levels
  117 +% Consistent code behaviour for all "allan_x.m" functions:
  118 +% accept phase data
  119 +% verbose levels
120 120 %
121 121 % MH JAN2010
122 122 % v1.0 based on allan v1.84
123 123  
... ... @@ -140,25 +140,25 @@
140 140  
141 141 %% Data consistency checks v2.1
142 142 if ~(isfield(data,'phase') || isfield(data,'freq'))
143   - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
  143 + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
144 144 end
145 145 if isfield(data,'time')
146   - if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
147   - if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
148   - error('The time and freq vectors are not the same length. See help for details. [con2]');
149   - else
150   - error('The time and phase vectors are not the same length. See help for details. [con1]');
151   - end
152   - end
153   - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
154   - error('The phase vector contains invalid elements (NaN/Inf). [con3]');
155   - end
156   - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
157   - error('The freq vector contains invalid elements (NaN/Inf). [con4]');
158   - end
159   - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
160   - error('The time vector contains invalid elements (NaN/Inf). [con5]');
161   - end
  146 + if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
  147 + if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
  148 + error('The time and freq vectors are not the same length. See help for details. [con2]');
  149 + else
  150 + error('The time and phase vectors are not the same length. See help for details. [con1]');
  151 + end
  152 + end
  153 + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
  154 + error('The phase vector contains invalid elements (NaN/Inf). [con3]');
  155 + end
  156 + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
  157 + error('The freq vector contains invalid elements (NaN/Inf). [con4]');
  158 + end
  159 + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
  160 + error('The time vector contains invalid elements (NaN/Inf). [con5]');
  161 + end
162 162 end
163 163  
164 164 % sort tau vector
165 165  
166 166  
167 167  
168 168  
169 169  
... ... @@ -166,33 +166,33 @@
166 166  
167 167 %% Basic statistical tests on the data set
168 168 if ~isfield(data,'freq')
169   - if isfield(data,'rate') && data.rate ~= 0
170   - data.freq=diff(data.phase).*data.rate;
171   - elseif isfield(data,'time')
172   - data.freq=diff(data.phase)./diff(data.time);
173   - end
174   - if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
  169 + if isfield(data,'rate') && data.rate ~= 0
  170 + data.freq=diff(data.phase).*data.rate;
  171 + elseif isfield(data,'time')
  172 + data.freq=diff(data.phase)./diff(data.time);
  173 + end
  174 + if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
175 175 end
176 176 if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns
177   -
  177 +
178 178 s.numpoints=length(data.freq);
179 179 s.max=max(data.freq);
180 180 s.min=min(data.freq);
181 181 s.mean=mean(data.freq);
182 182 s.median=median(data.freq);
183 183 if isfield(data,'time')
184   - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
185   - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
  184 + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
  185 + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
186 186 elseif isfield(data,'rate') && data.rate ~= 0;
187   - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
  187 + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
188 188 else
189   - error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]');
  189 + error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]');
190 190 end
191 191 s.std=std(data.freq);
192 192  
193 193 if verbose >= 2
194   - fprintf(1,'allan_overlap: fractional frequency data statistics:\n');
195   - disp(s);
  194 + fprintf(1,'allan_overlap: fractional frequency data statistics:\n');
  195 + disp(s);
196 196 end
197 197  
198 198  
... ... @@ -203,7 +203,7 @@
203 203 % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
204 204 MAD = median(abs(medianfreq)/0.6745);
205 205 if verbose >= 1 && any(abs(medianfreq) > 5*MAD)
206   - fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n');
  206 + fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n');
207 207 end
208 208  
209 209 %%%%
210 210  
211 211  
212 212  
213 213  
214 214  
215 215  
216 216  
217 217  
218 218  
219 219  
220 220  
221 221  
222 222  
223 223  
224 224  
225 225  
226 226  
227 227  
228 228  
229 229  
230 230  
231 231  
232 232  
233 233  
... ... @@ -213,250 +213,250 @@
213 213 % If there is a regular interval between measurements, calculation is much
214 214 % easier/faster
215 215 if isfield(data,'rate') && data.rate > 0 % if data rate was given
216   - if verbose >= 1
217   - fprintf(1, 'allan_overlap: regular data ');
218   - if isfield(data,'freq')
219   - fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate);
220   - elseif isfield(data,'phase')
221   - fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate);
222   - else
223   - error('\n phase or freq data missing [err10]');
224   - end
225   - end
  216 + if verbose >= 1
  217 + fprintf(1, 'allan_overlap: regular data ');
  218 + if isfield(data,'freq')
  219 + fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate);
  220 + elseif isfield(data,'phase')
  221 + fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate);
  222 + else
  223 + error('\n phase or freq data missing [err10]');
  224 + end
  225 + end
226 226  
227   - % string for plot title
228   - name=[name ' (' num2str(data.rate) ' Hz)'];
  227 + % string for plot title
  228 + name=[name ' (' num2str(data.rate) ' Hz)'];
229 229  
230   - % what is the time interval between data points?
