Commit 1a0e88f0ce6e736bf1f59e7b02cc394896768bff
1 parent
183c460e4e
Exists in
master
replace 4-spaces by tab
Showing 8 changed files with 1688 additions and 1680 deletions Inline Diff
allan.m
function [retval, s, errorb, tau] = allan(data,tau,name,verbose) | 1 | 1 | function [retval, s, errorb, tau] = allan(data,tau,name,verbose) | |
% ALLAN Compute the Allan deviation for a set of time-domain frequency data | 2 | 2 | % ALLAN Compute the Allan deviation for a set of time-domain frequency data | |
% [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE) | 3 | 3 | % [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE) | |
% | 4 | 4 | % | |
% Inputs: | 5 | 5 | % Inputs: | |
% DATA should be a structure and have the following fields: | 6 | 6 | % DATA should be a structure and have the following fields: | |
% DATA.freq or DATA.phase | 7 | 7 | % DATA.freq or DATA.phase | |
% A vector of fractional frequency measurements (df/f) in | 8 | 8 | % A vector of fractional frequency measurements (df/f) in | |
% DATA.freq *or* phase offset data (seconds) in DATA.phase . | 9 | 9 | % DATA.freq *or* phase offset data (seconds) in DATA.phase . | |
% If frequency data is not present, it will be generated by | 10 | 10 | % If frequency data is not present, it will be generated by | |
% differentiating the phase data. | 11 | 11 | % differentiating the phase data. | |
% If both fields are present, then DATA.freq will be used. | 12 | 12 | % If both fields are present, then DATA.freq will be used. | |
% Note: for general-purpose calculations of Allan deviation, | 13 | 13 | % Note: for general-purpose calculations of Allan deviation, | |
% (i.e. a two-sample variance) use DATA.freq . | 14 | 14 | % (i.e. a two-sample variance) use DATA.freq . | |
% | 15 | 15 | % | |
% DATA.rate or DATA.time | 16 | 16 | % DATA.rate or DATA.time | |
% The sampling rate in Hertz (DATA.rate) or a vector of | 17 | 17 | % The sampling rate in Hertz (DATA.rate) or a vector of | |
% timestamps for each measurement in seconds (DATA.time). | 18 | 18 | % timestamps for each measurement in seconds (DATA.time). | |
% DATA.rate is used if both fields are present. | 19 | 19 | % DATA.rate is used if both fields are present. | |
% If DATA.rate == 0, then the timestamps are used. | 20 | 20 | % If DATA.rate == 0, then the timestamps are used. | |
% | 21 | 21 | % | |
% DATA.units (optional) | 22 | 22 | % DATA.units (optional) | |
% The units for the data. If present, the string DATA.units | 23 | 23 | % The units for the data. If present, the string DATA.units | |
% is added to the plot y-axis label. | 24 | 24 | % is added to the plot y-axis label. | |
% | 25 | 25 | % | |
% TAU is an array of tau values for computing Allan deviation. | 26 | 26 | % TAU is an array of tau values for computing Allan deviation. | |
% TAU values must be divisible by 1/DATA.rate (data points cannot be | 27 | 27 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |
% grouped in fractional quantities!) and invalid values are ignored. | 28 | 28 | % grouped in fractional quantities!) and invalid values are ignored. | |
% Leave empty to use default values. | 29 | 29 | % Leave empty to use default values. | |
% NAME is an optional label that is added to the plot titles. | 30 | 30 | % NAME is an optional label that is added to the plot titles. | |
% VERBOSE sets the level of status messages: | 31 | 31 | % VERBOSE sets the level of status messages: | |
% 0 = silent & no data plots; | 32 | 32 | % 0 = silent & no data plots; | |
% 1 = status messages & minimum plots; | 33 | 33 | % 1 = status messages & minimum plots; | |
% 2 = all messages and plots (default) | 34 | 34 | % 2 = all messages and plots (default) | |
% | 35 | 35 | % | |
% Outputs: | 36 | 36 | % Outputs: | |
% RETVAL is the array of Allan deviation values at each TAU. | 37 | 37 | % RETVAL is the array of Allan deviation values at each TAU. | |
% S is an optional output of other statistical measures of the data (mean, std, etc). | 38 | 38 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |
% ERRORB is an optional output containing the error estimates for a 1-sigma | 39 | 39 | % ERRORB is an optional output containing the error estimates for a 1-sigma | |
% confidence interval. These values are shown on the figure for each point. | 40 | 40 | % confidence interval. These values are shown on the figure for each point. | |
% TAU is an optional output containing the array of tau values used in the | 41 | 41 | % TAU is an optional output containing the array of tau values used in the | |
% calculation (which may be a truncated subset of the input or default values). | 42 | 42 | % calculation (which may be a truncated subset of the input or default values). | |
% | 43 | 43 | % | |
% Example: | 44 | 44 | % Example: | |
% | 45 | 45 | % | |
% To compute the Allan deviation for the data in the variable "lt": | 46 | 46 | % To compute the Allan deviation for the data in the variable "lt": | |
% >> lt | 47 | 47 | % >> lt | |
% lt = | 48 | 48 | % lt = | |
% freq: [1x86400 double] | 49 | 49 | % freq: [1x86400 double] | |
% rate: 0.5 | 50 | 50 | % rate: 0.5 | |
% | 51 | 51 | % | |
% Use: | 52 | 52 | % Use: | |
% | 53 | 53 | % | |
% >> ad = allan(lt,[2 10 100],'lt data',1); | 54 | 54 | % >> ad = allan(lt,[2 10 100],'lt data',1); | |
% | 55 | 55 | % | |
% The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | 56 | 56 | % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |
% 1-sigma confidence intervals will be indicated by vertical lines at each point. | 57 | 57 | % 1-sigma confidence intervals will be indicated by vertical lines at each point. | |
% You can also use the default settings, which are usually a good starting point: | 58 | 58 | % You can also use the default settings, which are usually a good starting point: | |
% | 59 | 59 | % | |
% >> ad = allan(lt); | 60 | 60 | % >> ad = allan(lt); | |
% | 61 | 61 | % | |
% | 62 | 62 | % | |
% Notes: | 63 | 63 | % Notes: | |
% This function calculates the standard Allan deviation (ADEV), *not* the | 64 | 64 | % This function calculates the standard Allan deviation (ADEV), *not* the | |
% overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV. | 65 | 65 | % overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV. | |
% The calculation is performed using fractional frequency data. If only | 66 | 66 | % The calculation is performed using fractional frequency data. If only | |
% phase data is provided, frequency data is generated by differentiating | 67 | 67 | % phase data is provided, frequency data is generated by differentiating | |
% the phase data. | 68 | 68 | % the phase data. | |
% No pre-processing of the data is performed, except to remove any | 69 | 69 | % No pre-processing of the data is performed, except to remove any | |
% initial offset (i.e., starting gap) in the time record. | 70 | 70 | % initial offset (i.e., starting gap) in the time record. | |
% For rate-based data, ADEV is computed only for tau values greater than the | 71 | 71 | % For rate-based data, ADEV is computed only for tau values greater than the | |
% minimum time between samples and less than the half the total time. For | 72 | 72 | % minimum time between samples and less than the half the total time. For | |
% time-stamped data, only tau values greater than the maximum gap between | 73 | 73 | % time-stamped data, only tau values greater than the maximum gap between | |
% samples and less than half the total time are used. | 74 | 74 | % samples and less than half the total time are used. | |
% The calculation for fixed sample rate data is *much* faster than for | 75 | 75 | % The calculation for fixed sample rate data is *much* faster than for | |
% time-stamp data. You may wish to run the rate-based calculation first, | 76 | 76 | % time-stamp data. You may wish to run the rate-based calculation first, | |
% then compare with time-stamp-based. Often the differences are insignificant. | 77 | 77 | % then compare with time-stamp-based. Often the differences are insignificant. | |
% To show the "tau bins" (y_k samples) on the data plot, set the variable | 78 | 78 | % To show the "tau bins" (y_k samples) on the data plot, set the variable | |
% TAUBIN to 1 (search for "#TAUBIN"). | 79 | 79 | % TAUBIN to 1 (search for "#TAUBIN"). | |
% You can choose between loglog and semilog plotting of results by | 80 | 80 | % You can choose between loglog and semilog plotting of results by | |
% commenting in/out the appropriate line. Search for "#PLOTLOG". | 81 | 81 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |
% I recommend installing "dsplot.m", which improves the performance of | 82 | 82 | % I recommend installing "dsplot.m", which improves the performance of | |
% plotting large data sets. Download from File Exchange, File ID: #15850. | 83 | 83 | % plotting large data sets. Download from File Exchange, File ID: #15850. | |
% allan.m will use dsplot.m if it is present on your MATLAB path. | 84 | 84 | % allan.m will use dsplot.m if it is present on your MATLAB path. | |
% This function has been validated using the test data from NBS Monograph | 85 | 85 | % This function has been validated using the test data from NBS Monograph | |
% 140, the 1000-point test data set given by Riley [1], and the example data | 86 | 86 | % 140, the 1000-point test data set given by Riley [1], and the example data | |
% given in IEEE standard 1139-1999, Annex C. | 87 | 87 | % given in IEEE standard 1139-1999, Annex C. | |
% The author welcomes other validation results, see contact info below. | 88 | 88 | % The author welcomes other validation results, see contact info below. | |
% | 89 | 89 | % | |
% For more information, see: | 90 | 90 | % For more information, see: | |
% [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | 91 | 91 | % [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | |
% Available on the web: | 92 | 92 | % Available on the web: | |
% http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | 93 | 93 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |
% | 94 | 94 | % | |
% | 95 | 95 | % | |
% M.A. Hopcroft | 96 | 96 | % M.A. Hopcroft | |
% mhopeng at gmail dot com | 97 | 97 | % mhopeng at gmail dot com | |
% | 98 | 98 | % | |
% I welcome your comments and feedback! | 99 | 99 | % I welcome your comments and feedback! | |
% | 100 | 100 | % | |
% MH Mar2014 | 101 | 101 | % MH Mar2014 | |
% v2.24 fix bug related to generating freq data from phase with timestamps | 102 | 102 | % v2.24 fix bug related to generating freq data from phase with timestamps | |
% (thanks to S. David-Grignot for finding the bug) | 103 | 103 | % (thanks to S. David-Grignot for finding the bug) | |
% MH Oct2010 | 104 | 104 | % MH Oct2010 | |
% v2.22 tau truncation to integer groups; tau sort | 105 | 105 | % v2.22 tau truncation to integer groups; tau sort | |
% plotting bugfix | 106 | 106 | % plotting bugfix | |
% v2.20 sychronize updates across allan, allan_overlap, allan_modified | 107 | 107 | % v2.20 sychronize updates across allan, allan_overlap, allan_modified | |
% v2.16 add TAU as output, fixed unusual error with dsplot v1.1 | 108 | 108 | % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 | |
% v2.14 update plotting behaviour, default tau values | 109 | 109 | % v2.14 update plotting behaviour, default tau values | |
% | 110 | 110 | % | |
111 | 111 | |||
versionstr = 'allan v2.24'; | 112 | 112 | versionstr = 'allan v2.24'; | |
113 | 113 | |||
% MH Jun2010 | 114 | 114 | % MH Jun2010 | |
% v2.12 bugfix for rate data row/col orientation | 115 | 115 | % v2.12 bugfix for rate data row/col orientation | |
% add DATA.units for plotting | 116 | 116 | % add DATA.units for plotting | |
% use dsplot.m for plotting | 117 | 117 | % use dsplot.m for plotting | |
% | 118 | 118 | % | |
% MH MAR2010 | 119 | 119 | % MH MAR2010 | |
% v2.1 minor interface and bugfixes | 120 | 120 | % v2.1 minor interface and bugfixes | |
% update data consistency check | 121 | 121 | % update data consistency check | |
% | 122 | 122 | % | |
% MH FEB2010 | 123 | 123 | % MH FEB2010 | |
% v2.0 Consistent code behaviour for all "allan_x.m" functions: | 124 | 124 | % v2.0 Consistent code behaviour for all "allan_x.m" functions: | |
% accept phase data | 125 | 125 | % accept phase data | |
% verbose levels | 126 | 126 | % verbose levels | |
% | 127 | 127 | % | |
% | 128 | 128 | % | |
% MH JAN2010 | 129 | 129 | % MH JAN2010 | |
% v1.84 code cleanup | 130 | 130 | % v1.84 code cleanup | |
% v1.82 typos in comments and code cleanup | 131 | 131 | % v1.82 typos in comments and code cleanup | |
% tau bin plotting changed for performance improvement | 132 | 132 | % tau bin plotting changed for performance improvement | |
% v1.8 Performance improvements: | 133 | 133 | % v1.8 Performance improvements: | |
% vectorize code for rate data | 134 | 134 | % vectorize code for rate data | |
% logical indexing for irregular rate data | 135 | 135 | % logical indexing for irregular rate data | |
% MH APR2008 | 136 | 136 | % MH APR2008 | |
% v1.62 loglog plot option | 137 | 137 | % v1.62 loglog plot option | |
% v1.61 improve error handling, plotting | 138 | 138 | % v1.61 improve error handling, plotting | |
% fix bug in regular data calc for high-rate data | 139 | 139 | % fix bug in regular data calc for high-rate data | |
% fix bug in timestamp data calc for large starting gap | 140 | 140 | % fix bug in timestamp data calc for large starting gap | |
% (thanks to C. B. Ruiz for identifying these bugs) | 141 | 141 | % (thanks to C. B. Ruiz for identifying these bugs) | |
% uses timestamps for DATA.rate=0 | 142 | 142 | % uses timestamps for DATA.rate=0 | |
% progress indicator for large timestamp data processing | 143 | 143 | % progress indicator for large timestamp data processing | |
% MH JUN2007 | 144 | 144 | % MH JUN2007 | |
% v1.54 Improve data plotting and optional bin plotting | 145 | 145 | % v1.54 Improve data plotting and optional bin plotting | |
% MH FEB2007 | 146 | 146 | % MH FEB2007 | |
% v1.5 use difference from median for plotting | 147 | 147 | % v1.5 use difference from median for plotting | |
% added MAD calculation for outlier detection | 148 | 148 | % added MAD calculation for outlier detection | |
% MH JAN2007 | 149 | 149 | % MH JAN2007 | |
% v1.48 plotting typos fixes | 150 | 150 | % v1.48 plotting typos fixes | |
% MH DEC2006 | 151 | 151 | % MH DEC2006 | |
% v1.46 hack to plot error bars | 152 | 152 | % v1.46 hack to plot error bars | |
% v1.44 further validation (Riley 1000-pt) | 153 | 153 | % v1.44 further validation (Riley 1000-pt) | |
% plot mean and std | 154 | 154 | % plot mean and std | |
% MH NOV2006 | 155 | 155 | % MH NOV2006 | |
% v1.42 typo fix comments | 156 | 156 | % v1.42 typo fix comments | |
% v1.4 fix irregular rate algorithm | 157 | 157 | % v1.4 fix irregular rate algorithm | |
% irregular algorithm rejects tau less than max gap in time data | 158 | 158 | % irregular algorithm rejects tau less than max gap in time data | |
% validate both algorithms using test data from NBS Monograph 140 | 159 | 159 | % validate both algorithms using test data from NBS Monograph 140 | |
% v1.3 fix time calc if data.time not present | 160 | 160 | % v1.3 fix time calc if data.time not present | |
% add error bars (not possible due to bug in MATLAB R14SP3) | 161 | 161 | % add error bars (not possible due to bug in MATLAB R14SP3) | |
% remove offset calculation | 162 | 162 | % remove offset calculation | |
% v1.24 improve feedback | 163 | 163 | % v1.24 improve feedback | |
% MH SEP2006 | 164 | 164 | % MH SEP2006 | |
% v1.22 updated comments | 165 | 165 | % v1.22 updated comments | |
% v1.2 errors and warnings | 166 | 166 | % v1.2 errors and warnings | |
% v1.1 handle irregular interval data | 167 | 167 | % v1.1 handle irregular interval data | |
%#ok<*AGROW> | 168 | 168 | %#ok<*AGROW> | |
169 | 169 | |||
% defaults | 170 | 170 | % defaults | |
if nargin < 4, verbose=2; end | 171 | 171 | if nargin < 4, verbose=2; end | |
if nargin < 3, name=''; end | 172 | 172 | if nargin < 3, name=''; end | |
if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | 173 | 173 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |
174 | 174 | |||
% plot "tau bins"? #TAUBIN | 175 | 175 | % plot "tau bins"? #TAUBIN | |
TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance | 176 | 176 | TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance | |
177 | 177 | |||
% Formatting for plots | 178 | 178 | % Formatting for plots | |
FontName = 'Arial'; | 179 | 179 | FontName = 'Arial'; | |
FontSize = 14; | 180 | 180 | FontSize = 14; | |
plotlinewidth=2; | 181 | 181 | plotlinewidth=2; | |
182 | 182 | |||
if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end | 183 | 183 | if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end | |
184 | 184 | |||
%% Data consistency checks | 185 | 185 | %% Data consistency checks | |
if ~(isfield(data,'phase') || isfield(data,'freq')) | 186 | 186 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |
error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | 187 | 187 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
end | 188 | 188 | end | |
if isfield(data,'time') | 189 | 189 | if isfield(data,'time') | |
if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | 190 | 190 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | 191 | 191 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
error('The time and freq vectors are not the same length. See help for details. [con2]'); | 192 | 192 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
else | 193 | 193 | else | |
error('The time and phase vectors are not the same length. See help for details. [con1]'); | 194 | 194 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
end | 195 | 195 | end | |
end | 196 | 196 | end | |
if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | 197 | 197 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | 198 | 198 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
end | 199 | 199 | end | |
if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | 200 | 200 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | 201 | 201 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
end | 202 | 202 | end | |
if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | 203 | 203 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
error('The time vector contains invalid elements (NaN/Inf). [con5]'); | 204 | 204 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
end | 205 | 205 | end | |
end | 206 | 206 | end | |
207 | 207 | |||
% sort tau vector | 208 | 208 | % sort tau vector | |
tau=sort(tau); | 209 | 209 | tau=sort(tau); | |
210 | 210 | |||
211 | 211 | |||
%% Basic statistical tests on the data set | 212 | 212 | %% Basic statistical tests on the data set | |
if ~isfield(data,'freq') | 213 | 213 | if ~isfield(data,'freq') | |
if isfield(data,'rate') && data.rate ~= 0 | 214 | 214 | if isfield(data,'rate') && data.rate ~= 0 | |
data.freq=diff(data.phase).*data.rate; | 215 | 215 | data.freq=diff(data.phase).*data.rate; | |
elseif isfield(data,'time') | 216 | 216 | elseif isfield(data,'time') | |
data.freq=diff(data.phase)./diff(data.time); | 217 | 217 | data.freq=diff(data.phase)./diff(data.time); | |
end | 218 | 218 | end | |
if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | 219 | 219 | if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
data.time(1)=[]; % make time stamps correspond to freq data | 220 | 220 | data.time(1)=[]; % make time stamps correspond to freq data | |
end | 221 | 221 | end | |
if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | 222 | 222 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |
223 | 223 | |||
s.numpoints=length(data.freq); | 224 | 224 | s.numpoints=length(data.freq); | |
s.max=max(data.freq); | 225 | 225 | s.max=max(data.freq); | |
s.min=min(data.freq); | 226 | 226 | s.min=min(data.freq); | |
s.mean=mean(data.freq); | 227 | 227 | s.mean=mean(data.freq); | |
s.median=median(data.freq); | 228 | 228 | s.median=median(data.freq); | |
if isfield(data,'time') | 229 | 229 | if isfield(data,'time') | |
if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | 230 | 230 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | 231 | 231 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
elseif isfield(data,'rate') && data.rate ~= 0; | 232 | 232 | elseif isfield(data,'rate') && data.rate ~= 0; | |
s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | 233 | 233 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
else | 234 | 234 | else | |
error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | 235 | 235 | error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |
end | 236 | 236 | end | |
s.std=std(data.freq); | 237 | 237 | s.std=std(data.freq); | |
238 | 238 | |||
if verbose >= 2 | 239 | 239 | if verbose >= 2 | |
fprintf(1,'allan: input data statistics:\n'); | 240 | 240 | fprintf(1,'allan: input data statistics:\n'); | |
disp(s); | 241 | 241 | disp(s); | |
end | 242 | 242 | end | |
243 | 243 | |||
244 | 244 | |||
% center at median for plotting | 245 | 245 | % center at median for plotting | |
medianfreq=data.freq-s.median; | 246 | 246 | medianfreq=data.freq-s.median; | |
sm=[]; sme=[]; | 247 | 247 | sm=[]; sme=[]; | |
248 | 248 | |||
% Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | 249 | 249 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |
s.MAD = median(abs(medianfreq)/0.6745); | 250 | 250 | s.MAD = median(abs(medianfreq)/0.6745); | |
if verbose >= 2 | 251 | 251 | if verbose >= 2 | |
fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | 252 | 252 | fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |
end | 253 | 253 | end | |
if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) | 254 | 254 | if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) | |
fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | 255 | 255 | fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
end | 256 | 256 | end | |
257 | 257 | |||
258 | 258 | |||
%%%% | 259 | 259 | %%%% | |
% There are two cases, either using timestamps or fixed sample rate: | 260 | 260 | % There are two cases, either using timestamps or fixed sample rate: | |
261 | 261 | |||
%% Fixed Sample Rate Data | 262 | 262 | %% Fixed Sample Rate Data | |
% If there is a regular interval between measurements, calculation is much | 263 | 263 | % If there is a regular interval between measurements, calculation is much | |
% easier/faster | 264 | 264 | % easier/faster | |
if isfield(data,'rate') && data.rate > 0 % if data rate was given | 265 | 265 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |
if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | 266 | 266 | if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |
267 | 267 | |||
% string for plot title | 268 | 268 | % string for plot title | |
name=[name ' (' num2str(data.rate) ' Hz)']; | 269 | 269 | name=[name ' (' num2str(data.rate) ' Hz)']; | |
270 | 270 | |||
% what is the time interval between data points? | 271 | 271 | % what is the time interval between data points? | |
tmstep = 1/data.rate; | 272 | 272 | tmstep = 1/data.rate; | |
273 | 273 | |||
% Is there time data? Just for curiosity/plotting, does not impact calculation | 274 | 274 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |
if isfield(data,'time') | 275 | 275 | if isfield(data,'time') | |
% adjust time data to remove any starting gap; first time step | 276 | 276 | % adjust time data to remove any starting gap; first time step | |
% should not be zero for comparison with freq data | 277 | 277 | % should not be zero for comparison with freq data | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 278 | 278 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
if verbose >= 2 | 279 | 279 | if verbose >= 2 | |
fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | 280 | 280 | fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |
if (data.rate - 1/mean(diff(dtime))) > 1e-6 | 281 | 281 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | 282 | 282 | fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
end | 283 | 283 | end | |
end | 284 | 284 | end | |
else | 285 | 285 | else | |
% create time axis data using rate (for plotting only) | 286 | 286 | % create time axis data using rate (for plotting only) | |
dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | 287 | 287 | dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |
end | 288 | 288 | end | |
289 | 289 | |||
% check the range of tau values and truncate if necessary | 290 | 290 | % check the range of tau values and truncate if necessary | |
% find halfway point of time record | 291 | 291 | % find halfway point of time record | |
halftime = round(tmstep*length(data.freq)/2); | 292 | 292 | halftime = round(tmstep*length(data.freq)/2); | |
% truncate tau to appropriate values | 293 | 293 | % truncate tau to appropriate values | |
tau = tau(tau >= tmstep & tau <= halftime); | 294 | 294 | tau = tau(tau >= tmstep & tau <= halftime); | |
