From 1a0e88f0ce6e736bf1f59e7b02cc394896768bff Mon Sep 17 00:00:00 2001 From: bma Date: Fri, 9 Feb 2018 08:32:57 +0100 Subject: [PATCH] replace 4-spaces by tab --- allan.m | 724 +++++++++++++++++++++++++-------------------------- allan_cov.m | 734 ++++++++++++++++++++++++++-------------------------- allan_modified.m | 770 +++++++++++++++++++++++++++---------------------------- allan_overlap.m | 726 +++++++++++++++++++++++++-------------------------- allanplot.m | 46 ++-- allanplot_cov.m | 52 ++-- dsplot.m | 288 ++++++++++----------- psdplot.m | 28 +- 8 files changed, 1688 insertions(+), 1680 deletions(-) diff --git a/allan.m b/allan.m index 43f4348..d1d4a36 100644 --- a/allan.m +++ b/allan.m @@ -5,33 +5,33 @@ function [retval, s, errorb, tau] = allan(data,tau,name,verbose) % Inputs: % DATA should be a structure and have the following fields: % DATA.freq or DATA.phase -% A vector of fractional frequency measurements (df/f) in -% DATA.freq *or* phase offset data (seconds) in DATA.phase . -% If frequency data is not present, it will be generated by -% differentiating the phase data. -% If both fields are present, then DATA.freq will be used. -% Note: for general-purpose calculations of Allan deviation, -% (i.e. a two-sample variance) use DATA.freq . +% A vector of fractional frequency measurements (df/f) in +% DATA.freq *or* phase offset data (seconds) in DATA.phase . +% If frequency data is not present, it will be generated by +% differentiating the phase data. +% If both fields are present, then DATA.freq will be used. +% Note: for general-purpose calculations of Allan deviation, +% (i.e. a two-sample variance) use DATA.freq . % % DATA.rate or DATA.time -% The sampling rate in Hertz (DATA.rate) or a vector of -% timestamps for each measurement in seconds (DATA.time). -% DATA.rate is used if both fields are present. -% If DATA.rate == 0, then the timestamps are used. +% The sampling rate in Hertz (DATA.rate) or a vector of +% timestamps for each measurement in seconds (DATA.time). +% DATA.rate is used if both fields are present. +% If DATA.rate == 0, then the timestamps are used. % % DATA.units (optional) -% The units for the data. If present, the string DATA.units -% is added to the plot y-axis label. +% The units for the data. If present, the string DATA.units +% is added to the plot y-axis label. % % TAU is an array of tau values for computing Allan deviation. -% TAU values must be divisible by 1/DATA.rate (data points cannot be -% grouped in fractional quantities!) and invalid values are ignored. -% Leave empty to use default values. +% TAU values must be divisible by 1/DATA.rate (data points cannot be +% grouped in fractional quantities!) and invalid values are ignored. +% Leave empty to use default values. % NAME is an optional label that is added to the plot titles. % VERBOSE sets the level of status messages: -% 0 = silent & no data plots; -% 1 = status messages & minimum plots; -% 2 = all messages and plots (default) +% 0 = silent & no data plots; +% 1 = status messages & minimum plots; +% 2 = all messages and plots (default) % % Outputs: % RETVAL is the array of Allan deviation values at each TAU. @@ -46,8 +46,8 @@ function [retval, s, errorb, tau] = allan(data,tau,name,verbose) % To compute the Allan deviation for the data in the variable "lt": % >> lt % lt = -% freq: [1x86400 double] -% rate: 0.5 +% freq: [1x86400 double] +% rate: 0.5 % % Use: % @@ -94,16 +94,16 @@ function [retval, s, errorb, tau] = allan(data,tau,name,verbose) % % % M.A. Hopcroft -% mhopeng at gmail dot com +% mhopeng at gmail dot com % % I welcome your comments and feedback! % % MH Mar2014 % v2.24 fix bug related to generating freq data from phase with timestamps -% (thanks to S. David-Grignot for finding the bug) +% (thanks to S. David-Grignot for finding the bug) % MH Oct2010 % v2.22 tau truncation to integer groups; tau sort -% plotting bugfix +% plotting bugfix % v2.20 sychronize updates across allan, allan_overlap, allan_modified % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 % v2.14 update plotting behaviour, default tau values @@ -113,53 +113,53 @@ versionstr = 'allan v2.24'; % MH Jun2010 % v2.12 bugfix for rate data row/col orientation -% add DATA.units for plotting -% use dsplot.m for plotting +% add DATA.units for plotting +% use dsplot.m for plotting % % MH MAR2010 % v2.1 minor interface and bugfixes -% update data consistency check +% update data consistency check % % MH FEB2010 % v2.0 Consistent code behaviour for all "allan_x.m" functions: -% accept phase data -% verbose levels +% accept phase data +% verbose levels % % % MH JAN2010 % v1.84 code cleanup % v1.82 typos in comments and code cleanup -% tau bin plotting changed for performance improvement +% tau bin plotting changed for performance improvement % v1.8 Performance improvements: -% vectorize code for rate data -% logical indexing for irregular rate data +% vectorize code for rate data +% logical indexing for irregular rate data % MH APR2008 % v1.62 loglog plot option % v1.61 improve error handling, plotting -% fix bug in regular data calc for high-rate data -% fix bug in timestamp data calc for large starting gap -% (thanks to C. B. Ruiz for identifying these bugs) -% uses timestamps for DATA.rate=0 -% progress indicator for large timestamp data processing +% fix bug in regular data calc for high-rate data +% fix bug in timestamp data calc for large starting gap +% (thanks to C. B. Ruiz for identifying these bugs) +% uses timestamps for DATA.rate=0 +% progress indicator for large timestamp data processing % MH JUN2007 % v1.54 Improve data plotting and optional bin plotting % MH FEB2007 % v1.5 use difference from median for plotting -% added MAD calculation for outlier detection +% added MAD calculation for outlier detection % MH JAN2007 % v1.48 plotting typos fixes % MH DEC2006 % v1.46 hack to plot error bars % v1.44 further validation (Riley 1000-pt) -% plot mean and std +% plot mean and std % MH NOV2006 % v1.42 typo fix comments % v1.4 fix irregular rate algorithm -% irregular algorithm rejects tau less than max gap in time data -% validate both algorithms using test data from NBS Monograph 140 +% irregular algorithm rejects tau less than max gap in time data +% validate both algorithms using test data from NBS Monograph 140 % v1.3 fix time calc if data.time not present -% add error bars (not possible due to bug in MATLAB R14SP3) -% remove offset calculation +% add error bars (not possible due to bug in MATLAB R14SP3) +% remove offset calculation % v1.24 improve feedback % MH SEP2006 % v1.22 updated comments @@ -184,25 +184,25 @@ if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end %% Data consistency checks if ~(isfield(data,'phase') || isfield(data,'freq')) - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); end if isfield(data,'time') - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) - error('The time and freq vectors are not the same length. See help for details. [con2]'); - else - error('The time and phase vectors are not the same length. See help for details. [con1]'); - end - end - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); - end - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); - end - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) - error('The time vector contains invalid elements (NaN/Inf). [con5]'); - end + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) + error('The time and freq vectors are not the same length. See help for details. [con2]'); + else + error('The time and phase vectors are not the same length. See help for details. [con1]'); + end + end + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); + end + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); + end + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) + error('The time vector contains invalid elements (NaN/Inf). [con5]'); + end end % sort tau vector @@ -211,34 +211,34 @@ tau=sort(tau); %% Basic statistical tests on the data set if ~isfield(data,'freq') - if isfield(data,'rate') && data.rate ~= 0 - data.freq=diff(data.phase).*data.rate; - elseif isfield(data,'time') - data.freq=diff(data.phase)./diff(data.time); - end - if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end - data.time(1)=[]; % make time stamps correspond to freq data + if isfield(data,'rate') && data.rate ~= 0 + data.freq=diff(data.phase).*data.rate; + elseif isfield(data,'time') + data.freq=diff(data.phase)./diff(data.time); + end + if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end + data.time(1)=[]; % make time stamps correspond to freq data end if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns - + s.numpoints=length(data.freq); s.max=max(data.freq); s.min=min(data.freq); s.mean=mean(data.freq); s.median=median(data.freq); if isfield(data,'time') - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); elseif isfield(data,'rate') && data.rate ~= 0; - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); else - error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); + error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); end s.std=std(data.freq); if verbose >= 2 - fprintf(1,'allan: input data statistics:\n'); - disp(s); + fprintf(1,'allan: input data statistics:\n'); + disp(s); end @@ -249,10 +249,10 @@ sm=[]; sme=[]; % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria s.MAD = median(abs(medianfreq)/0.6745); if verbose >= 2 - fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); + fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); end if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) - fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); + fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); end @@ -263,199 +263,199 @@ end % If there is a regular interval between measurements, calculation is much % easier/faster if isfield(data,'rate') && data.rate > 0 % if data rate was given - if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end - - % string for plot title - name=[name ' (' num2str(data.rate) ' Hz)']; - - % what is the time interval between data points? - tmstep = 1/data.rate; + if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end + + % string for plot title + name=[name ' (' num2str(data.rate) ' Hz)']; + + % what is the time interval between data points? + tmstep = 1/data.rate; - % Is there time data? Just for curiosity/plotting, does not impact calculation - if isfield(data,'time') - % adjust time data to remove any starting gap; first time step - % should not be zero for comparison with freq data - dtime=data.time-data.time(1)+mean(diff(data.time)); - if verbose >= 2 - fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); - if (data.rate - 1/mean(diff(dtime))) > 1e-6 - fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); - end - end - else - % create time axis data using rate (for plotting only) - dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented - end - - % check the range of tau values and truncate if necessary - % find halfway point of time record - halftime = round(tmstep*length(data.freq)/2); - % truncate tau to appropriate values - tau = tau(tau >= tmstep & tau <= halftime); - if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end - - % save the freq data for the loop - dfreq=data.freq; - % find the number of data points in each tau group - m = data.rate.*tau; - % only integer values allowed (no fractional groups of points) - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 - m = m(m==round(m)); - %m=round(m); - - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end - - % calculate the Allan deviation for each value of tau - k=0; tic; - for i = tau - if verbose >= 2, fprintf(1,'%g ',i); end - k=k+1; - - % truncate frequency set to an even multiple of this tau value - freq=dfreq(1:end-rem(length(dfreq),m(k))); - % group the data into tau-length groups or bins - f = reshape(freq,m(k),[]); % Vectorize! - % find average in each "tau group", y_k (each colummn of f) - fa=mean(f,1); - % first finite difference - fd=diff(fa); - % calculate two-sample variance for this tau - M=length(fa); - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); - - % estimate error bars - sme(k)=sm(k)/sqrt(M+1); - - if TAUBIN == 1 - % save the binning points for plotting - fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); - end - - end % repeat for each value of tau - - if verbose >= 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end - - - + % Is there time data? Just for curiosity/plotting, does not impact calculation + if isfield(data,'time') + % adjust time data to remove any starting gap; first time step + % should not be zero for comparison with freq data + dtime=data.time-data.time(1)+mean(diff(data.time)); + if verbose >= 2 + fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); + if (data.rate - 1/mean(diff(dtime))) > 1e-6 + fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); + end + end + else + % create time axis data using rate (for plotting only) + dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented + end + + % check the range of tau values and truncate if necessary + % find halfway point of time record + halftime = round(tmstep*length(data.freq)/2); + % truncate tau to appropriate values + tau = tau(tau >= tmstep & tau <= halftime); + if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end + + % save the freq data for the loop + dfreq=data.freq; + % find the number of data points in each tau group + m = data.rate.