231   - tmstep = 1/data.rate;
232   -
233   - % Is there time data? Just for curiosity/plotting, does not impact calculation
234   - if isfield(data,'time')
235   - % adjust time data to remove any starting gap; first time step
236   - % should not be zero for comparison with freq data
237   - dtime=data.time-data.time(1)+mean(diff(data.time));
238   - dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1)
239   - if verbose >= 2
240   - fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end));
241   - if (data.rate - 1/mean(diff(dtime))) > 1e-6
242   - fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
243   - end
244   - end
245   - else
246   - % create time axis data using rate (for plotting only)
247   - dtime=(tmstep:tmstep:length(data.freq)*tmstep);
248   - end
  230 + % what is the time interval between data points?
  231 + tmstep = 1/data.rate;
  232 +
  233 + % Is there time data? Just for curiosity/plotting, does not impact calculation
  234 + if isfield(data,'time')
  235 + % adjust time data to remove any starting gap; first time step
  236 + % should not be zero for comparison with freq data
  237 + dtime=data.time-data.time(1)+mean(diff(data.time));
  238 + dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1)
  239 + if verbose >= 2
  240 + fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end));
  241 + if (data.rate - 1/mean(diff(dtime))) > 1e-6
  242 + fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
  243 + end
  244 + end
  245 + else
  246 + % create time axis data using rate (for plotting only)
  247 + dtime=(tmstep:tmstep:length(data.freq)*tmstep);
  248 + end
249 249  
250 250  
251   - % is phase data present? If not, generate it
252   - if ~isfield(data,'phase')
253   - nfreq=data.freq-s.mean;
254   - dphase=zeros(1,length(nfreq)+1);
255   - dphase(2:end) = cumsum(nfreq)./data.rate;
256   - if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
257   - else
258   - dphase=data.phase;
259   - end
260   -
261   - % check the range of tau values and truncate if necessary
262   - % find halfway point of time record
263   - halftime = round(tmstep*length(data.freq)/2);
264   - % truncate tau to appropriate values
265   - tau = tau(tau >= tmstep & tau <= halftime);
266   - if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
267   -
268   - % number of samples
269   - N=length(dphase);
270   - % number of samples per tau period
271   - m = data.rate.*tau;
272   - % only integer values allowed for m (no fractional groups of points)
273   - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
274   - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
275   - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
276   - m = m(m==round(m));
277   - %m=round(m);
278   - %fprintf(1,'m: %.50f\n',m)
279   -
280   - if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end
281   -
282   - % calculate the Allan deviation for each value of tau
283   - k=0; tic;
284   - for i = tau
285   - k=k+1;
286   - if verbose >= 2, fprintf(1,'%d ',i); end
  251 + % is phase data present? If not, generate it
  252 + if ~isfield(data,'phase')
  253 + nfreq=data.freq-s.mean;
  254 + dphase=zeros(1,length(nfreq)+1);
  255 + dphase(2:end) = cumsum(nfreq)./data.rate;
  256 + if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
  257 + else
  258 + dphase=data.phase;
  259 + end
  260 +
  261 + % check the range of tau values and truncate if necessary
  262 + % find halfway point of time record
  263 + halftime = round(tmstep*length(data.freq)/2);
  264 + % truncate tau to appropriate values
  265 + tau = tau(tau >= tmstep & tau <= halftime);
  266 + if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
  267 +
  268 + % number of samples
  269 + N=length(dphase);
  270 + % number of samples per tau period
  271 + m = data.rate.*tau;
  272 + % only integer values allowed for m (no fractional groups of points)
  273 + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
  274 + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53
  275 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
  276 + m = m(m==round(m));
  277 + %m=round(m);
  278 + %fprintf(1,'m: %.50f\n',m)
  279 +
  280 + if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end
  281 +
  282 + % calculate the Allan deviation for each value of tau
  283 + k=0; tic;
  284 + for i = tau
  285 + k=k+1;
  286 + if verbose >= 2, fprintf(1,'%d ',i); end
287 287  
288 288  
289   - % pad phase data set length to an even multiple of this tau value
290   - mphase=zeros(ceil(length(dphase)./m(k))*m(k),1);
291   - mphase(1:N)=dphase;
292   - % group phase values
293   - mp=reshape(mphase,m(k),[]);
294   - % compute second differences of phase values (x_k+m - x_k)
295   - md1=diff(mp,1,2);
296   - md2=diff(md1,1,2);
297   - md1=reshape(md2,1,[]);
298   -
299   - % compute overlapping ADEV from phase values
300   - % only the first N-2*m(k) samples are valid
301   - sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2));
302   -
303   - % estimate error bars
304   - sme(k)=sm(k)/sqrt(N-2*m(k));
305   -
  289 + % pad phase data set length to an even multiple of this tau value
  290 + mphase=zeros(ceil(length(dphase)./m(k))*m(k),1);
  291 + mphase(1:N)=dphase;
  292 + % group phase values
  293 + mp=reshape(mphase,m(k),[]);
  294 + % compute second differences of phase values (x_k+m - x_k)
  295 + md1=diff(mp,1,2);
  296 + md2=diff(md1,1,2);
  297 + md1=reshape(md2,1,[]);
  298 +
  299 + % compute overlapping ADEV from phase values
  300 + % only the first N-2*m(k) samples are valid
  301 + sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2));
  302 +
  303 + % estimate error bars
  304 + sme(k)=sm(k)/sqrt(N-2*m(k));
  305 +
306 306  
307   - end % repeat for each value of tau
308   -
309   - if verbose >= 2, fprintf(1,'\n'); end
310   - calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end
  307 + end % repeat for each value of tau
  308 +
  309 + if verbose >= 2, fprintf(1,'\n'); end
  310 + calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end
311 311  
312   -
313   -
314   -%% Irregular data, no fixed interval
  312 +
  313 +
  314 +%% Irregular data, no fixed interval
315 315 elseif isfield(data,'time')
316   - % the interval between measurements is irregular
317   - % so we must group the data by time
318   - if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end
  316 + % the interval between measurements is irregular
  317 + % so we must group the data by time
  318 + if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end
319 319  
320   -
321   - % string for plot title
322   - name=[name ' (timestamp)'];
323   -
  320 +
  321 + % string for plot title
  322 + name=[name ' (timestamp)'];
  323 +
324 324  
325   - % adjust time to remove any starting offset
326   - dtime=data.time-data.time(1)+mean(diff(data.time));
327   -
328   - % save the freq data for the loop
329   - dfreq=data.freq;
330   - dtime=dtime(1:length(dfreq));
331   -
332   - dfdtime=diff(dtime); % only need to do this once (v2.1)
333   - % where is the maximum gap in time record?