if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | 295 | 295 | if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
296 | 296 | |||
% save the freq data for the loop | 297 | 297 | % save the freq data for the loop | |
dfreq=data.freq; | 298 | 298 | dfreq=data.freq; | |
% find the number of data points in each tau group | 299 | 299 | % find the number of data points in each tau group | |
m = data.rate.*tau; | 300 | 300 | m = data.rate.*tau; | |
% only integer values allowed (no fractional groups of points) | 301 | 301 | % only integer values allowed (no fractional groups of points) | |
%tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | 302 | 302 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | 303 | 303 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
%m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | 304 | 304 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
m = m(m==round(m)); | 305 | 305 | m = m(m==round(m)); | |
%m=round(m); | 306 | 306 | %m=round(m); | |
307 | 307 | |||
if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | 308 | 308 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |
309 | 309 | |||
% calculate the Allan deviation for each value of tau | 310 | 310 | % calculate the Allan deviation for each value of tau | |
k=0; tic; | 311 | 311 | k=0; tic; | |
for i = tau | 312 | 312 | for i = tau | |
if verbose >= 2, fprintf(1,'%g ',i); end | 313 | 313 | if verbose >= 2, fprintf(1,'%g ',i); end | |
k=k+1; | 314 | 314 | k=k+1; | |
315 | 315 | |||
% truncate frequency set to an even multiple of this tau value | 316 | 316 | % truncate frequency set to an even multiple of this tau value | |
freq=dfreq(1:end-rem(length(dfreq),m(k))); | 317 | 317 | freq=dfreq(1:end-rem(length(dfreq),m(k))); | |
% group the data into tau-length groups or bins | 318 | 318 | % group the data into tau-length groups or bins | |
f = reshape(freq,m(k),[]); % Vectorize! | 319 | 319 | f = reshape(freq,m(k),[]); % Vectorize! | |
% find average in each "tau group", y_k (each colummn of f) | 320 | 320 | % find average in each "tau group", y_k (each colummn of f) | |
fa=mean(f,1); | 321 | 321 | fa=mean(f,1); | |
% first finite difference | 322 | 322 | % first finite difference | |
fd=diff(fa); | 323 | 323 | fd=diff(fa); | |
% calculate two-sample variance for this tau | 324 | 324 | % calculate two-sample variance for this tau | |
M=length(fa); | 325 | 325 | M=length(fa); | |
sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | 326 | 326 | sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
327 | 327 | |||
% estimate error bars | 328 | 328 | % estimate error bars | |
sme(k)=sm(k)/sqrt(M+1); | 329 | 329 | sme(k)=sm(k)/sqrt(M+1); | |
330 | 330 | |||
if TAUBIN == 1 | 331 | 331 | if TAUBIN == 1 | |
% save the binning points for plotting | 332 | 332 | % save the binning points for plotting | |
fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | 333 | 333 | fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |
end | 334 | 334 | end | |
335 | 335 | |||
end % repeat for each value of tau | 336 | 336 | end % repeat for each value of tau | |
337 | 337 | |||
if verbose >= 2, fprintf(1,'\n'); end | 338 | 338 | if verbose >= 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | 339 | 339 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
340 | 340 | |||
341 | 341 | |||
342 | 342 | |||
%% Irregular data (timestamp) | 343 | 343 | %% Irregular data (timestamp) | |
elseif isfield(data,'time') | 344 | 344 | elseif isfield(data,'time') | |
% the interval between measurements is irregular | 345 | 345 | % the interval between measurements is irregular | |
% so we must group the data by time | 346 | 346 | % so we must group the data by time | |
if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | 347 | 347 | if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |
348 | 348 | |||
% string for plot title | 349 | 349 | % string for plot title | |
name=[name ' (timestamp)']; | 350 | 350 | name=[name ' (timestamp)']; | |
351 | 351 | |||
% adjust time to remove any initial offset or zero | 352 | 352 | % adjust time to remove any initial offset or zero | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 353 | 353 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
%dtime=data.time; | 354 | 354 | %dtime=data.time; | |
% where is the maximum gap in time record? | 355 | 355 | % where is the maximum gap in time record? | |
gap_pos=find(diff(dtime)==max(diff(dtime))); | 356 | 356 | gap_pos=find(diff(dtime)==max(diff(dtime))); | |
% what is average data spacing? | 357 | 357 | % what is average data spacing? | |
avg_gap = mean(diff(dtime)); | 358 | 358 | avg_gap = mean(diff(dtime)); | |
359 | 359 | |||
if verbose >= 2 | 360 | 360 | if verbose >= 2 | |
fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | 361 | 361 | fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | 362 | 362 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | 363 | 363 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | 364 | 364 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
pause; | 365 | 365 | pause; | |
end | 366 | 366 | end | |
367 | 367 | |||
if verbose >= 1 | 368 | 368 | if verbose >= 1 | |
fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | 369 | 369 | fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |
fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | 370 | 370 | fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
if max(diff(dtime)) ~= 1/mean(diff(dtime)) | 371 | 371 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | 372 | 372 | fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
end | 373 | 373 | end | |
if max(diff(dtime)) > 5*avg_gap | 374 | 374 | if max(diff(dtime)) > 5*avg_gap | |
fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | 375 | 375 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
end | 376 | 376 | end | |
end | 377 | 377 | end | |
378 | 378 | |||
379 | 379 | |||
% find halfway point | 380 | 380 | % find halfway point | |
halftime = fix(dtime(end)/2); | 381 | 381 | halftime = fix(dtime(end)/2); | |
% truncate tau to appropriate values | 382 | 382 | % truncate tau to appropriate values | |
tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | 383 | 383 | tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
if isempty(tau) | 384 | 384 | if isempty(tau) | |
error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | 385 | 385 | error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
end | 386 | 386 | end | |
387 | 387 | |||
% save the freq data for the loop | 388 | 388 | % save the freq data for the loop | |
dfreq=data.freq; | 389 | 389 | dfreq=data.freq; | |
dtime=dtime(1:length(dfreq)); | 390 | 390 | dtime=dtime(1:length(dfreq)); | |
391 | 391 | |||
if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | 392 | 392 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |
393 | 393 | |||
k=0; tic; | 394 | 394 | k=0; tic; | |
for i = tau | 395 | 395 | for i = tau | |
if verbose >= 2, fprintf(1,'%d ',i); end | 396 | 396 | if verbose >= 2, fprintf(1,'%d ',i); end | |
397 | 397 | |||
k=k+1; fa=[]; %f=[]; | 398 | 398 | k=k+1; fa=[]; %f=[]; | |
km=0; | 399 | 399 | km=0; | |
400 | 400 | |||
% truncate data set to an even multiple of this tau value | 401 | 401 | % truncate data set to an even multiple of this tau value | |
freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | 402 | 402 | freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |
time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | 403 | 403 | time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |
%freq=dfreq; | 404 | 404 | %freq=dfreq; | |
%time=dtime; | 405 | 405 | %time=dtime; | |
406 | 406 | |||
% break up the data into groups of tau length in sec | 407 | 407 | % break up the data into groups of tau length in sec | |
while i*km < time(end) | 408 | 408 | while i*km < time(end) | |
km=km+1; | 409 | 409 | km=km+1; | |
410 | 410 | |||
% progress bar | 411 | 411 | % progress bar | |
if verbose >= 2 | 412 | 412 | if verbose >= 2 | |
if rem(km,100)==0, fprintf(1,'.'); end | 413 | 413 | if rem(km,100)==0, fprintf(1,'.'); end | |
if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | 414 | 414 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
end | 415 | 415 | end | |
416 | 416 | |||
f = freq(i*(km-1) < time & time <= i*km); | 417 | 417 | f = freq(i*(km-1) < time & time <= i*km); | |
f = f(~isnan(f)); % make sure values are valid | 418 | 418 | f = f(~isnan(f)); % make sure values are valid | |
419 | 419 | |||
if ~isempty(f) | 420 | 420 | if ~isempty(f) | |
fa(km)=mean(f); | 421 | 421 | fa(km)=mean(f); | |
else | 422 | 422 | else | |
fa(km)=0; | 423 | 423 | fa(km)=0; | |
end | 424 | 424 | end | |
425 | 425 | |||
if TAUBIN == 1 % WARNING: this has a significant impact on performance | 426 | 426 | if TAUBIN == 1 % WARNING: this has a significant impact on performance | |
% save the binning points for plotting | 427 | 427 | % save the binning points for plotting | |
%if find(time <= i*km) > 0 | 428 | 428 | %if find(time <= i*km) > 0 | |
fs(k,km)=max(time(time <= i*km)); | 429 | 429 | fs(k,km)=max(time(time <= i*km)); | |
%else | 430 | 430 | %else | |
if isempty(fs(k,km)) | 431 | 431 | if isempty(fs(k,km)) | |
fs(k,km)=0; | 432 | 432 | fs(k,km)=0; | |
end | 433 | 433 | end | |
fval{k}=fa; | 434 | 434 | fval{k}=fa; | |
end % save tau bin plot points | 435 | 435 | end % save tau bin plot points | |
436 | 436 | |||
end | 437 | 437 | end | |
438 | 438 | |||
if verbose >= 2, fprintf(1,'\n'); end | 439 | 439 | if verbose >= 2, fprintf(1,'\n'); end | |
440 | 440 | |||
% first finite difference of the averaged results | 441 | 441 | % first finite difference of the averaged results | |
fd=diff(fa); | 442 | 442 | fd=diff(fa); | |
% calculate Allan deviation for this tau | 443 | 443 | % calculate Allan deviation for this tau | |
M=length(fa); | 444 | 444 | M=length(fa); | |
sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | 445 | 445 | sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
446 | 446 | |||
% estimate error bars | 447 | 447 | % estimate error bars | |
sme(k)=sm(k)/sqrt(M+1); | 448 | 448 | sme(k)=sm(k)/sqrt(M+1); | |
449 | 449 | |||
450 | 450 | |||
end | 451 | 451 | end | |
452 | 452 | |||
if verbose == 2, fprintf(1,'\n'); end | 453 | 453 | if verbose == 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | 454 | 454 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
455 | 455 | |||
456 | 456 | |||
else | 457 | 457 | else | |
error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | 458 | 458 | error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
end | 459 | 459 | end | |
460 | 460 | |||
461 | 461 | |||
%%%%%%%% | 462 | 462 | %%%%%%%% | |
%% Plotting | 463 | 463 | %% Plotting | |
464 | 464 | |||
if verbose >= 2 % show all data | 465 | 465 | if verbose >= 2 % show all data | |
466 | 466 | |||
% plot the frequency data, centered on median | 467 | 467 | % plot the frequency data, centered on median | |
if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | 468 | 468 | if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
try | 469 | 469 | try | |
% dsplot makes a new figure | 470 | 470 | % dsplot makes a new figure | |
hd=dsplot(dtime,medianfreq); | 471 | 471 | hd=dsplot(dtime,medianfreq); | |
catch ME | 472 | 472 | catch ME | |
figure; | 473 | 473 | figure; | |
if length(dtime) ~= length(medianfreq) | 474 | 474 | if length(dtime) ~= length(medianfreq) | |
fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | 475 | 475 | fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |
end | 476 | 476 | end | |
hd=plot(dtime,medianfreq); | 477 | 477 | hd=plot(dtime,medianfreq); | |
if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | 478 | 478 | if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | 479 | 479 | if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
end | 480 | 480 | end | |
set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | 481 | 481 | set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
hold on; | 482 | 482 | hold on; | |
483 | 483 | |||
% show center (0) | 484 | 484 | % show center (0) | |
plot(xlim,[0 0],':k'); | 485 | 485 | plot(xlim,[0 0],':k'); | |
% show 5x Median Absolute Deviation (MAD) values | 486 | 486 | % show 5x Median Absolute Deviation (MAD) values | |
hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | 487 | 487 | hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |
plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | 488 | 488 | plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |
% show linear fit line | 489 | 489 | % show linear fit line | |
hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | 490 | 490 | hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | 491 | 491 | title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
%set(get(gca,'Title'),'Interpreter','none'); | 492 | 492 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | 493 | 493 | xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
if isfield(data,'units') | 494 | 494 | if isfield(data,'units') | |
ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | 495 | 495 | ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
else | 496 | 496 | else | |
ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | 497 | 497 | ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
end | 498 | 498 | end | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 499 | 499 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | 500 | 500 | legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
% tighten up | 501 | 501 | % tighten up | |
xlim([dtime(1) dtime(end)]); | 502 | 502 | xlim([dtime(1) dtime(end)]); | |
503 | 503 | |||
504 | 504 | |||
% Optional tau bin (y_k samples) plot | 505 | 505 | % Optional tau bin (y_k samples) plot | |
if TAUBIN == 1 | 506 | 506 | if TAUBIN == 1 | |
% plot the tau divisions on the data plot | 507 | 507 | % plot the tau divisions on the data plot | |
rfs=size(fs,1); | 508 | 508 | rfs=size(fs,1); | |
colororder=get(gca,'ColorOrder'); | 509 | 509 | colororder=get(gca,'ColorOrder'); | |
axis tight; kc=2; | 510 | 510 | axis tight; kc=2; | |
%ap=axis; | 511 | 511 | %ap=axis; | |
for j=1:rfs | 512 | 512 | for j=1:rfs | |
kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | 513 | 513 | kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | |
%for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | 514 | 514 | %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | |
for b=1:find(fs(j,:), 1, 'last' ); | 515 | 515 | for b=1:find(fs(j,:), 1, 'last' ); | |
% plot the tau division boundaries | 516 | 516 | % plot the tau division boundaries | |
%plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | 517 | 517 | %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | |
% plot tau group y values | 518 | 518 | % plot tau group y values | |
if b == 1 | 519 | 519 | if b == 1 | |
plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | 520 | 520 | plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
else | 521 | 521 | else | |
plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | 522 | 522 | plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
end | 523 | 523 | end | |
end | 524 | 524 | end | |
end | 525 | 525 | end | |
axis auto | 526 | 526 | axis auto | |
end % End optional bin plot | 527 | 527 | end % End optional bin plot | |
528 | 528 | |||
end % end plot raw data | 529 | 529 | end % end plot raw data | |
530 | 530 | |||
531 | 531 | |||
if verbose >= 1 % show ADEV results | 532 | 532 | if verbose >= 1 % show ADEV results | |
533 | 533 | |||
% plot Allan deviation results | 534 | 534 | % plot Allan deviation results | |
if ~isempty(sm) | 535 | 535 | if ~isempty(sm) | |
figure | 536 | 536 | figure | |
537 | 537 | |||
% Choose loglog or semilogx plot here #PLOTLOG | 538 | 538 | % Choose loglog or semilogx plot here #PLOTLOG | |
%semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 539 | 539 | %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 540 | 540 | loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
541 | 541 | |||
% in R14SP3, there is a bug that screws up the error bars on a semilog plot. | 542 | 542 | % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
% When this is fixed in a future release, uncomment below to use normal errorbars | 543 | 543 | % When this is fixed in a future release, uncomment below to use normal errorbars | |
%errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | 544 | 544 | %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
% this is a hack to approximate the error bars | 545 | 545 | % this is a hack to approximate the error bars | |
hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | 546 | 546 | hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
547 | 547 | |||
grid on; | 548 | 548 | grid on; | |
title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | 549 | 549 | title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
%set(get(gca,'Title'),'Interpreter','none'); | 550 | 550 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | 551 | 551 | xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
if isfield(data,'units') | 552 | 552 | if isfield(data,'units') | |
ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | 553 | 553 | ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
else | 554 | 554 | else | |
ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | 555 | 555 | ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
end | 556 | 556 | end | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 557 | 557 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
% expand the x axis a little bit so that the errors bars look nice | 558 | 558 | % expand the x axis a little bit so that the errors bars look nice | |
adax = axis; | 559 | 559 | adax = axis; | |
axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | 560 | 560 | axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
561 | 561 | |||
% display the minimum value | 562 | 562 | % display the minimum value | |
fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | 563 | 563 | fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
564 | 564 | |||
elseif verbose >= 1 | 565 | 565 | elseif verbose >= 1 | |
fprintf(1,'allan: WARNING: no values calculated.\n'); | 566 | 566 | fprintf(1,'allan: WARNING: no values calculated.\n'); | |
fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | 567 | 567 | fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
fprintf(1,'Type "help allan" for more information.\n\n'); | 568 | 568 | fprintf(1,'Type "help allan" for more information.\n\n'); | |
end | 569 | 569 | end | |
570 | 570 | |||
end % end plot ADEV data | 571 | 571 | end % end plot ADEV data | |
572 | 572 | |||
retval = sm; | 573 | 573 | retval = sm; | |
errorb = sme; | 574 | 574 | errorb = sme; | |
575 | 575 | |||
return | 576 | 576 | return | |
577 | 577 | |||
allan_cov.m
function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose) | 1 | 1 | function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose) | |
% ALLAN Compute the Allan deviation for a set of time-domain frequency data | 2 | 2 | % ALLAN Compute the Allan deviation for a set of time-domain frequency data | |
% [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE) | 3 | 3 | % [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE) | |
% | 4 | 4 | % | |
% Inputs: | 5 | 5 | % Inputs: | |
% DATA should be a structure and have the following fields: | 6 | 6 | % DATA should be a structure and have the following fields: | |
% DATA.freq or DATA.phase | 7 | 7 | % DATA.freq or DATA.phase | |
% A vector of fractional frequency measurements (df/f) in | 8 | 8 | % A vector of fractional frequency measurements (df/f) in | |
% DATA.freq *or* phase offset data (seconds) in DATA.phase . | 9 | 9 | % DATA.freq *or* phase offset data (seconds) in DATA.phase . | |
% If frequency data is not present, it will be generated by | 10 | 10 | % If frequency data is not present, it will be generated by | |
% differentiating the phase data. | 11 | 11 | % differentiating the phase data. | |
% If both fields are present, then DATA.freq will be used. | 12 | 12 | % If both fields are present, then DATA.freq will be used. | |
% Note: for general-purpose calculations of Allan deviation, | 13 | 13 | % Note: for general-purpose calculations of Allan deviation, | |
% (i.e. a two-sample variance) use DATA.freq . | 14 | 14 | % (i.e. a two-sample variance) use DATA.freq . | |
% | 15 | 15 | % | |
% DATA.rate or DATA.time | 16 | 16 | % DATA.rate or DATA.time | |
% The sampling rate in Hertz (DATA.rate) or a vector of | 17 | 17 | % The sampling rate in Hertz (DATA.rate) or a vector of | |
% timestamps for each measurement in seconds (DATA.time). | 18 | 18 | % timestamps for each measurement in seconds (DATA.time). | |
% DATA.rate is used if both fields are present. | 19 | 19 | % DATA.rate is used if both fields are present. | |
% If DATA.rate == 0, then the timestamps are used. | 20 | 20 | % If DATA.rate == 0, then the timestamps are used. | |
% | 21 | 21 | % | |
% DATA.units (optional) | 22 | 22 | % DATA.units (optional) | |
% The units for the data. If present, the string DATA.units | 23 | 23 | % The units for the data. If present, the string DATA.units | |
% is added to the plot y-axis label. | 24 | 24 | % is added to the plot y-axis label. | |
% | 25 | 25 | % | |
% TAU is an array of tau values for computing Allan deviation. | 26 | 26 | % TAU is an array of tau values for computing Allan deviation. | |
% TAU values must be divisible by 1/DATA.rate (data points cannot be | 27 | 27 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |
% grouped in fractional quantities!) and invalid values are ignored. | 28 | 28 | % grouped in fractional quantities!) and invalid values are ignored. | |
% Leave empty to use default values. | 29 | 29 | % Leave empty to use default values. | |
% NAME is an optional label that is added to the plot titles. | 30 | 30 | % NAME is an optional label that is added to the plot titles. | |
% VERBOSE sets the level of status messages: | 31 | 31 | % VERBOSE sets the level of status messages: | |
% 0 = silent & no data plots; | 32 | 32 | % 0 = silent & no data plots; | |
% 1 = status messages & minimum plots; | 33 | 33 | % 1 = status messages & minimum plots; | |
% 2 = all messages and plots (default) | 34 | 34 | % 2 = all messages and plots (default) | |
% | 35 | 35 | % | |
% Outputs: | 36 | 36 | % Outputs: | |
% RETVAL is the array of Allan deviation values at each TAU. | 37 | 37 | % RETVAL is the array of Allan deviation values at each TAU. | |
% S is an optional output of other statistical measures of the data (mean, std, etc). | 38 | 38 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |
% ERRORB is an optional output containing the error estimates for a 1-sigma | 39 | 39 | % ERRORB is an optional output containing the error estimates for a 1-sigma | |
% confidence interval. These values are shown on the figure for each point. | 40 | 40 | % confidence interval. These values are shown on the figure for each point. | |
% TAU is an optional output containing the array of tau values used in the | 41 | 41 | % TAU is an optional output containing the array of tau values used in the | |
% calculation (which may be a truncated subset of the input or default values). | 42 | 42 | % calculation (which may be a truncated subset of the input or default values). | |
% | 43 | 43 | % | |
% Example: | 44 | 44 | % Example: | |
% | 45 | 45 | % | |
% To compute the Allan deviation for the data in the variable "lt": | 46 | 46 | % To compute the Allan deviation for the data in the variable "lt": | |
% >> lt | 47 | 47 | % >> lt | |
% lt = | 48 | 48 | % lt = | |
% freq: [1x86400 double] | 49 | 49 | % freq: [1x86400 double] | |
% rate: 0.5 | 50 | 50 | % rate: 0.5 | |
% | 51 | 51 | % | |
% Use: | 52 | 52 | % Use: | |
% | 53 | 53 | % | |
% >> ad = allan(lt,[2 10 100],'lt data',1); | 54 | 54 | % >> ad = allan(lt,[2 10 100],'lt data',1); | |
% | 55 | 55 | % | |
% The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | 56 | 56 | % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |
% 1-sigma confidence intervals will be indicated by vertical lines at each point. | 57 | 57 | % 1-sigma confidence intervals will be indicated by vertical lines at each point. | |
% You can also use the default settings, which are usually a good starting point: | 58 | 58 | % You can also use the default settings, which are usually a good starting point: | |
% | 59 | 59 | % | |
% >> ad = allan(lt); | 60 | 60 | % >> ad = allan(lt); | |
% | 61 | 61 | % | |
% | 62 | 62 | % | |
% Notes: | 63 | 63 | % Notes: | |
% This function calculates the standard Allan deviation (ADEV), *not* the | 64 | 64 | % This function calculates the standard Allan deviation (ADEV), *not* the | |
% overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV. | 65 | 65 | % overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV. | |
% The calculation is performed using fractional frequency data. If only | 66 | 66 | % The calculation is performed using fractional frequency data. If only | |