*tau; + % only integer values allowed (no fractional groups of points) + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 + m = m(m==round(m)); + %m=round(m); + + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end + + % calculate the Allan deviation for each value of tau + k=0; tic; + for i = tau + if verbose >= 2, fprintf(1,'%g ',i); end + k=k+1; + + % truncate frequency set to an even multiple of this tau value + freq=dfreq(1:end-rem(length(dfreq),m(k))); + % group the data into tau-length groups or bins + f = reshape(freq,m(k),[]); % Vectorize! + % find average in each "tau group", y_k (each colummn of f) + fa=mean(f,1); + % first finite difference + fd=diff(fa); + % calculate two-sample variance for this tau + M=length(fa); + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); + + % estimate error bars + sme(k)=sm(k)/sqrt(M+1); + + if TAUBIN == 1 + % save the binning points for plotting + fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); + end + + end % repeat for each value of tau + + if verbose >= 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end + + + %% Irregular data (timestamp) elseif isfield(data,'time') - % the interval between measurements is irregular - % so we must group the data by time - if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end - - % string for plot title - name=[name ' (timestamp)']; - - % adjust time to remove any initial offset or zero - dtime=data.time-data.time(1)+mean(diff(data.time)); - %dtime=data.time; - % where is the maximum gap in time record? - gap_pos=find(diff(dtime)==max(diff(dtime))); - % what is average data spacing? - avg_gap = mean(diff(dtime)); - - if verbose >= 2 - fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); - pause; - end - - if verbose >= 1 - fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); - if max(diff(dtime)) ~= 1/mean(diff(dtime)) - fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); - end - if max(diff(dtime)) > 5*avg_gap - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); - end - end + % the interval between measurements is irregular + % so we must group the data by time + if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end + + % string for plot title + name=[name ' (timestamp)']; + + % adjust time to remove any initial offset or zero + dtime=data.time-data.time(1)+mean(diff(data.time)); + %dtime=data.time; + % where is the maximum gap in time record? + gap_pos=find(diff(dtime)==max(diff(dtime))); + % what is average data spacing? + avg_gap = mean(diff(dtime)); + + if verbose >= 2 + fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); + pause; + end + + if verbose >= 1 + fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); + if max(diff(dtime)) ~= 1/mean(diff(dtime)) + fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); + end + if max(diff(dtime)) > 5*avg_gap + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); + end + end - % find halfway point - halftime = fix(dtime(end)/2); - % truncate tau to appropriate values - tau = tau(tau >= max(diff(dtime)) & tau <= halftime); - if isempty(tau) - error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); - end - - % save the freq data for the loop - dfreq=data.freq; - dtime=dtime(1:length(dfreq)); - - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end - - k=0; tic; - for i = tau - if verbose >= 2, fprintf(1,'%d ',i); end - - k=k+1; fa=[]; %f=[]; - km=0; - - % truncate data set to an even multiple of this tau value - freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); - time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); - %freq=dfreq; - %time=dtime; - - % break up the data into groups of tau length in sec - while i*km < time(end) - km=km+1; - - % progress bar - if verbose >= 2 - if rem(km,100)==0, fprintf(1,'.'); end - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end - end - - f = freq(i*(km-1) < time & time <= i*km); - f = f(~isnan(f)); % make sure values are valid - - if ~isempty(f) - fa(km)=mean(f); - else - fa(km)=0; - end - - if TAUBIN == 1 % WARNING: this has a significant impact on performance - % save the binning points for plotting - %if find(time <= i*km) > 0 - fs(k,km)=max(time(time <= i*km)); - %else - if isempty(fs(k,km)) - fs(k,km)=0; - end - fval{k}=fa; - end % save tau bin plot points - - end - - if verbose >= 2, fprintf(1,'\n'); end - - % first finite difference of the averaged results - fd=diff(fa); - % calculate Allan deviation for this tau - M=length(fa); - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); - - % estimate error bars - sme(k)=sm(k)/sqrt(M+1); - - - end - - if verbose == 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end - + % find halfway point + halftime = fix(dtime(end)/2); + % truncate tau to appropriate values + tau = tau(tau >= max(diff(dtime)) & tau <= halftime); + if isempty(tau) + error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); + end + + % save the freq data for the loop + dfreq=data.freq; + dtime=dtime(1:length(dfreq)); + + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end + + k=0; tic; + for i = tau + if verbose >= 2, fprintf(1,'%d ',i); end + + k=k+1; fa=[]; %f=[]; + km=0; + + % truncate data set to an even multiple of this tau value + freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); + time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); + %freq=dfreq; + %time=dtime; + + % break up the data into groups of tau length in sec + while i*km < time(end) + km=km+1; + + % progress bar + if verbose >= 2 + if rem(km,100)==0, fprintf(1,'.'); end + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end + end + + f = freq(i*(km-1) < time & time <= i*km); + f = f(~isnan(f)); % make sure values are valid + + if ~isempty(f) + fa(km)=mean(f); + else + fa(km)=0; + end + + if TAUBIN == 1 % WARNING: this has a significant impact on performance + % save the binning points for plotting + %if find(time <= i*km) > 0 + fs(k,km)=max(time(time <= i*km)); + %else + if isempty(fs(k,km)) + fs(k,km)=0; + end + fval{k}=fa; + end % save tau bin plot points + + end + + if verbose >= 2, fprintf(1,'\n'); end + + % first finite difference of the averaged results + fd=diff(fa); + % calculate Allan deviation for this tau + M=length(fa); + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); + + % estimate error bars + sme(k)=sm(k)/sqrt(M+1); + + + end + + if verbose == 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end + else - error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); + error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); end @@ -463,113 +463,113 @@ end %% Plotting if verbose >= 2 % show all data - - % plot the frequency data, centered on median - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle - try - % dsplot makes a new figure - hd=dsplot(dtime,medianfreq); - catch ME - figure; - if length(dtime) ~= length(medianfreq) - fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); - end - hd=plot(dtime,medianfreq); - if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end - end - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' - hold on; - - % show center (0) - plot(xlim,[0 0],':k'); - % show 5x Median Absolute Deviation (MAD) values - hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); - plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); - % show linear fit line - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); - if isfield(data,'units') - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); - else - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); - end - set(gca,'FontSize',FontSize,'FontName',FontName); - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); - % tighten up - xlim([dtime(1) dtime(end)]); - - - % Optional tau bin (y_k samples) plot - if TAUBIN == 1 - % plot the tau divisions on the data plot - rfs=size(fs,1); - colororder=get(gca,'ColorOrder'); - axis tight; kc=2; - %ap=axis; - for j=1:rfs - kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end - %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a - for b=1:find(fs(j,:), 1, 'last' ); - % plot the tau division boundaries - %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); - % plot tau group y values - if b == 1 - plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); - else - plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); - end - end - end - axis auto - end % End optional bin plot - + + % plot the frequency data, centered on median + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle + try + % dsplot makes a new figure + hd=dsplot(dtime,medianfreq); + catch ME + figure; + if length(dtime) ~= length(medianfreq) + fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); + end + hd=plot(dtime,medianfreq); + if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end + end + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' + hold on; + + % show center (0) + plot(xlim,[0 0],':k'); + % show 5x Median Absolute Deviation (MAD) values + hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); + plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); + % show linear fit line + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); + if isfield(data,'units') + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); + else + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); + end + set(gca,'FontSize',FontSize,'FontName',FontName); + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); + % tighten up + xlim([dtime(1) dtime(end)]); + + + % Optional tau bin (y_k samples) plot + if TAUBIN == 1 + % plot the tau divisions on the data plot + rfs=size(fs,1); + colororder=get(gca,'ColorOrder'); + axis tight; kc=2; + %ap=axis; + for j=1:rfs + kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end + %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a + for b=1:find(fs(j,:), 1, 'last' ); + % plot the tau division boundaries + %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); + % plot tau group y values + if b == 1 + plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); + else + plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); + end + end + end + axis auto + end % End optional bin plot + end % end plot raw data if verbose >= 1 % show ADEV results - % plot Allan deviation results - if ~isempty(sm) - figure - - % Choose loglog or semilogx plot here #PLOTLOG - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. - % When this is fixed in a future release, uncomment below to use normal errorbars - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); - % this is a hack to approximate the error bars - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); - - grid on; - title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); - if isfield(data,'units') - ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); - else - ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); - end - set(gca,'FontSize',FontSize,'FontName',FontName); - % expand the x axis a little bit so that the errors bars look nice - adax = axis; - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); - - % display the minimum value - fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); - - elseif verbose >= 1 - fprintf(1,'allan: WARNING: no values calculated.\n'); - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); - fprintf(1,'Type "help allan" for more information.\n\n'); - end + % plot Allan deviation results + if ~isempty(sm) + figure + + % Choose loglog or semilogx plot here #PLOTLOG + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. + % When this is fixed in a future release, uncomment below to use normal errorbars + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); + % this is a hack to approximate the error bars + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); + + grid on; + title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); + if isfield(data,'units') + ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); + else + ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); + end + set(gca,'FontSize',FontSize,'FontName',FontName); + % expand the x axis a little bit so that the errors bars look nice + adax = axis; + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); + + % display the minimum value + fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); + + elseif verbose >= 1 + fprintf(1,'allan: WARNING: no values calculated.\n'); + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); + fprintf(1,'Type "help allan" for more information.\n\n'); + end end % end plot ADEV data - + retval = sm; errorb = sme; diff --git a/allan_cov.m b/allan_cov.m index 25790a1..9bc88fb 100644 --- a/allan_cov.m +++ b/allan_cov.m @@ -5,33 +5,33 @@ function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose) % Inputs: % DATA should be a structure and have the following fields: % DATA.freq or DATA.phase -% A vector of fractional frequency measurements (df/f) in -% DATA.freq *or* phase offset data (seconds) in DATA.phase . -% If frequency data is not present, it will be generated by -% differentiating the phase data. -% If both fields are present, then DATA.freq will be used. -% Note: for general-purpose calculations of Allan deviation, -% (i.e. a two-sample variance) use DATA.freq . +% A vector of fractional frequency measurements (df/f) in +% DATA.freq *or* phase offset data (seconds) in DATA.phase . +% If frequency data is not present, it will be generated by +% differentiating the phase data. +% If both fields are present, then DATA.freq will be used. +% Note: for general-purpose calculations of Allan deviation, +% (i.e. a two-sample variance) use DATA.freq . % % DATA.rate or DATA.time -% The sampling rate in Hertz (DATA.rate) or a vector of -% timestamps for each measurement in seconds (DATA.time). -% DATA.rate is used if both fields are present. -% If DATA.rate == 0, then the timestamps are used. +% The sampling rate in Hertz (DATA.rate) or a vector of +% timestamps for each measurement in seconds (DATA.time). +% DATA.rate is used if both fields are present. +% If DATA.rate == 0, then the timestamps are used. % % DATA.units (optional) -% The units for the data. If present, the string DATA.units -% is added to the plot y-axis label. +% The units for the data. If present, the string DATA.units +% is added to the plot y-axis label. % % TAU is an array of tau values for computing Allan deviation. -% TAU values must be divisible by 1/DATA.rate (data points cannot be -% grouped in fractional quantities!) and invalid values are ignored. -% Leave empty to use default values. +% TAU values must be divisible by 1/DATA.rate (data points cannot be +% grouped in fractional quantities!) and invalid values are ignored. +% Leave empty to use default values. % NAME is an optional label that is added to the plot titles. % VERBOSE sets the level of status messages: -% 0 = silent & no data plots; -% 1 = status messages & minimum plots; -% 2 = all messages and plots (default) +% 0 = silent & no data plots; +% 1 = status messages & minimum plots; +% 2 = all messages and plots (default) % % Outputs: % RETVAL is the array of Allan deviation values at each TAU. @@ -46,8 +46,8 @@ function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose) % To compute the Allan deviation for the data in the variable "lt": % >> lt % lt = -% freq: [1x86400 double] -% rate: 0.5 +% freq: [1x86400 double] +% rate: 0.5 % % Use: % @@ -94,16 +94,16 @@ function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose) % % % M.A. Hopcroft -% mhopeng at gmail dot com +% mhopeng at gmail dot com % % I welcome your comments and feedback! % % MH Mar2014 % v2.24 fix bug related to generating freq data from phase with timestamps -% (thanks to S. David-Grignot for finding the bug) +% (thanks to S. David-Grignot for finding the bug) % MH Oct2010 % v2.22 tau truncation to integer groups; tau sort -% plotting bugfix +% plotting bugfix % v2.20 sychronize updates across allan, allan_overlap, allan_modified % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 % v2.14 update plotting