334   - gap_pos=find(dfdtime==max(dfdtime));
335   - % what is average data spacing?
336   - avg_gap = mean(dfdtime);
337   - s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1)
338   -
339   - if verbose >= 2
340   - fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n');
341   - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
342   - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
343   - fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
344   - pause;
345   - end
346   -
347   - if verbose >= 1
348   - fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end));
349   - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
350   - if max(diff(dtime)) ~= 1/mean(diff(dtime))
351   - fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1));
352   - end
353   - if max(diff(dtime)) > 5*avg_gap
354   - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
355   - end
356   - end
357   -
  325 + % adjust time to remove any starting offset
  326 + dtime=data.time-data.time(1)+mean(diff(data.time));
  327 +
  328 + % save the freq data for the loop
  329 + dfreq=data.freq;
  330 + dtime=dtime(1:length(dfreq));
  331 +
  332 + dfdtime=diff(dtime); % only need to do this once (v2.1)
  333 + % where is the maximum gap in time record?
  334 + gap_pos=find(dfdtime==max(dfdtime));
  335 + % what is average data spacing?
  336 + avg_gap = mean(dfdtime);
  337 + s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1)
  338 +
  339 + if verbose >= 2
  340 + fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n');
  341 + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n');
  342 + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
  343 + fprintf(1, ' Continue at your own risk! (press any key to continue)\n');
  344 + pause;
  345 + end
  346 +
  347 + if verbose >= 1
  348 + fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end));
  349 + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
  350 + if max(diff(dtime)) ~= 1/mean(diff(dtime))
  351 + fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1));
  352 + end
  353 + if max(diff(dtime)) > 5*avg_gap
  354 + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
  355 + end
  356 + end
  357 +
358 358  
359   - % find halfway point
360   - halftime = fix(dtime(end)/2);
361   - % truncate tau to appropriate values
362   - tau = tau(tau >= max(dfdtime) & tau <= halftime);
363   - if isempty(tau)
364   - error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime);
365   - end
366   -
  359 + % find halfway point
  360 + halftime = fix(dtime(end)/2);
  361 + % truncate tau to appropriate values
  362 + tau = tau(tau >= max(dfdtime) & tau <= halftime);
  363 + if isempty(tau)
  364 + error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime);
  365 + end
  366 +
367 367  
368   - % number of samples
369   - M=length(dfreq);
370   - % number of samples per tau period
371   - m=round(tau./avg_gap);
  368 + % number of samples
  369 + M=length(dfreq);
  370 + % number of samples per tau period
  371 + m=round(tau./avg_gap);
372 372  
373   - if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end
  373 + if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end
374 374  
375   - k=0; tic;
376   - for i = tau
377   - k=k+1;
378   - fa=[];
  375 + k=0; tic;
  376 + for i = tau
  377 + k=k+1;
  378 + fa=[];
379 379  
380   - if verbose >= 2, fprintf(1,'%d ',i); end
381   -
382   - freq = dfreq; time = dtime;
383   -
384   -
385   - % compute overlapping samples (y_k) for this tau
386   - %for j = 1:i
387   - for j = 1:m(k) % (v2.1)
388   - km=0;
389   - %fprintf(1,'j: %d ',j);
  380 + if verbose >= 2, fprintf(1,'%d ',i); end
  381 +
  382 + freq = dfreq; time = dtime;
  383 +
  384 +
  385 + % compute overlapping samples (y_k) for this tau
  386 + %for j = 1:i
  387 + for j = 1:m(k) % (v2.1)
  388 + km=0;
  389 + %fprintf(1,'j: %d ',j);
390 390  
391   - % (v2.1) truncating not correct for overlapping samples
392   - % truncate data set to an even multiple of this tau value
393   - %freq = freq(time <= time(end)-rem(time(end),i));
394   - %time = time(time <= time(end)-rem(time(end),i));
395   -
396   - % break up the data into overlapping groups of tau length
397   - while i*km <= time(end)
398   - km=km+1;
399   - %i*km
  391 + % (v2.1) truncating not correct for overlapping samples
  392 + % truncate data set to an even multiple of this tau value
  393 + %freq = freq(time <= time(end)-rem(time(end),i));
  394 + %time = time(time <= time(end)-rem(time(end),i));
  395 +
  396 + % break up the data into overlapping groups of tau length
  397 + while i*km <= time(end)
  398 + km=km+1;
  399 + %i*km
400 400  
401   - % progress bar
402   - if verbose >= 2
403   - if rem(km,100)==0, fprintf(1,'.'); end
404   - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
405   - end
  401 + % progress bar
  402 + if verbose >= 2
  403 + if rem(km,100)==0, fprintf(1,'.'); end
  404 + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
  405 + end
406 406  
407   - f = freq(i*(km-1) < (time) & (time) <= i*km);
  407 + f = freq(i*(km-1) < (time) & (time) <= i*km);
408 408  
409   - if ~isempty(f)
410   - fa(j,km)=mean(f);
411   - else
412   - fa(j,km)=0;
413   - end
  409 + if ~isempty(f)
  410 + fa(j,km)=mean(f);