% phase data is provided, frequency data is generated by differentiating | 67 | 67 | % phase data is provided, frequency data is generated by differentiating | |
% the phase data. | 68 | 68 | % the phase data. | |
% No pre-processing of the data is performed, except to remove any | 69 | 69 | % No pre-processing of the data is performed, except to remove any | |
% initial offset (i.e., starting gap) in the time record. | 70 | 70 | % initial offset (i.e., starting gap) in the time record. | |
% For rate-based data, ADEV is computed only for tau values greater than the | 71 | 71 | % For rate-based data, ADEV is computed only for tau values greater than the | |
% minimum time between samples and less than the half the total time. For | 72 | 72 | % minimum time between samples and less than the half the total time. For | |
% time-stamped data, only tau values greater than the maximum gap between | 73 | 73 | % time-stamped data, only tau values greater than the maximum gap between | |
% samples and less than half the total time are used. | 74 | 74 | % samples and less than half the total time are used. | |
% The calculation for fixed sample rate data is *much* faster than for | 75 | 75 | % The calculation for fixed sample rate data is *much* faster than for | |
% time-stamp data. You may wish to run the rate-based calculation first, | 76 | 76 | % time-stamp data. You may wish to run the rate-based calculation first, | |
% then compare with time-stamp-based. Often the differences are insignificant. | 77 | 77 | % then compare with time-stamp-based. Often the differences are insignificant. | |
% To show the "tau bins" (y_k samples) on the data plot, set the variable | 78 | 78 | % To show the "tau bins" (y_k samples) on the data plot, set the variable | |
% TAUBIN to 1 (search for "#TAUBIN"). | 79 | 79 | % TAUBIN to 1 (search for "#TAUBIN"). | |
% You can choose between loglog and semilog plotting of results by | 80 | 80 | % You can choose between loglog and semilog plotting of results by | |
% commenting in/out the appropriate line. Search for "#PLOTLOG". | 81 | 81 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |
% I recommend installing "dsplot.m", which improves the performance of | 82 | 82 | % I recommend installing "dsplot.m", which improves the performance of | |
% plotting large data sets. Download from File Exchange, File ID: #15850. | 83 | 83 | % plotting large data sets. Download from File Exchange, File ID: #15850. | |
% allan.m will use dsplot.m if it is present on your MATLAB path. | 84 | 84 | % allan.m will use dsplot.m if it is present on your MATLAB path. | |
% This function has been validated using the test data from NBS Monograph | 85 | 85 | % This function has been validated using the test data from NBS Monograph | |
% 140, the 1000-point test data set given by Riley [1], and the example data | 86 | 86 | % 140, the 1000-point test data set given by Riley [1], and the example data | |
% given in IEEE standard 1139-1999, Annex C. | 87 | 87 | % given in IEEE standard 1139-1999, Annex C. | |
% The author welcomes other validation results, see contact info below. | 88 | 88 | % The author welcomes other validation results, see contact info below. | |
% | 89 | 89 | % | |
% For more information, see: | 90 | 90 | % For more information, see: | |
% [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | 91 | 91 | % [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | |
% Available on the web: | 92 | 92 | % Available on the web: | |
% http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | 93 | 93 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |
% | 94 | 94 | % | |
% | 95 | 95 | % | |
% M.A. Hopcroft | 96 | 96 | % M.A. Hopcroft | |
% mhopeng at gmail dot com | 97 | 97 | % mhopeng at gmail dot com | |
% | 98 | 98 | % | |
% I welcome your comments and feedback! | 99 | 99 | % I welcome your comments and feedback! | |
% | 100 | 100 | % | |
% MH Mar2014 | 101 | 101 | % MH Mar2014 | |
% v2.24 fix bug related to generating freq data from phase with timestamps | 102 | 102 | % v2.24 fix bug related to generating freq data from phase with timestamps | |
% (thanks to S. David-Grignot for finding the bug) | 103 | 103 | % (thanks to S. David-Grignot for finding the bug) | |
% MH Oct2010 | 104 | 104 | % MH Oct2010 | |
% v2.22 tau truncation to integer groups; tau sort | 105 | 105 | % v2.22 tau truncation to integer groups; tau sort | |
% plotting bugfix | 106 | 106 | % plotting bugfix | |
% v2.20 sychronize updates across allan, allan_overlap, allan_modified | 107 | 107 | % v2.20 sychronize updates across allan, allan_overlap, allan_modified | |
% v2.16 add TAU as output, fixed unusual error with dsplot v1.1 | 108 | 108 | % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 | |
% v2.14 update plotting behaviour, default tau values | 109 | 109 | % v2.14 update plotting behaviour, default tau values | |
% | 110 | 110 | % | |
111 | 111 | |||
versionstr = 'allan v2.24'; | 112 | 112 | versionstr = 'allan v2.24'; | |
113 | 113 | |||
% MH Jun2010 | 114 | 114 | % MH Jun2010 | |
% v2.12 bugfix for rate data row/col orientation | 115 | 115 | % v2.12 bugfix for rate data row/col orientation | |
% add DATA.units for plotting | 116 | 116 | % add DATA.units for plotting | |
% use dsplot.m for plotting | 117 | 117 | % use dsplot.m for plotting | |
% | 118 | 118 | % | |
% MH MAR2010 | 119 | 119 | % MH MAR2010 | |
% v2.1 minor interface and bugfixes | 120 | 120 | % v2.1 minor interface and bugfixes | |
% update data consistency check | 121 | 121 | % update data consistency check | |
% | 122 | 122 | % | |
% MH FEB2010 | 123 | 123 | % MH FEB2010 | |
% v2.0 Consistent code behaviour for all "allan_x.m" functions: | 124 | 124 | % v2.0 Consistent code behaviour for all "allan_x.m" functions: | |
% accept phase data | 125 | 125 | % accept phase data | |
% verbose levels | 126 | 126 | % verbose levels | |
% | 127 | 127 | % | |
% | 128 | 128 | % | |
% MH JAN2010 | 129 | 129 | % MH JAN2010 | |
% v1.84 code cleanup | 130 | 130 | % v1.84 code cleanup | |
% v1.82 typos in comments and code cleanup | 131 | 131 | % v1.82 typos in comments and code cleanup | |
% tau bin plotting changed for performance improvement | 132 | 132 | % tau bin plotting changed for performance improvement | |
% v1.8 Performance improvements: | 133 | 133 | % v1.8 Performance improvements: | |
% vectorize code for rate data | 134 | 134 | % vectorize code for rate data | |
% logical indexing for irregular rate data | 135 | 135 | % logical indexing for irregular rate data | |
% MH APR2008 | 136 | 136 | % MH APR2008 | |
% v1.62 loglog plot option | 137 | 137 | % v1.62 loglog plot option | |
% v1.61 improve error handling, plotting | 138 | 138 | % v1.61 improve error handling, plotting | |
% fix bug in regular data calc for high-rate data | 139 | 139 | % fix bug in regular data calc for high-rate data | |
% fix bug in timestamp data calc for large starting gap | 140 | 140 | % fix bug in timestamp data calc for large starting gap | |
% (thanks to C. B. Ruiz for identifying these bugs) | 141 | 141 | % (thanks to C. B. Ruiz for identifying these bugs) | |
% uses timestamps for DATA.rate=0 | 142 | 142 | % uses timestamps for DATA.rate=0 | |
% progress indicator for large timestamp data processing | 143 | 143 | % progress indicator for large timestamp data processing | |
% MH JUN2007 | 144 | 144 | % MH JUN2007 | |
% v1.54 Improve data plotting and optional bin plotting | 145 | 145 | % v1.54 Improve data plotting and optional bin plotting | |
% MH FEB2007 | 146 | 146 | % MH FEB2007 | |
% v1.5 use difference from median for plotting | 147 | 147 | % v1.5 use difference from median for plotting | |
% added MAD calculation for outlier detection | 148 | 148 | % added MAD calculation for outlier detection | |
% MH JAN2007 | 149 | 149 | % MH JAN2007 | |
% v1.48 plotting typos fixes | 150 | 150 | % v1.48 plotting typos fixes | |
% MH DEC2006 | 151 | 151 | % MH DEC2006 | |
% v1.46 hack to plot error bars | 152 | 152 | % v1.46 hack to plot error bars | |
% v1.44 further validation (Riley 1000-pt) | 153 | 153 | % v1.44 further validation (Riley 1000-pt) | |
% plot mean and std | 154 | 154 | % plot mean and std | |
% MH NOV2006 | 155 | 155 | % MH NOV2006 | |
% v1.42 typo fix comments | 156 | 156 | % v1.42 typo fix comments | |
% v1.4 fix irregular rate algorithm | 157 | 157 | % v1.4 fix irregular rate algorithm | |
% irregular algorithm rejects tau less than max gap in time data | 158 | 158 | % irregular algorithm rejects tau less than max gap in time data | |
% validate both algorithms using test data from NBS Monograph 140 | 159 | 159 | % validate both algorithms using test data from NBS Monograph 140 | |
% v1.3 fix time calc if data.time not present | 160 | 160 | % v1.3 fix time calc if data.time not present | |
% add error bars (not possible due to bug in MATLAB R14SP3) | 161 | 161 | % add error bars (not possible due to bug in MATLAB R14SP3) | |
% remove offset calculation | 162 | 162 | % remove offset calculation | |
% v1.24 improve feedback | 163 | 163 | % v1.24 improve feedback | |
% MH SEP2006 | 164 | 164 | % MH SEP2006 | |
% v1.22 updated comments | 165 | 165 | % v1.22 updated comments | |
% v1.2 errors and warnings | 166 | 166 | % v1.2 errors and warnings | |
% v1.1 handle irregular interval data | 167 | 167 | % v1.1 handle irregular interval data | |
%#ok<*AGROW> | 168 | 168 | %#ok<*AGROW> | |
169 | 169 | |||
% defaults | 170 | 170 | % defaults | |
if nargin < 4, verbose=2; end | 171 | 171 | if nargin < 4, verbose=2; end | |
if nargin < 3, name=''; end | 172 | 172 | if nargin < 3, name=''; end | |
if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | 173 | 173 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |
174 | 174 | |||
% plot "tau bins"? #TAUBIN | 175 | 175 | % plot "tau bins"? #TAUBIN | |
TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance | 176 | 176 | TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance | |
177 | 177 | |||
% Formatting for plots | 178 | 178 | % Formatting for plots | |
FontName = 'Arial'; | 179 | 179 | FontName = 'Arial'; | |
FontSize = 14; | 180 | 180 | FontSize = 14; | |
plotlinewidth=2; | 181 | 181 | plotlinewidth=2; | |
182 | 182 | |||
if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end | 183 | 183 | if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end | |
184 | 184 | |||
%% Data consistency checks | 185 | 185 | %% Data consistency checks | |
if ~(isfield(data,'phase') || isfield(data,'freq')) | 186 | 186 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |
error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | 187 | 187 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
end | 188 | 188 | end | |
if isfield(data,'time') | 189 | 189 | if isfield(data,'time') | |
if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | 190 | 190 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | 191 | 191 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
error('The time and freq vectors are not the same length. See help for details. [con2]'); | 192 | 192 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
else | 193 | 193 | else | |
error('The time and phase vectors are not the same length. See help for details. [con1]'); | 194 | 194 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
end | 195 | 195 | end | |
end | 196 | 196 | end | |
if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | 197 | 197 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | 198 | 198 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
end | 199 | 199 | end | |
if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | 200 | 200 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | 201 | 201 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
end | 202 | 202 | end | |
if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | 203 | 203 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
error('The time vector contains invalid elements (NaN/Inf). [con5]'); | 204 | 204 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
end | 205 | 205 | end | |
end | 206 | 206 | end | |
207 | 207 | |||
% sort tau vector | 208 | 208 | % sort tau vector | |
tau=sort(tau); | 209 | 209 | tau=sort(tau); | |
210 | 210 | |||
211 | 211 | |||
%% Basic statistical tests on the data set | 212 | 212 | %% Basic statistical tests on the data set | |
if ~isfield(data,'freq') | 213 | 213 | if ~isfield(data,'freq') | |
if isfield(data,'rate') && data.rate ~= 0 | 214 | 214 | if isfield(data,'rate') && data.rate ~= 0 | |
data.freq=diff(data.phase).*data.rate; | 215 | 215 | data.freq=diff(data.phase).*data.rate; | |
elseif isfield(data,'time') | 216 | 216 | elseif isfield(data,'time') | |
data.freq=diff(data.phase)./diff(data.time); | 217 | 217 | data.freq=diff(data.phase)./diff(data.time); | |
end | 218 | 218 | end | |
if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | 219 | 219 | if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
data.time(1)=[]; % make time stamps correspond to freq data | 220 | 220 | data.time(1)=[]; % make time stamps correspond to freq data | |
end | 221 | 221 | end | |
if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | 222 | 222 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |
223 | 223 | |||
s.numpoints=length(data.freq); | 224 | 224 | s.numpoints=length(data.freq); | |
s.max=max(data.freq); | 225 | 225 | s.max=max(data.freq); | |
s.min=min(data.freq); | 226 | 226 | s.min=min(data.freq); | |
s.mean=mean(data.freq); | 227 | 227 | s.mean=mean(data.freq); | |
s.median=median(data.freq); | 228 | 228 | s.median=median(data.freq); | |
if isfield(data,'time') | 229 | 229 | if isfield(data,'time') | |
if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | 230 | 230 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | 231 | 231 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
elseif isfield(data,'rate') && data.rate ~= 0; | 232 | 232 | elseif isfield(data,'rate') && data.rate ~= 0; | |
s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | 233 | 233 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
else | 234 | 234 | else | |
error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | 235 | 235 | error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |
end | 236 | 236 | end | |
s.std=std(data.freq); | 237 | 237 | s.std=std(data.freq); | |
238 | 238 | |||
if verbose >= 2 | 239 | 239 | if verbose >= 2 | |
fprintf(1,'allan: input data statistics:\n'); | 240 | 240 | fprintf(1,'allan: input data statistics:\n'); | |
disp(s); | 241 | 241 | disp(s); | |
end | 242 | 242 | end | |
243 | 243 | |||
244 | 244 | |||
% center at median for plotting | 245 | 245 | % center at median for plotting | |
medianfreq=data.freq-s.median; | 246 | 246 | medianfreq=data.freq-s.median; | |
sm=[]; sme=[]; | 247 | 247 | sm=[]; sme=[]; | |
248 | 248 | |||
% Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | 249 | 249 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |
s.MAD = median(abs(medianfreq)/0.6745); | 250 | 250 | s.MAD = median(abs(medianfreq)/0.6745); | |
if verbose >= 2 | 251 | 251 | if verbose >= 2 | |
fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | 252 | 252 | fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |
end | 253 | 253 | end | |
if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) | 254 | 254 | if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) | |
fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | 255 | 255 | fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
end | 256 | 256 | end | |
257 | 257 | |||
258 | 258 | |||
%%%% | 259 | 259 | %%%% | |
% There are two cases, either using timestamps or fixed sample rate: | 260 | 260 | % There are two cases, either using timestamps or fixed sample rate: | |
261 | 261 | |||
%% Fixed Sample Rate Data | 262 | 262 | %% Fixed Sample Rate Data | |
% If there is a regular interval between measurements, calculation is much | 263 | 263 | % If there is a regular interval between measurements, calculation is much | |
% easier/faster | 264 | 264 | % easier/faster | |
if isfield(data,'rate') && data.rate > 0 % if data rate was given | 265 | 265 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |
if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | 266 | 266 | if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |
267 | 267 | |||
% string for plot title | 268 | 268 | % string for plot title | |
name=[name ' (' num2str(data.rate) ' Hz)']; | 269 | 269 | name=[name ' (' num2str(data.rate) ' Hz)']; | |
270 | 270 | |||
% what is the time interval between data points? | 271 | 271 | % what is the time interval between data points? | |
tmstep = 1/data.rate; | 272 | 272 | tmstep = 1/data.rate; | |
273 | 273 | |||
% Is there time data? Just for curiosity/plotting, does not impact calculation | 274 | 274 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |
if isfield(data,'time') | 275 | 275 | if isfield(data,'time') | |
% adjust time data to remove any starting gap; first time step | 276 | 276 | % adjust time data to remove any starting gap; first time step | |
% should not be zero for comparison with freq data | 277 | 277 | % should not be zero for comparison with freq data | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 278 | 278 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
if verbose >= 2 | 279 | 279 | if verbose >= 2 | |
fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | 280 | 280 | fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |
if (data.rate - 1/mean(diff(dtime))) > 1e-6 | 281 | 281 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | 282 | 282 | fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
end | 283 | 283 | end | |
end | 284 | 284 | end | |
else | 285 | 285 | else | |
% create time axis data using rate (for plotting only) | 286 | 286 | % create time axis data using rate (for plotting only) | |
dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | 287 | 287 | dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |
end | 288 | 288 | end | |
289 | 289 | |||
% check the range of tau values and truncate if necessary | 290 | 290 | % check the range of tau values and truncate if necessary | |
% find halfway point of time record | 291 | 291 | % find halfway point of time record | |
halftime = round(tmstep*length(data.freq)/2); | 292 | 292 | halftime = round(tmstep*length(data.freq)/2); | |
% truncate tau to appropriate values | 293 | 293 | % truncate tau to appropriate values | |
tau = tau(tau >= tmstep & tau <= halftime); | 294 | 294 | tau = tau(tau >= tmstep & tau <= halftime); | |
if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | 295 | 295 | if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
296 | 296 | |||
% save the freq data for the loop | 297 | 297 | % save the freq data for the loop | |
dfreq=data.freq; | 298 | 298 | dfreq=data.freq; | |
dfreq2=data.freq2; | 299 | 299 | dfreq2=data.freq2; | |
% find the number of data points in each tau group | 300 | 300 | % find the number of data points in each tau group | |
m = data.rate.*tau; | 301 | 301 | m = data.rate.*tau; | |
% only integer values allowed (no fractional groups of points) | 302 | 302 | % only integer values allowed (no fractional groups of points) | |
%tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | 303 | 303 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | 304 | 304 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
%m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | 305 | 305 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
m = m(m==round(m)); | 306 | 306 | m = m(m==round(m)); | |
%m=round(m); | 307 | 307 | %m=round(m); | |
308 | 308 | |||
if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | 309 | 309 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |
310 | 310 | |||
% calculate the Allan deviation for each value of tau | 311 | 311 | % calculate the Allan deviation for each value of tau | |
k=0; tic; | 312 | 312 | k=0; tic; | |
for i = tau | 313 | 313 | for i = tau | |
if verbose >= 2, fprintf(1,'%g ',i); end | 314 | 314 | if verbose >= 2, fprintf(1,'%g ',i); end | |
k=k+1; | 315 | 315 | k=k+1; | |
316 | 316 | |||
% truncate frequency set to an even multiple of this tau value | 317 | 317 | % truncate frequency set to an even multiple of this tau value | |
freq=dfreq(1:end-rem(length(dfreq),m(k))); | 318 | 318 | freq=dfreq(1:end-rem(length(dfreq),m(k))); | |
freq2=dfreq2(1:end-rem(length(dfreq2),m(k))); | 319 | 319 | freq2=dfreq2(1:end-rem(length(dfreq2),m(k))); | |
% group the data into tau-length groups or bins | 320 | 320 | % group the data into tau-length groups or bins | |
f = reshape(freq,m(k),[]); % Vectorize! | 321 | 321 | f = reshape(freq,m(k),[]); % Vectorize! | |
f2 = reshape(freq2,m(k),[]); % Vectorize! | 322 | 322 | f2 = reshape(freq2,m(k),[]); % Vectorize! | |
% find average in each "tau group", y_k (each colummn of f) | 323 | 323 | % find average in each "tau group", y_k (each colummn of f) | |
fa=mean(f,1); | 324 | 324 | fa=mean(f,1); | |
fa2=mean(f2,1); | 325 | 325 | fa2=mean(f2,1); | |
% first finite difference | 326 | 326 | % first finite difference | |
fd=diff(fa); | 327 | 327 | fd=diff(fa); | |
fd2=diff(fa2); | 328 | 328 | fd2=diff(fa2); | |
% calculate two-sample variance for this tau | 329 | 329 | % calculate two-sample variance for this tau | |
M=length(fa); | 330 | 330 | M=length(fa); | |
sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2)))); | 331 | 331 | sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2)))); | |
332 | 332 | |||
% estimate error bars | 333 | 333 | % estimate error bars | |
sme(k)=sm(k)/sqrt(M+1); | 334 | 334 | sme(k)=sm(k)/sqrt(M+1); | |
335 | 335 | |||
if TAUBIN == 1 | 336 | 336 | if TAUBIN == 1 | |
% save the binning points for plotting | 337 | 337 | % save the binning points for plotting | |
fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | 338 | 338 | fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |
end | 339 | 339 | end | |
340 | 340 | |||
end % repeat for each value of tau | 341 | 341 | end % repeat for each value of tau | |
342 | 342 | |||
if verbose >= 2, fprintf(1,'\n'); end | 343 | 343 | if verbose >= 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | 344 | 344 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
345 | 345 | |||
346 | 346 | |||
347 | 347 | |||
%% Irregular data (timestamp) | 348 | 348 | %% Irregular data (timestamp) | |
elseif isfield(data,'time') | 349 | 349 | elseif isfield(data,'time') | |
% the interval between measurements is irregular | 350 | 350 | % the interval between measurements is irregular | |
% so we must group the data by time | 351 | 351 | % so we must group the data by time | |
if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | 352 | 352 | if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |
353 | 353 | |||
% string for plot title | 354 | 354 | % string for plot title | |
name=[name ' (timestamp)']; | 355 | 355 | name=[name ' (timestamp)']; | |
356 | 356 | |||
% adjust time to remove any initial offset or zero | 357 | 357 | % adjust time to remove any initial offset or zero | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 358 | 358 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
%dtime=data.time; | 359 | 359 | %dtime=data.time; | |
% where is the maximum gap in time record? | 360 | 360 | % where is the maximum gap in time record? | |
gap_pos=find(diff(dtime)==max(diff(dtime))); | 361 | 361 | gap_pos=find(diff(dtime)==max(diff(dtime))); | |
% what is average data spacing? | 362 | 362 | % what is average data spacing? | |
avg_gap = mean(diff(dtime)); | 363 | 363 | avg_gap = mean(diff(dtime)); | |
364 | 364 | |||
if verbose >= 2 | 365 | 365 | if verbose >= 2 | |
fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | 366 | 366 | fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | 367 | 367 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | 368 | 368 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | 369 | 369 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
pause; | 370 | 370 | pause; | |
end | 371 | 371 | end | |
372 | 372 | |||
if verbose >= 1 | 373 | 373 | if verbose >= 1 | |
fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | 374 | 374 | fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |
fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | 375 | 375 | fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
if max(diff(dtime)) ~= 1/mean(diff(dtime)) | 376 | 376 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | 377 | 377 | fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
end | 378 | 378 | end | |
if max(diff(dtime)) > 5*avg_gap | 379 | 379 | if max(diff(dtime)) > 5*avg_gap | |
fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | 380 | 380 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
end | 381 | 381 | end | |
end | 382 | 382 | end | |
383 | 383 | |||
384 | 384 | |||
% find halfway point | 385 | 385 | % find halfway point | |
halftime = fix(dtime(end)/2); | 386 | 386 | halftime = fix(dtime(end)/2); | |