behaviour, default tau values @@ -113,53 +113,53 @@ versionstr = 'allan v2.24'; % MH Jun2010 % v2.12 bugfix for rate data row/col orientation -% add DATA.units for plotting -% use dsplot.m for plotting +% add DATA.units for plotting +% use dsplot.m for plotting % % MH MAR2010 % v2.1 minor interface and bugfixes -% update data consistency check +% update data consistency check % % MH FEB2010 % v2.0 Consistent code behaviour for all "allan_x.m" functions: -% accept phase data -% verbose levels +% accept phase data +% verbose levels % % % MH JAN2010 % v1.84 code cleanup % v1.82 typos in comments and code cleanup -% tau bin plotting changed for performance improvement +% tau bin plotting changed for performance improvement % v1.8 Performance improvements: -% vectorize code for rate data -% logical indexing for irregular rate data +% vectorize code for rate data +% logical indexing for irregular rate data % MH APR2008 % v1.62 loglog plot option % v1.61 improve error handling, plotting -% fix bug in regular data calc for high-rate data -% fix bug in timestamp data calc for large starting gap -% (thanks to C. B. Ruiz for identifying these bugs) -% uses timestamps for DATA.rate=0 -% progress indicator for large timestamp data processing +% fix bug in regular data calc for high-rate data +% fix bug in timestamp data calc for large starting gap +% (thanks to C. B. Ruiz for identifying these bugs) +% uses timestamps for DATA.rate=0 +% progress indicator for large timestamp data processing % MH JUN2007 % v1.54 Improve data plotting and optional bin plotting % MH FEB2007 % v1.5 use difference from median for plotting -% added MAD calculation for outlier detection +% added MAD calculation for outlier detection % MH JAN2007 % v1.48 plotting typos fixes % MH DEC2006 % v1.46 hack to plot error bars % v1.44 further validation (Riley 1000-pt) -% plot mean and std +% plot mean and std % MH NOV2006 % v1.42 typo fix comments % v1.4 fix irregular rate algorithm -% irregular algorithm rejects tau less than max gap in time data -% validate both algorithms using test data from NBS Monograph 140 +% irregular algorithm rejects tau less than max gap in time data +% validate both algorithms using test data from NBS Monograph 140 % v1.3 fix time calc if data.time not present -% add error bars (not possible due to bug in MATLAB R14SP3) -% remove offset calculation +% add error bars (not possible due to bug in MATLAB R14SP3) +% remove offset calculation % v1.24 improve feedback % MH SEP2006 % v1.22 updated comments @@ -184,25 +184,25 @@ if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end %% Data consistency checks if ~(isfield(data,'phase') || isfield(data,'freq')) - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); end if isfield(data,'time') - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) - error('The time and freq vectors are not the same length. See help for details. [con2]'); - else - error('The time and phase vectors are not the same length. See help for details. [con1]'); - end - end - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); - end - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); - end - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) - error('The time vector contains invalid elements (NaN/Inf). [con5]'); - end + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) + error('The time and freq vectors are not the same length. See help for details. [con2]'); + else + error('The time and phase vectors are not the same length. See help for details. [con1]'); + end + end + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); + end + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); + end + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) + error('The time vector contains invalid elements (NaN/Inf). [con5]'); + end end % sort tau vector @@ -211,34 +211,34 @@ tau=sort(tau); %% Basic statistical tests on the data set if ~isfield(data,'freq') - if isfield(data,'rate') && data.rate ~= 0 - data.freq=diff(data.phase).*data.rate; - elseif isfield(data,'time') - data.freq=diff(data.phase)./diff(data.time); - end - if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end - data.time(1)=[]; % make time stamps correspond to freq data + if isfield(data,'rate') && data.rate ~= 0 + data.freq=diff(data.phase).*data.rate; + elseif isfield(data,'time') + data.freq=diff(data.phase)./diff(data.time); + end + if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end + data.time(1)=[]; % make time stamps correspond to freq data end if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns - + s.numpoints=length(data.freq); s.max=max(data.freq); s.min=min(data.freq); s.mean=mean(data.freq); s.median=median(data.freq); if isfield(data,'time') - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); elseif isfield(data,'rate') && data.rate ~= 0; - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); else - error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); + error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); end s.std=std(data.freq); if verbose >= 2 - fprintf(1,'allan: input data statistics:\n'); - disp(s); + fprintf(1,'allan: input data statistics:\n'); + disp(s); end @@ -249,10 +249,10 @@ sm=[]; sme=[]; % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria s.MAD = median(abs(medianfreq)/0.6745); if verbose >= 2 - fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); + fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); end if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) - fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); + fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); end @@ -263,204 +263,204 @@ end % If there is a regular interval between measurements, calculation is much % easier/faster if isfield(data,'rate') && data.rate > 0 % if data rate was given - if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end - - % string for plot title - name=[name ' (' num2str(data.rate) ' Hz)']; - - % what is the time interval between data points? - tmstep = 1/data.rate; + if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end + + % string for plot title + name=[name ' (' num2str(data.rate) ' Hz)']; + + % what is the time interval between data points? + tmstep = 1/data.rate; - % Is there time data? Just for curiosity/plotting, does not impact calculation - if isfield(data,'time') - % adjust time data to remove any starting gap; first time step - % should not be zero for comparison with freq data - dtime=data.time-data.time(1)+mean(diff(data.time)); - if verbose >= 2 - fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); - if (data.rate - 1/mean(diff(dtime))) > 1e-6 - fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); - end - end - else - % create time axis data using rate (for plotting only) - dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented - end - - % check the range of tau values and truncate if necessary - % find halfway point of time record - halftime = round(tmstep*length(data.freq)/2); - % truncate tau to appropriate values - tau = tau(tau >= tmstep & tau <= halftime); - if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end - - % save the freq data for the loop - dfreq=data.freq; - dfreq2=data.freq2; - % find the number of data points in each tau group - m = data.rate.*tau; - % only integer values allowed (no fractional groups of points) - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 - m = m(m==round(m)); - %m=round(m); - - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end - - % calculate the Allan deviation for each value of tau - k=0; tic; - for i = tau - if verbose >= 2, fprintf(1,'%g ',i); end - k=k+1; - - % truncate frequency set to an even multiple of this tau value - freq=dfreq(1:end-rem(length(dfreq),m(k))); - freq2=dfreq2(1:end-rem(length(dfreq2),m(k))); - % group the data into tau-length groups or bins - f = reshape(freq,m(k),[]); % Vectorize! - f2 = reshape(freq2,m(k),[]); % Vectorize! - % find average in each "tau group", y_k (each colummn of f) - fa=mean(f,1); - fa2=mean(f2,1); - % first finite difference - fd=diff(fa); - fd2=diff(fa2); - % calculate two-sample variance for this tau - M=length(fa); - sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2)))); - - % estimate error bars - sme(k)=sm(k)/sqrt(M+1); - - if TAUBIN == 1 - % save the binning points for plotting - fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); - end - - end % repeat for each value of tau - - if verbose >= 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end - - - + % Is there time data? Just for curiosity/plotting, does not impact calculation + if isfield(data,'time') + % adjust time data to remove any starting gap; first time step + % should not be zero for comparison with freq data + dtime=data.time-data.time(1)+mean(diff(data.time)); + if verbose >= 2 + fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); + if (data.rate - 1/mean(diff(dtime))) > 1e-6 + fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); + end + end + else + % create time axis data using rate (for plotting only) + dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented + end + + % check the range of tau values and truncate if necessary + % find halfway point of time record + halftime = round(tmstep*length(data.freq)/2); + % truncate tau to appropriate values + tau = tau(tau >= tmstep & tau <= halftime); + if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end + + % save the freq data for the loop + dfreq=data.freq; + dfreq2=data.freq2; + % find the number of data points in each tau group + m = data.rate.*tau; + % only integer values allowed (no fractional groups of points) + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 + m = m(m==round(m)); + %m=round(m); + + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end + + % calculate the Allan deviation for each value of tau + k=0; tic; + for i = tau + if verbose >= 2, fprintf(1,'%g ',i); end + k=k+1; + + % truncate frequency set to an even multiple of this tau value + freq=dfreq(1:end-rem(length(dfreq),m(k))); + freq2=dfreq2(1:end-rem(length(dfreq2),m(k))); + % group the data into tau-length groups or bins + f = reshape(freq,m(k),[]); % Vectorize! + f2 = reshape(freq2,m(k),[]); % Vectorize! + % find average in each "tau group", y_k (each colummn of f) + fa=mean(f,1); + fa2=mean(f2,1); + % first finite difference + fd=diff(fa); + fd2=diff(fa2); + % calculate two-sample variance for this tau + M=length(fa); + sm(k)=sqrt(0.5/(M-1)*(abs(sum(fd.*fd2)))); + + % estimate error bars + sme(k)=sm(k)/sqrt(M+1); + + if TAUBIN == 1 + % save the binning points for plotting + fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); + end + + end % repeat for each value of tau + + if verbose >= 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end + + + %% Irregular data (timestamp) elseif isfield(data,'time') - % the interval between measurements is irregular - % so we must group the data by time - if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end - - % string for plot title - name=[name ' (timestamp)']; - - % adjust time to remove any initial offset or zero - dtime=data.time-data.time(1)+mean(diff(data.time)); - %dtime=data.time; - % where is the maximum gap in time record? - gap_pos=find(diff(dtime)==max(diff(dtime))); - % what is average data spacing? - avg_gap = mean(diff(dtime)); - - if verbose >= 2 - fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); - pause; - end - - if verbose >= 1 - fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); - if max(diff(dtime)) ~= 1/mean(diff(dtime)) - fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); - end - if max(diff(dtime)) > 5*avg_gap - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); - end - end + % the interval between measurements is irregular + % so we must group the data by time + if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end + + % string for plot title + name=[name ' (timestamp)']; + + % adjust time to remove any initial offset or zero + dtime=data.time-data.time(1)+mean(diff(data.time)); + %dtime=data.time; + % where is the maximum gap in time record? + gap_pos=find(diff(dtime)==max(diff(dtime))); + % what is average data spacing? + avg_gap = mean(diff(dtime)); + + if verbose >= 2 + fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); + pause; + end + + if verbose >= 1 + fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); + if max(diff(dtime)) ~= 1/mean(diff(dtime)) + fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); + end + if max(diff(dtime)) > 5*avg_gap + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); + end + end - % find halfway point - halftime = fix(dtime(end)/2); - % truncate tau to appropriate values - tau = tau(tau >= max(diff(dtime)) & tau <= halftime); - if isempty(tau) - error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); - end - - % save the freq data for the loop - dfreq=data.freq; - dtime=dtime(1:length(dfreq)); - - if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end - - k=0; tic; - for i = tau - if verbose >= 2, fprintf(1,'%d ',i); end - - k=k+1; fa=[]; %f=[]; - km=0; - - % truncate data set to an even multiple of this tau value - freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); - time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); - %freq=dfreq; - %time=dtime; - - % break up the data into groups of tau length in sec - while i*km < time(end) - km=km+1; - - % progress bar - if verbose >= 2 - if rem(km,100)==0, fprintf(1,'.'); end - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end - end - - f = freq(i*(km-1) < time & time <= i*km); - f = f(~isnan(f)); % make sure values are valid - - if ~isempty(f) - fa(km)=mean(f); - else - fa(km)=0; - end - - if TAUBIN == 1 % WARNING: this has a significant impact on performance - % save the binning points for plotting - %if find(time <= i*km) > 0 - fs(k,km)=max(time(time <= i*km)); - %else - if isempty(fs(k,km)) - fs(k,km)=0; - end - fval{k}=fa; - end % save tau bin plot points - - end - - if verbose >= 2, fprintf(1,'\n'); end - - % first finite difference of the averaged results - fd=diff(fa); - % calculate Allan deviation for this tau - M=length(fa); - sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); - - % estimate error bars - sme(k)=sm(k)/sqrt(M+1); - - - end - - if verbose == 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end - + % find halfway point + halftime = fix(dtime(end)/2); + % truncate tau to appropriate values + tau = tau(tau >= max(diff(dtime)) & tau <= halftime); + if isempty(tau) + error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); + end + + % save the freq data for the loop + dfreq=data.freq; + dtime=dtime(1:length(dfreq)); + + if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end + + k=0; tic; + for i = tau + if verbose >= 2, fprintf(1,'%d ',i); end + + k=k+1; fa=[]; %f=[]; + km=0; + + % truncate data set to an even multiple of this tau value + freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); + time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); + %freq=dfreq; + %time=dtime; + + % break up the data into groups of tau length in sec + while i*km < time(end) + km=km+1; + + % progress bar + if verbose >= 2 + if rem(km,100)==0, fprintf(1,'.'); end + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end + end + + f = freq(i*(km-1) < time & time <= i*km); + f = f(~isnan(f)); % make sure values are valid + + if ~isempty(f) + fa(km)=mean(f); + else + fa(km)=0; + end + + if TAUBIN == 1 % WARNING: this has a significant impact on performance + % save the binning points for plotting + %if find(time <= i*km) > 0 + fs(k,km)=max(time(time <= i*km)); + %else + if isempty(fs(k,km)) + fs(k,km)=0; + end + fval{k}=fa; + end % save tau bin plot points + + end + + if verbose >= 2, fprintf(1,'\n'); end + + % first finite difference of the averaged results + fd=diff(fa); + % calculate Allan deviation for this tau + M=length(fa); + sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); + + % estimate error bars + sme(k)=sm(k)/sqrt(M+1); + + + end + + if verbose == 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end + else - error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); + error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); end @@ -468,113 +468,113 @@ end %% Plotting if verbose >= 2 % show all data - - % plot the frequency data, centered on median - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle - try - % dsplot makes a new figure - hd=dsplot(dtime,medianfreq); - catch ME - figure; - if length(dtime) ~= length(medianfreq) - fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); - end - hd=plot(dtime,medianfreq); - if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end - end - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' - hold on; - - % show center (0) - plot(xlim,[0 0],':k'); - % show 5x Median Absolute Deviation (MAD) values - hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); - plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); - % show linear fit line - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); - if isfield(data,'units') - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); - else - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); - end - set(gca,'FontSize',FontSize,'FontName',FontName); - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); - % tighten up - xlim([dtime(1) dtime(end)]); - - - % Optional tau bin (y_k samples) plot - if TAUBIN == 1 - % plot the tau divisions on the data plot - rfs=size(fs,1); - colororder=get(gca,'ColorOrder'); - axis tight; kc=2; - %ap=axis; - for j=1:rfs - kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end - %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a - for b=1:find(fs(j,:), 1, 'last' ); - % plot the tau division boundaries - %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); - % plot tau group y values - if b == 1 - plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); - else - plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); - end - end - end - axis auto - end % End optional bin plot - + + % plot the frequency data, centered on median + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle + try + % dsplot makes a new figure + hd=dsplot(dtime,medianfreq); + catch ME + figure; + if length(dtime) ~= length(medianfreq) + fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); + end + hd=plot(dtime,medianfreq); + if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end + end + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' + hold on; + + % show center (0) + plot(xlim,[0 0],':k'); + % show 5x Median Absolute Deviation (MAD) values + hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); + plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); + % show linear fit line + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); + if isfield(data,'units') + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); + else + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); + end + set(gca,'FontSize',FontSize,'FontName',FontName); + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); + % tighten up + xlim([dtime(1) dtime(end)]); + + + % Optional tau bin (y_k samples) plot + if TAUBIN == 1 + % plot the tau divisions on the data plot + rfs=size(fs,1); + colororder=get(gca,'ColorOrder'); + axis tight; kc=2; + %ap=axis; + for j=1:rfs + kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end + %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a + for b=1:find(fs(j,:), 1, 'last' ); + % plot the tau division boundaries + %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:)); + % plot tau group y values + if b == 1 + plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); + else + plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4); + end + end + end + axis auto + end % End optional bin plot + end % end plot raw data if verbose >= 1 % show ADEV results - % plot Allan deviation results - if ~isempty(sm) - figure - - % Choose loglog or semilogx plot here #PLOTLOG - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. - % When this is fixed in a future release, uncomment below to use normal errorbars - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); - % this is a hack to approximate the error bars - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); - - grid on; - title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); - if isfield(data,'units') - ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); - else - ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); - end - set(gca,'FontSize',FontSize,'FontName',FontName); - % expand the x axis a little bit so that the errors bars look nice - adax = axis; - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); - - % display the minimum value - fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); - - elseif verbose >= 1 - fprintf(1,'allan: WARNING: no values calculated.\n'); - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); - fprintf(1,'Type "help allan" for more information.\n\n'); - end + % plot Allan deviation results + if ~isempty(sm) + figure + + % Choose loglog or semilogx plot here #PLOTLOG + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. + % When this is fixed in a future release, uncomment below to use normal errorbars + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); + % this is a hack to approximate the error bars + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); + + grid on; + title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); + if isfield(data,'units') + ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); + else + ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); + end + set(gca,'FontSize',FontSize,'FontName',FontName); + % expand the x axis a little bit so that the errors bars look nice + adax = axis; + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); + + % display the minimum value + fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); + + elseif verbose >= 1 + fprintf(1,'allan: WARNING: no values calculated.\n'); + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); + fprintf(1,'Type "help allan" for more information.\n\n'); + end end % end plot ADEV data - + retval = sm; errorb = sme; diff --git a/allan_modified.m b/allan_modified.m index df6c83b..570f8fb 100644 --- a/allan_modified.m +++ b/allan_modified.m @@ -6,24 +6,24 @@ function [retval, s, errorb, tau] = allan_modified(data,tau,name,verbose) % Inputs: % DATA should be a struct and have the following fields: % DATA.freq or DATA.phase -% A vector of fractional frequency measurements (df/f) in -% DATA.freq *or* phase offset data (seconds) in DATA.phase -% If phase data is not present, it will be generated by -% integrating the fractional frequency data. -% If both fields are present, then DATA.phase will be used. +% A vector of fractional frequency measurements (df/f) in +% DATA.freq *or* phase offset data (seconds) in DATA.phase +% If phase data is not present, it will be generated by +% integrating the fractional frequency data. +% If both fields are present, then DATA.phase will be used. % % DATA.rate or DATA.time -% The sampling rate in Hertz (DATA.rate) or a vector of -% timestamps for each measurement in seconds (DATA.time). -% DATA.rate is used if both fields are present. -% If DATA.rate == 0, then the timestamps are used. +% The sampling rate in Hertz (DATA.rate) or a vector of +% timestamps for each measurement in seconds (DATA.time). +% DATA.rate is used if both fields are present. +% If DATA.rate == 0, then the timestamps are used. % % TAU is an array of tau values for computing Allan deviation. -% TAU values must be divisible by 1/DATA.rate (data points cannot be -% grouped in fractional quantities!). Invalid values are ignored. +% TAU values must be divisible by 1/DATA.rate (data points cannot be +% grouped in fractional quantities!). Invalid values are ignored. % NAME is an optional label that is added to the plot titles. % VERBOSE sets the level of status messages: -% 0 = silent & no data plots; 1 = status messages; 2 = all messages +% 0 = silent & no data plots; 1 = status messages; 2 = all messages % % Outputs: % RETVAL is the array of modified Allan deviation values at each TAU. @@ -38,8 +38,8 @@ function [retval, s, errorb, tau] = allan_modified(data,tau,name,verbose) % To compute the modified Allan deviation for the data in the variable "lt": % >> lt % lt = -% freq: [1x86400 double] -% rate: 0.5 +% freq: [1x86400 double] +% rate: 0.5 % % Use: % @@ -83,25 +83,25 @@ function [retval, s, errorb, tau] = allan_modified(data,tau,name,verbose) % % % M.A. Hopcroft -% mhopeng at gmail dot com +% mhopeng at gmail dot com % % I welcome your comments and feedback! % % MH Mar2014 % v1.24 fix bug related to generating freq data from phase with timestamps -% (thanks to S. David-Grignot for finding the bug) +% (thanks to S. David-Grignot for finding the bug) % MH Oct2010 % v1.22 tau truncation to integer groups; tau sort -% plotting bugfix +% plotting bugfix % v1.20 update to match allan.m (dsplot.m, columns) -% discard tau values with timestamp irregularities +% discard tau values with timestamp irregularities % versionstr = 'allan_modified v1.24'; % MH MAR2010 % v1.1 bugfixes for irregular sample rates -% update consistency check +% update consistency check % % MH FEB2010 % v1.0 based on allan_overlap v2.0 @@ -125,25 +125,25 @@ if verbose >= 1, fprintf(1,'allan_modified: %s\n\n',versionstr); end %% Data consistency checks if ~(isfield(data,'phase') || isfield(data,'freq')) - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); end if isfield(data,'time') - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) - error('The time and freq vectors are not the same length. See help for details. [con2]'); - else - error('The time and phase vectors are not the same length. See help for details. [con1]'); - end - end - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); - end - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); - end - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) - error('The time vector contains invalid elements (NaN/Inf). [con5]'); - end + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) + error('The time and freq vectors are not the same length. See help for details. [con2]'); + else + error('The time and phase vectors are not the same length. See help for details. [con1]'); + end + end + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); + end + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); + end + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) + error('The time vector contains invalid elements (NaN/Inf). [con5]'); + end end % sort tau vector @@ -152,12 +152,12 @@ tau=sort(tau); %% Basic statistical tests on the data set if ~isfield(data,'freq') - if isfield(data,'rate') && data.rate ~= 0 - data.freq=diff(data.phase).*data.rate; - elseif isfield(data,'time') - data.freq=diff(data.phase)./diff(data.time); - end - if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end + if isfield(data,'rate') && data.rate ~= 0 + data.freq=diff(data.phase).*data.rate; + elseif isfield(data,'time') + data.freq=diff(data.phase)./diff(data.time); + end + if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end end if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns @@ -167,18 +167,18 @@ s.min=min(data.freq); s.mean=mean(data.freq); s.median=median(data.freq); if isfield(data,'time') - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); elseif isfield(data,'rate') && data.rate ~= 0; - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); else - error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]'); + error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]'); end s.std=std(data.freq); if verbose >= 2 - fprintf(1,'allan_modified: fractional frequency data statistics:\n'); - disp(s); + fprintf(1,'allan_modified: fractional frequency data statistics:\n'); + disp(s); end % scale to median for plotting @@ -188,7 +188,7 @@ sm=[]; sme=[]; % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria MAD = median(abs(medianfreq)/0.6745); if verbose >= 1 && any(abs(medianfreq) > 5*MAD) - fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n'); + fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n'); end %%%% @@ -198,279 +198,279 @@ end % If there is a regular interval between measurements, calculation is much % easier/faster if isfield(data,'rate') && data.rate > 0 % if data rate was given - if verbose >= 1 - fprintf(1, 'allan_modified: regular data '); - if isfield(data,'freq') - fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); - elseif isfield(data,'phase') - fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); - else - error('\n phase or freq data missing [err10]'); - end - end - - % string for plot title - name=[name ' (' num2str(data.rate) ' Hz)']; - - % what is the time interval between data points? - tmstep = 1/data.rate; - - % Is there time data? Just for curiosity/plotting, does not impact calculation - if isfield(data,'time') - % adjust time data to remove any starting gap; first time step - % should not be zero for comparison with freq data - dtime=data.time-data.time(1)+mean(diff(data.time)); - dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1) - if verbose >= 2 - fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end)); - if (data.rate - 1/mean(diff(dtime))) > 1e-6 - fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); - end - end - else - % create time axis data using rate (for plotting only) - dtime=(tmstep:tmstep:length(data.freq)*tmstep); - end - - - % is phase data present? If not, generate it - if ~isfield(data,'phase') - nfreq=data.freq-s.mean; - dphase=zeros(1,length(nfreq)+1); - dphase(2:end) = cumsum(nfreq).