  411 + else
  412 + fa(j,km)=0;
  413 + end
414 414  
415   - end
416   - %fa
417   -
418   - % shift data vector by -1 and repeat
419   - freq=circshift(dfreq,(size(freq)>1)*-j);
420   - freq(end-j+1:end)=[];
421   - time=circshift(dtime,(size(time)>1)*-j);
422   - time(end-j+1:end)=[];
423   - time=time-time(1)+avg_gap; % remove time offset
424   -
425   - end
426   -
427   - % compute second differences of fractional frequency values (y_k+m - y_k)
428   - fd1=diff(fa,1,2);
429   - fd1=reshape(fd1,1,[]);
430   - % compute overlapping ADEV from fractional frequency values
431   - % only the first M-2*m(k)+1 samples are valid
432   - if length(fd1) >= M-2*m(k)+1
433   - sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2));
  415 + end
  416 + %fa
  417 +
  418 + % shift data vector by -1 and repeat
  419 + freq=circshift(dfreq,(size(freq)>1)*-j);
  420 + freq(end-j+1:end)=[];
  421 + time=circshift(dtime,(size(time)>1)*-j);
  422 + time(end-j+1:end)=[];
  423 + time=time-time(1)+avg_gap; % remove time offset
  424 +
  425 + end
  426 +
  427 + % compute second differences of fractional frequency values (y_k+m - y_k)
  428 + fd1=diff(fa,1,2);
  429 + fd1=reshape(fd1,1,[]);
  430 + % compute overlapping ADEV from fractional frequency values
  431 + % only the first M-2*m(k)+1 samples are valid
  432 + if length(fd1) >= M-2*m(k)+1
  433 + sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2));
434 434  
435   - % estimate error bars
436   - sme(k)=sm(k)/sqrt(M+1);
437   -
438   - if verbose >= 2, fprintf(1,'\n'); end
439   -
440   - else
441   - if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end
442   - sm(k)=0; sme(k)=0;
443   - end
444   -
  435 + % estimate error bars
  436 + sme(k)=sm(k)/sqrt(M+1);
  437 +
  438 + if verbose >= 2, fprintf(1,'\n'); end
  439 +
  440 + else
  441 + if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end
  442 + sm(k)=0; sme(k)=0;
  443 + end
  444 +
445 445  
446   - end
  446 + end
447 447  
448   - if verbose >= 2, fprintf(1,'\n'); end
449   - calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end
  448 + if verbose >= 2, fprintf(1,'\n'); end
  449 + calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end
450 450  
451   - % remove any points that were dropped
452   - tau(sm==0)=[];
453   - sm(sm==0)=[];
454   - sme(sme==0)=[];
  451 + % remove any points that were dropped
  452 + tau(sm==0)=[];
  453 + sm(sm==0)=[];
  454 + sme(sme==0)=[];
455 455  
456 456  
457 457  
458 458 else
459   - error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
  459 + error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
460 460 end
461 461  
462 462  
463 463  
464 464  
465 465  
466 466  
467 467  
468 468  
469 469  
... ... @@ -464,83 +464,83 @@
464 464 %% Plotting
465 465  
466 466 if verbose >= 2 % show all data
467   -
468   - % plot the frequency data, centered on median
469   - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
470   - try
471   - % dsplot makes a new figure
472   - hd=dsplot(dtime,medianfreq);
473   - catch ME
474   - figure;
475   - hd=plot(dtime,medianfreq);
476   - if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
477   - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
478   - end
479   - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
480   - hold on;
  467 +
  468 + % plot the frequency data, centered on median
  469 + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
  470 + try
  471 + % dsplot makes a new figure
  472 + hd=dsplot(dtime,medianfreq);
  473 + catch ME
  474 + figure;
  475 + hd=plot(dtime,medianfreq);
  476 + if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
  477 + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end
  478 + end
  479 + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
  480 + hold on;
481 481  
482   - fx = xlim;
483   - % plot([fx(1) fx(2)],[s.median s.median],'-k');
484   - plot([fx(1) fx(2)],[0 0],':k');
485   - % show 5x Median Absolute deviation (MAD) values
486   - hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r');
487   - plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r');
488   - % show linear fit line
489   - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
490   - title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial');
491   - %set(get(gca,'Title'),'Interpreter','none');
492   - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
493   - if isfield(data,'units')
494   - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
495   - else
496   - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
497   - end
498   - set(gca,'FontSize',FontSize,'FontName',FontName);
499   - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
500   - % tighten up
501   - xlim([dtime(1) dtime(end)]);
  482 + fx = xlim;
  483 + % plot([fx(1) fx(2)],[s.median s.median],'-k');
  484 + plot([fx(1) fx(2)],[0 0],':k');
  485 + % show 5x Median Absolute deviation (MAD) values
  486 + hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r');
  487 + plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r');
  488 + % show linear fit line
  489 + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
  490 + title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial');
  491 + %set(get(gca,'Title'),'Interpreter','none');