% truncate tau to appropriate values | 387 | 387 | % truncate tau to appropriate values | |
tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | 388 | 388 | tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
if isempty(tau) | 389 | 389 | if isempty(tau) | |
error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | 390 | 390 | error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
end | 391 | 391 | end | |
392 | 392 | |||
% save the freq data for the loop | 393 | 393 | % save the freq data for the loop | |
dfreq=data.freq; | 394 | 394 | dfreq=data.freq; | |
dtime=dtime(1:length(dfreq)); | 395 | 395 | dtime=dtime(1:length(dfreq)); | |
396 | 396 | |||
if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | 397 | 397 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |
398 | 398 | |||
k=0; tic; | 399 | 399 | k=0; tic; | |
for i = tau | 400 | 400 | for i = tau | |
if verbose >= 2, fprintf(1,'%d ',i); end | 401 | 401 | if verbose >= 2, fprintf(1,'%d ',i); end | |
402 | 402 | |||
k=k+1; fa=[]; %f=[]; | 403 | 403 | k=k+1; fa=[]; %f=[]; | |
km=0; | 404 | 404 | km=0; | |
405 | 405 | |||
% truncate data set to an even multiple of this tau value | 406 | 406 | % truncate data set to an even multiple of this tau value | |
freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | 407 | 407 | freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |
time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | 408 | 408 | time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |
%freq=dfreq; | 409 | 409 | %freq=dfreq; | |
%time=dtime; | 410 | 410 | %time=dtime; | |
411 | 411 | |||
% break up the data into groups of tau length in sec | 412 | 412 | % break up the data into groups of tau length in sec | |
while i*km < time(end) | 413 | 413 | while i*km < time(end) | |
km=km+1; | 414 | 414 | km=km+1; | |
415 | 415 | |||
% progress bar | 416 | 416 | % progress bar | |
if verbose >= 2 | 417 | 417 | if verbose >= 2 | |
if rem(km,100)==0, fprintf(1,'.'); end | 418 | 418 | if rem(km,100)==0, fprintf(1,'.'); end | |
if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | 419 | 419 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
end | 420 | 420 | end | |
421 | 421 | |||
f = freq(i*(km-1) < time & time <= i*km); | 422 | 422 | f = freq(i*(km-1) < time & time <= i*km); | |
f = f(~isnan(f)); % make sure values are valid | 423 | 423 | f = f(~isnan(f)); % make sure values are valid | |
424 | 424 | |||
if ~isempty(f) | 425 | 425 | if ~isempty(f) | |
fa(km)=mean(f); | 426 | 426 | fa(km)=mean(f); | |
else | 427 | 427 | else | |
fa(km)=0; | 428 | 428 | fa(km)=0; | |
end | 429 | 429 | end | |
430 | 430 | |||
if TAUBIN == 1 % WARNING: this has a significant impact on performance | 431 | 431 | if TAUBIN == 1 % WARNING: this has a significant impact on performance | |
% save the binning points for plotting | 432 | 432 | % save the binning points for plotting | |
%if find(time <= i*km) > 0 | 433 | 433 | %if find(time <= i*km) > 0 | |
fs(k,km)=max(time(time <= i*km)); | 434 | 434 | fs(k,km)=max(time(time <= i*km)); | |
%else | 435 | 435 | %else | |
if isempty(fs(k,km)) | 436 | 436 | if isempty(fs(k,km)) | |
fs(k,km)=0; | 437 | 437 | fs(k,km)=0; | |
end | 438 | 438 | end | |
fval{k}=fa; | 439 | 439 | fval{k}=fa; | |
end % save tau bin plot points | 440 | 440 | end % save tau bin plot points | |
441 | 441 | |||
end | 442 | 442 | end | |
443 | 443 | |||
if verbose >= 2, fprintf(1,'\n'); end | 444 | 444 | if verbose >= 2, fprintf(1,'\n'); end | |
445 | 445 | |||
% first finite difference of the averaged results | 446 | 446 | % first finite difference of the averaged results | |
fd=diff(fa); | 447 | 447 | fd=diff(fa); | |
% calculate Allan deviation for this tau | 448 | 448 | % calculate Allan deviation for this tau | |
M=length(fa); | 449 | 449 | M=length(fa); | |
sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | 450 | 450 | sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |
451 | 451 | |||
% estimate error bars | 452 | 452 | % estimate error bars | |
sme(k)=sm(k)/sqrt(M+1); | 453 | 453 | sme(k)=sm(k)/sqrt(M+1); | |
454 | 454 | |||
455 | 455 | |||
end | 456 | 456 | end | |
457 | 457 | |||
if verbose == 2, fprintf(1,'\n'); end | 458 | 458 | if verbose == 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | 459 | 459 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |
460 | 460 | |||
461 | 461 | |||
else | 462 | 462 | else | |
error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | 463 | 463 | error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
end | 464 | 464 | end | |
465 | 465 | |||
466 | 466 | |||
%%%%%%%% | 467 | 467 | %%%%%%%% | |
%% Plotting | 468 | 468 | %% Plotting | |
469 | 469 | |||
if verbose >= 2 % show all data | 470 | 470 | if verbose >= 2 % show all data | |
471 | 471 | |||
% plot the frequency data, centered on median | 472 | 472 | % plot the frequency data, centered on median | |
if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | 473 | 473 | if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
try | 474 | 474 | try | |
% dsplot makes a new figure | 475 | 475 | % dsplot makes a new figure | |
hd=dsplot(dtime,medianfreq); | 476 | 476 | hd=dsplot(dtime,medianfreq); | |
catch ME | 477 | 477 | catch ME | |
figure; | 478 | 478 | figure; | |
if length(dtime) ~= length(medianfreq) | 479 | 479 | if length(dtime) ~= length(medianfreq) | |
fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | 480 | 480 | fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |
end | 481 | 481 | end | |
hd=plot(dtime,medianfreq); | 482 | 482 | hd=plot(dtime,medianfreq); | |
if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | 483 | 483 | if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | 484 | 484 | if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
end | 485 | 485 | end | |
set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | 486 | 486 | set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
hold on; | 487 | 487 | hold on; | |
488 | 488 | |||
% show center (0) | 489 | 489 | % show center (0) | |
plot(xlim,[0 0],':k'); | 490 | 490 | plot(xlim,[0 0],':k'); | |
% show 5x Median Absolute Deviation (MAD) values | 491 | 491 | % show 5x Median Absolute Deviation (MAD) values | |
hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | 492 | 492 | hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |
plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | 493 | 493 | plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |
% show linear fit line | 494 | 494 | % show linear fit line | |
hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | 495 | 495 | hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | 496 | 496 | title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
%set(get(gca,'Title'),'Interpreter','none'); | 497 | 497 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | 498 | 498 | xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
if isfield(data,'units') | 499 | 499 | if isfield(data,'units') | |
ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | 500 | 500 | ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
else | 501 | 501 | else | |
ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | 502 | 502 | ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
end | 503 | 503 | end | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 504 | 504 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | 505 | 505 | legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
% tighten up | 506 | 506 | % tighten up | |
xlim([dtime(1) dtime(end)]); | 507 | 507 | xlim([dtime(1) dtime(end)]); | |
508 | 508 | |||
509 | 509 | |||
% Optional tau bin (y_k samples) plot | 510 | 510 | % Optional tau bin (y_k samples) plot | |
if TAUBIN == 1 | 511 | 511 | if TAUBIN == 1 | |
% plot the tau divisions on the data plot | 512 | 512 | % plot the tau divisions on the data plot | |
rfs=size(fs,1); | 513 | 513 | rfs=size(fs,1); | |
colororder=get(gca,'ColorOrder'); | 514 | 514 | colororder=get(gca,'ColorOrder'); | |
axis tight; kc=2; | 515 | 515 | axis tight; kc=2; | |
%ap=axis; | 516 | 516 | %ap=axis; | |
for j=1:rfs | 517 | 517 | for j=1:rfs | |
kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | 518 | 518 | kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end | |
%for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | 519 | 519 | %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a | |
for b=1:find(fs(j,:), 1, 'last' ); | 520 | 520 | for b=1:find(fs(j,:), 1, 'last' ); | |
% plot the tau division boundaries | 521 | 521 | % plot the tau division boundaries | |
%plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | 522 | 522 | %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); | |
% plot tau group y values | 523 | 523 | % plot tau group y values | |
if b == 1 | 524 | 524 | if b == 1 | |
plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | 525 | 525 | plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
else | 526 | 526 | else | |
plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | 527 | 527 | plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); | |
end | 528 | 528 | end | |
end | 529 | 529 | end | |
end | 530 | 530 | end | |
axis auto | 531 | 531 | axis auto | |
end % End optional bin plot | 532 | 532 | end % End optional bin plot | |
533 | 533 | |||
end % end plot raw data | 534 | 534 | end % end plot raw data | |
535 | 535 | |||
536 | 536 | |||
if verbose >= 1 % show ADEV results | 537 | 537 | if verbose >= 1 % show ADEV results | |
538 | 538 | |||
% plot Allan deviation results | 539 | 539 | % plot Allan deviation results | |
if ~isempty(sm) | 540 | 540 | if ~isempty(sm) | |
figure | 541 | 541 | figure | |
542 | 542 | |||
% Choose loglog or semilogx plot here #PLOTLOG | 543 | 543 | % Choose loglog or semilogx plot here #PLOTLOG | |
%semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 544 | 544 | %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 545 | 545 | loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
546 | 546 | |||
% in R14SP3, there is a bug that screws up the error bars on a semilog plot. | 547 | 547 | % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
% When this is fixed in a future release, uncomment below to use normal errorbars | 548 | 548 | % When this is fixed in a future release, uncomment below to use normal errorbars | |
%errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | 549 | 549 | %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
% this is a hack to approximate the error bars | 550 | 550 | % this is a hack to approximate the error bars | |
hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | 551 | 551 | hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
552 | 552 | |||
grid on; | 553 | 553 | grid on; | |
title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | 554 | 554 | title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
%set(get(gca,'Title'),'Interpreter','none'); | 555 | 555 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | 556 | 556 | xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
if isfield(data,'units') | 557 | 557 | if isfield(data,'units') | |
ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | 558 | 558 | ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
else | 559 | 559 | else | |
ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | 560 | 560 | ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
end | 561 | 561 | end | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 562 | 562 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
% expand the x axis a little bit so that the errors bars look nice | 563 | 563 | % expand the x axis a little bit so that the errors bars look nice | |
adax = axis; | 564 | 564 | adax = axis; | |
axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | 565 | 565 | axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
566 | 566 | |||
% display the minimum value | 567 | 567 | % display the minimum value | |
fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | 568 | 568 | fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
569 | 569 | |||
elseif verbose >= 1 | 570 | 570 | elseif verbose >= 1 | |
fprintf(1,'allan: WARNING: no values calculated.\n'); | 571 | 571 | fprintf(1,'allan: WARNING: no values calculated.\n'); | |
fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | 572 | 572 | fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
fprintf(1,'Type "help allan" for more information.\n\n'); | 573 | 573 | fprintf(1,'Type "help allan" for more information.\n\n'); | |
end | 574 | 574 | end | |
575 | 575 | |||
end % end plot ADEV data | 576 | 576 | end % end plot ADEV data | |
577 | 577 | |||
retval = sm; | 578 | 578 | retval = sm; | |
errorb = sme; | 579 | 579 | errorb = sme; | |
580 | 580 | |||
return | 581 | 581 | return | |
582 | 582 | |||
allan_modified.m
function [retval, s, errorb, tau] = allan_modified(data,tau,name,verbose) | 1 | 1 | function [retval, s, errorb, tau] = allan_modified(data,tau,name,verbose) | |
% ALLAN_MODIFIED Compute the modified Allan deviation for a set of | 2 | 2 | % ALLAN_MODIFIED Compute the modified Allan deviation for a set of | |
% time-domain frequency data | 3 | 3 | % time-domain frequency data | |
% [RETVAL, S, ERRORB, TAU] = ALLAN_MODIFIED(DATA,TAU,NAME,VERBOSE) | 4 | 4 | % [RETVAL, S, ERRORB, TAU] = ALLAN_MODIFIED(DATA,TAU,NAME,VERBOSE) | |
% | 5 | 5 | % | |
% Inputs: | 6 | 6 | % Inputs: | |
% DATA should be a struct and have the following fields: | 7 | 7 | % DATA should be a struct and have the following fields: | |
% DATA.freq or DATA.phase | 8 | 8 | % DATA.freq or DATA.phase | |
% A vector of fractional frequency measurements (df/f) in | 9 | 9 | % A vector of fractional frequency measurements (df/f) in | |
% DATA.freq *or* phase offset data (seconds) in DATA.phase | 10 | 10 | % DATA.freq *or* phase offset data (seconds) in DATA.phase | |
% If phase data is not present, it will be generated by | 11 | 11 | % If phase data is not present, it will be generated by | |
% integrating the fractional frequency data. | 12 | 12 | % integrating the fractional frequency data. | |
% If both fields are present, then DATA.phase will be used. | 13 | 13 | % If both fields are present, then DATA.phase will be used. | |
% | 14 | 14 | % | |
% DATA.rate or DATA.time | 15 | 15 | % DATA.rate or DATA.time | |
% The sampling rate in Hertz (DATA.rate) or a vector of | 16 | 16 | % The sampling rate in Hertz (DATA.rate) or a vector of | |
% timestamps for each measurement in seconds (DATA.time). | 17 | 17 | % timestamps for each measurement in seconds (DATA.time). | |
% DATA.rate is used if both fields are present. | 18 | 18 | % DATA.rate is used if both fields are present. | |
% If DATA.rate == 0, then the timestamps are used. | 19 | 19 | % If DATA.rate == 0, then the timestamps are used. | |
% | 20 | 20 | % | |
% TAU is an array of tau values for computing Allan deviation. | 21 | 21 | % TAU is an array of tau values for computing Allan deviation. | |
% TAU values must be divisible by 1/DATA.rate (data points cannot be | 22 | 22 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |
% grouped in fractional quantities!). Invalid values are ignored. | 23 | 23 | % grouped in fractional quantities!). Invalid values are ignored. | |
% NAME is an optional label that is added to the plot titles. | 24 | 24 | % NAME is an optional label that is added to the plot titles. | |
% VERBOSE sets the level of status messages: | 25 | 25 | % VERBOSE sets the level of status messages: | |
% 0 = silent & no data plots; 1 = status messages; 2 = all messages | 26 | 26 | % 0 = silent & no data plots; 1 = status messages; 2 = all messages | |
% | 27 | 27 | % | |
% Outputs: | 28 | 28 | % Outputs: | |
% RETVAL is the array of modified Allan deviation values at each TAU. | 29 | 29 | % RETVAL is the array of modified Allan deviation values at each TAU. | |
% S is an optional output of other statistical measures of the data (mean, std, etc). | 30 | 30 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |
% ERRORB is an optional output containing the error estimates for a | 31 | 31 | % ERRORB is an optional output containing the error estimates for a | |
% 1-sigma confidence interval. These values are shown on the figure for each point. | 32 | 32 | % 1-sigma confidence interval. These values are shown on the figure for each point. | |
% TAU is an optional output containing the array of tau values used in the | 33 | 33 | % TAU is an optional output containing the array of tau values used in the | |
% calculation (which may be a truncated subset of the input or default values). | 34 | 34 | % calculation (which may be a truncated subset of the input or default values). | |
% | 35 | 35 | % | |
% Example: | 36 | 36 | % Example: | |
% | 37 | 37 | % | |
% To compute the modified Allan deviation for the data in the variable "lt": | 38 | 38 | % To compute the modified Allan deviation for the data in the variable "lt": | |
% >> lt | 39 | 39 | % >> lt | |
% lt = | 40 | 40 | % lt = | |
% freq: [1x86400 double] | 41 | 41 | % freq: [1x86400 double] | |
% rate: 0.5 | 42 | 42 | % rate: 0.5 | |
% | 43 | 43 | % | |
% Use: | 44 | 44 | % Use: | |
% | 45 | 45 | % | |
% >> adm = allan_modified(lt,[2 10 100],'lt data',1); | 46 | 46 | % >> adm = allan_modified(lt,[2 10 100],'lt data',1); | |
% | 47 | 47 | % | |
% The modified Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | 48 | 48 | % The modified Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |
% 1-sigma confidence intervals will be indicated by vertical lines at each point. | 49 | 49 | % 1-sigma confidence intervals will be indicated by vertical lines at each point. | |
% You can also use the default settings, which are usually a good starting point: | 50 | 50 | % You can also use the default settings, which are usually a good starting point: | |
% | 51 | 51 | % | |
% >> adm = allan_modified(lt); | 52 | 52 | % >> adm = allan_modified(lt); | |
% | 53 | 53 | % | |
% | 54 | 54 | % | |
% Notes: | 55 | 55 | % Notes: | |
% This function calculates the modifed Allan deviation (MDEV). | 56 | 56 | % This function calculates the modifed Allan deviation (MDEV). | |
% The calculation is performed using phase data. If only frequency data is | 57 | 57 | % The calculation is performed using phase data. If only frequency data is | |
% provided, phase data is generated by integrating the frequency data. | 58 | 58 | % provided, phase data is generated by integrating the frequency data. | |
% No pre-processing of the data is performed. | 59 | 59 | % No pre-processing of the data is performed. | |
% For rate-based data, MDEV is computed only for tau values greater than the | 60 | 60 | % For rate-based data, MDEV is computed only for tau values greater than the | |
% minimum time between samples and less than the half the total time. For | 61 | 61 | % minimum time between samples and less than the half the total time. For | |
% time-stamped data, only tau values greater than the maximum gap between | 62 | 62 | % time-stamped data, only tau values greater than the maximum gap between | |
% samples and less than half the total time are used. | 63 | 63 | % samples and less than half the total time are used. | |
% The calculation for fixed sample rate data is *much* faster than for | 64 | 64 | % The calculation for fixed sample rate data is *much* faster than for | |
% time-stamp data. You may wish to run the rate-based calculation first, | 65 | 65 | % time-stamp data. You may wish to run the rate-based calculation first, | |
% then compare with time-stamp-based. Often the differences are insignificant. | 66 | 66 | % then compare with time-stamp-based. Often the differences are insignificant. | |
% When phase data is generated by integrating time-stamped frequency data, | 67 | 67 | % When phase data is generated by integrating time-stamped frequency data, | |
% the final data point is dropped, because there is no timestamp for it. | 68 | 68 | % the final data point is dropped, because there is no timestamp for it. | |
% This will create a [usually small] difference between the results from | 69 | 69 | % This will create a [usually small] difference between the results from | |
% analyzing the same data set with timestamp data and analyzing with a | 70 | 70 | % analyzing the same data set with timestamp data and analyzing with a | |
% fixed sample rate. See note in the code near line 350. | 71 | 71 | % fixed sample rate. See note in the code near line 350. | |
% You can choose between loglog and semilog plotting of results by | 72 | 72 | % You can choose between loglog and semilog plotting of results by | |
% commenting in/out the appropriate line. Search for "#PLOTLOG". | 73 | 73 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |
% This function has been validated using the test data from NBS Monograph | 74 | 74 | % This function has been validated using the test data from NBS Monograph | |
% 140, the 1000-point test data set given by Riley [1], and the example data | 75 | 75 | % 140, the 1000-point test data set given by Riley [1], and the example data | |
% given in IEEE standard 1139-1999, Annex C. | 76 | 76 | % given in IEEE standard 1139-1999, Annex C. | |
% The author welcomes other validation results, see contact info below. | 77 | 77 | % The author welcomes other validation results, see contact info below. | |
% | 78 | 78 | % | |
% For more information, see: | 79 | 79 | % For more information, see: | |
% [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | 80 | 80 | % [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | |
% Available on the web: | 81 | 81 | % Available on the web: | |
% http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | 82 | 82 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |
% | 83 | 83 | % | |
% | 84 | 84 | % | |
% M.A. Hopcroft | 85 | 85 | % M.A. Hopcroft | |
% mhopeng at gmail dot com | 86 | 86 | % mhopeng at gmail dot com | |
% | 87 | 87 | % | |
% I welcome your comments and feedback! | 88 | 88 | % I welcome your comments and feedback! | |
% | 89 | 89 | % | |
% MH Mar2014 | 90 | 90 | % MH Mar2014 | |
% v1.24 fix bug related to generating freq data from phase with timestamps | 91 | 91 | % v1.24 fix bug related to generating freq data from phase with timestamps | |
% (thanks to S. David-Grignot for finding the bug) | 92 | 92 | % (thanks to S. David-Grignot for finding the bug) | |
% MH Oct2010 | 93 | 93 | % MH Oct2010 | |
% v1.22 tau truncation to integer groups; tau sort | 94 | 94 | % v1.22 tau truncation to integer groups; tau sort | |
% plotting bugfix | 95 | 95 | % plotting bugfix | |
% v1.20 update to match allan.m (dsplot.m, columns) | 96 | 96 | % v1.20 update to match allan.m (dsplot.m, columns) | |
% discard tau values with timestamp irregularities | 97 | 97 | % discard tau values with timestamp irregularities | |
% | 98 | 98 | % | |
99 | 99 | |||
versionstr = 'allan_modified v1.24'; | 100 | 100 | versionstr = 'allan_modified v1.24'; | |
101 | 101 | |||
% MH MAR2010 | 102 | 102 | % MH MAR2010 | |
% v1.1 bugfixes for irregular sample rates | 103 | 103 | % v1.1 bugfixes for irregular sample rates | |
% update consistency check | 104 | 104 | % update consistency check | |
% | 105 | 105 | % | |
% MH FEB2010 | 106 | 106 | % MH FEB2010 | |
% v1.0 based on allan_overlap v2.0 | 107 | 107 | % v1.0 based on allan_overlap v2.0 | |
% | 108 | 108 | % | |
109 | 109 | |||
%#ok<*AGROW> | 110 | 110 | %#ok<*AGROW> | |
111 | 111 | |||
112 | 112 | |||
% defaults | 113 | 113 | % defaults | |
if nargin < 4, verbose = 2; end | 114 | 114 | if nargin < 4, verbose = 2; end | |
if nargin < 3, name=''; end | 115 | 115 | if nargin < 3, name=''; end | |
if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | 116 | 116 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |
if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v1.1 | 117 | 117 | if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v1.1 | |
118 | 118 | |||
% Formatting for plots | 119 | 119 | % Formatting for plots | |
FontName = 'Arial'; | 120 | 120 | FontName = 'Arial'; | |
FontSize = 14; | 121 | 121 | FontSize = 14; | |
plotlinewidth=2; | 122 | 122 | plotlinewidth=2; | |
123 | 123 | |||
if verbose >= 1, fprintf(1,'allan_modified: %s\n\n',versionstr); end | 124 | 124 | if verbose >= 1, fprintf(1,'allan_modified: %s\n\n',versionstr); end | |
125 | 125 | |||
%% Data consistency checks | 126 | 126 | %% Data consistency checks | |
if ~(isfield(data,'phase') || isfield(data,'freq')) | 127 | 127 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |
error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | 128 | 128 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
end | 129 | 129 | end | |
if isfield(data,'time') | 130 | 130 | if isfield(data,'time') | |
if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | 131 | 131 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | 132 | 132 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