*tmstep; - if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end - else - dphase=data.phase; - end - - - % check the range of tau values and truncate if necessary - % find halfway point of time record - halftime = round(tmstep*length(data.freq)/2); - % truncate tau to appropriate values - tau = tau(tau >= tmstep & tau <= halftime); - if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end + if verbose >= 1 + fprintf(1, 'allan_modified: regular data '); + if isfield(data,'freq') + fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); + elseif isfield(data,'phase') + fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); + else + error('\n phase or freq data missing [err10]'); + end + end + + % string for plot title + name=[name ' (' num2str(data.rate) ' Hz)']; + + % what is the time interval between data points? + tmstep = 1/data.rate; + + % Is there time data? Just for curiosity/plotting, does not impact calculation + if isfield(data,'time') + % adjust time data to remove any starting gap; first time step + % should not be zero for comparison with freq data + dtime=data.time-data.time(1)+mean(diff(data.time)); + dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1) + if verbose >= 2 + fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end)); + if (data.rate - 1/mean(diff(dtime))) > 1e-6 + fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); + end + end + else + % create time axis data using rate (for plotting only) + dtime=(tmstep:tmstep:length(data.freq)*tmstep); + end + + + % is phase data present? If not, generate it + if ~isfield(data,'phase') + nfreq=data.freq-s.mean; + dphase=zeros(1,length(nfreq)+1); + dphase(2:end) = cumsum(nfreq).*tmstep; + if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end + else + dphase=data.phase; + end + + + % check the range of tau values and truncate if necessary + % find halfway point of time record + halftime = round(tmstep*length(data.freq)/2); + % truncate tau to appropriate values + tau = tau(tau >= tmstep & tau <= halftime); + if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end - % find the number of data points in each tau group - % number of samples - N=length(dphase); - m = data.rate.*tau; - % only integer values allowed (no fractional groups of points) - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1) - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22 - m = m(m==round(m)); - %m=round(m); - - if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end - - - % calculate the modified Allan deviation for each value of tau - k=0; tic; - for i = tau - k=k+1; - pa=[]; - if verbose >= 2, fprintf(1,'%d ',i); end - - mphase = dphase; - - % calculate overlapping "phase averages" (x_k) - for p=1:m(k) - - % truncate frequency set length to an even multiple of this tau value - mphase=mphase(1:end-rem(length(mphase),m(k))); - % group phase values - mp=reshape(mphase,m(k),[]); - % find average in each "tau group" (each column of mp) - pa(p,:)=mean(mp,1); - % shift data vector by -1 and repeat - mphase=circshift(dphase,(size(dphase)>1)*-p); - - end - - % create "modified" y_k freq values - mfreq=diff(pa,1,2)./i; - mfreq=reshape(mfreq,1,[]); - - % calculate modified frequency differences - mfreqd=reshape(mfreq,m(k),[]); % Vectorize! - mfreqd=diff(mfreqd,1,2); - mfreqd=reshape(mfreqd,1,[]); - - - % calculate two-sample variance for this tau - sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); - - % estimate error bars - sme(k)=sm(k)/sqrt(N-3*m(k)+1); - - - end % repeat for each value of tau - - if verbose >= 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end - - - + % find the number of data points in each tau group + % number of samples + N=length(dphase); + m = data.rate.*tau; + % only integer values allowed (no fractional groups of points) + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1) + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22 + m = m(m==round(m)); + %m=round(m); + + if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n '); end + + + % calculate the modified Allan deviation for each value of tau + k=0; tic; + for i = tau + k=k+1; + pa=[]; + if verbose >= 2, fprintf(1,'%d ',i); end + + mphase = dphase; + + % calculate overlapping "phase averages" (x_k) + for p=1:m(k) + + % truncate frequency set length to an even multiple of this tau value + mphase=mphase(1:end-rem(length(mphase),m(k))); + % group phase values + mp=reshape(mphase,m(k),[]); + % find average in each "tau group" (each column of mp) + pa(p,:)=mean(mp,1); + % shift data vector by -1 and repeat + mphase=circshift(dphase,(size(dphase)>1)*-p); + + end + + % create "modified" y_k freq values + mfreq=diff(pa,1,2)./i; + mfreq=reshape(mfreq,1,[]); + + % calculate modified frequency differences + mfreqd=reshape(mfreq,m(k),[]); % Vectorize! + mfreqd=diff(mfreqd,1,2); + mfreqd=reshape(mfreqd,1,[]); + + + % calculate two-sample variance for this tau + sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); + + % estimate error bars + sme(k)=sm(k)/sqrt(N-3*m(k)+1); + + + end % repeat for each value of tau + + if verbose >= 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end + + + %% Irregular data (timestamp) elseif isfield(data,'time') - % the interval between measurements is irregular - % so we must group the data by time - if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end - - % string for plot title - name=[name ' (timestamp)']; - - % adjust time to remove any initial offset - dtime=data.time-data.time(1)+mean(diff(data.time)); - %dtime=data.time-data.time(1); - % where is the maximum gap in time record? - gap_pos=find(diff(dtime)==max(diff(dtime))); - % what is average data spacing? - avg_gap = mean(diff(dtime)); - - if verbose >= 2 - fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n'); - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); - pause; - end - - if verbose >= 1 - fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end)); - fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); - if max(diff(dtime)) ~= 1/mean(diff(dtime)) - fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); - end - if max(diff(dtime)) > 5*avg_gap - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); - end - end - - % is phase data present? If not, generate it - if ~isfield(data,'phase') - nfreq=data.freq-s.mean; - % NOTE: uncommenting the following two lines will artificially - % allow the code to give equivalent results for validation data - % sets using fixed rate data and timestamped data by adding a - % "phantom" data point for frequency integration. Use of this - % phantom point can skew the results of calculations on real data. - %nfreq(end+1)=0; % phantom freq point, with average value - %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step - dphase=zeros(1,length(nfreq)); - dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime); - if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end - else - dphase=data.phase; - end - - % find halfway point - halftime = fix(dtime(end)/2); - % truncate tau to appropriate values - tau = tau(tau >= max(diff(dtime)) & tau <= halftime); - if isempty(tau) - error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); - end - -% % save the freq data for the loop -% dfreq=data.freq; - - % number of samples - N=length(dphase); - m=round(tau./mean(diff(dtime))); - - if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end - - k=0; tic; - for i = tau - - k=k+1; pa=[]; - - mphase = dphase; time = dtime; - - if verbose >= 2, fprintf(1,'%d ',i); end - - % calculate overlapping "phase averages" (x_k) - %for j = 1:i - for j = 1:m(k) % (v1.1) - km=0; - %fprintf(1,'j: %d ',j); - - % (v1.1) truncating not correct for overlapping samples - % truncate data set to an even multiple of this tau value - %mphase = mphase(time <= time(end)-rem(time(end),i)); - %time = time(time <= time(end)-rem(time(end),i)); - - - % break up the data into overlapping groups of tau length - while i*km < time(end) - km=km+1; - - % progress bar - if verbose >= 2 - if rem(km,100)==0, fprintf(1,'.'); end - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end - end - - mp = mphase(i*(km-1) < (time) & (time) <= i*km); - - if ~isempty(mp) - pa(j,km)=mean(mp); - else - pa(j,km)=0; - end - - end - - % shift data vector by -1 and repeat - mphase=circshift(dphase,(size(mphase)>1)*-j); - mphase(end-j+1:end)=[]; - time=circshift(dtime,(size(time)>1)*-j); - time(end-j+1:end)=[]; - time=time-time(1)+avg_gap; % remove time offset - - end - - % create "modified" y_k freq values - mfreq=diff(pa,1,2)./i; - mfreq=reshape(mfreq,1,[]); - - % calculate modified frequency differences - mfreqd=reshape(mfreq,m(k),[]); % Vectorize! - mfreqd=diff(mfreqd,1,2); - mfreqd=reshape(mfreqd,1,[]); - - % calculate two-sample variance for this tau - % only the first N-3*m(k)+1 samples are valid - if length(mfreqd) >= N-3*m(k)+1 - sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); - - % estimate error bars - sme(k)=sm(k)/sqrt(N); - - if verbose >= 2, fprintf(1,'\n'); end - else - if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end - sm(k)=0; sme(k)=0; - end - - - end - - if verbose >= 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end - - % remove any points that were dropped - tau(sm==0)=[]; - sm(sm==0)=[]; - sme(sme==0)=[]; - - % modify time vector for plotting - dtime=dtime(1:length(medianfreq)); + % the interval between measurements is irregular + % so we must group the data by time + if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end + + % string for plot title + name=[name ' (timestamp)']; + + % adjust time to remove any initial offset + dtime=data.time-data.time(1)+mean(diff(data.time)); + %dtime=data.time-data.time(1); + % where is the maximum gap in time record? + gap_pos=find(diff(dtime)==max(diff(dtime))); + % what is average data spacing? + avg_gap = mean(diff(dtime)); + + if verbose >= 2 + fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n'); + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); + pause; + end + + if verbose >= 1 + fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end)); + fprintf(1, ' Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); + if max(diff(dtime)) ~= 1/mean(diff(dtime)) + fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); + end + if max(diff(dtime)) > 5*avg_gap + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); + end + end + + % is phase data present? If not, generate it + if ~isfield(data,'phase') + nfreq=data.freq-s.mean; + % NOTE: uncommenting the following two lines will artificially + % allow the code to give equivalent results for validation data + % sets using fixed rate data and timestamped data by adding a + % "phantom" data point for frequency integration. Use of this + % phantom point can skew the results of calculations on real data. + %nfreq(end+1)=0; % phantom freq point, with average value + %dtime(end+1)=dtime(end)+avg_gap; % phantom average time step + dphase=zeros(1,length(nfreq)); + dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime); + if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end + else + dphase=data.phase; + end + + % find halfway point + halftime = fix(dtime(end)/2); + % truncate tau to appropriate values + tau = tau(tau >= max(diff(dtime)) & tau <= halftime); + if isempty(tau) + error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); + end + +% % save the freq data for the loop +% dfreq=data.freq; + + % number of samples + N=length(dphase); + m=round(tau./mean(diff(dtime))); + + if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end + + k=0; tic; + for i = tau + + k=k+1; pa=[]; + + mphase = dphase; time = dtime; + + if verbose >= 2, fprintf(1,'%d ',i); end + + % calculate overlapping "phase averages" (x_k) + %for j = 1:i + for j = 1:m(k) % (v1.1) + km=0; + %fprintf(1,'j: %d ',j); + + % (v1.1) truncating not correct for overlapping samples + % truncate data set to an even multiple of this tau value + %mphase = mphase(time <= time(end)-rem(time(end),i)); + %time = time(time <= time(end)-rem(time(end),i)); + + + % break up the data into overlapping groups of tau length + while i*km < time(end) + km=km+1; + + % progress bar + if verbose >= 2 + if rem(km,100)==0, fprintf(1,'.'); end + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end + end + + mp = mphase(i*(km-1) < (time) & (time) <= i*km); + + if ~isempty(mp) + pa(j,km)=mean(mp); + else + pa(j,km)=0; + end + + end + + % shift data vector by -1 and repeat + mphase=circshift(dphase,(size(mphase)>1)*-j); + mphase(end-j+1:end)=[]; + time=circshift(dtime,(size(time)>1)*-j); + time(end-j+1:end)=[]; + time=time-time(1)+avg_gap; % remove time offset + + end + + % create "modified" y_k freq values + mfreq=diff(pa,1,2)./i; + mfreq=reshape(mfreq,1,[]); + + % calculate modified frequency differences + mfreqd=reshape(mfreq,m(k),[]); % Vectorize! + mfreqd=diff(mfreqd,1,2); + mfreqd=reshape(mfreqd,1,[]); + + % calculate two-sample variance for this tau + % only the first N-3*m(k)+1 samples are valid + if length(mfreqd) >= N-3*m(k)+1 + sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2))); + + % estimate error bars + sme(k)=sm(k)/sqrt(N); + + if verbose >= 2, fprintf(1,'\n'); end + else + if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end + sm(k)=0; sme(k)=0; + end + + + end + + if verbose >= 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end + + % remove any points that were dropped + tau(sm==0)=[]; + sm(sm==0)=[]; + sme(sme==0)=[]; + + % modify time vector for plotting + dtime=dtime(1:length(medianfreq)); else - error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]'); + error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]'); end @@ -478,41 +478,41 @@ end %% Plotting if verbose >= 2 % show all data - - % plot the frequency data, centered on median - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle - try - % dsplot makes a new figure - hd=dsplot(dtime,medianfreq); - catch ME - figure; - hd=plot(dtime,medianfreq); - if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end - end - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' - hold on; - - fx = xlim; - % plot([fx(1) fx(2)],[s.median s.median],'-k'); - plot([fx(1) fx(2)],[0 0],':k'); - % show 5x Median Absolute deviation (MAD) values - hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); - plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); - % show linear fit line - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); - title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); - if isfield(data,'units') - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); - else - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); - end - set(gca,'FontSize',FontSize,'FontName',FontName); - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); - % tighten up - xlim([dtime(1) dtime(end)]); + + % plot the frequency data, centered on median + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle + try + % dsplot makes a new figure + hd=dsplot(dtime,medianfreq); + catch ME + figure; + hd=plot(dtime,medianfreq); + if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end + end + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' + hold on; + + fx = xlim; + % plot([fx(1) fx(2)],[s.median s.median],'-k'); + plot([fx(1) fx(2)],[0 0],':k'); + % show 5x Median Absolute deviation (MAD) values + hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); + plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); + % show linear fit line + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); + title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); + if isfield(data,'units') + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); + else + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); + end + set(gca,'FontSize',FontSize,'FontName',FontName); + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); + % tighten up + xlim([dtime(1) dtime(end)]); end % end plot raw data @@ -520,41 +520,41 @@ end % end plot raw data if verbose >= 1 % show analysis results - % plot Allan deviation results - if ~isempty(sm) - figure - - % Choose loglog or semilogx plot here #PLOTLOG - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. - % When this is fixed, uncomment below to use normal errorbars - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); - % this is a hack to approximate the error bars - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); - - grid on; - title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); - ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); - set(gca,'FontSize',FontSize,'FontName',FontName); - % expand the x axis a little bit so that the errors bars look nice - adax = axis; - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); - - % display the minimum value - fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); - - elseif verbose >= 1 - fprintf(1,'allan_modified: WARNING: no values calculated.\n'); - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); - fprintf(1,'Type "help allan_modified" for more information.\n\n'); - end + % plot Allan deviation results + if ~isempty(sm) + figure + + % Choose loglog or semilogx plot here #PLOTLOG + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. + % When this is fixed, uncomment below to use normal errorbars + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); + % this is a hack to approximate the error bars + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); + + grid on; + title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName); + ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); + set(gca,'FontSize',FontSize,'FontName',FontName); + % expand the x axis a little bit so that the errors bars look nice + adax = axis; + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); + + % display the minimum value + fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); + + elseif verbose >= 1 + fprintf(1,'allan_modified: WARNING: no values calculated.\n'); + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); + fprintf(1,'Type "help allan_modified" for more information.\n\n'); + end end % end plot analysis - + retval = sm; errorb = sme; diff --git a/allan_overlap.m b/allan_overlap.m index 55689b8..85d02d5 100644 --- a/allan_overlap.m +++ b/allan_overlap.m @@ -6,24 +6,24 @@ function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose) % Inputs: % DATA should be a struct and have the following fields: % DATA.freq or DATA.phase -% A vector of fractional frequency measurements (df/f) in -% DATA.freq *or* phase offset data (seconds) in DATA.phase -% If phase data is not present, it will be generated by -% integrating the fractional frequency data. -% If both fields are present, then DATA.phase will be used. +% A vector of fractional frequency measurements (df/f) in +% DATA.freq *or* phase offset data (seconds) in DATA.phase +% If phase data is not present, it will be generated by +% integrating the fractional frequency data. +% If both fields are present, then DATA.phase will be used. % % DATA.rate or DATA.time -% The sampling rate in Hertz (DATA.rate) or a vector of -% timestamps for each measurement in seconds (DATA.time). -% DATA.rate is used if both fields are present. -% If DATA.rate == 0, then the timestamps are used. +% The sampling rate in Hertz (DATA.rate) or a vector of +% timestamps for each measurement in seconds (DATA.time). +% DATA.rate is used if both fields are present. +% If DATA.rate == 0, then the timestamps are used. % % TAU is an array of tau values for computing Allan deviation. -% TAU values must be divisible by 1/DATA.rate (data points cannot be -% grouped in fractional quantities!). Invalid values are ignored. +% TAU values must be divisible by 1/DATA.rate (data points cannot be +% grouped in fractional quantities!). Invalid values are ignored. % NAME is an optional label that is added to the plot titles. % VERBOSE sets the level of status messages: -% 0 = silent & no data plots; 1 = status messages; 2 = all messages +% 0 = silent & no data plots; 1 = status messages; 2 = all messages % % Outputs: % RETVAL is the array of overlapping Allan deviation values at each TAU. @@ -38,8 +38,8 @@ function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose) % To compute the overlapping Allan deviation for the data in the variable "lt": % >> lt % lt = -% freq: [1x86400 double] -% rate: 0.5 +% freq: [1x86400 double] +% rate: 0.5 % % Use: % @@ -89,34 +89,34 @@ function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose) % % % M.A. Hopcroft -% mhopeng at gmail dot com +% mhopeng at gmail dot com % % I welcome your comments and feedback! % % MH Mar2014 % v2.24 fix bug related to generating freq data from phase with timestamps -% (thanks to S. David-Grignot for finding the bug) +% (thanks to S. David-Grignot for finding the bug) % MH Oct2010 % v2.22 tau truncation to integer groups; tau sort -% plotting bugfix +% plotting bugfix % v2.20 update to match allan.m (dsplot.m, columns) -% discard tau values with timestamp irregularities +% discard tau values with timestamp irregularities versionstr = 'allan_overlap v2.24'; % % MH MAR2010 % v2.1 bugfixes for irregular sample rates -% (thanks to Ryad Ben-El-Kezadri for feedback and testing) -% handle empty rate field -% fix integer comparisons for fractional sample rates -% update consistency check +% (thanks to Ryad Ben-El-Kezadri for feedback and testing) +% handle empty rate field +% fix integer comparisons for fractional sample rates +% update consistency check % % MH FEB2010 % v2.0 use phase data for calculation- much faster -% Consistent code behaviour for all "allan_x.m" functions: -% accept phase data -% verbose levels +% Consistent code behaviour for all "allan_x.m" functions: +% accept phase data +% verbose levels % % MH JAN2010 % v1.0 based on allan v1.84 @@ -140,25 +140,25 @@ if verbose >= 1, fprintf(1,'allan_overlap: %s\n\n',versionstr); end %% Data consistency checks v2.1 if ~(isfield(data,'phase') || isfield(data,'freq')) - error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); + error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); end if isfield(data,'time') - if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) - if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) - error('The time and freq vectors are not the same length. See help for details. [con2]'); - else - error('The time and phase vectors are not the same length. See help for details. [con1]'); - end - end - if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) - error('The phase vector contains invalid elements (NaN/Inf). [con3]'); - end - if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) - error('The freq vector contains invalid elements (NaN/Inf). [con4]'); - end - if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) - error('The time vector contains invalid elements (NaN/Inf). [con5]'); - end + if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) + if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) + error('The time and freq vectors are not the same length. See help for details. [con2]'); + else + error('The time and phase vectors are not the same length. See help for details. [con1]'); + end + end + if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) + error('The phase vector contains invalid elements (NaN/Inf). [con3]'); + end + if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) + error('The freq vector contains invalid elements (NaN/Inf). [con4]'); + end + if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) + error('The time vector contains invalid elements (NaN/Inf). [con5]'); + end end % sort tau vector @@ -166,33 +166,33 @@ tau=sort(tau); %% Basic statistical tests on the data set if ~isfield(data,'freq') - if isfield(data,'rate') && data.rate ~= 0 - data.freq=diff(data.phase).*data.rate; - elseif isfield(data,'time') - data.freq=diff(data.phase)./diff(data.time); - end - if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end + if isfield(data,'rate') && data.rate ~= 0 + data.freq=diff(data.phase).*data.rate; + elseif isfield(data,'time') + data.freq=diff(data.phase)./diff(data.time); + end + if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end end if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns - + s.numpoints=length(data.freq); s.max=max(data.freq); s.min=min(data.freq); s.mean=mean(data.freq); s.median=median(data.freq); if isfield(data,'time') - if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns - s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); + if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns + s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); elseif isfield(data,'rate') && data.rate ~= 0; - s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); + s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); else - error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); + error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); end s.std=std(data.freq); if verbose >= 2 - fprintf(1,'allan_overlap: fractional frequency data statistics:\n'); - disp(s); + fprintf(1,'allan_overlap: fractional frequency data statistics:\n'); + disp(s); end @@ -203,7 +203,7 @@ sm=[]; sme=[]; % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria MAD = median(abs(medianfreq)/0.6745); if verbose >= 1 && any(abs(medianfreq) > 5*MAD) - fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n'); + fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.\n'); end %%%% @@ -213,250 +213,250 @@ end % If there is a regular interval between measurements, calculation is much % easier/faster if isfield(data,'rate') && data.rate > 0 % if data rate was given - if verbose >= 1 - fprintf(1, 'allan_overlap: regular data '); - if isfield(data,'freq') - fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); - elseif isfield(data,'phase') - fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); - else - error('\n phase or freq data missing [err10]'); - end - end + if verbose >= 1 + fprintf(1, 'allan_overlap: regular data '); + if isfield(data,'freq') + fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate); + elseif isfield(data,'phase') + fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate); + else + error('\n phase or freq data missing [err10]'); + end + end - % string for plot title - name=[name ' (' num2str(data.rate) ' Hz)']; - - % what is the time interval between data points? - tmstep = 1/data.rate; - - % Is there time data? Just for curiosity/plotting, does not impact calculation - if isfield(data,'time') - % adjust time data to remove any starting gap; first time step - % should not be zero for comparison with freq data - dtime=data.time-data.time(1)+mean(diff(data.time)); - dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) - if verbose >= 2 - fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end)); - if (data.rate - 1/mean(diff(dtime))) > 1e-6 - fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); - end - end - else - % create time axis data using rate (for plotting only) - dtime=(tmstep:tmstep:length(data.freq)*tmstep); - end + % string for plot title + name=[name ' (' num2str(data.rate) ' Hz)']; + + % what is the time interval between data points? + tmstep = 1/data.rate; + + % Is there time data? Just for curiosity/plotting, does not impact calculation + if isfield(data,'time') + % adjust time data to remove any starting gap; first time step + % should not be zero for comparison with freq data + dtime=data.time-data.time(1)+mean(diff(data.time)); + dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) + if verbose >= 2 + fprintf(1,'allan_overlap: End of timestamp data: %g sec.\n',dtime(end)); + if (data.rate - 1/mean(diff(dtime))) > 1e-6 + fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); + end + end + else + % create time axis data using rate (for plotting only) + dtime=(tmstep:tmstep:length(data.freq)*tmstep); + end - % is phase data present? If not, generate it - if ~isfield(data,'phase') - nfreq=data.freq-s.mean; - dphase=zeros(1,length(nfreq)+1); - dphase(2:end) = cumsum(nfreq)./data.rate; - if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end - else - dphase=data.phase; - end - - % check the range of tau values and truncate if necessary - % find halfway point of time record - halftime = round(tmstep*length(data.freq)/2); - % truncate tau to appropriate values - tau = tau(tau >= tmstep & tau <= halftime); - if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end - - % number of samples - N=length(dphase); - % number of samples per tau period - m = data.rate.