  492 + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
  493 + if isfield(data,'units')
  494 + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
  495 + else
  496 + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
  497 + end
  498 + set(gca,'FontSize',FontSize,'FontName',FontName);
  499 + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
  500 + % tighten up
  501 + xlim([dtime(1) dtime(end)]);
502 502  
503   -
  503 +
504 504 end % end plot raw data
505 505  
506 506  
507 507 if verbose >= 1 % show analysis results
508 508  
509   - % plot Allan deviation results
510   - if ~isempty(sm)
511   - figure
  509 + % plot Allan deviation results
  510 + if ~isempty(sm)
  511 + figure
512 512  
513   - % Choose loglog or semilogx plot here #PLOTLOG
514   - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
515   - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  513 + % Choose loglog or semilogx plot here #PLOTLOG
  514 + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  515 + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
516 516  
517   - % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
518   - % When this is fixed, uncomment below to use normal errorbars
519   - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
520   - % this is a hack to approximate the error bars
521   - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
  517 + % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
  518 + % When this is fixed, uncomment below to use normal errorbars
  519 + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
  520 + % this is a hack to approximate the error bars
  521 + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
522 522  
523   - grid on;
524   - title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
525   - %set(get(gca,'Title'),'Interpreter','none');
526   - xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial');
527   - ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
528   - set(gca,'FontSize',FontSize,'FontName',FontName);
529   - % expand the x axis a little bit so that the errors bars look nice
530   - adax = axis;
531   - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
532   -
533   - % display the minimum value
534   - fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
535   -
536   - elseif verbose >= 1
537   - fprintf(1,'allan_overlap: WARNING: no values calculated.\n');
538   - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
539   - fprintf(1,'Type "help allan_overlap" for more information.\n\n');
540   - end
541   -
  523 + grid on;
  524 + title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
  525 + %set(get(gca,'Title'),'Interpreter','none');
  526 + xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial');
  527 + ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
  528 + set(gca,'FontSize',FontSize,'FontName',FontName);
  529 + % expand the x axis a little bit so that the errors bars look nice
  530 + adax = axis;
  531 + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
  532 +
  533 + % display the minimum value
  534 + fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
  535 +
  536 + elseif verbose >= 1
  537 + fprintf(1,'allan_overlap: WARNING: no values calculated.\n');
  538 + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
  539 + fprintf(1,'Type "help allan_overlap" for more information.\n\n');
  540 + end
  541 +
542 542 end % end plot analysis
543   -
  543 +
544 544 retval = sm;
545 545 errorb = sme;
546 546  
... ... @@ -5,25 +5,33 @@
5 5 mult = eval(argv(){3});
6 6  
7 7 if length(col) == length(mult)
8   - figure
9   - hold all
10   - grid on
11   - cc = 'bkcgmry';
12   - for i = [1:length(col)]
13   - data.freq = load(filename)(:,col(i)).*mult(i);
14   - if eval(argv(){4})(i) == 1
15   - printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n'))
16   - data.freq = detrend(data.freq);
17   - end
18   - data.rate = 1;
19   - [ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0);
20   - loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s'))
21   - leg{i} = strcat(filename, ' col', num2str(col(i)));
22   - axis(10.^ceil(log10([tau(1), tau(end)])))
23   - hold on
24   - end
25   - legend(leg)
26   - input("Press to continue...");
  8 + figure
  9 + hold all
  10 + grid on
  11 + cc = 'bkcgmry';
  12 + for i = [1:length(col)]
  13 + data.freq = load(filename)(:,col(i)).*mult(i);
  14 + if nargin == 4
  15 + if eval(argv(){4})(i) == 1
  16 + printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n'))
  17 + data.freq = detrend(data.freq);
  18 + elseif eval(argv(){4})(i) == 2
  19 + printf(strcat(filename, ' col', num2str(col(i)), ' relative ad\n\n'))
  20 + data.freq = data.freq./mean(data.freq);
  21 + elseif eval(argv(){4})(i) == 3
  22 + printf(strcat(filename, ' col', num2str(col(i)), ' drift removed relative ad\n\n'))
  23 + data.freq = detrend(data.freq./mean(data.freq));
  24 + end
  25 + endif
  26 + data.rate = 1;
  27 + [ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0);
  28 + loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s'))
  29 + leg{i} = strcat(filename, ' col', num2str(col(i)));
  30 + axis(10.^ceil(log10([tau(1), tau(end)])))
  31 + hold on
  32 + end
  33 + legend(leg)
  34 + input("Press to continue...");