error('The time and freq vectors are not the same length. See help for details. [con2]'); | 133 | 133 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
else | 134 | 134 | else | |
error('The time and phase vectors are not the same length. See help for details. [con1]'); | 135 | 135 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
end | 136 | 136 | end | |
end | 137 | 137 | end | |
if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | 138 | 138 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | 139 | 139 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
end | 140 | 140 | end | |
if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | 141 | 141 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | 142 | 142 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
end | 143 | 143 | end | |
if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | 144 | 144 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
error('The time vector contains invalid elements (NaN/Inf). [con5]'); | 145 | 145 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
end | 146 | 146 | end | |
end | 147 | 147 | end | |
148 | 148 | |||
% sort tau vector | 149 | 149 | % sort tau vector | |
tau=sort(tau); | 150 | 150 | tau=sort(tau); | |
151 | 151 | |||
152 | 152 | |||
%% Basic statistical tests on the data set | 153 | 153 | %% Basic statistical tests on the data set | |
if ~isfield(data,'freq') | 154 | 154 | if ~isfield(data,'freq') | |
if isfield(data,'rate') && data.rate ~= 0 | 155 | 155 | if isfield(data,'rate') && data.rate ~= 0 | |
data.freq=diff(data.phase).*data.rate; | 156 | 156 | data.freq=diff(data.phase).*data.rate; | |
elseif isfield(data,'time') | 157 | 157 | elseif isfield(data,'time') | |
data.freq=diff(data.phase)./diff(data.time); | 158 | 158 | data.freq=diff(data.phase)./diff(data.time); | |
end | 159 | 159 | end | |
if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | 160 | 160 | if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
end | 161 | 161 | end | |
if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | 162 | 162 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |
163 | 163 | |||
s.numpoints=length(data.freq); | 164 | 164 | s.numpoints=length(data.freq); | |
s.max=max(data.freq); | 165 | 165 | s.max=max(data.freq); | |
s.min=min(data.freq); | 166 | 166 | s.min=min(data.freq); | |
s.mean=mean(data.freq); | 167 | 167 | s.mean=mean(data.freq); | |
s.median=median(data.freq); | 168 | 168 | s.median=median(data.freq); | |
if isfield(data,'time') | 169 | 169 | if isfield(data,'time') | |
if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | 170 | 170 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | 171 | 171 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
elseif isfield(data,'rate') && data.rate ~= 0; | 172 | 172 | elseif isfield(data,'rate') && data.rate ~= 0; | |
s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | 173 | 173 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
else | 174 | 174 | else | |
error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]'); | 175 | 175 | error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]'); | |
end | 176 | 176 | end | |
s.std=std(data.freq); | 177 | 177 | s.std=std(data.freq); | |
178 | 178 | |||
if verbose >= 2 | 179 | 179 | if verbose >= 2 | |
fprintf(1,'allan_modified: fractional frequency data statistics:\n'); | 180 | 180 | fprintf(1,'allan_modified: fractional frequency data statistics:\n'); | |
disp(s); | 181 | 181 | disp(s); | |
end | 182 | 182 | end | |
183 | 183 | |||
% scale to median for plotting | 184 | 184 | % scale to median for plotting | |
medianfreq=data.freq-s.median; | 185 | 185 | medianfreq=data.freq-s.median; | |
sm=[]; sme=[]; | 186 | 186 | sm=[]; sme=[]; | |
187 | 187 | |||
% Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | 188 | 188 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |
MAD = median(abs(medianfreq)/0.6745); | 189 | 189 | MAD = median(abs(medianfreq)/0.6745); | |
if verbose >= 1 && any(abs(medianfreq) > 5*MAD) | 190 | 190 | if verbose >= 1 && any(abs(medianfreq) > 5*MAD) | |
fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | 191 | 191 | fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
end | 192 | 192 | end | |
193 | 193 | |||
%%%% | 194 | 194 | %%%% | |
% There are two cases, either using timestamps or rate: | 195 | 195 | % There are two cases, either using timestamps or rate: | |
196 | 196 | |||
%% Fixed Sample Rate Data | 197 | 197 | %% Fixed Sample Rate Data | |
% If there is a regular interval between measurements, calculation is much | 198 | 198 | % If there is a regular interval between measurements, calculation is much | |
% easier/faster | 199 | 199 | % easier/faster | |
if isfield(data,'rate') && data.rate > 0 % if data rate was given | 200 | 200 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |
if verbose >= 1 | 201 | 201 | if verbose >= 1 | |
fprintf(1, 'allan_modified: regular data '); | 202 | 202 | fprintf(1, 'allan_modified: regular data '); | |
if isfield(data,'freq') | 203 | 203 | if isfield(data,'freq') | |
fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | 204 | 204 | fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |
elseif isfield(data,'phase') | 205 | 205 | elseif isfield(data,'phase') | |
fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | 206 | 206 | fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |
else | 207 | 207 | else | |
error('\n phase or freq data missing [err10]'); | 208 | 208 | error('\n phase or freq data missing [err10]'); | |
end | 209 | 209 | end | |
end | 210 | 210 | end | |
211 | 211 | |||
% string for plot title | 212 | 212 | % string for plot title | |
name=[name ' (' num2str(data.rate) ' Hz)']; | 213 | 213 | name=[name ' (' num2str(data.rate) ' Hz)']; | |
214 | 214 | |||
% what is the time interval between data points? | 215 | 215 | % what is the time interval between data points? | |
tmstep = 1/data.rate; | 216 | 216 | tmstep = 1/data.rate; | |
217 | 217 | |||
% Is there time data? Just for curiosity/plotting, does not impact calculation | 218 | 218 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |
if isfield(data,'time') | 219 | 219 | if isfield(data,'time') | |
% adjust time data to remove any starting gap; first time step | 220 | 220 | % adjust time data to remove any starting gap; first time step | |
% should not be zero for comparison with freq data | 221 | 221 | % should not be zero for comparison with freq data | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 222 | 222 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1) | 223 | 223 | dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1) | |
if verbose >= 2 | 224 | 224 | if verbose >= 2 | |
fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end)); | 225 | 225 | fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end)); | |
if (data.rate - 1/mean(diff(dtime))) > 1e-6 | 226 | 226 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | 227 | 227 | fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
end | 228 | 228 | end | |
end | 229 | 229 | end | |
else | 230 | 230 | else | |
% create time axis data using rate (for plotting only) | 231 | 231 | % create time axis data using rate (for plotting only) | |
dtime=(tmstep:tmstep:length(data.freq)*tmstep); | 232 | 232 | dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |
end | 233 | 233 | end | |
234 | 234 | |||
235 | 235 | |||
% is phase data present? If not, generate it | 236 | 236 | % is phase data present? If not, generate it | |
if ~isfield(data,'phase') | 237 | 237 | if ~isfield(data,'phase') | |
nfreq=data.freq-s.mean; | 238 | 238 | nfreq=data.freq-s.mean; | |
dphase=zeros(1,length(nfreq)+1); | 239 | 239 | dphase=zeros(1,length(nfreq)+1); | |
dphase(2:end) = cumsum(nfreq).*tmstep; | 240 | 240 | dphase(2:end) = cumsum(nfreq).*tmstep; | |
if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | 241 | 241 | if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
else | 242 | 242 | else | |
dphase=data.phase; | 243 | 243 | dphase=data.phase; | |
end | 244 | 244 | end | |
245 | 245 | |||
246 | 246 | |||
% check the range of tau values and truncate if necessary | 247 | 247 | % check the range of tau values and truncate if necessary | |
% find halfway point of time record | 248 | 248 | % find halfway point of time record | |
halftime = round(tmstep*length(data.freq)/2); | 249 | 249 | halftime = round(tmstep*length(data.freq)/2); | |
% truncate tau to appropriate values | 250 | 250 | % truncate tau to appropriate values | |
tau = tau(tau >= tmstep & tau <= halftime); | 251 | 251 | tau = tau(tau >= tmstep & tau <= halftime); | |
if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | 252 | 252 | if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
253 | 253 | |||
% find the number of data points in each tau group | 254 | 254 | % find the number of data points in each tau group | |
% number of samples | 255 | 255 | % number of samples | |
N=length(dphase); | 256 | 256 | N=length(dphase); | |
m = data.rate.*tau; | 257 | 257 | m = data.rate.*tau; | |
% only integer values allowed (no fractional groups of points) | 258 | 258 | % only integer values allowed (no fractional groups of points) | |
%tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1) | 259 | 259 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1) | |
tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | 260 | 260 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
%m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22 | 261 | 261 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22 | |
m = m(m==round(m)); | 262 | 262 | m = m(m==round(m)); | |
%m=round(m); | 263 | 263 | %m=round(m); | |
264 | 264 | |||
if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end | 265 | 265 | if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end | |
266 | 266 | |||
267 | 267 | |||
% calculate the modified Allan deviation for each value of tau | 268 | 268 | % calculate the modified Allan deviation for each value of tau | |
k=0; tic; | 269 | 269 | k=0; tic; | |
for i = tau | 270 | 270 | for i = tau | |
k=k+1; | 271 | 271 | k=k+1; | |
pa=[]; | 272 | 272 | pa=[]; | |
if verbose >= 2, fprintf(1,'%d ',i); end | 273 | 273 | if verbose >= 2, fprintf(1,'%d ',i); end | |
274 | 274 | |||
mphase = dphase; | 275 | 275 | mphase = dphase; | |
276 | 276 | |||
% calculate overlapping "phase averages" (x_k) | 277 | 277 | % calculate overlapping "phase averages" (x_k) | |
for p=1:m(k) | 278 | 278 | for p=1:m(k) | |
279 | 279 | |||
% truncate frequency set length to an even multiple of this tau value | 280 | 280 | % truncate frequency set length to an even multiple of this tau value | |
mphase=mphase(1:end-rem(length(mphase),m(k))); | 281 | 281 | mphase=mphase(1:end-rem(length(mphase),m(k))); | |
% group phase values | 282 | 282 | % group phase values | |
mp=reshape(mphase,m(k),[]); | 283 | 283 | mp=reshape(mphase,m(k),[]); | |
% find average in each "tau group" (each column of mp) | 284 | 284 | % find average in each "tau group" (each column of mp) | |
pa(p,:)=mean(mp,1); | 285 | 285 | pa(p,:)=mean(mp,1); | |
% shift data vector by -1 and repeat | 286 | 286 | % shift data vector by -1 and repeat | |
mphase=circshift(dphase,(size(dphase)>1)*-p); | 287 | 287 | mphase=circshift(dphase,(size(dphase)>1)*-p); | |
288 | 288 | |||
end | 289 | 289 | end | |
290 | 290 | |||
% create "modified" y_k freq values | 291 | 291 | % create "modified" y_k freq values | |
mfreq=diff(pa,1,2)./i; | 292 | 292 | mfreq=diff(pa,1,2)./i; | |
mfreq=reshape(mfreq,1,[]); | 293 | 293 | mfreq=reshape(mfreq,1,[]); | |
294 | 294 | |||
% calculate modified frequency differences | 295 | 295 | % calculate modified frequency differences | |
mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | 296 | 296 | mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |
mfreqd=diff(mfreqd,1,2); | 297 | 297 | mfreqd=diff(mfreqd,1,2); | |
mfreqd=reshape(mfreqd,1,[]); | 298 | 298 | mfreqd=reshape(mfreqd,1,[]); | |
299 | 299 | |||
300 | 300 | |||
% calculate two-sample variance for this tau | 301 | 301 | % calculate two-sample variance for this tau | |
sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | 302 | 302 | sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |
303 | 303 | |||
% estimate error bars | 304 | 304 | % estimate error bars | |
sme(k)=sm(k)/sqrt(N-3*m(k)+1); | 305 | 305 | sme(k)=sm(k)/sqrt(N-3*m(k)+1); | |
306 | 306 | |||
307 | 307 | |||
end % repeat for each value of tau | 308 | 308 | end % repeat for each value of tau | |
309 | 309 | |||
if verbose >= 2, fprintf(1,'\n'); end | 310 | 310 | if verbose >= 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | 311 | 311 | calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |
312 | 312 | |||
313 | 313 | |||
314 | 314 | |||
%% Irregular data (timestamp) | 315 | 315 | %% Irregular data (timestamp) | |
elseif isfield(data,'time') | 316 | 316 | elseif isfield(data,'time') | |
% the interval between measurements is irregular | 317 | 317 | % the interval between measurements is irregular | |
% so we must group the data by time | 318 | 318 | % so we must group the data by time | |
if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end | 319 | 319 | if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end | |
320 | 320 | |||
% string for plot title | 321 | 321 | % string for plot title | |
name=[name ' (timestamp)']; | 322 | 322 | name=[name ' (timestamp)']; | |
323 | 323 | |||
% adjust time to remove any initial offset | 324 | 324 | % adjust time to remove any initial offset | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 325 | 325 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
%dtime=data.time-data.time(1); | 326 | 326 | %dtime=data.time-data.time(1); | |
% where is the maximum gap in time record? | 327 | 327 | % where is the maximum gap in time record? | |
gap_pos=find(diff(dtime)==max(diff(dtime))); | 328 | 328 | gap_pos=find(diff(dtime)==max(diff(dtime))); | |
% what is average data spacing? | 329 | 329 | % what is average data spacing? | |
avg_gap = mean(diff(dtime)); | 330 | 330 | avg_gap = mean(diff(dtime)); | |
331 | 331 | |||
if verbose >= 2 | 332 | 332 | if verbose >= 2 | |
fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n'); | 333 | 333 | fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | 334 | 334 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | 335 | 335 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | 336 | 336 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
pause; | 337 | 337 | pause; | |
end | 338 | 338 | end | |
339 | 339 | |||
if verbose >= 1 | 340 | 340 | if verbose >= 1 | |
fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end)); | 341 | 341 | fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end)); | |
fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | 342 | 342 | fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
if max(diff(dtime)) ~= 1/mean(diff(dtime)) | 343 | 343 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | 344 | 344 | fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |
end | 345 | 345 | end | |
if max(diff(dtime)) > 5*avg_gap | 346 | 346 | if max(diff(dtime)) > 5*avg_gap | |
fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | 347 | 347 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
end | 348 | 348 | end | |
end | 349 | 349 | end | |
350 | 350 | |||
% is phase data present? If not, generate it | 351 | 351 | % is phase data present? If not, generate it | |
if ~isfield(data,'phase') | 352 | 352 | if ~isfield(data,'phase') | |
nfreq=data.freq-s.mean; | 353 | 353 | nfreq=data.freq-s.mean; | |
% NOTE: uncommenting the following two lines will artificially | 354 | 354 | % NOTE: uncommenting the following two lines will artificially | |
% allow the code to give equivalent results for validation data | 355 | 355 | % allow the code to give equivalent results for validation data | |
% sets using fixed rate data and timestamped data by adding a | 356 | 356 | % sets using fixed rate data and timestamped data by adding a | |
% "phantom" data point for frequency integration. Use of this | 357 | 357 | % "phantom" data point for frequency integration. Use of this | |
% phantom point can skew the results of calculations on real data. | 358 | 358 | % phantom point can skew the results of calculations on real data. | |
%nfreq(end+1)=0; % phantom freq point, with average value | 359 | 359 | %nfreq(end+1)=0; % phantom freq point, with average value | |
%dtime(end+1)=dtime(end)+avg_gap; % phantom average time step | 360 | 360 | %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step | |
dphase=zeros(1,length(nfreq)); | 361 | 361 | dphase=zeros(1,length(nfreq)); | |
dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime); | 362 | 362 | dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime); | |
if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | 363 | 363 | if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
else | 364 | 364 | else | |
dphase=data.phase; | 365 | 365 | dphase=data.phase; | |
end | 366 | 366 | end | |
367 | 367 | |||
% find halfway point | 368 | 368 | % find halfway point | |
halftime = fix(dtime(end)/2); | 369 | 369 | halftime = fix(dtime(end)/2); | |
% truncate tau to appropriate values | 370 | 370 | % truncate tau to appropriate values | |
tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | 371 | 371 | tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |
if isempty(tau) | 372 | 372 | if isempty(tau) | |
error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | 373 | 373 | error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |
end | 374 | 374 | end | |
375 | 375 | |||
% % save the freq data for the loop | 376 | 376 | % % save the freq data for the loop | |
% dfreq=data.freq; | 377 | 377 | % dfreq=data.freq; | |
378 | 378 | |||
% number of samples | 379 | 379 | % number of samples | |
N=length(dphase); | 380 | 380 | N=length(dphase); | |
m=round(tau./mean(diff(dtime))); | 381 | 381 | m=round(tau./mean(diff(dtime))); | |
382 | 382 | |||
if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end | 383 | 383 | if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end | |
384 | 384 | |||
k=0; tic; | 385 | 385 | k=0; tic; | |
for i = tau | 386 | 386 | for i = tau | |
387 | 387 | |||
k=k+1; pa=[]; | 388 | 388 | k=k+1; pa=[]; | |
389 | 389 | |||
mphase = dphase; time = dtime; | 390 | 390 | mphase = dphase; time = dtime; | |
391 | 391 | |||
if verbose >= 2, fprintf(1,'%d ',i); end | 392 | 392 | if verbose >= 2, fprintf(1,'%d ',i); end | |
393 | 393 | |||
% calculate overlapping "phase averages" (x_k) | 394 | 394 | % calculate overlapping "phase averages" (x_k) | |
%for j = 1:i | 395 | 395 | %for j = 1:i | |
for j = 1:m(k) % (v1.1) | 396 | 396 | for j = 1:m(k) % (v1.1) | |
km=0; | 397 | 397 | km=0; | |
%fprintf(1,'j: %d ',j); | 398 | 398 | %fprintf(1,'j: %d ',j); | |
399 | 399 | |||
% (v1.1) truncating not correct for overlapping samples | 400 | 400 | % (v1.1) truncating not correct for overlapping samples | |
% truncate data set to an even multiple of this tau value | 401 | 401 | % truncate data set to an even multiple of this tau value | |
%mphase = mphase(time <= time(end)-rem(time(end),i)); | 402 | 402 | %mphase = mphase(time <= time(end)-rem(time(end),i)); | |
%time = time(time <= time(end)-rem(time(end),i)); | 403 | 403 | %time = time(time <= time(end)-rem(time(end),i)); | |
404 | 404 | |||
405 | 405 | |||
% break up the data into overlapping groups of tau length | 406 | 406 | % break up the data into overlapping groups of tau length | |
while i*km < time(end) | 407 | 407 | while i*km < time(end) | |
km=km+1; | 408 | 408 | km=km+1; | |
409 | 409 | |||
% progress bar | 410 | 410 | % progress bar | |
if verbose >= 2 | 411 | 411 | if verbose >= 2 | |
if rem(km,100)==0, fprintf(1,'.'); end | 412 | 412 | if rem(km,100)==0, fprintf(1,'.'); end | |
if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | 413 | 413 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
end | 414 | 414 | end | |
415 | 415 | |||
mp = mphase(i*(km-1) < (time) & (time) <= i*km); | 416 | 416 | mp = mphase(i*(km-1) < (time) & (time) <= i*km); | |
417 | 417 | |||
if ~isempty(mp) | 418 | 418 | if ~isempty(mp) | |
pa(j,km)=mean(mp); | 419 | 419 | pa(j,km)=mean(mp); | |
else | 420 | 420 | else | |
pa(j,km)=0; | 421 | 421 | pa(j,km)=0; | |
end | 422 | 422 | end | |
423 | 423 | |||
end | 424 | 424 | end | |
425 | 425 | |||
% shift data vector by -1 and repeat | 426 | 426 | % shift data vector by -1 and repeat | |
mphase=circshift(dphase,(size(mphase)>1)*-j); | 427 | 427 | mphase=circshift(dphase,(size(mphase)>1)*-j); | |
mphase(end-j+1:end)=[]; | 428 | 428 | mphase(end-j+1:end)=[]; | |
time=circshift(dtime,(size(time)>1)*-j); | 429 | 429 | time=circshift(dtime,(size(time)>1)*-j); | |
time(end-j+1:end)=[]; | 430 | 430 | time(end-j+1:end)=[]; | |
time=time-time(1)+avg_gap; % remove time offset | 431 | 431 | time=time-time(1)+avg_gap; % remove time offset | |
432 | 432 | |||
end | 433 | 433 | end | |
434 | 434 | |||
% create "modified" y_k freq values | 435 | 435 | % create "modified" y_k freq values | |
mfreq=diff(pa,1,2)./i; | 436 | 436 | mfreq=diff(pa,1,2)./i; | |
mfreq=reshape(mfreq,1,[]); | 437 | 437 | mfreq=reshape(mfreq,1,[]); | |
438 | 438 | |||
% calculate modified frequency differences | 439 | 439 | % calculate modified frequency differences | |
mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | 440 | 440 | mfreqd=reshape(mfreq,m(k),[]); % Vectorize! | |
mfreqd=diff(mfreqd,1,2); | 441 | 441 | mfreqd=diff(mfreqd,1,2); | |
mfreqd=reshape(mfreqd,1,[]); | 442 | 442 | mfreqd=reshape(mfreqd,1,[]); | |
443 | 443 | |||
% calculate two-sample variance for this tau | 444 | 444 | % calculate two-sample variance for this tau | |
% only the first N-3*m(k)+1 samples are valid | 445 | 445 | % only the first N-3*m(k)+1 samples are valid | |
if length(mfreqd) >= N-3*m(k)+1 | 446 | 446 | if length(mfreqd) >= N-3*m(k)+1 | |
sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | 447 | 447 | sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); | |
448 | 448 | |||
% estimate error bars | 449 | 449 | % estimate error bars | |
sme(k)=sm(k)/sqrt(N); | 450 | 450 | sme(k)=sm(k)/sqrt(N); | |
451 | 451 | |||
if verbose >= 2, fprintf(1,'\n'); end | 452 | 452 | if verbose >= 2, fprintf(1,'\n'); end | |
else | 453 | 453 | else | |
if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | 454 | 454 | if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |
sm(k)=0; sme(k)=0; | 455 | 455 | sm(k)=0; sme(k)=0; | |
end | 456 | 456 | end | |
457 | 457 | |||
458 | 458 | |||
end | 459 | 459 | end | |
460 | 460 | |||
if verbose >= 2, fprintf(1,'\n'); end | 461 | 461 | if verbose >= 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | 462 | 462 | calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end | |
463 | 463 | |||
% remove any points that were dropped | 464 | 464 | % remove any points that were dropped | |
tau(sm==0)=[]; | 465 | 465 | tau(sm==0)=[]; | |
sm(sm==0)=[]; | 466 | 466 | sm(sm==0)=[]; | |
sme(sme==0)=[]; | 467 | 467 | sme(sme==0)=[]; | |
468 | 468 | |||
% modify time vector for plotting | 469 | 469 | % modify time vector for plotting | |
dtime=dtime(1:length(medianfreq)); | 470 | 470 | dtime=dtime(1:length(medianfreq)); | |
471 | 471 | |||
else | 472 | 472 | else | |
error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]'); | 473 | 473 | error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]'); | |
end | 474 | 474 | end | |
475 | 475 | |||
476 | 476 | |||
%%%%%%%% | 477 | 477 | %%%%%%%% | |
%% Plotting | 478 | 478 | %% Plotting | |
479 | 479 | |||
if verbose >= 2 % show all data | 480 | 480 | if verbose >= 2 % show all data | |
481 | 481 | |||
% plot the frequency data, centered on median | 482 | 482 | % plot the frequency data, centered on median | |
if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | 483 | 483 | if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
try | 484 | 484 | try | |
% dsplot makes a new figure | 485 | 485 | % dsplot makes a new figure | |
hd=dsplot(dtime,medianfreq); | 486 | 486 | hd=dsplot(dtime,medianfreq); | |
catch ME | 487 | 487 | catch ME | |
figure; | 488 | 488 | figure; | |
hd=plot(dtime,medianfreq); | 489 | 489 | hd=plot(dtime,medianfreq); | |
if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | 490 | 490 | if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | 491 | 491 | if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
end | 492 | 492 | end | |
set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | 493 | 493 | set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
hold on; | 494 | 494 | hold on; | |
495 | 495 | |||
fx = xlim; | 496 | 496 | fx = xlim; | |
% plot([fx(1) fx(2)],[s.median s.median],'-k'); | 497 | 497 | % plot([fx(1) fx(2)],[s.median s.median],'-k'); | |
plot([fx(1) fx(2)],[0 0],':k'); | 498 | 498 | plot([fx(1) fx(2)],[0 0],':k'); | |
% show 5x Median Absolute deviation (MAD) values | 499 | 499 | % show 5x Median Absolute deviation (MAD) values | |
hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | 500 | 500 | hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | |
plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | 501 | 501 | plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | |
% show linear fit line | 502 | 502 | % show linear fit line | |
hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | 503 | 503 | hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | 504 | 504 | title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
%set(get(gca,'Title'),'Interpreter','none'); | 505 | 505 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | 506 | 506 | xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
if isfield(data,'units') | 507 | 507 | if isfield(data,'units') | |
ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | 508 | 508 | ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
else | 509 | 509 | else | |
ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | 510 | 510 | ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
end | 511 | 511 | end | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 512 | 512 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | 513 | 513 | legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
% tighten up | 514 | 514 | % tighten up | |
xlim([dtime(1) dtime(end)]); | 515 | 515 | xlim([dtime(1) dtime(end)]); | |
516 | 516 | |||
517 | 517 | |||
end % end plot raw data | 518 | 518 | end % end plot raw data | |
519 | 519 | |||
520 | 520 | |||
if verbose >= 1 % show analysis results | 521 | 521 | if verbose >= 1 % show analysis results | |
522 | 522 | |||
% plot Allan deviation results | 523 | 523 | % plot Allan deviation results | |
if ~isempty(sm) | 524 | 524 | if ~isempty(sm) | |
figure | 525 | 525 | figure | |
526 | 526 | |||
% Choose loglog or semilogx plot here #PLOTLOG | 527 | 527 | % Choose loglog or semilogx plot here #PLOTLOG | |
%semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 528 | 528 | %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 529 | 529 | loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
530 | 530 | |||
% in R14SP3, there is a bug that screws up the error bars on a semilog plot. | 531 | 531 | % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
% When this is fixed, uncomment below to use normal errorbars | 532 | 532 | % When this is fixed, uncomment below to use normal errorbars | |
%errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | 533 | 533 | %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
% this is a hack to approximate the error bars | 534 | 534 | % this is a hack to approximate the error bars | |
hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | 535 | 535 | hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
536 | 536 | |||
grid on; | 537 | 537 | grid on; | |
title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | 538 | 538 | title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
%set(get(gca,'Title'),'Interpreter','none'); | 539 | 539 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | 540 | 540 | xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); | |
ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | 541 | 541 | ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 542 | 542 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
% expand the x axis a little bit so that the errors bars look nice | 543 | 543 | % expand the x axis a little bit so that the errors bars look nice | |
adax = axis; | 544 | 544 | adax = axis; | |
axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | 545 | 545 | axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
546 | 546 | |||
% display the minimum value | 547 | 547 | % display the minimum value | |
fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | 548 | 548 | fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
549 | 549 | |||
elseif verbose >= 1 | 550 | 550 | elseif verbose >= 1 | |
fprintf(1,'allan_modified: WARNING: no values calculated.\n'); | 551 | 551 | fprintf(1,'allan_modified: WARNING: no values calculated.\n'); | |
fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | 552 | 552 | fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
fprintf(1,'Type "help allan_modified" for more information.\n\n'); | 553 | 553 | fprintf(1,'Type "help allan_modified" for more information.\n\n'); | |
end | 554 | 554 | end | |
555 | 555 | |||
end % end plot analysis | 556 | 556 | end % end plot analysis | |
557 | 557 | |||
retval = sm; | 558 | 558 | retval = sm; | |
errorb = sme; | 559 | 559 | errorb = sme; | |
560 | 560 | |||
return | 561 | 561 | return | |
562 | 562 | |||
allan_overlap.m
function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose) | 1 | 1 | function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose) | |
% ALLAN_OVERLAP Compute the overlapping Allan deviation for a set of | 2 | 2 | % ALLAN_OVERLAP Compute the overlapping Allan deviation for a set of | |
% time-domain frequency data | 3 | 3 | % time-domain frequency data | |
% [RETVAL, S, ERRORB, TAU] = ALLAN_OVERLAP(DATA,TAU,NAME,VERBOSE) | 4 | 4 | % [RETVAL, S, ERRORB, TAU] = ALLAN_OVERLAP(DATA,TAU,NAME,VERBOSE) | |
% | 5 | 5 | % | |
% Inputs: | 6 | 6 | % Inputs: | |
% DATA should be a struct and have the following fields: | 7 | 7 | % DATA should be a struct and have the following fields: | |
% DATA.freq or DATA.phase | 8 | 8 | % DATA.freq or DATA.phase | |
% A vector of fractional frequency measurements (df/f) in | 9 | 9 | % A vector of fractional frequency measurements (df/f) in | |
% DATA.freq *or* phase offset data (seconds) in DATA.phase | 10 | 10 | % DATA.freq *or* phase offset data (seconds) in DATA.phase | |
% If phase data is not present, it will be generated by | 11 | 11 | % If phase data is not present, it will be generated by | |
% integrating the fractional frequency data. | 12 | 12 | % integrating the fractional frequency data. | |
% If both fields are present, then DATA.phase will be used. | 13 | 13 | % If both fields are present, then DATA.phase will be used. | |
% | 14 | 14 | % | |
% DATA.rate or DATA.time | 15 | 15 | % DATA.rate or DATA.time | |
% The sampling rate in Hertz (DATA.rate) or a vector of | 16 | 16 | % The sampling rate in Hertz (DATA.rate) or a vector of | |
% timestamps for each measurement in seconds (DATA.time). | 17 | 17 | % timestamps for each measurement in seconds (DATA.time). | |
% DATA.rate is used if both fields are present. | 18 | 18 | % DATA.rate is used if both fields are present. | |
% If DATA.rate == 0, then the timestamps are used. | 19 | 19 | % If DATA.rate == 0, then the timestamps are used. | |
% | 20 | 20 | % | |
% TAU is an array of tau values for computing Allan deviation. | 21 | 21 | % TAU is an array of tau values for computing Allan deviation. | |
% TAU values must be divisible by 1/DATA.rate (data points cannot be | 22 | 22 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |
% grouped in fractional quantities!). Invalid values are ignored. | 23 | 23 | % grouped in fractional quantities!). Invalid values are ignored. | |
% NAME is an optional label that is added to the plot titles. | 24 | 24 | % NAME is an optional label that is added to the plot titles. | |
% VERBOSE sets the level of status messages: | 25 | 25 | % VERBOSE sets the level of status messages: | |
% 0 = silent & no data plots; 1 = status messages; 2 = all messages | 26 | 26 | % 0 = silent & no data plots; 1 = status messages; 2 = all messages | |
% | 27 | 27 | % | |
% Outputs: | 28 | 28 | % Outputs: | |
% RETVAL is the array of overlapping Allan deviation values at each TAU. | 29 | 29 | % RETVAL is the array of overlapping Allan deviation values at each TAU. | |
% S is an optional output of other statistical measures of the data (mean, std, etc). | 30 | 30 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |
% ERRORB is an optional output containing the error estimates for a 1-sigma | 31 | 31 | % ERRORB is an optional output containing the error estimates for a 1-sigma | |
% confidence interval. Error bars are plotted as vertical lines at each point. | 32 | 32 | % confidence interval. Error bars are plotted as vertical lines at each point. | |
% TAU is an optional output containing the array of tau values used in the | 33 | 33 | % TAU is an optional output containing the array of tau values used in the | |
% calculation (which may be a truncated subset of the input or default values). | 34 | 34 | % calculation (which may be a truncated subset of the input or default values). | |
% | 35 | 35 | % | |
% Example: | 36 | 36 | % Example: | |
% | 37 | 37 | % | |
% To compute the overlapping Allan deviation for the data in the variable "lt": | 38 | 38 | % To compute the overlapping Allan deviation for the data in the variable "lt": | |
% >> lt | 39 | 39 | % >> lt | |
% lt = | 40 | 40 | % lt = | |
% freq: [1x86400 double] | 41 | 41 | % freq: [1x86400 double] | |
% rate: 0.5 | 42 | 42 | % rate: 0.5 | |
% | 43 | 43 | % | |
% Use: | 44 | 44 | % Use: | |
% | 45 | 45 | % | |
% >> ado = allan_overlap(lt,[2 10 100],'lt data',1); | 46 | 46 | % >> ado = allan_overlap(lt,[2 10 100],'lt data',1); | |
% | 47 | 47 | % | |
% The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | 48 | 48 | % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |
% 1-sigma confidence intervals will be indicated by vertical lines. | 49 | 49 | % 1-sigma confidence intervals will be indicated by vertical lines. | |
% You can also use the default settings, which are usually a good starting point: | 50 | 50 | % You can also use the default settings, which are usually a good starting point: | |
% | 51 | 51 | % | |
% >> ado = allan_overlap(lt); | 52 | 52 | % >> ado = allan_overlap(lt); | |
% | 53 | 53 | % | |
% | 54 | 54 | % | |
% Notes: | 55 | 55 | % Notes: | |
% This function calculates the overlapping Allan deviation (ADEV), *not* the | 56 | 56 | % This function calculates the overlapping Allan deviation (ADEV), *not* the | |
% standard ADEV. Use "allan.m" for standard ADEV. | 57 | 57 | % standard ADEV. Use "allan.m" for standard ADEV. | |
% The calculation is performed using phase data. If only frequency data is | 58 | 58 | % The calculation is performed using phase data. If only frequency data is | |
% provided, phase data is generated by integrating the frequency data. | 59 | 59 | % provided, phase data is generated by integrating the frequency data. | |
% However, the timestamp-based calculation is performed using frequency | 60 | 60 | % However, the timestamp-based calculation is performed using frequency | |
% data. Phase data is differentiated to generate frequency data if necessary. | 61 | 61 | % data. Phase data is differentiated to generate frequency data if necessary. | |
% No pre-processing of the data is performed, except to remove any | 62 | 62 | % No pre-processing of the data is performed, except to remove any | |
% initial offset in the time record. | 63 | 63 | % initial offset in the time record. | |
% For rate-based data, ADEV is computed only for tau values greater than the | 64 | 64 | % For rate-based data, ADEV is computed only for tau values greater than the | |
% minimum time between samples and less than the half the total time. For | 65 | 65 | % minimum time between samples and less than the half the total time. For | |
% time-stamped data, only tau values greater than the maximum gap between | 66 | 66 | % time-stamped data, only tau values greater than the maximum gap between | |
% samples and less than half the total time are used. | 67 | 67 | % samples and less than half the total time are used. | |
% The calculation for fixed sample rate data is *much* faster than for | 68 | 68 | % The calculation for fixed sample rate data is *much* faster than for | |
% time-stamp data. You may wish to run the rate-based calculation first, | 69 | 69 | % time-stamp data. You may wish to run the rate-based calculation first, | |
% then compare with time-stamp-based. Often the differences are insignificant. | 70 | 70 | % then compare with time-stamp-based. Often the differences are insignificant. | |
% The error bars at each point are calculated using the 1-sigma intervals | 71 | 71 | % The error bars at each point are calculated using the 1-sigma intervals | |
% based on the size of the data set. This is usually an overestimate for | 72 | 72 | % based on the size of the data set. This is usually an overestimate for | |
% overlapping ADEV; a more accurate (and usually smaller uncertainty) | 73 | 73 | % overlapping ADEV; a more accurate (and usually smaller uncertainty) | |
% value can be determined from chi-squared statistics, but that is not | 74 | 74 | % value can be determined from chi-squared statistics, but that is not | |
% implemented in this version. | 75 | 75 | % implemented in this version. | |
% You can choose between loglog and semilog plotting of results by | 76 | 76 | % You can choose between loglog and semilog plotting of results by | |
% commenting in/out the appropriate line. Search for "#PLOTLOG". | 77 | 77 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |
% This function has been validated using the test data from NBS Monograph | 78 | 78 | % This function has been validated using the test data from NBS Monograph | |
% 140, the 1000-point test data set given by Riley [1], and the example data | 79 | 79 | % 140, the 1000-point test data set given by Riley [1], and the example data | |
% given in IEEE standard 1139-1999, Annex C. | 80 | 80 | % given in IEEE standard 1139-1999, Annex C. | |
% The author welcomes other validation results, see contact info below. | 81 | 81 | % The author welcomes other validation results, see contact info below. | |
% | 82 | 82 | % | |
% For more information, see: | 83 | 83 | % For more information, see: | |
% [1] W. J. Riley, "Addendum to a test suite for the calculation of time domain | 84 | 84 | % [1] W. J. Riley, "Addendum to a test suite for the calculation of time domain | |
% frequency stability," presented at IEEE Frequency Control Symposium, | 85 | 85 | % frequency stability," presented at IEEE Frequency Control Symposium, | |
% 1996. | 86 | 86 | % 1996. | |
% Available on the web: | 87 | 87 | % Available on the web: | |
% http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | 88 | 88 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |
% | 89 | 89 | % | |
% | 90 | 90 | % | |
% M.A. Hopcroft | 91 | 91 | % M.A. Hopcroft | |
% mhopeng at gmail dot com | 92 | 92 | % mhopeng at gmail dot com | |
% | 93 | 93 | % | |
% I welcome your comments and feedback! | 94 | 94 | % I welcome your comments and feedback! | |
% | 95 | 95 | % | |
% MH Mar2014 | 96 | 96 | % MH Mar2014 | |
% v2.24 fix bug related to generating freq data from phase with timestamps | 97 | 97 | % v2.24 fix bug related to generating freq data from phase with timestamps | |
% (thanks to S. David-Grignot for finding the bug) | 98 | 98 | % (thanks to S. David-Grignot for finding the bug) | |
% MH Oct2010 | 99 | 99 | % MH Oct2010 | |
% v2.22 tau truncation to integer groups; tau sort | 100 | 100 | % v2.22 tau truncation to integer groups; tau sort | |
% plotting bugfix | 101 | 101 | % plotting bugfix | |
% v2.20 update to match allan.m (dsplot.m, columns) | 102 | 102 | % v2.20 update to match allan.m (dsplot.m, columns) | |
% discard tau values with timestamp irregularities | 103 | 103 | % discard tau values with timestamp irregularities | |
104 | 104 | |||
versionstr = 'allan_overlap v2.24'; | 105 | 105 | versionstr = 'allan_overlap v2.24'; | |
106 | 106 | |||
% | 107 | 107 | % | |
% MH MAR2010 | 108 | 108 | % MH MAR2010 | |
% v2.1 bugfixes for irregular sample rates | 109 | 109 | % v2.1 bugfixes for irregular sample rates | |
% (thanks to Ryad Ben-El-Kezadri for feedback and testing) | 110 | 110 | % (thanks to Ryad Ben-El-Kezadri for feedback and testing) | |
% handle empty rate field | 111 | 111 | % handle empty rate field | |
% fix integer comparisons for fractional sample rates | 112 | 112 | % fix integer comparisons for fractional sample rates | |
% update consistency check | 113 | 113 | % update consistency check | |
% | 114 | 114 | % | |
% MH FEB2010 | 115 | 115 | % MH FEB2010 | |
% v2.0 use phase data for calculation- much faster | 116 | 116 | % v2.0 use phase data for calculation- much faster | |
% Consistent code behaviour for all "allan_x.m" functions: | 117 | 117 | % Consistent code behaviour for all "allan_x.m" functions: | |
% accept phase data | 118 | 118 | % accept phase data | |
% verbose levels | 119 | 119 | % verbose levels | |
% | 120 | 120 | % | |
% MH JAN2010 | 121 | 121 | % MH JAN2010 | |
% v1.0 based on allan v1.84 | 122 | 122 | % v1.0 based on allan v1.84 | |
% | 123 | 123 | % | |
124 | 124 | |||
%#ok<*AGROW> | 125 | 125 | %#ok<*AGROW> | |
126 | 126 | |||
127 | 127 | |||
% defaults | 128 | 128 | % defaults | |
if nargin < 4, verbose = 2; end | 129 | 129 | if nargin < 4, verbose = 2; end | |
if nargin < 3, name=''; end | 130 | 130 | if nargin < 3, name=''; end | |
if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | 131 | 131 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |
if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v2.1 | 132 | 132 | if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v2.1 | |
133 | 133 | |||
% Formatting for plots | 134 | 134 | % Formatting for plots | |
FontName = 'Arial'; | 135 | 135 | FontName = 'Arial'; | |
FontSize = 14; | 136 | 136 | FontSize = 14; | |
plotlinewidth=2; | 137 | 137 | plotlinewidth=2; | |
138 | 138 | |||
if verbose >= 1, fprintf(1,'allan_overlap: %s\n\n',versionstr); end | 139 | 139 | if verbose >= 1, fprintf(1,'allan_overlap: %s\n\n',versionstr); end | |
140 | 140 | |||
%% Data consistency checks v2.1 | 141 | 141 | %% Data consistency checks v2.1 | |
if ~(isfield(data,'phase') || isfield(data,'freq')) | 142 | 142 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |
error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | 143 | 143 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |
end | 144 | 144 | end | |
if isfield(data,'time') | 145 | 145 | if isfield(data,'time') | |
if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | 146 | 146 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |
if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | 147 | 147 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |
error('The time and freq vectors are not the same length. See help for details. [con2]'); | 148 | 148 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |
else | 149 | 149 | else | |
error('The time and phase vectors are not the same length. See help for details. [con1]'); | 150 | 150 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |
end | 151 | 151 | end | |
end | 152 | 152 | end | |
if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | 153 | 153 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |
error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | 154 | 154 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |
end | 155 | 155 | end | |
if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | 156 | 156 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |
error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | 157 | 157 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |
end | 158 | 158 | end | |
if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | 159 | 159 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |
error('The time vector contains invalid elements (NaN/Inf). [con5]'); | 160 | 160 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |
end | 161 | 161 | end | |
end | 162 | 162 | end | |
163 | 163 | |||
% sort tau vector | 164 | 164 | % sort tau vector | |
tau=sort(tau); | 165 | 165 | tau=sort(tau); | |
166 | 166 | |||
%% Basic statistical tests on the data set | 167 | 167 | %% Basic statistical tests on the data set | |
if ~isfield(data,'freq') | 168 | 168 | if ~isfield(data,'freq') | |
if isfield(data,'rate') && data.rate ~= 0 | 169 | 169 | if isfield(data,'rate') && data.rate ~= 0 | |
data.freq=diff(data.phase).*data.rate; | 170 | 170 | data.freq=diff(data.phase).*data.rate; | |
elseif isfield(data,'time') | 171 | 171 | elseif isfield(data,'time') | |
data.freq=diff(data.phase)./diff(data.time); | 172 | 172 | data.freq=diff(data.phase)./diff(data.time); | |
end | 173 | 173 | end | |
if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | 174 | 174 | if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |
end | 175 | 175 | end | |
if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | 176 | 176 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |
177 | 177 | |||
s.numpoints=length(data.freq); | 178 | 178 | s.numpoints=length(data.freq); | |
s.max=max(data.freq); | 179 | 179 | s.max=max(data.freq); | |
s.min=min(data.freq); | 180 | 180 | s.min=min(data.freq); | |
s.mean=mean(data.freq); | 181 | 181 | s.mean=mean(data.freq); | |
s.median=median(data.freq); | 182 | 182 | s.median=median(data.freq); | |
if isfield(data,'time') | 183 | 183 | if isfield(data,'time') | |
if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | 184 | 184 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |
s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | 185 | 185 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |
elseif isfield(data,'rate') && data.rate ~= 0; | 186 | 186 | elseif isfield(data,'rate') && data.rate ~= 0; | |
s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | 187 | 187 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |
else | 188 | 188 | else | |
error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); | 189 | 189 | error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); | |
end | 190 | 190 | end | |
s.std=std(data.freq); | 191 | 191 | s.std=std(data.freq); | |
192 | 192 | |||
if verbose >= 2 | 193 | 193 | if verbose >= 2 | |
fprintf(1,'allan_overlap: fractional frequency data statistics:\n'); | 194 | 194 | fprintf(1,'allan_overlap: fractional frequency data statistics:\n'); | |
disp(s); | 195 | 195 | disp(s); | |
end | 196 | 196 | end | |
197 | 197 | |||
198 | 198 | |||
% scale to median for plotting | 199 | 199 | % scale to median for plotting | |
medianfreq=data.freq-s.median; | 200 | 200 | medianfreq=data.freq-s.median; | |
sm=[]; sme=[]; | 201 | 201 | sm=[]; sme=[]; | |
202 | 202 | |||
% Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | 203 | 203 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |
MAD = median(abs(medianfreq)/0.6745); | 204 | 204 | MAD = median(abs(medianfreq)/0.6745); | |
if verbose >= 1 && any(abs(medianfreq) > 5*MAD) | 205 | 205 | if verbose >= 1 && any(abs(medianfreq) > 5*MAD) | |
fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | 206 | 206 | fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |
end | 207 | 207 | end | |
208 | 208 | |||
%%%% | 209 | 209 | %%%% | |
% There are four cases, freq or phase data, using timestamps or rate: | 210 | 210 | % There are four cases, freq or phase data, using timestamps or rate: | |
211 | 211 | |||
%% Fixed Sample Rate Data | 212 | 212 | %% Fixed Sample Rate Data | |
% If there is a regular interval between measurements, calculation is much | 213 | 213 | % If there is a regular interval between measurements, calculation is much | |
% easier/faster | 214 | 214 | % easier/faster | |
if isfield(data,'rate') && data.rate > 0 % if data rate was given | 215 | 215 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |
if verbose >= 1 | 216 | 216 | if verbose >= 1 | |
fprintf(1, 'allan_overlap: regular data '); | 217 | 217 | fprintf(1, 'allan_overlap: regular data '); | |
if isfield(data,'freq') | 218 | 218 | if isfield(data,'freq') | |
fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | 219 | 219 | fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); | |
elseif isfield(data,'phase') | 220 | 220 | elseif isfield(data,'phase') | |
fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | 221 | 221 | fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); | |
else | 222 | 222 | else | |
error('\n phase or freq data missing [err10]'); | 223 | 223 | error('\n phase or freq data missing [err10]'); | |
end | 224 | 224 | end | |
end | 225 | 225 | end | |
226 | 226 | |||
% string for plot title | 227 | 227 | % string for plot title | |
name=[name ' (' num2str(data.rate) ' Hz)']; | 228 | 228 | name=[name ' (' num2str(data.rate) ' Hz)']; | |
229 | 229 | |||
% what is the time interval between data points? | 230 | 230 | % what is the time interval between data points? | |
tmstep = 1/data.rate; | 231 | 231 | tmstep = 1/data.rate; | |
232 | 232 | |||
% Is there time data? Just for curiosity/plotting, does not impact calculation | 233 | 233 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |
if isfield(data,'time') | 234 | 234 | if isfield(data,'time') | |
% adjust time data to remove any starting gap; first time step | 235 | 235 | % adjust time data to remove any starting gap; first time step | |