*tau; - % only integer values allowed for m (no fractional groups of points) - %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) - tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 - %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 - m = m(m==round(m)); - %m=round(m); - %fprintf(1,'m: %.50f\n',m) - - if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end - - % calculate the Allan deviation for each value of tau - k=0; tic; - for i = tau - k=k+1; - if verbose >= 2, fprintf(1,'%d ',i); end - - - % pad phase data set length to an even multiple of this tau value - mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); - mphase(1:N)=dphase; - % group phase values - mp=reshape(mphase,m(k),[]); - % compute second differences of phase values (x_k+m - x_k) - md1=diff(mp,1,2); - md2=diff(md1,1,2); - md1=reshape(md2,1,[]); - - % compute overlapping ADEV from phase values - % only the first N-2*m(k) samples are valid - sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); - - % estimate error bars - sme(k)=sm(k)/sqrt(N-2*m(k)); - - - end % repeat for each value of tau - - if verbose >= 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end - - - -%% Irregular data, no fixed interval + % is phase data present? If not, generate it + if ~isfield(data,'phase') + nfreq=data.freq-s.mean; + dphase=zeros(1,length(nfreq)+1); + dphase(2:end) = cumsum(nfreq)./data.rate; + if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end + else + dphase=data.phase; + end + + % check the range of tau values and truncate if necessary + % find halfway point of time record + halftime = round(tmstep*length(data.freq)/2); + % truncate tau to appropriate values + tau = tau(tau >= tmstep & tau <= halftime); + if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end + + % number of samples + N=length(dphase); + % number of samples per tau period + m = data.rate.*tau; + % only integer values allowed for m (no fractional groups of points) + %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) + tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 + %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 + m = m(m==round(m)); + %m=round(m); + %fprintf(1,'m: %.50f\n',m) + + if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n '); end + + % calculate the Allan deviation for each value of tau + k=0; tic; + for i = tau + k=k+1; + if verbose >= 2, fprintf(1,'%d ',i); end + + + % pad phase data set length to an even multiple of this tau value + mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); + mphase(1:N)=dphase; + % group phase values + mp=reshape(mphase,m(k),[]); + % compute second differences of phase values (x_k+m - x_k) + md1=diff(mp,1,2); + md2=diff(md1,1,2); + md1=reshape(md2,1,[]); + + % compute overlapping ADEV from phase values + % only the first N-2*m(k) samples are valid + sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); + + % estimate error bars + sme(k)=sm(k)/sqrt(N-2*m(k)); + + + end % repeat for each value of tau + + if verbose >= 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end + + + +%% Irregular data, no fixed interval elseif isfield(data,'time') - % the interval between measurements is irregular - % so we must group the data by time - if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end - - - % string for plot title - name=[name ' (timestamp)']; - - - % adjust time to remove any starting offset - dtime=data.time-data.time(1)+mean(diff(data.time)); - - % save the freq data for the loop - dfreq=data.freq; - dtime=dtime(1:length(dfreq)); - - dfdtime=diff(dtime); % only need to do this once (v2.1) - % where is the maximum gap in time record? - gap_pos=find(dfdtime==max(dfdtime)); - % what is average data spacing? - avg_gap = mean(dfdtime); - s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) - - if verbose >= 2 - fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n'); - fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); - fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); - fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); - pause; - end - - if verbose >= 1 - fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end)); - fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); - if max(diff(dtime)) ~= 1/mean(diff(dtime)) - fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1)); - end - if max(diff(dtime)) > 5*avg_gap - fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); - end - end - - - % find halfway point - halftime = fix(dtime(end)/2); - % truncate tau to appropriate values - tau = tau(tau >= max(dfdtime) & tau <= halftime); - if isempty(tau) - error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime); - end - - - % number of samples - M=length(dfreq); - % number of samples per tau period - m=round(tau./avg_gap); - - if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end - - k=0; tic; - for i = tau - k=k+1; - fa=[]; - - if verbose >= 2, fprintf(1,'%d ',i); end - - freq = dfreq; time = dtime; - - - % compute overlapping samples (y_k) for this tau - %for j = 1:i - for j = 1:m(k) % (v2.1) - km=0; - %fprintf(1,'j: %d ',j); - - % (v2.1) truncating not correct for overlapping samples - % truncate data set to an even multiple of this tau value - %freq = freq(time <= time(end)-rem(time(end),i)); - %time = time(time <= time(end)-rem(time(end),i)); - - % break up the data into overlapping groups of tau length - while i*km <= time(end) - km=km+1; - %i*km - - % progress bar - if verbose >= 2 - if rem(km,100)==0, fprintf(1,'.'); end - if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end - end - - f = freq(i*(km-1) < (time) & (time) <= i*km); - - if ~isempty(f) - fa(j,km)=mean(f); - else - fa(j,km)=0; - end - - end - %fa - - % shift data vector by -1 and repeat - freq=circshift(dfreq,(size(freq)>1)*-j); - freq(end-j+1:end)=[]; - time=circshift(dtime,(size(time)>1)*-j); - time(end-j+1:end)=[]; - time=time-time(1)+avg_gap; % remove time offset - - end - - % compute second differences of fractional frequency values (y_k+m - y_k) - fd1=diff(fa,1,2); - fd1=reshape(fd1,1,[]); - % compute overlapping ADEV from fractional frequency values - % only the first M-2*m(k)+1 samples are valid - if length(fd1) >= M-2*m(k)+1 - sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); - - % estimate error bars - sme(k)=sm(k)/sqrt(M+1); - - if verbose >= 2, fprintf(1,'\n'); end - - else - if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end - sm(k)=0; sme(k)=0; - end - - - end - - if verbose >= 2, fprintf(1,'\n'); end - calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end - - % remove any points that were dropped - tau(sm==0)=[]; - sm(sm==0)=[]; - sme(sme==0)=[]; + % the interval between measurements is irregular + % so we must group the data by time + if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)\n'); end + + + % string for plot title + name=[name ' (timestamp)']; + + + % adjust time to remove any starting offset + dtime=data.time-data.time(1)+mean(diff(data.time)); + + % save the freq data for the loop + dfreq=data.freq; + dtime=dtime(1:length(dfreq)); + + dfdtime=diff(dtime); % only need to do this once (v2.1) + % where is the maximum gap in time record? + gap_pos=find(dfdtime==max(dfdtime)); + % what is average data spacing? + avg_gap = mean(dfdtime); + s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) + + if verbose >= 2 + fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).\n'); + fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); + fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); + fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); + pause; + end + + if verbose >= 1 + fprintf(1, 'allan_overlap: End of timestamp data: %g sec\n',dtime(end)); + fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); + if max(diff(dtime)) ~= 1/mean(diff(dtime)) + fprintf(1, ' Max. gap in time record: %g sec at position %d\n',max(dfdtime),gap_pos(1)); + end + if max(diff(dtime)) > 5*avg_gap + fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); + end + end + + + % find halfway point + halftime = fix(dtime(end)/2); + % truncate tau to appropriate values + tau = tau(tau >= max(dfdtime) & tau <= halftime); + if isempty(tau) + error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(dfdtime),halftime); + end + + + % number of samples + M=length(dfreq); + % number of samples per tau period + m=round(tau./avg_gap); + + if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...\n'); end + + k=0; tic; + for i = tau + k=k+1; + fa=[]; + + if verbose >= 2, fprintf(1,'%d ',i); end + + freq = dfreq; time = dtime; + + + % compute overlapping samples (y_k) for this tau + %for j = 1:i + for j = 1:m(k) % (v2.1) + km=0; + %fprintf(1,'j: %d ',j); + + % (v2.1) truncating not correct for overlapping samples + % truncate data set to an even multiple of this tau value + %freq = freq(time <= time(end)-rem(time(end),i)); + %time = time(time <= time(end)-rem(time(end),i)); + + % break up the data into overlapping groups of tau length + while i*km <= time(end) + km=km+1; + %i*km + + % progress bar + if verbose >= 2 + if rem(km,100)==0, fprintf(1,'.'); end + if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end + end + + f = freq(i*(km-1) < (time) & (time) <= i*km); + + if ~isempty(f) + fa(j,km)=mean(f); + else + fa(j,km)=0; + end + + end + %fa + + % shift data vector by -1 and repeat + freq=circshift(dfreq,(size(freq)>1)*-j); + freq(end-j+1:end)=[]; + time=circshift(dtime,(size(time)>1)*-j); + time(end-j+1:end)=[]; + time=time-time(1)+avg_gap; % remove time offset + + end + + % compute second differences of fractional frequency values (y_k+m - y_k) + fd1=diff(fa,1,2); + fd1=reshape(fd1,1,[]); + % compute overlapping ADEV from fractional frequency values + % only the first M-2*m(k)+1 samples are valid + if length(fd1) >= M-2*m(k)+1 + sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); + + % estimate error bars + sme(k)=sm(k)/sqrt(M+1); + + if verbose >= 2, fprintf(1,'\n'); end + + else + if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end + sm(k)=0; sme(k)=0; + end + + + end + + if verbose >= 2, fprintf(1,'\n'); end + calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds\n',calctime); end + + % remove any points that were dropped + tau(sm==0)=[]; + sm(sm==0)=[]; + sme(sme==0)=[]; else - error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); + error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); end @@ -464,83 +464,83 @@ end %% Plotting if verbose >= 2 % show all data - - % plot the frequency data, centered on median - if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle - try - % dsplot makes a new figure - hd=dsplot(dtime,medianfreq); - catch ME - figure; - hd=plot(dtime,medianfreq); - if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end - if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end - end - set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' - hold on; - - fx = xlim; - % plot([fx(1) fx(2)],[s.median s.median],'-k'); - plot([fx(1) fx(2)],[0 0],':k'); - % show 5x Median Absolute deviation (MAD) values - hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); - plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); - % show linear fit line - hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); - title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial'); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); - if isfield(data,'units') - ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); - else - ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); - end - set(gca,'FontSize',FontSize,'FontName',FontName); - legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); - % tighten up - xlim([dtime(1) dtime(end)]); - - + + % plot the frequency data, centered on median + if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle + try + % dsplot makes a new figure + hd=dsplot(dtime,medianfreq); + catch ME + figure; + hd=plot(dtime,medianfreq); + if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end + if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end + end + set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' + hold on; + + fx = xlim; + % plot([fx(1) fx(2)],[s.median s.median],'-k'); + plot([fx(1) fx(2)],[0 0],':k'); + % show 5x Median Absolute deviation (MAD) values + hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); + plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); + % show linear fit line + hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); + title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial'); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); + if isfield(data,'units') + ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); + else + ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); + end + set(gca,'FontSize',FontSize,'FontName',FontName); + legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); + % tighten up + xlim([dtime(1) dtime(end)]); + + end % end plot raw data if verbose >= 1 % show analysis results - % plot Allan deviation results - if ~isempty(sm) - figure - - % Choose loglog or semilogx plot here #PLOTLOG - %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); - - % in R14SP3, there is a bug that screws up the error bars on a semilog plot. - % When this is fixed, uncomment below to use normal errorbars - %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); - % this is a hack to approximate the error bars - hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); - - grid on; - title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); - %set(get(gca,'Title'),'Interpreter','none'); - xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial'); - ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); - set(gca,'FontSize',FontSize,'FontName',FontName); - % expand the x axis a little bit so that the errors bars look nice - adax = axis; - axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); - - % display the minimum value - fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); - - elseif verbose >= 1 - fprintf(1,'allan_overlap: WARNING: no values calculated.\n'); - fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); - fprintf(1,'Type "help allan_overlap" for more information.\n\n'); - end - + % plot Allan deviation results + if ~isempty(sm) + figure + + % Choose loglog or semilogx plot here #PLOTLOG + %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); + + % in R14SP3, there is a bug that screws up the error bars on a semilog plot. + % When this is fixed, uncomment below to use normal errorbars + %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); + % this is a hack to approximate the error bars + hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); + + grid on; + title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); + %set(get(gca,'Title'),'Interpreter','none'); + xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial'); + ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); + set(gca,'FontSize',FontSize,'FontName',FontName); + % expand the x axis a little bit so that the errors bars look nice + adax = axis; + axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); + + % display the minimum value + fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm))); + + elseif verbose >= 1 + fprintf(1,'allan_overlap: WARNING: no values calculated.