27 35 end
28 36 exit
... ... @@ -7,32 +7,32 @@
7 7 mult2 = eval(argv(){5});
8 8  
9 9 if length(col1) == length(mult1)
10   - figure
11   - hold all
12   - grid on
13   - cc = 'bkcgmry';
14   - for i = [1:length(col1)]
15   - data.freq = load(filename)(:,col1(i)).*mult1(i);
16   - data.freq2 = load(filename)(:,col2(i)).*mult2(i);
17   - data.freq = data.freq(1:min(length(data.freq), length(data.freq2)));
18   - data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2)));
19   - if eval(argv(){end-1}) == 1
20   - printf('\ndata1 drift removed\n\n')
21   - data.freq = detrend(data.freq);
22   - end
23   - if eval(argv(){end}) == 1
24   - printf('\ndata2 drift removed\n\n')
25   - data.freq2 = detrend(data.freq2);
26   - end
27   - data.rate = 1;
28   - [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0);
29   - loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s'))
30   - leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i)));
31   - axis(10.^ceil(log10([tau(1), tau(end)])))
32   - hold on
33   - end
34   - legend(leg)
35   - input("Press to continue...");
  10 + figure
  11 + hold all
  12 + grid on
  13 + cc = 'bkcgmry';
  14 + for i = [1:length(col1)]
  15 + data.freq = load(filename)(:,col1(i)).*mult1(i);
  16 + data.freq2 = load(filename)(:,col2(i)).*mult2(i);
  17 + data.freq = data.freq(1:min(length(data.freq), length(data.freq2)));
  18 + data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2)));
  19 + if eval(argv(){end-1}) == 1
  20 + printf('\ndata1 drift removed\n\n')
  21 + data.freq = detrend(data.freq);
  22 + end
  23 + if eval(argv(){end}) == 1
  24 + printf('\ndata2 drift removed\n\n')
  25 + data.freq2 = detrend(data.freq2);
  26 + end
  27 + data.rate = 1;
  28 + [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0);
  29 + loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s'))
  30 + leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i)));
  31 + axis(10.^ceil(log10([tau(1), tau(end)])))
  32 + hold on
  33 + end
  34 + legend(leg)
  35 + input("Press to continue...");
36 36 end
37 37 exit
... ... @@ -6,9 +6,9 @@
6 6 %
7 7 % DSPLOT(X, Y) plots Y versus X by downsampling if there are large number
8 8 % of elements. X and Y needs to obey the following:
9   -% 1. X must be a monotonically increasing vector.
10   -% 2. If Y is a vector, it must be the same size as X.
11   -% 3. If Y is a matrix, one of the dimensions must line up with X.
  9 +% 1. X must be a monotonically increasing vector.
  10 +% 2. If Y is a vector, it must be the same size as X.
  11 +% 3. If Y is a matrix, one of the dimensions must line up with X.
12 12 %
13 13 % DSPLOT(Y) plots the columns of Y versus their index.
14 14 %
... ... @@ -58,9 +58,9 @@
58 58 % Version:
59 59 % v1.0 - first version (Aug 1, 2007)
60 60 % v1.1 - added CreateFcn for the figure so that when the figure is saved
61   -% and re-loaded, the zooming and panning works. Also added a menu
62   -% item for saving out the original data back to the base
63   -% workspace. (Aug 10, 2007)
  61 +% and re-loaded, the zooming and panning works. Also added a menu
  62 +% item for saving out the original data back to the base
  63 +% workspace. (Aug 10, 2007)
64 64 %
65 65 % Jiro Doke
66 66 % August 1, 2007
67 67  
... ... @@ -101,13 +101,13 @@
101 101 % orientation.
102 102 if numSignals > size(y, 1)
103 103 s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ...
104   - numSignals), 's');
  104 + numSignals), 's');
105 105 if ~strcmpi(s, 'y')
106   - disp('Canceled. You may want to transpose the matrix.');
107   - if nargout == 1
108   - hL = [];
109   - end
110   - return;
  106 + disp('Canceled. You may want to transpose the matrix.');
  107 + if nargout == 1
  108 + hL = [];
  109 + end
  110 + return;
111 111 end
112 112 end
113 113  
... ... @@ -120,7 +120,7 @@
120 120  
121 121 % Always create new figure because it messes around with zoom, pan,
122 122 % datacursors.
123   -hFig = figure;
  123 +hFig = figure;
124 124 figName = '';
125 125  
126 126 % Create template plot using NaNs
127 127  
128 128  
129 129  
130 130  
131 131  
132 132  
133 133  
134 134  
135 135  
136 136  
137 137  
138 138  
139 139  
140 140  
141 141  
142 142  
143 143  
144 144  
145 145  
146 146  
147 147  
... ... @@ -147,173 +147,173 @@
147 147  
148 148 %--------------------------------------------------------------------------
149 149 function myExportFcn(varargin)
150   - % This callback allows for extracting the actual data from the figure.
151   - % This means that if you save this figure and load it back later, you
152   - % can get back the data.
153   -
154   - % Determine the variable name
155   - allVarNames = evalin('base', 'who');
156   - newVarName = genvarname('dsplotData', allVarNames);
157   -
158   - % X
159   - if ~noXVar
160   - if varTranspose
161   - dat.x = x';
162   - else
163   - dat.x = x;
164   - end
165   - end
166   -
167   - % Y
168   - if varTranspose
169   - dat.y = y';
170   - else
171   - dat.y = y;
172   - end
173   -
174   - assignin('base', newVarName, dat);
175   -
176   - msgbox(sprintf('Data saved to the base workspace as ''%s''.', ...
177   - newVarName), 'Saved', 'modal');
178   -
  150 + % This callback allows for extracting the actual data from the figure.