% should not be zero for comparison with freq data | 236 | 236 | % should not be zero for comparison with freq data | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 237 | 237 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) | 238 | 238 | dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) | |
if verbose >= 2 | 239 | 239 | if verbose >= 2 | |
fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end)); | 240 | 240 | fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end)); | |
if (data.rate - 1/mean(diff(dtime))) > 1e-6 | 241 | 241 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |
fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | 242 | 242 | fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |
end | 243 | 243 | end | |
end | 244 | 244 | end | |
else | 245 | 245 | else | |
% create time axis data using rate (for plotting only) | 246 | 246 | % create time axis data using rate (for plotting only) | |
dtime=(tmstep:tmstep:length(data.freq)*tmstep); | 247 | 247 | dtime=(tmstep:tmstep:length(data.freq)*tmstep); | |
end | 248 | 248 | end | |
249 | 249 | |||
250 | 250 | |||
% is phase data present? If not, generate it | 251 | 251 | % is phase data present? If not, generate it | |
if ~isfield(data,'phase') | 252 | 252 | if ~isfield(data,'phase') | |
nfreq=data.freq-s.mean; | 253 | 253 | nfreq=data.freq-s.mean; | |
dphase=zeros(1,length(nfreq)+1); | 254 | 254 | dphase=zeros(1,length(nfreq)+1); | |
dphase(2:end) = cumsum(nfreq)./data.rate; | 255 | 255 | dphase(2:end) = cumsum(nfreq)./data.rate; | |
if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | 256 | 256 | if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end | |
else | 257 | 257 | else | |
dphase=data.phase; | 258 | 258 | dphase=data.phase; | |
end | 259 | 259 | end | |
260 | 260 | |||
% check the range of tau values and truncate if necessary | 261 | 261 | % check the range of tau values and truncate if necessary | |
% find halfway point of time record | 262 | 262 | % find halfway point of time record | |
halftime = round(tmstep*length(data.freq)/2); | 263 | 263 | halftime = round(tmstep*length(data.freq)/2); | |
% truncate tau to appropriate values | 264 | 264 | % truncate tau to appropriate values | |
tau = tau(tau >= tmstep & tau <= halftime); | 265 | 265 | tau = tau(tau >= tmstep & tau <= halftime); | |
if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | 266 | 266 | if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |
267 | 267 | |||
% number of samples | 268 | 268 | % number of samples | |
N=length(dphase); | 269 | 269 | N=length(dphase); | |
% number of samples per tau period | 270 | 270 | % number of samples per tau period | |
m = data.rate.*tau; | 271 | 271 | m = data.rate.*tau; | |
% only integer values allowed for m (no fractional groups of points) | 272 | 272 | % only integer values allowed for m (no fractional groups of points) | |
%tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | 273 | 273 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |
tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | 274 | 274 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |
%m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | 275 | 275 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |
m = m(m==round(m)); | 276 | 276 | m = m(m==round(m)); | |
%m=round(m); | 277 | 277 | %m=round(m); | |
%fprintf(1,'m: %.50f\n',m) | 278 | 278 | %fprintf(1,'m: %.50f\n',m) | |
279 | 279 | |||
if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end | 280 | 280 | if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end | |
281 | 281 | |||
% calculate the Allan deviation for each value of tau | 282 | 282 | % calculate the Allan deviation for each value of tau | |
k=0; tic; | 283 | 283 | k=0; tic; | |
for i = tau | 284 | 284 | for i = tau | |
k=k+1; | 285 | 285 | k=k+1; | |
if verbose >= 2, fprintf(1,'%d ',i); end | 286 | 286 | if verbose >= 2, fprintf(1,'%d ',i); end | |
287 | 287 | |||
288 | 288 | |||
% pad phase data set length to an even multiple of this tau value | 289 | 289 | % pad phase data set length to an even multiple of this tau value | |
mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); | 290 | 290 | mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); | |
mphase(1:N)=dphase; | 291 | 291 | mphase(1:N)=dphase; | |
% group phase values | 292 | 292 | % group phase values | |
mp=reshape(mphase,m(k),[]); | 293 | 293 | mp=reshape(mphase,m(k),[]); | |
% compute second differences of phase values (x_k+m - x_k) | 294 | 294 | % compute second differences of phase values (x_k+m - x_k) | |
md1=diff(mp,1,2); | 295 | 295 | md1=diff(mp,1,2); | |
md2=diff(md1,1,2); | 296 | 296 | md2=diff(md1,1,2); | |
md1=reshape(md2,1,[]); | 297 | 297 | md1=reshape(md2,1,[]); | |
298 | 298 | |||
% compute overlapping ADEV from phase values | 299 | 299 | % compute overlapping ADEV from phase values | |
% only the first N-2*m(k) samples are valid | 300 | 300 | % only the first N-2*m(k) samples are valid | |
sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); | 301 | 301 | sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); | |
302 | 302 | |||
% estimate error bars | 303 | 303 | % estimate error bars | |
sme(k)=sm(k)/sqrt(N-2*m(k)); | 304 | 304 | sme(k)=sm(k)/sqrt(N-2*m(k)); | |
305 | 305 | |||
306 | 306 | |||
end % repeat for each value of tau | 307 | 307 | end % repeat for each value of tau | |
308 | 308 | |||
if verbose >= 2, fprintf(1,'\n'); end | 309 | 309 | if verbose >= 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | 310 | 310 | calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |
311 | 311 | |||
312 | 312 | |||
313 | 313 | |||
%% Irregular data, no fixed interval | 314 | 314 | %% Irregular data, no fixed interval | |
elseif isfield(data,'time') | 315 | 315 | elseif isfield(data,'time') | |
% the interval between measurements is irregular | 316 | 316 | % the interval between measurements is irregular | |
% so we must group the data by time | 317 | 317 | % so we must group the data by time | |
if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end | 318 | 318 | if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end | |
319 | 319 | |||
320 | 320 | |||
% string for plot title | 321 | 321 | % string for plot title | |
name=[name ' (timestamp)']; | 322 | 322 | name=[name ' (timestamp)']; | |
323 | 323 | |||
324 | 324 | |||
% adjust time to remove any starting offset | 325 | 325 | % adjust time to remove any starting offset | |
dtime=data.time-data.time(1)+mean(diff(data.time)); | 326 | 326 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |
327 | 327 | |||
% save the freq data for the loop | 328 | 328 | % save the freq data for the loop | |
dfreq=data.freq; | 329 | 329 | dfreq=data.freq; | |
dtime=dtime(1:length(dfreq)); | 330 | 330 | dtime=dtime(1:length(dfreq)); | |
331 | 331 | |||
dfdtime=diff(dtime); % only need to do this once (v2.1) | 332 | 332 | dfdtime=diff(dtime); % only need to do this once (v2.1) | |
% where is the maximum gap in time record? | 333 | 333 | % where is the maximum gap in time record? | |
gap_pos=find(dfdtime==max(dfdtime)); | 334 | 334 | gap_pos=find(dfdtime==max(dfdtime)); | |
% what is average data spacing? | 335 | 335 | % what is average data spacing? | |
avg_gap = mean(dfdtime); | 336 | 336 | avg_gap = mean(dfdtime); | |
s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) | 337 | 337 | s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) | |
338 | 338 | |||
if verbose >= 2 | 339 | 339 | if verbose >= 2 | |
fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n'); | 340 | 340 | fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |
fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | 341 | 341 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |
fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | 342 | 342 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |
fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | 343 | 343 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |
pause; | 344 | 344 | pause; | |
end | 345 | 345 | end | |
346 | 346 | |||
if verbose >= 1 | 347 | 347 | if verbose >= 1 | |
fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end)); | 348 | 348 | fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end)); | |
fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | 349 | 349 | fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |
if max(diff(dtime)) ~= 1/mean(diff(dtime)) | 350 | 350 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |
fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1)); | 351 | 351 | fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1)); | |
end | 352 | 352 | end | |
if max(diff(dtime)) > 5*avg_gap | 353 | 353 | if max(diff(dtime)) > 5*avg_gap | |
fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | 354 | 354 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |
end | 355 | 355 | end | |
end | 356 | 356 | end | |
357 | 357 | |||
358 | 358 | |||
% find halfway point | 359 | 359 | % find halfway point | |
halftime = fix(dtime(end)/2); | 360 | 360 | halftime = fix(dtime(end)/2); | |
% truncate tau to appropriate values | 361 | 361 | % truncate tau to appropriate values | |
tau = tau(tau >= max(dfdtime) & tau <= halftime); | 362 | 362 | tau = tau(tau >= max(dfdtime) & tau <= halftime); | |
if isempty(tau) | 363 | 363 | if isempty(tau) | |
error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime); | 364 | 364 | error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime); | |
end | 365 | 365 | end | |
366 | 366 | |||
367 | 367 | |||
% number of samples | 368 | 368 | % number of samples | |
M=length(dfreq); | 369 | 369 | M=length(dfreq); | |
% number of samples per tau period | 370 | 370 | % number of samples per tau period | |
m=round(tau./avg_gap); | 371 | 371 | m=round(tau./avg_gap); | |
372 | 372 | |||
if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end | 373 | 373 | if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end | |
374 | 374 | |||
k=0; tic; | 375 | 375 | k=0; tic; | |
for i = tau | 376 | 376 | for i = tau | |
k=k+1; | 377 | 377 | k=k+1; | |
fa=[]; | 378 | 378 | fa=[]; | |
379 | 379 | |||
if verbose >= 2, fprintf(1,'%d ',i); end | 380 | 380 | if verbose >= 2, fprintf(1,'%d ',i); end | |
381 | 381 | |||
freq = dfreq; time = dtime; | 382 | 382 | freq = dfreq; time = dtime; | |
383 | 383 | |||
384 | 384 | |||
% compute overlapping samples (y_k) for this tau | 385 | 385 | % compute overlapping samples (y_k) for this tau | |
%for j = 1:i | 386 | 386 | %for j = 1:i | |
for j = 1:m(k) % (v2.1) | 387 | 387 | for j = 1:m(k) % (v2.1) | |
km=0; | 388 | 388 | km=0; | |
%fprintf(1,'j: %d ',j); | 389 | 389 | %fprintf(1,'j: %d ',j); | |
390 | 390 | |||
% (v2.1) truncating not correct for overlapping samples | 391 | 391 | % (v2.1) truncating not correct for overlapping samples | |
% truncate data set to an even multiple of this tau value | 392 | 392 | % truncate data set to an even multiple of this tau value | |
%freq = freq(time <= time(end)-rem(time(end),i)); | 393 | 393 | %freq = freq(time <= time(end)-rem(time(end),i)); | |
%time = time(time <= time(end)-rem(time(end),i)); | 394 | 394 | %time = time(time <= time(end)-rem(time(end),i)); | |
395 | 395 | |||
% break up the data into overlapping groups of tau length | 396 | 396 | % break up the data into overlapping groups of tau length | |
while i*km <= time(end) | 397 | 397 | while i*km <= time(end) | |
km=km+1; | 398 | 398 | km=km+1; | |
%i*km | 399 | 399 | %i*km | |
400 | 400 | |||
% progress bar | 401 | 401 | % progress bar | |
if verbose >= 2 | 402 | 402 | if verbose >= 2 | |
if rem(km,100)==0, fprintf(1,'.'); end | 403 | 403 | if rem(km,100)==0, fprintf(1,'.'); end | |
if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | 404 | 404 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |
end | 405 | 405 | end | |
406 | 406 | |||
f = freq(i*(km-1) < (time) & (time) <= i*km); | 407 | 407 | f = freq(i*(km-1) < (time) & (time) <= i*km); | |
408 | 408 | |||
if ~isempty(f) | 409 | 409 | if ~isempty(f) | |
fa(j,km)=mean(f); | 410 | 410 | fa(j,km)=mean(f); | |
else | 411 | 411 | else | |
fa(j,km)=0; | 412 | 412 | fa(j,km)=0; | |
end | 413 | 413 | end | |
414 | 414 | |||
end | 415 | 415 | end | |
%fa | 416 | 416 | %fa | |
417 | 417 | |||
% shift data vector by -1 and repeat | 418 | 418 | % shift data vector by -1 and repeat | |
freq=circshift(dfreq,(size(freq)>1)*-j); | 419 | 419 | freq=circshift(dfreq,(size(freq)>1)*-j); | |
freq(end-j+1:end)=[]; | 420 | 420 | freq(end-j+1:end)=[]; | |
time=circshift(dtime,(size(time)>1)*-j); | 421 | 421 | time=circshift(dtime,(size(time)>1)*-j); | |
time(end-j+1:end)=[]; | 422 | 422 | time(end-j+1:end)=[]; | |
time=time-time(1)+avg_gap; % remove time offset | 423 | 423 | time=time-time(1)+avg_gap; % remove time offset | |
424 | 424 | |||
end | 425 | 425 | end | |
426 | 426 | |||
% compute second differences of fractional frequency values (y_k+m - y_k) | 427 | 427 | % compute second differences of fractional frequency values (y_k+m - y_k) | |
fd1=diff(fa,1,2); | 428 | 428 | fd1=diff(fa,1,2); | |
fd1=reshape(fd1,1,[]); | 429 | 429 | fd1=reshape(fd1,1,[]); | |
% compute overlapping ADEV from fractional frequency values | 430 | 430 | % compute overlapping ADEV from fractional frequency values | |
% only the first M-2*m(k)+1 samples are valid | 431 | 431 | % only the first M-2*m(k)+1 samples are valid | |
if length(fd1) >= M-2*m(k)+1 | 432 | 432 | if length(fd1) >= M-2*m(k)+1 | |
sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); | 433 | 433 | sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); | |
434 | 434 | |||
% estimate error bars | 435 | 435 | % estimate error bars | |
sme(k)=sm(k)/sqrt(M+1); | 436 | 436 | sme(k)=sm(k)/sqrt(M+1); | |
437 | 437 | |||
if verbose >= 2, fprintf(1,'\n'); end | 438 | 438 | if verbose >= 2, fprintf(1,'\n'); end | |
439 | 439 | |||
else | 440 | 440 | else | |
if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | 441 | 441 | if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end | |
sm(k)=0; sme(k)=0; | 442 | 442 | sm(k)=0; sme(k)=0; | |
end | 443 | 443 | end | |
444 | 444 | |||
445 | 445 | |||
end | 446 | 446 | end | |
447 | 447 | |||
if verbose >= 2, fprintf(1,'\n'); end | 448 | 448 | if verbose >= 2, fprintf(1,'\n'); end | |
calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | 449 | 449 | calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end | |
450 | 450 | |||
% remove any points that were dropped | 451 | 451 | % remove any points that were dropped | |
tau(sm==0)=[]; | 452 | 452 | tau(sm==0)=[]; | |
sm(sm==0)=[]; | 453 | 453 | sm(sm==0)=[]; | |
sme(sme==0)=[]; | 454 | 454 | sme(sme==0)=[]; | |
455 | 455 | |||
456 | 456 | |||
457 | 457 | |||
else | 458 | 458 | else | |
error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | 459 | 459 | error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |
end | 460 | 460 | end | |
461 | 461 | |||
462 | 462 | |||
%%%%%%%% | 463 | 463 | %%%%%%%% | |
%% Plotting | 464 | 464 | %% Plotting | |
465 | 465 | |||
if verbose >= 2 % show all data | 466 | 466 | if verbose >= 2 % show all data | |
467 | 467 | |||
% plot the frequency data, centered on median | 468 | 468 | % plot the frequency data, centered on median | |
if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | 469 | 469 | if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |
try | 470 | 470 | try | |
% dsplot makes a new figure | 471 | 471 | % dsplot makes a new figure | |
hd=dsplot(dtime,medianfreq); | 472 | 472 | hd=dsplot(dtime,medianfreq); | |
catch ME | 473 | 473 | catch ME | |
figure; | 474 | 474 | figure; | |
hd=plot(dtime,medianfreq); | 475 | 475 | hd=plot(dtime,medianfreq); | |
if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | 476 | 476 | if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |
if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | 477 | 477 | if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |
end | 478 | 478 | end | |
set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | 479 | 479 | set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |
hold on; | 480 | 480 | hold on; | |
481 | 481 | |||
fx = xlim; | 482 | 482 | fx = xlim; | |
% plot([fx(1) fx(2)],[s.median s.median],'-k'); | 483 | 483 | % plot([fx(1) fx(2)],[s.median s.median],'-k'); | |
plot([fx(1) fx(2)],[0 0],':k'); | 484 | 484 | plot([fx(1) fx(2)],[0 0],':k'); | |
% show 5x Median Absolute deviation (MAD) values | 485 | 485 | % show 5x Median Absolute deviation (MAD) values | |
hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | 486 | 486 | hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); | |
plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | 487 | 487 | plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); | |
% show linear fit line | 488 | 488 | % show linear fit line | |
hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | 489 | 489 | hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |
title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial'); | 490 | 490 | title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial'); | |
%set(get(gca,'Title'),'Interpreter','none'); | 491 | 491 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | 492 | 492 | xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |
if isfield(data,'units') | 493 | 493 | if isfield(data,'units') | |
ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | 494 | 494 | ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |
else | 495 | 495 | else | |
ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | 496 | 496 | ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |
end | 497 | 497 | end | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 498 | 498 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | 499 | 499 | legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); | |
% tighten up | 500 | 500 | % tighten up | |
xlim([dtime(1) dtime(end)]); | 501 | 501 | xlim([dtime(1) dtime(end)]); | |
502 | 502 | |||
503 | 503 | |||
end % end plot raw data | 504 | 504 | end % end plot raw data | |
505 | 505 | |||
506 | 506 | |||
if verbose >= 1 % show analysis results | 507 | 507 | if verbose >= 1 % show analysis results | |
508 | 508 | |||
% plot Allan deviation results | 509 | 509 | % plot Allan deviation results | |
if ~isempty(sm) | 510 | 510 | if ~isempty(sm) | |
figure | 511 | 511 | figure | |
512 | 512 | |||
% Choose loglog or semilogx plot here #PLOTLOG | 513 | 513 | % Choose loglog or semilogx plot here #PLOTLOG | |
%semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 514 | 514 | %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | 515 | 515 | loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); | |
516 | 516 | |||
% in R14SP3, there is a bug that screws up the error bars on a semilog plot. | 517 | 517 | % in R14SP3, there is a bug that screws up the error bars on a semilog plot. | |
% When this is fixed, uncomment below to use normal errorbars | 518 | 518 | % When this is fixed, uncomment below to use normal errorbars | |
%errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | 519 | 519 | %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); | |
% this is a hack to approximate the error bars | 520 | 520 | % this is a hack to approximate the error bars | |
hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | 521 | 521 | hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); | |
522 | 522 | |||
grid on; | 523 | 523 | grid on; | |
title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | 524 | 524 | title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); | |
%set(get(gca,'Title'),'Interpreter','none'); | 525 | 525 | %set(get(gca,'Title'),'Interpreter','none'); | |
xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial'); | 526 | 526 | xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial'); | |
ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | 527 | 527 | ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); | |
set(gca,'FontSize',FontSize,'FontName',FontName); | 528 | 528 | set(gca,'FontSize',FontSize,'FontName',FontName); | |
% expand the x axis a little bit so that the errors bars look nice | 529 | 529 | % expand the x axis a little bit so that the errors bars look nice | |
adax = axis; | 530 | 530 | adax = axis; | |
axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | 531 | 531 | axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); | |
532 | 532 | |||
% display the minimum value | 533 | 533 | % display the minimum value | |
fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | 534 | 534 | fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); | |
535 | 535 | |||
elseif verbose >= 1 | 536 | 536 | elseif verbose >= 1 | |
fprintf(1,'allan_overlap: WARNING: no values calculated.\n'); | 537 | 537 | fprintf(1,'allan_overlap: WARNING: no values calculated.\n'); | |
fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | 538 | 538 | fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); | |
fprintf(1,'Type "help allan_overlap" for more information.\n\n'); | 539 | 539 | fprintf(1,'Type "help allan_overlap" for more information.\n\n'); | |
end | 540 | 540 | end | |
541 | 541 | |||
end % end plot analysis | 542 | 542 | end % end plot analysis | |
543 | 543 | |||
retval = sm; | 544 | 544 | retval = sm; | |
errorb = sme; | 545 | 545 | errorb = sme; | |
546 | 546 | |||
return | 547 | 547 | return | |
548 | 548 | |||
allanplot.m
#!/usr/bin/octave-cli --persist | 1 | 1 | #!/usr/bin/octave-cli --persist | |
2 | 2 | |||
filename = argv(){1}; | 3 | 3 | filename = argv(){1}; | |
col = eval(argv(){2}); | 4 | 4 | col = eval(argv(){2}); | |
mult = eval(argv(){3}); | 5 | 5 | mult = eval(argv(){3}); | |
6 | 6 | |||
if length(col) == length(mult) | 7 | 7 | if length(col) == length(mult) | |
figure | 8 | 8 | figure | |
hold all | 9 | 9 | hold all | |
grid on | 10 | 10 | grid on | |
cc = 'bkcgmry'; | 11 | 11 | cc = 'bkcgmry'; | |
for i = [1:length(col)] | 12 | 12 | for i = [1:length(col)] | |
data.freq = load(filename)(:,col(i)).*mult(i); | 13 | 13 | data.freq = load(filename)(:,col(i)).*mult(i); | |
if eval(argv(){4})(i) == 1 | 14 | 14 | if nargin == 4 | |
printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n')) | 15 | 15 | if eval(argv(){4})(i) == 1 | |
data.freq = detrend(data.freq); | 16 | 16 | printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n')) | |
end | 17 | 17 | data.freq = detrend(data.freq); | |
data.rate = 1; | 18 | 18 | elseif eval(argv(){4})(i) == 2 | |
[ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | 19 | 19 | printf(strcat(filename, ' col', num2str(col(i)), ' relative ad\n\n')) | |
loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | 20 | 20 | data.freq = data.freq./mean(data.freq); | |
leg{i} = strcat(filename, ' col', num2str(col(i))); | 21 | 21 | elseif eval(argv(){4})(i) == 3 | |
axis(10.^ceil(log10([tau(1), tau(end)]))) | 22 | 22 | printf(strcat(filename, ' col', num2str(col(i)), ' drift removed relative ad\n\n')) | |
hold on | 23 | 23 | data.freq = detrend(data.freq./mean(data.freq)); | |
end | 24 | 24 | end | |
legend(leg) | 25 | 25 | endif | |
input("Press to continue..."); | 26 | 26 | data.rate = 1; | |
27 | [ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | |||
28 | loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | |||
29 | leg{i} = strcat(filename, ' col', num2str(col(i))); | |||
30 | axis(10.^ceil(log10([tau(1), tau(end)]))) | |||
31 | hold on | |||
32 | end | |||
33 | legend(leg) | |||
34 | input("Press to continue..."); | |||
end | 27 | 35 | end | |
exit | 28 | 36 | exit | |
29 | 37 | |||
allanplot_cov.m
#!/usr/bin/octave-cli --persist | 1 | 1 | #!/usr/bin/octave-cli --persist | |
2 | 2 | |||
filename = argv(){1}; | 3 | 3 | filename = argv(){1}; | |
col1 = eval(argv(){2}); | 4 | 4 | col1 = eval(argv(){2}); | |
col2 = eval(argv(){3}); | 5 | 5 | col2 = eval(argv(){3}); | |
mult1 = eval(argv(){4}); | 6 | 6 | mult1 = eval(argv(){4}); | |
mult2 = eval(argv(){5}); | 7 | 7 | mult2 = eval(argv(){5}); | |
8 | 8 | |||
if length(col1) == length(mult1) | 9 | 9 | if length(col1) == length(mult1) | |
figure | 10 | 10 | figure | |
hold all | 11 | 11 | hold all | |
grid on | 12 | 12 | grid on | |
cc = 'bkcgmry'; | 13 | 13 | cc = 'bkcgmry'; | |
for i = [1:length(col1)] | 14 | 14 | for i = [1:length(col1)] | |
data.freq = load(filename)(:,col1(i)).*mult1(i); | 15 | 15 | data.freq = load(filename)(:,col1(i)).*mult1(i); | |
data.freq2 = load(filename)(:,col2(i)).*mult2(i); | 16 | 16 | data.freq2 = load(filename)(:,col2(i)).*mult2(i); | |
data.freq = data.freq(1:min(length(data.freq), length(data.freq2))); | 17 | 17 | data.freq = data.freq(1:min(length(data.freq), length(data.freq2))); | |
data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2))); | 18 | 18 | data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2))); | |
if eval(argv(){end-1}) == 1 | 19 | 19 | if eval(argv(){end-1}) == 1 | |
printf('\ndata1 drift removed\n\n') | 20 | 20 | printf('\ndata1 drift removed\n\n') | |
data.freq = detrend(data.freq); | 21 | 21 | data.freq = detrend(data.freq); | |
end | 22 | 22 | end | |
if eval(argv(){end}) == 1 | 23 | 23 | if eval(argv(){end}) == 1 | |