\n'); + fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n'); + fprintf(1,'Type "help allan_overlap" for more information.\n\n'); + end + end % end plot analysis - + retval = sm; errorb = sme; diff --git a/allanplot.m b/allanplot.m index 909a9a7..0e5fc7e 100755 --- a/allanplot.m +++ b/allanplot.m @@ -5,24 +5,32 @@ col = eval(argv(){2}); mult = eval(argv(){3}); if length(col) == length(mult) - figure - hold all - grid on - cc = 'bkcgmry'; - for i = [1:length(col)] - data.freq = load(filename)(:,col(i)).*mult(i); - if eval(argv(){4})(i) == 1 - printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n')) - data.freq = detrend(data.freq); - end - data.rate = 1; - [ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); - loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) - leg{i} = strcat(filename, ' col', num2str(col(i))); - axis(10.^ceil(log10([tau(1), tau(end)]))) - hold on - end - legend(leg) - input("Press to continue..."); + figure + hold all + grid on + cc = 'bkcgmry'; + for i = [1:length(col)] + data.freq = load(filename)(:,col(i)).*mult(i); + if nargin == 4 + if eval(argv(){4})(i) == 1 + printf(strcat(filename, ' col', num2str(col(i)), ' drift removed\n\n')) + data.freq = detrend(data.freq); + elseif eval(argv(){4})(i) == 2 + printf(strcat(filename, ' col', num2str(col(i)), ' relative ad\n\n')) + data.freq = data.freq./mean(data.freq); + elseif eval(argv(){4})(i) == 3 + printf(strcat(filename, ' col', num2str(col(i)), ' drift removed relative ad\n\n')) + data.freq = detrend(data.freq./mean(data.freq)); + end + endif + data.rate = 1; + [ad, S, err, tau] = allan(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); + loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) + leg{i} = strcat(filename, ' col', num2str(col(i))); + axis(10.^ceil(log10([tau(1), tau(end)]))) + hold on + end + legend(leg) + input("Press to continue..."); end exit diff --git a/allanplot_cov.m b/allanplot_cov.m index 22f22a1..eed62dd 100755 --- a/allanplot_cov.m +++ b/allanplot_cov.m @@ -7,31 +7,31 @@ mult1 = eval(argv(){4}); mult2 = eval(argv(){5}); if length(col1) == length(mult1) - figure - hold all - grid on - cc = 'bkcgmry'; - for i = [1:length(col1)] - data.freq = load(filename)(:,col1(i)).*mult1(i); - data.freq2 = load(filename)(:,col2(i)).*mult2(i); - data.freq = data.freq(1:min(length(data.freq), length(data.freq2))); - data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2))); - if eval(argv(){end-1}) == 1 - printf('\ndata1 drift removed\n\n') - data.freq = detrend(data.freq); - end - if eval(argv(){end}) == 1 - printf('\ndata2 drift removed\n\n') - data.freq2 = detrend(data.freq2); - end - data.rate = 1; - [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); - loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) - leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i))); - axis(10.^ceil(log10([tau(1), tau(end)]))) - hold on - end - legend(leg) - input("Press to continue..."); + figure + hold all + grid on + cc = 'bkcgmry'; + for i = [1:length(col1)] + data.freq = load(filename)(:,col1(i)).*mult1(i); + data.freq2 = load(filename)(:,col2(i)).*mult2(i); + data.freq = data.freq(1:min(length(data.freq), length(data.freq2))); + data.freq2 = data.freq2(1:min(length(data.freq), length(data.freq2))); + if eval(argv(){end-1}) == 1 + printf('\ndata1 drift removed\n\n') + data.freq = detrend(data.freq); + end + if eval(argv(){end}) == 1 + printf('\ndata2 drift removed\n\n') + data.freq2 = detrend(data.freq2); + end + data.rate = 1; + [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); + loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) + leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i))); + axis(10.^ceil(log10([tau(1), tau(end)]))) + hold on + end + legend(leg) + input("Press to continue..."); end exit diff --git a/dsplot.m b/dsplot.m index b1d5544..4101ba0 100644 --- a/dsplot.m +++ b/dsplot.m @@ -6,9 +6,9 @@ function hL = dsplot(x, y, numPoints) % % DSPLOT(X, Y) plots Y versus X by downsampling if there are large number % of elements. X and Y needs to obey the following: -% 1. X must be a monotonically increasing vector. -% 2. If Y is a vector, it must be the same size as X. -% 3. If Y is a matrix, one of the dimensions must line up with X. +% 1. X must be a monotonically increasing vector. +% 2. If Y is a vector, it must be the same size as X. +% 3. If Y is a matrix, one of the dimensions must line up with X. % % DSPLOT(Y) plots the columns of Y versus their index. % @@ -58,9 +58,9 @@ function hL = dsplot(x, y, numPoints) % Version: % v1.0 - first version (Aug 1, 2007) % v1.1 - added CreateFcn for the figure so that when the figure is saved -% and re-loaded, the zooming and panning works. Also added a menu -% item for saving out the original data back to the base -% workspace. (Aug 10, 2007) +% and re-loaded, the zooming and panning works. Also added a menu +% item for saving out the original data back to the base +% workspace. (Aug 10, 2007) % % Jiro Doke % August 1, 2007 @@ -101,13 +101,13 @@ numSignals = size(y, 2); % orientation. if numSignals > size(y, 1) s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ... - numSignals), 's'); + numSignals), 's'); if ~strcmpi(s, 'y') - disp('Canceled. You may want to transpose the matrix.'); - if nargout == 1 - hL = []; - end - return; + disp('Canceled. You may want to transpose the matrix.'); + if nargout == 1 + hL = []; + end + return; end end @@ -120,7 +120,7 @@ clear a; % Always create new figure because it messes around with zoom, pan, % datacursors. -hFig = figure; +hFig = figure; figName = ''; % Create template plot using NaNs @@ -147,173 +147,173 @@ end %-------------------------------------------------------------------------- function myExportFcn(varargin) - % This callback allows for extracting the actual data from the figure. - % This means that if you save this figure and load it back later, you - % can get back the data. - - % Determine the variable name - allVarNames = evalin('base', 'who'); - newVarName = genvarname('dsplotData', allVarNames); - - % X - if ~noXVar - if varTranspose - dat.x = x'; - else - dat.x = x; - end - end - - % Y - if varTranspose - dat.y = y'; - else - dat.y = y; - end - - assignin('base', newVarName, dat); - - msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... - newVarName), 'Saved', 'modal'); - + % This callback allows for extracting the actual data from the figure. + % This means that if you save this figure and load it back later, you + % can get back the data. + + % Determine the variable name + allVarNames = evalin('base', 'who'); + newVarName = genvarname('dsplotData', allVarNames); + + % X + if ~noXVar + if varTranspose + dat.x = x'; + else + dat.x = x; + end + end + + % Y + if varTranspose + dat.y = y'; + else + dat.y = y; + end + + assignin('base', newVarName, dat); + + msgbox(sprintf('Data saved to the base workspace as ''%s''.', ... + newVarName), 'Saved', 'modal'); + end %-------------------------------------------------------------------------- function mycreatefcn(varargin) - % This callback defines the custom zoom/pan functions. It is defined as - % the CreateFcn of the figure, so it allows for saving and reloading of - % the figure. - - if nargin > 0 - hFig = varargin{1}; - end - hLine = findobj(hFig, 'type', 'axes'); - hLine(strmatch('legend', get(hLine, 'tag'))) = []; - hLine = get(hLine, 'Children'); - - % Create Zoom, Pan, Datacursor objects - hZoom = zoom(hFig); - hPan = pan(hFig); - hDc = datacursormode(hFig); - set(hZoom, 'ActionPostCallback', @mypostcallback); - set(hPan , 'ActionPostCallback', @mypostcallback); - set(hDc , 'UpdateFcn' , @myDCupdatefcn); + % This callback defines the custom zoom/pan functions. It is defined as + % the CreateFcn of the figure, so it allows for saving and reloading of + % the figure. + + if nargin > 0 + hFig = varargin{1}; + end + hLine = findobj(hFig, 'type', 'axes'); + hLine(strmatch('legend', get(hLine, 'tag'))) = []; + hLine = get(hLine, 'Children'); + + % Create Zoom, Pan, Datacursor objects + hZoom = zoom(hFig); + hPan = pan(hFig); + hDc = datacursormode(hFig); + set(hZoom, 'ActionPostCallback', @mypostcallback); + set(hPan , 'ActionPostCallback', @mypostcallback); + set(hDc , 'UpdateFcn' , @myDCupdatefcn); end %-------------------------------------------------------------------------- function mypostcallback(obj, evd) %#ok - % This callback that gets called when the mouse is released after - % zooming or panning. + % This callback that gets called when the mouse is released after + % zooming or panning. - % single or double-click - switch get(hFig, 'SelectionType') - case {'normal', 'alt'} - updateLines(xlim(evd.Axes)); + % single or double-click + switch get(hFig, 'SelectionType') + case {'normal', 'alt'} + updateLines(xlim(evd.Axes)); - case 'open' - updateLines([min(x), max(x)]); + case 'open' + updateLines([min(x), max(x)]); - end + end end %-------------------------------------------------------------------------- function updateLines(rng) - % This helper function is for determining the points to plot on the - % screen based on which portion is visible in the current limits. + % This helper function is for determining the points to plot on the + % screen based on which portion is visible in the current limits. - % find indeces inside the range - id = find(x >= rng(1) & x <= rng(2)); + % find indeces inside the range + id = find(x >= rng(1) & x <= rng(2)); - % if there are more points than we want - if length(id) > numPoints / numSignals + % if there are more points than we want + if length(id) > numPoints / numSignals - % see how many outlier points are in this range - blah = iOutliers > id(1) & iOutliers < id(end); + % see how many outlier points are in this range + blah = iOutliers > id(1) & iOutliers < id(end); - % determine indeces of points to plot. - idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; + % determine indeces of points to plot. + idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))'; - x2 = cell(numSignals, 1); - y2 = x2; - for iSignals = 1:numSignals - % add outlier points - ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); - x2{iSignals} = x(ididid); - y2{iSignals} = y(ididid, iSignals); - end + x2 = cell(numSignals, 1); + y2 = x2; + for iSignals = 1:numSignals + % add outlier points + ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]); + x2{iSignals} = x(ididid); + y2{iSignals} = y(ididid, iSignals); + end - if debugMode - figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; - else - figName = 'downsampled'; - end + if debugMode + figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))]; + else + figName = 'downsampled'; + end - else % no need to down sample - figName = 'true'; + else % no need to down sample + figName = 'true'; - x2 = repmat({x(id)}, numSignals, 1); - y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; + x2 = repmat({x(id)}, numSignals, 1); + y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))'; - end + end - % Update plot - set(hLine, {'xdata', 'ydata'} , [x2, y2]); - set(hFig, 'Name', figName); + % Update plot + set(hLine, {'xdata', 'ydata'} , [x2, y2]); + set(hFig, 'Name', figName); end %-------------------------------------------------------------------------- function txt = myDCupdatefcn(empt, event_obj) %#ok - % This function displays appropriate data cursor message based on the - % display type - - pos = get(event_obj,'Position'); - switch figName - case 'true' - txt = {['X: ',num2str(pos(1))],... - ['Y: ',num2str(pos(2))]}; - otherwise - txt = {['X: ',num2str(pos(1))],... - ['Y: ',num2str(pos(2))], ... - 'Warning: Downsampled', ... - 'May not be accurate'}; - end + % This function displays appropriate data cursor message based on the + % display type + + pos = get(event_obj,'Position'); + switch figName + case 'true' + txt = {['X: ',num2str(pos(1))],... + ['Y: ',num2str(pos(2))]}; + otherwise + txt = {['X: ',num2str(pos(1))],... + ['Y: ',num2str(pos(2))], ... + 'Warning: Downsampled', ... + 'May not be accurate'}; + end end %-------------------------------------------------------------------------- function myErrorCheck - % Do some error checking on the input arguments. - - if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500 - error('Third argument must be a scalar greater than 500'); - end - if ~isnumeric(x) || ~isnumeric(y) - error('Arguments must be numeric'); - end - if length(size(x)) > 2 || length(size(y)) > 2 - error('Only 2-D data accepted'); - end - - % If only one input, create index vector X - if isempty(x) - if ismember(1, size(y)) - x = reshape(1:numel(y), size(y)); - else - x = (1:size(y, 1))'; - end - end - - if ~ismember(1, size(x)) - error('First argument has to be a vector'); - end - if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2)) - error('One of the dimensions of the two arguments must match'); - end - if any(diff(x) <= 0) - error('The first argument has to be a monotonically increasing vector'); - end + % Do some error checking on the input arguments. + + if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500 + error('Third argument must be a scalar greater than 500'); + end + if ~isnumeric(x) || ~isnumeric(y) + error('Arguments must be numeric'); + end + if length(size(x)) > 2 || length(size(y)) > 2 + error('Only 2-D data accepted'); + end + + % If only one input, create index vector X + if isempty(x) + if ismember(1, size(y)) + x = reshape(1:numel(y), size(y)); + else + x = (1:size(y, 1))'; + end + end + + if ~ismember(1, size(x)) + error('First argument has to be a vector'); + end + if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2)) + error('One of the dimensions of the two arguments must match'); + end + if any(diff(x) <= 0) + error('The first argument has to be a monotonically increasing vector'); + end end end \ No newline at end of file diff --git a/psdplot.m b/psdplot.m index 5ec39d1..b51dab4 100755 --- a/psdplot.m +++ b/psdplot.m @@ -5,19 +5,19 @@ col = eval(argv(){2}); mult = eval(argv(){3}); if length(col) == length(mult) - figure - hold all - grid on - cc = 'bkcgmry'; - for i = [1:length(col)] - data.freq = load(filename)(:,col(i)).*mult(i); - data.rate = 1; - [p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided'); - semilogx(f, 10*log10(p), cc(mod(i, length(cc)))) - leg{i} = strcat(filename, ' col', num2str(col(i))); - hold on - end - legend(leg) - input("Press to continue..."); + figure + hold all + grid on + cc = 'bkcgmry'; + for i = [1:length(col)] + data.freq = load(filename)(:,col(i)).*mult(i); + data.rate = 1; + [p, f] = pwelch(data.freq, [], 0.95, [], data.rate.*mult(i), 'onesided'); + semilogx(f, 10*log10(p), cc(mod(i, length(cc)))) + leg{i} = strcat(filename, ' col', num2str(col(i))); + hold on + end + legend(leg) + input("Press to continue..."); end exit -- 2.16.4