  151 + % This means that if you save this figure and load it back later, you
  152 + % can get back the data.
  153 +
  154 + % Determine the variable name
  155 + allVarNames = evalin('base', 'who');
  156 + newVarName = genvarname('dsplotData', allVarNames);
  157 +
  158 + % X
  159 + if ~noXVar
  160 + if varTranspose
  161 + dat.x = x';
  162 + else
  163 + dat.x = x;
  164 + end
  165 + end
  166 +
  167 + % Y
  168 + if varTranspose
  169 + dat.y = y';
  170 + else
  171 + dat.y = y;
  172 + end
  173 +
  174 + assignin('base', newVarName, dat);
  175 +
  176 + msgbox(sprintf('Data saved to the base workspace as ''%s''.', ...
  177 + newVarName), 'Saved', 'modal');
  178 +
179 179 end
180 180  
181 181 %--------------------------------------------------------------------------
182 182 function mycreatefcn(varargin)
183   - % This callback defines the custom zoom/pan functions. It is defined as
184   - % the CreateFcn of the figure, so it allows for saving and reloading of
185   - % the figure.
  183 + % This callback defines the custom zoom/pan functions. It is defined as
  184 + % the CreateFcn of the figure, so it allows for saving and reloading of
  185 + % the figure.
186 186  
187   - if nargin > 0
188   - hFig = varargin{1};
189   - end
190   - hLine = findobj(hFig, 'type', 'axes');
191   - hLine(strmatch('legend', get(hLine, 'tag'))) = [];
192   - hLine = get(hLine, 'Children');
193   -
194   - % Create Zoom, Pan, Datacursor objects
195   - hZoom = zoom(hFig);
196   - hPan = pan(hFig);
197   - hDc = datacursormode(hFig);
198   - set(hZoom, 'ActionPostCallback', @mypostcallback);
199   - set(hPan , 'ActionPostCallback', @mypostcallback);
200   - set(hDc , 'UpdateFcn' , @myDCupdatefcn);
  187 + if nargin > 0
  188 + hFig = varargin{1};
  189 + end
  190 + hLine = findobj(hFig, 'type', 'axes');
  191 + hLine(strmatch('legend', get(hLine, 'tag'))) = [];
  192 + hLine = get(hLine, 'Children');
  193 +
  194 + % Create Zoom, Pan, Datacursor objects
  195 + hZoom = zoom(hFig);
  196 + hPan = pan(hFig);
  197 + hDc = datacursormode(hFig);
  198 + set(hZoom, 'ActionPostCallback', @mypostcallback);
  199 + set(hPan , 'ActionPostCallback', @mypostcallback);
  200 + set(hDc , 'UpdateFcn' , @myDCupdatefcn);
201 201  
202 202 end
203 203  
204 204 %--------------------------------------------------------------------------
205 205 function mypostcallback(obj, evd) %#ok
206   - % This callback that gets called when the mouse is released after
207   - % zooming or panning.
  206 + % This callback that gets called when the mouse is released after
  207 + % zooming or panning.
208 208  
209   - % single or double-click
210   - switch get(hFig, 'SelectionType')
211   - case {'normal', 'alt'}
212   - updateLines(xlim(evd.Axes));
  209 + % single or double-click
  210 + switch get(hFig, 'SelectionType')
  211 + case {'normal', 'alt'}
  212 + updateLines(xlim(evd.Axes));
213 213  
214   - case 'open'
215   - updateLines([min(x), max(x)]);
  214 + case 'open'
  215 + updateLines([min(x), max(x)]);
216 216  
217   - end
  217 + end
218 218  
219 219 end
220 220  
221 221 %--------------------------------------------------------------------------
222 222 function updateLines(rng)
223   - % This helper function is for determining the points to plot on the
224   - % screen based on which portion is visible in the current limits.
  223 + % This helper function is for determining the points to plot on the
  224 + % screen based on which portion is visible in the current limits.
225 225  
226   - % find indeces inside the range
227   - id = find(x >= rng(1) & x <= rng(2));
  226 + % find indeces inside the range
  227 + id = find(x >= rng(1) & x <= rng(2));
228 228  
229   - % if there are more points than we want
230   - if length(id) > numPoints / numSignals
  229 + % if there are more points than we want
  230 + if length(id) > numPoints / numSignals
231 231  
232   - % see how many outlier points are in this range
233   - blah = iOutliers > id(1) & iOutliers < id(end);
  232 + % see how many outlier points are in this range
  233 + blah = iOutliers > id(1) & iOutliers < id(end);
234 234  
235   - % determine indeces of points to plot.
236   - idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))';
  235 + % determine indeces of points to plot.