printf('\ndata2 drift removed\n\n') | 24 | 24 | printf('\ndata2 drift removed\n\n') | |
data.freq2 = detrend(data.freq2); | 25 | 25 | data.freq2 = detrend(data.freq2); | |
end | 26 | 26 | end | |
data.rate = 1; | 27 | 27 | data.rate = 1; | |
[ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | 28 | 28 | [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | |
loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | 29 | 29 | loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | |
leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i))); | 30 | 30 | leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i))); | |
axis(10.^ceil(log10([tau(1), tau(end)]))) | 31 | 31 | axis(10.^ceil(log10([tau(1), tau(end)]))) | |
hold on | 32 | 32 | hold on | |
end | 33 | 33 | end | |
legend(leg) | 34 | 34 | legend(leg) | |
input("Press to continue..."); | 35 | 35 | input("Press to continue..."); | |
end | 36 | 36 | end | |
exit | 37 | 37 | exit | |
38 | 38 | |||
dsplot.m
function hL = dsplot(x, y, numPoints) | 1 | 1 | function hL = dsplot(x, y, numPoints) | |
2 | 2 | |||
%DSPLOT Create down sampled plot. | 3 | 3 | %DSPLOT Create down sampled plot. | |
% This function creates a down sampled plot to improve the speed of | 4 | 4 | % This function creates a down sampled plot to improve the speed of | |
% exploration (zoom, pan). | 5 | 5 | % exploration (zoom, pan). | |
% | 6 | 6 | % | |
% DSPLOT(X, Y) plots Y versus X by downsampling if there are large number | 7 | 7 | % DSPLOT(X, Y) plots Y versus X by downsampling if there are large number | |
% of elements. X and Y needs to obey the following: | 8 | 8 | % of elements. X and Y needs to obey the following: | |
% 1. X must be a monotonically increasing vector. | 9 | 9 | % 1. X must be a monotonically increasing vector. | |
% 2. If Y is a vector, it must be the same size as X. | 10 | 10 | % 2. If Y is a vector, it must be the same size as X. | |
% 3. If Y is a matrix, one of the dimensions must line up with X. | 11 | 11 | % 3. If Y is a matrix, one of the dimensions must line up with X. | |
% | 12 | 12 | % | |
% DSPLOT(Y) plots the columns of Y versus their index. | 13 | 13 | % DSPLOT(Y) plots the columns of Y versus their index. | |
% | 14 | 14 | % | |
% hLine = DSPLOT(X, Y) returns the handles of the line. Note that the | 15 | 15 | % hLine = DSPLOT(X, Y) returns the handles of the line. Note that the | |
% lines may be downsampled, so they may not represent the full data set. | 16 | 16 | % lines may be downsampled, so they may not represent the full data set. | |
% | 17 | 17 | % | |
% DSPLOT(X, Y, NUMPOINTS) or DSPLOT(Y, [], NUMPOINTS) specifies the | 18 | 18 | % DSPLOT(X, Y, NUMPOINTS) or DSPLOT(Y, [], NUMPOINTS) specifies the | |
% number of points (roughly) to display on the screen. The default is | 19 | 19 | % number of points (roughly) to display on the screen. The default is | |
% 50000 points (~390 kB doubles). NUMPOINTS can be a number greater than | 20 | 20 | % 50000 points (~390 kB doubles). NUMPOINTS can be a number greater than | |
% 500. | 21 | 21 | % 500. | |
% | 22 | 22 | % | |
% It is very likely that more points will be displayed than specified by | 23 | 23 | % It is very likely that more points will be displayed than specified by | |
% NUMPOINTS, because it will try to plot any outlier points in the range. | 24 | 24 | % NUMPOINTS, because it will try to plot any outlier points in the range. | |
% If the signal is stochastic or has a lot of sharp changes, there will | 25 | 25 | % If the signal is stochastic or has a lot of sharp changes, there will | |
% be more points on plotted on the screen. | 26 | 26 | % be more points on plotted on the screen. | |
% | 27 | 27 | % | |
% The figure title (name) will indicate whether the plot shown is | 28 | 28 | % The figure title (name) will indicate whether the plot shown is | |
% downsampled or is the true representation. | 29 | 29 | % downsampled or is the true representation. | |
% | 30 | 30 | % | |
% The figure can be saved as a .fig file, which will include the actual | 31 | 31 | % The figure can be saved as a .fig file, which will include the actual | |
% data. The figure can be reloaded and the actual data can be exported to | 32 | 32 | % data. The figure can be reloaded and the actual data can be exported to | |
% the base workspace via a menu. | 33 | 33 | % the base workspace via a menu. | |
% | 34 | 34 | % | |
% Run the following examples and zoom/pan to see the performance. | 35 | 35 | % Run the following examples and zoom/pan to see the performance. | |
% | 36 | 36 | % | |
% Example 1: (with small details) | 37 | 37 | % Example 1: (with small details) | |
% x = linspace(0, 2*pi, 1000000); | 38 | 38 | % x = linspace(0, 2*pi, 1000000); | |
% y1 = sin(x)+.02*cos(200*x)+0.001*sin(2000*x)+0.0001*cos(20000*x); | 39 | 39 | % y1 = sin(x)+.02*cos(200*x)+0.001*sin(2000*x)+0.0001*cos(20000*x); | |
% dsplot(x,y1);title('Down Sampled'); | 40 | 40 | % dsplot(x,y1);title('Down Sampled'); | |
% % compare with | 41 | 41 | % % compare with | |
% figure;plot(x,y1);title('Normal Plot'); | 42 | 42 | % figure;plot(x,y1);title('Normal Plot'); | |
% | 43 | 43 | % | |
% Example 2: (with outlier points) | 44 | 44 | % Example 2: (with outlier points) | |
% x = linspace(0, 2*pi, 1000000); | 45 | 45 | % x = linspace(0, 2*pi, 1000000); | |
% y1 = sin(x) + .01*cos(200*x) + 0.001*sin(2000*x); | 46 | 46 | % y1 = sin(x) + .01*cos(200*x) + 0.001*sin(2000*x); | |
% y2 = sin(x) + 0.3*cos(3*x) + 0.001*randn(size(x)); | 47 | 47 | % y2 = sin(x) + 0.3*cos(3*x) + 0.001*randn(size(x)); | |
% y1([300000, 700000, 700001, 900000]) = [0, 1, -2, 0.5]; | 48 | 48 | % y1([300000, 700000, 700001, 900000]) = [0, 1, -2, 0.5]; | |
% y2(300000:500000) = y2(300000:500000) + 1; | 49 | 49 | % y2(300000:500000) = y2(300000:500000) + 1; | |
% y2(500001:600000) = y2(500001:600000) - 1; | 50 | 50 | % y2(500001:600000) = y2(500001:600000) - 1; | |
% y2(800000) = 0; | 51 | 51 | % y2(800000) = 0; | |
% dsplot(x, [y1;y2]);title('Down Sampled'); | 52 | 52 | % dsplot(x, [y1;y2]);title('Down Sampled'); | |
% % compare with | 53 | 53 | % % compare with | |
% figure;plot(x, [y1;y2]);title('Normal Plot'); | 54 | 54 | % figure;plot(x, [y1;y2]);title('Normal Plot'); | |
% | 55 | 55 | % | |
% See also PLOT. | 56 | 56 | % See also PLOT. | |
57 | 57 | |||
% Version: | 58 | 58 | % Version: | |
% v1.0 - first version (Aug 1, 2007) | 59 | 59 | % v1.0 - first version (Aug 1, 2007) | |
% v1.1 - added CreateFcn for the figure so that when the figure is saved | 60 | 60 | % v1.1 - added CreateFcn for the figure so that when the figure is saved | |
% and re-loaded, the zooming and panning works. Also added a menu | 61 | 61 | % and re-loaded, the zooming and panning works. Also added a menu | |
% item for saving out the original data back to the base | 62 | 62 | % item for saving out the original data back to the base | |
% workspace. (Aug 10, 2007) | 63 | 63 | % workspace. (Aug 10, 2007) | |
% | 64 | 64 | % | |
% Jiro Doke | 65 | 65 | % Jiro Doke | |
% August 1, 2007 | 66 | 66 | % August 1, 2007 | |
67 | 67 | |||
debugMode = false; | 68 | 68 | debugMode = false; | |
69 | 69 | |||
%-------------------------------------------------------------------------- | 70 | 70 | %-------------------------------------------------------------------------- | |
% Error checking | 71 | 71 | % Error checking | |
error(nargchk(1, 3, nargin, 'struct')); | 72 | 72 | error(nargchk(1, 3, nargin, 'struct')); | |
if nargin < 3 | 73 | 73 | if nargin < 3 | |
% Number of points to show on the screen. It's quite possible that more | 74 | 74 | % Number of points to show on the screen. It's quite possible that more | |
% points will be displayed if there are outlier points | 75 | 75 | % points will be displayed if there are outlier points | |
numPoints = 50000; % ~390 kB for doubles | 76 | 76 | numPoints = 50000; % ~390 kB for doubles | |
end | 77 | 77 | end | |
if nargin == 1 || isempty(y) | 78 | 78 | if nargin == 1 || isempty(y) | |
noXVar = true; | 79 | 79 | noXVar = true; | |
y = x; | 80 | 80 | y = x; | |
x = []; | 81 | 81 | x = []; | |
else | 82 | 82 | else | |
noXVar = false; | 83 | 83 | noXVar = false; | |
end | 84 | 84 | end | |
myErrorCheck; | 85 | 85 | myErrorCheck; | |
%-------------------------------------------------------------------------- | 86 | 86 | %-------------------------------------------------------------------------- | |
87 | 87 | |||
if size(x, 2) > 1 % it's a row vector -> transpose | 88 | 88 | if size(x, 2) > 1 % it's a row vector -> transpose | |
x = x'; | 89 | 89 | x = x'; | |
y = y'; | 90 | 90 | y = y'; | |
varTranspose = true; | 91 | 91 | varTranspose = true; | |
else | 92 | 92 | else | |
varTranspose = false; | 93 | 93 | varTranspose = false; | |
end | 94 | 94 | end | |
95 | 95 | |||
% Number of lines | 96 | 96 | % Number of lines | |
numSignals = size(y, 2); | 97 | 97 | numSignals = size(y, 2); | |
98 | 98 | |||
% If the number of lines is greater than the number of data points per | 99 | 99 | % If the number of lines is greater than the number of data points per | |
% line, it's possible that the user may have mistaken the matrix | 100 | 100 | % line, it's possible that the user may have mistaken the matrix | |
% orientation. | 101 | 101 | % orientation. | |
if numSignals > size(y, 1) | 102 | 102 | if numSignals > size(y, 1) | |
s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ... | 103 | 103 | s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ... | |
numSignals), 's'); | 104 | 104 | numSignals), 's'); | |
if ~strcmpi(s, 'y') | 105 | 105 | if ~strcmpi(s, 'y') | |
disp('Canceled. You may want to transpose the matrix.'); | 106 | 106 | disp('Canceled. You may want to transpose the matrix.'); | |
if nargout == 1 | 107 | 107 | if nargout == 1 | |
hL = []; | 108 | 108 | hL = []; | |
end | 109 | 109 | end | |
return; | 110 | 110 | return; | |
end | 111 | 111 | end | |
end | 112 | 112 | end | |
113 | 113 | |||
% Attempt to find outliers. Use a running average technique | 114 | 114 | % Attempt to find outliers. Use a running average technique | |
filterWidth = ceil(min([50, length(x)/10])); % max window size of 50 | 115 | 115 | filterWidth = ceil(min([50, length(x)/10])); % max window size of 50 | |
a = y - filter(ones(filterWidth,1)/filterWidth, 1, y); | 116 | 116 | a = y - filter(ones(filterWidth,1)/filterWidth, 1, y); | |
[iOutliers, jOutliers] = find(abs(a - repmat(mean(a), size(a, 1), 1)) > ... | 117 | 117 | [iOutliers, jOutliers] = find(abs(a - repmat(mean(a), size(a, 1), 1)) > ... | |
repmat(4 * std(a), size(a, 1), 1)); | 118 | 118 | repmat(4 * std(a), size(a, 1), 1)); | |
clear a; | 119 | 119 | clear a; | |
120 | 120 | |||
% Always create new figure because it messes around with zoom, pan, | 121 | 121 | % Always create new figure because it messes around with zoom, pan, | |
% datacursors. | 122 | 122 | % datacursors. | |
hFig = figure; | 123 | 123 | hFig = figure; | |
figName = ''; | 124 | 124 | figName = ''; | |
125 | 125 | |||
% Create template plot using NaNs | 126 | 126 | % Create template plot using NaNs | |
hLine = plot(NaN(2, numSignals), NaN(2, numSignals)); | 127 | 127 | hLine = plot(NaN(2, numSignals), NaN(2, numSignals)); | |
set(hLine, 'tag', 'dsplot_lines'); | 128 | 128 | set(hLine, 'tag', 'dsplot_lines'); | |
129 | 129 | |||
% Define CreateFcn for the figure | 130 | 130 | % Define CreateFcn for the figure | |
set(hFig, 'CreateFcn', @mycreatefcn); | 131 | 131 | set(hFig, 'CreateFcn', @mycreatefcn); | |
mycreatefcn(); | 132 | 132 | mycreatefcn(); | |
133 | 133 | |||
% Create menu for exporting data | 134 | 134 | % Create menu for exporting data | |
hMenu = uimenu(hFig, 'Label', 'Data'); | 135 | 135 | hMenu = uimenu(hFig, 'Label', 'Data'); | |
uimenu(hMenu, ... | 136 | 136 | uimenu(hMenu, ... | |
'Label' , 'Export data to workspace.', ... | 137 | 137 | 'Label' , 'Export data to workspace.', ... | |
'Callback', @myExportFcn); | 138 | 138 | 'Callback', @myExportFcn); | |
139 | 139 | |||
% Update lines | 140 | 140 | % Update lines | |
updateLines([min(x), max(x)]); | 141 | 141 | updateLines([min(x), max(x)]); | |
142 | 142 | |||
% Deal with output argument | 143 | 143 | % Deal with output argument | |
if nargout == 1 | 144 | 144 | if nargout == 1 | |
hL = hLine; | 145 | 145 | hL = hLine; | |
end | 146 | 146 | end | |
147 | 147 | |||
%-------------------------------------------------------------------------- | 148 | 148 | %-------------------------------------------------------------------------- | |
function myExportFcn(varargin) | 149 | 149 | function myExportFcn(varargin) | |
% This callback allows for extracting the actual data from the figure. | 150 | 150 | % This callback allows for extracting the actual data from the figure. | |
% This means that if you save this figure and load it back later, you | 151 | 151 | % This means that if you save this figure and load it back later, you | |
% can get back the data. | 152 | 152 | % can get back the data. | |
153 | 153 | |||
% Determine the variable name | 154 | 154 | % Determine the variable name | |
allVarNames = evalin('base', 'who'); | 155 | 155 | allVarNames = evalin('base', 'who'); | |
newVarName = genvarname('dsplotData', allVarNames); | 156 | 156 | newVarName = genvarname('dsplotData', allVarNames); | |
157 | 157 | |||
% X | 158 | 158 | % X | |
if ~noXVar | 159 | 159 | if ~noXVar | |
if varTranspose | 160 | 160 | if varTranspose | |
dat.x = x'; | 161 | 161 | dat.x = x'; | |
else | 162 | 162 | else | |
dat.x = x; | 163 | 163 | dat.x = x; | |
end | 164 | 164 | end | |
end | 165 | 165 | end | |
166 | 166 | |||
% Y | 167 | 167 | % Y | |
if varTranspose | 168 | 168 | if varTranspose | |
dat.y = y'; | 169 | 169 | dat.y = y'; | |
else | 170 | 170 | else | |
dat.y = y; | 171 | 171 | dat.y = y; | |
end | 172 | 172 | end | |
173 | 173 | |||
assignin('base', newVarName, dat); | 174 | 174 | assignin('base', newVarName, dat); | |
175 | 175 | |||
msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... | 176 | 176 | msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... | |
newVarName), 'Saved', 'modal'); | 177 | 177 | newVarName), 'Saved', 'modal'); | |
178 | 178 | |||
end | 179 | 179 | end | |
180 | 180 | |||
%-------------------------------------------------------------------------- | 181 | 181 | %-------------------------------------------------------------------------- | |
function mycreatefcn(varargin) | 182 | 182 | function mycreatefcn(varargin) | |
% This callback defines the custom zoom/pan functions. It is defined as | 183 | 183 | % This callback defines the custom zoom/pan functions. It is defined as | |
% the CreateFcn of the figure, so it allows for saving and reloading of | 184 | 184 | % the CreateFcn of the figure, so it allows for saving and reloading of | |
% the figure. | 185 | 185 | % the figure. | |
186 | 186 | |||
if nargin > 0 | 187 | 187 | if nargin > 0 | |
hFig = varargin{1}; | 188 | 188 | hFig = varargin{1}; | |
end | 189 | 189 | end | |
hLine = findobj(hFig, 'type', 'axes'); | 190 | 190 | hLine = findobj(hFig, 'type', 'axes'); | |
hLine(strmatch('legend', get(hLine, 'tag'))) = []; | 191 | 191 | hLine(strmatch('legend', get(hLine, 'tag'))) = []; | |
hLine = get(hLine, 'Children'); | 192 | 192 | hLine = get(hLine, 'Children'); | |
193 | 193 | |||
% Create Zoom, Pan, Datacursor objects | 194 | 194 | % Create Zoom, Pan, Datacursor objects | |
hZoom = zoom(hFig); | 195 | 195 | hZoom = zoom(hFig); | |
hPan = pan(hFig); | 196 | 196 | hPan = pan(hFig); | |
hDc = datacursormode(hFig); | 197 | 197 | hDc = datacursormode(hFig); | |
set(hZoom, 'ActionPostCallback', @mypostcallback); | 198 | 198 | set(hZoom, 'ActionPostCallback', @mypostcallback); | |
set(hPan , 'ActionPostCallback', @mypostcallback); | 199 | 199 | set(hPan , 'ActionPostCallback', @mypostcallback); | |
set(hDc , 'UpdateFcn' , @myDCupdatefcn); | 200 | 200 | set(hDc , 'UpdateFcn' , @myDCupdatefcn); | |
201 | 201 | |||
end | 202 | 202 | end | |
203 | 203 | |||
%-------------------------------------------------------------------------- | 204 | 204 | %-------------------------------------------------------------------------- | |
function mypostcallback(obj, evd) %#ok | 205 | 205 | function mypostcallback(obj, evd) %#ok | |
% This callback that gets called when the mouse is released after | 206 | 206 | % This callback that gets called when the mouse is released after | |
% zooming or panning. | 207 | 207 | % zooming or panning. | |
208 | 208 | |||
% single or double-click | 209 | 209 | % single or double-click | |
switch get(hFig, 'SelectionType') | 210 | 210 | switch get(hFig, 'SelectionType') | |
case {'normal', 'alt'} | 211 | 211 | case {'normal', 'alt'} | |
updateLines(xlim(evd.Axes)); | 212 | 212 | updateLines(xlim(evd.Axes)); | |
213 | 213 | |||
case 'open' | 214 | 214 | case 'open' | |
updateLines([min(x), max(x)]); | 215 | 215 | updateLines([min(x), max(x)]); | |
216 | 216 | |||
end | 217 | 217 | end | |
218 | 218 | |||
end | 219 | 219 | end | |
220 | 220 | |||
%-------------------------------------------------------------------------- | 221 | 221 | %-------------------------------------------------------------------------- | |
function updateLines(rng) | 222 | 222 | function updateLines(rng) | |
% This helper function is for determining the points to plot on the | 223 | 223 | % This helper function is for determining the points to plot on the | |
% screen based on which portion is visible in the current limits. | 224 | 224 | % screen based on which portion is visible in the current limits. | |
225 | 225 | |||
% find indeces inside the range | 226 | 226 | % find indeces inside the range | |
id = find(x >= rng(1) & x <= rng(2)); | 227 | 227 | id = find(x >= rng(1) & x <= rng(2)); | |
228 | 228 | |||
% if there are more points than we want | 229 | 229 | % if there are more points than we want | |
if length(id) > numPoints / numSignals | 230 | 230 | if length(id) > numPoints / numSignals | |
231 | 231 | |||
% see how many outlier points are in this range | 232 | 232 | % see how many outlier points are in this range | |
blah = iOutliers > id(1) & iOutliers < id(end); | 233 | 233 | blah = iOutliers > id(1) & iOutliers < id(end); | |
234 | 234 | |||
% determine indeces of points to plot. | 235 | 235 | % determine indeces of points to plot. | |
idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; | 236 | 236 | idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; | |
237 | 237 | |||
x2 = cell(numSignals, 1); | 238 | 238 | x2 = cell(numSignals, 1); | |
y2 = x2; | 239 | 239 | y2 = x2; | |
for iSignals = 1:numSignals | 240 | 240 | for iSignals = 1:numSignals | |
% add outlier points | 241 | 241 | % add outlier points | |
ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); | 242 | 242 | ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); | |
x2{iSignals} = x(ididid); | 243 | 243 | x2{iSignals} = x(ididid); | |
y2{iSignals} = y(ididid, iSignals); | 244 | 244 | y2{iSignals} = y(ididid, iSignals); | |
end | 245 | 245 | end | |
246 | 246 | |||
if debugMode | 247 | 247 | if debugMode | |
figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; | 248 | 248 | figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; | |
else | 249 | 249 | else | |
figName = 'downsampled'; | 250 | 250 | figName = 'downsampled'; | |
end | 251 | 251 | end | |
252 | 252 | |||
else % no need to down sample | 253 | 253 | else % no need to down sample | |
figName = 'true'; | 254 | 254 | figName = 'true'; | |
255 | 255 | |||
x2 = repmat({x(id)}, numSignals, 1); | 256 | 256 | x2 = repmat({x(id)}, numSignals, 1); | |
y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; | 257 | 257 | y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; | |
258 | 258 | |||
end | 259 | 259 | end | |
260 | 260 | |||
% Update plot | 261 | 261 | % Update plot | |
set(hLine, {'xdata', 'ydata'} , [x2, y2]); | 262 | 262 | set(hLine, {'xdata', 'ydata'} , [x2, y2]); | |
set(hFig, 'Name', figName); | 263 | 263 | set(hFig, 'Name', figName); | |
264 | 264 | |||
end | 265 | 265 | end | |
266 | 266 | |||
%-------------------------------------------------------------------------- | 267 | 267 | %-------------------------------------------------------------------------- | |
function txt = myDCupdatefcn(empt, event_obj) %#ok | 268 | 268 | function txt = myDCupdatefcn(empt, event_obj) %#ok | |
% This function displays appropriate data cursor message based on the | 269 | 269 | % This function displays appropriate data cursor message based on the | |
% display type | 270 | 270 | % display type | |
271 | 271 | |||
pos = get(event_obj,'Position'); | 272 | 272 | pos = get(event_obj,'Position'); | |
switch figName | 273 | 273 | switch figName | |
case 'true' | 274 | 274 | case 'true' | |
txt = {['X: ',num2str(pos(1))],... | 275 | 275 | txt = {['X: ',num2str(pos(1))],... | |
['Y: ',num2str(pos(2))]}; | 276 | 276 | ['Y: ',num2str(pos(2))]}; | |
otherwise | 277 | 277 | otherwise | |
txt = {['X: ',num2str(pos(1))],... | 278 | 278 | txt = {['X: ',num2str(pos(1))],... | |
['Y: ',num2str(pos(2))], ... | 279 | 279 | ['Y: ',num2str(pos(2))], ... | |
'Warning: Downsampled', ... | 280 | 280 | 'Warning: Downsampled', ... | |
'May not be accurate'}; | 281 | 281 | 'May not be accurate'}; | |
end | 282 | 282 | end | |
end | 283 | 283 | end | |
284 | 284 | |||
%-------------------------------------------------------------------------- | 285 | 285 | %-------------------------------------------------------------------------- | |
function myErrorCheck | 286 | 286 | function myErrorCheck | |
% Do some error checking on the input arguments. | 287 | 287 | % Do some error checking on the input arguments. | |
288 | 288 | |||
if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500 | 289 | 289 | if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500 | |
error('Third argument must be a scalar greater than 500'); | 290 | 290 | error('Third argument must be a scalar greater than 500'); | |
end | 291 | 291 | end | |
if ~isnumeric(x) || ~isnumeric(y) | 292 | 292 | if ~isnumeric(x) || ~isnumeric(y) | |
error('Arguments must be numeric'); | 293 | 293 | error('Arguments must be numeric'); | |
end | 294 | 294 | end | |
if length(size(x)) > 2 || length(size(y)) > 2 | 295 | 295 | if length(size(x)) > 2 || length(size(y)) > 2 | |
error('Only 2-D data accepted'); | 296 | 296 | error('Only 2-D data accepted'); | |
end | 297 | 297 | end | |
298 | 298 | |||
% If only one input, create index vector X | 299 | 299 | % If only one input, create index vector X | |
if isempty(x) | 300 | 300 | if isempty(x) | |
if ismember(1, size(y)) | 301 | 301 | if ismember(1, size(y)) | |
x = reshape(1:numel(y), size(y)); | 302 | 302 | x = reshape(1:numel(y), size(y)); | |
else | 303 | 303 | else | |
x = (1:size(y, 1))'; | 304 | 304 | x = (1:size(y, 1))'; | |
end | 305 | 305 | end | |
end | 306 | 306 | end | |
307 | 307 | |||
if ~ismember(1, size(x)) | 308 | 308 | if ~ismember(1, size(x)) | |
error('First argument has to be a vector'); | 309 | 309 | error('First argument has to be a vector'); | |
end | 310 | 310 | end | |
if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2)) | 311 | 311 | if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2)) | |
error('One of the dimensions of the two arguments must match'); | 312 | 312 | error('One of the dimensions of the two arguments must match'); | |
end | 313 | 313 | end | |
if any(diff(x) <= 0) | 314 | 314 | if any(diff(x) <= 0) | |
error('The first argument has to be a monotonically increasing vector'); | 315 | 315 | error('The first argument has to be a monotonically increasing vector'); | |
end | 316 | 316 | end | |
end | 317 | 317 | end | |
318 | 318 | |||
end | 319 | 319 | end | |
psdplot.m
#!/usr/bin/octave-cli --persist | 1 | 1 | #!/usr/bin/octave-cli --persist | |
2 | 2 | |||
filename = argv(){1}; | 3 | 3 | filename = argv(){1}; | |
col = eval(argv(){2}); | 4 | 4 | col = eval(argv(){2}); | |
mult = eval(argv(){3}); | 5 | 5 | mult = eval(argv(){3}); | |
6 | 6 | |||
if length(col) == length(mult) | 7 | 7 | if length(col) == length(mult) | |
figure | 8 | 8 | figure | |
hold all | 9 | 9 | hold all | |
grid on | 10 | 10 | grid on | |
cc = 'bkcgmry'; | 11 | 11 | cc = 'bkcgmry'; | |
for i = [1:length(col)] | 12 | 12 | for i = [1:length(col)] | |
data.freq = load(filename)(:,col(i)).*mult(i); | 13 | 13 | data.freq = load(filename)(:,col(i)).*mult(i); | |
data.rate = 1; | 14 | 14 | data.rate = 1; | |
[p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided'); | 15 | 15 | [p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided'); | |
semilogx(f, 10*log10(p), cc(mod(i, length(cc)))) | 16 | 16 | semilogx(f, 10*log10(p), cc(mod(i, length(cc)))) | |
leg{i} = strcat(filename, ' col', num2str(col(i))); | 17 | 17 | leg{i} = strcat(filename, ' col', num2str(col(i))); | |
hold on | 18 | 18 | hold on | |
end | 19 | 19 | end | |
legend(leg) | 20 | 20 | legend(leg) | |
input("Press to continue..."); | 21 | 21 | input("Press to continue..."); | |
end | 22 | 22 | end | |
exit | 23 | 23 | exit | |
24 | 24 | |||