  236 + idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))';
237 237  
238   - x2 = cell(numSignals, 1);
239   - y2 = x2;
240   - for iSignals = 1:numSignals
241   - % add outlier points
242   - ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]);
243   - x2{iSignals} = x(ididid);
244   - y2{iSignals} = y(ididid, iSignals);
245   - end
  238 + x2 = cell(numSignals, 1);
  239 + y2 = x2;
  240 + for iSignals = 1:numSignals
  241 + % add outlier points
  242 + ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]);
  243 + x2{iSignals} = x(ididid);
  244 + y2{iSignals} = y(ididid, iSignals);
  245 + end
246 246  
247   - if debugMode
248   - figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))];
249   - else
250   - figName = 'downsampled';
251   - end
  247 + if debugMode
  248 + figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))];
  249 + else
  250 + figName = 'downsampled';
  251 + end
252 252  
253   - else % no need to down sample
254   - figName = 'true';
  253 + else % no need to down sample
  254 + figName = 'true';
255 255  
256   - x2 = repmat({x(id)}, numSignals, 1);
257   - y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))';
  256 + x2 = repmat({x(id)}, numSignals, 1);
  257 + y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))';
258 258  
259   - end
  259 + end
260 260  
261   - % Update plot
262   - set(hLine, {'xdata', 'ydata'} , [x2, y2]);
263   - set(hFig, 'Name', figName);
  261 + % Update plot
  262 + set(hLine, {'xdata', 'ydata'} , [x2, y2]);
  263 + set(hFig, 'Name', figName);
264 264  
265 265 end
266 266  
267 267 %--------------------------------------------------------------------------
268 268 function txt = myDCupdatefcn(empt, event_obj) %#ok
269   - % This function displays appropriate data cursor message based on the
270   - % display type
  269 + % This function displays appropriate data cursor message based on the
  270 + % display type
271 271  
272   - pos = get(event_obj,'Position');
273   - switch figName
274   - case 'true'
275   - txt = {['X: ',num2str(pos(1))],...
276   - ['Y: ',num2str(pos(2))]};
277   - otherwise
278   - txt = {['X: ',num2str(pos(1))],...
279   - ['Y: ',num2str(pos(2))], ...
280   - 'Warning: Downsampled', ...
281   - 'May not be accurate'};
282   - end
  272 + pos = get(event_obj,'Position');
  273 + switch figName
  274 + case 'true'
  275 + txt = {['X: ',num2str(pos(1))],...
  276 + ['Y: ',num2str(pos(2))]};
  277 + otherwise
  278 + txt = {['X: ',num2str(pos(1))],...
  279 + ['Y: ',num2str(pos(2))], ...
  280 + 'Warning: Downsampled', ...
  281 + 'May not be accurate'};
  282 + end
283 283 end
284 284  
285 285 %--------------------------------------------------------------------------
286 286 function myErrorCheck
287   - % Do some error checking on the input arguments.
  287 + % Do some error checking on the input arguments.
288 288  
289   - if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500
290   - error('Third argument must be a scalar greater than 500');
291   - end
292   - if ~isnumeric(x) || ~isnumeric(y)
293   - error('Arguments must be numeric');
294   - end
295   - if length(size(x)) > 2 || length(size(y)) > 2
296   - error('Only 2-D data accepted');
297   - end
298   -
299   - % If only one input, create index vector X
300   - if isempty(x)
301   - if ismember(1, size(y))
302   - x = reshape(1:numel(y), size(y));
303   - else
304   - x = (1:size(y, 1))';
305   - end
306   - end
307   -
308   - if ~ismember(1, size(x))
309   - error('First argument has to be a vector');
310   - end
311   - if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2))
312   - error('One of the dimensions of the two arguments must match');
313   - end
314   - if any(diff(x) <= 0)
315   - error('The first argument has to be a monotonically increasing vector');
316   - end
  289 + if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500
  290 + error('Third argument must be a scalar greater than 500');
  291 + end
  292 + if ~isnumeric(x) || ~isnumeric(y)
  293 + error('Arguments must be numeric');
  294 + end
  295 + if length(size(x)) > 2 || length(size(y)) > 2
  296 + error('Only 2-D data accepted');
  297 + end
  298 +
  299 + % If only one input, create index vector X
  300 + if isempty(x)
  301 + if ismember(1, size(y))
  302 + x = reshape(1:numel(y), size(y));
  303 + else
  304 + x = (1:size(y, 1))';
  305 + end
  306 + end
  307 +
  308 + if ~ismember(1, size(x))
  309 + error('First argument has to be a vector');
  310 + end
  311 + if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2))
  312 + error('One of the dimensions of the two arguments must match');
  313 + end
  314 + if any(diff(x) <= 0)
  315 + error('The first argument has to be a monotonically increasing vector');
  316 + end
317 317 end
318 318  
319 319 end
... ... @@ -5,20 +5,20 @@
5 5 mult = eval(argv(){3});
6 6  
7 7 if length(col) == length(mult)
8   - figure
9   - hold all
10   - grid on
11   - cc = 'bkcgmry';
12   - for i = [1:length(col)]
13   - data.freq = load(filename)(:,col(i)).*mult(i);
14   - data.rate = 1;
15   - [p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided');
16   - semilogx(f, 10*log10(p), cc(mod(i, length(cc))))
17   - leg{i} = strcat(filename, ' col', num2str(col(i)));
18   - hold on
19   - end
20   - legend(leg)
21   - input("Press to continue...");
  8 + figure
  9 + hold all
  10 + grid on
  11 + cc = 'bkcgmry';
  12 + for i = [1:length(col)]
  13 + data.freq = load(filename)(:,col(i)).*mult(i);
  14 + data.rate = 1;
  15 + [p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided');
  16 + semilogx(f, 10*log10(p), cc(mod(i, length(cc))))
  17 + leg{i} = strcat(filename, ' col', num2str(col(i)));
  18 + hold on
  19 + end
  20 + legend(leg)
  21 + input("Press to continue...");
22 22 end
23 23 exit