Commit 9158e74d6be4ac1ce78ef091480d45ff0793becc

Authored by daniau
1 parent 15adbf52ba

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@25 b657c933-2333-4658-acf2-d3c7c2708721

Showing 3 changed files with 867 additions and 0 deletions Side-by-side Diff

No preview for this file type
  1 +%\documentclass[a4paper,10pt]{article}
  2 +\documentclass[a4paper,english]{article}
  3 +
  4 +\usepackage[utf8]{inputenc}
  5 +\usepackage{a4wide}
  6 +\usepackage{eurosym}
  7 +\usepackage{url}
  8 +%\usepackage{aeguill}
  9 +
  10 +\usepackage{graphicx}
  11 +\usepackage{babel}
  12 +\makeatother
  13 +
  14 +
  15 +%opening
  16 +\title{FVN Documentation}
  17 +\author{William Daniau}
  18 +
  19 +
  20 +\begin{document}
  21 +
  22 +\maketitle
  23 +
  24 +%\begin{abstract}
  25 +
  26 +%\end{abstract}
  27 +\tableofcontents
  28 +
  29 +\section{Whatis fvn,licence,disclaimer etc}
  30 +\subsection{Whatis fvn}
  31 +fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, complex trigonometry etc.
  32 +
  33 +Most of the work is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack. Fvn also contains a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack} for performing the numerical integration tasks.
  34 +
  35 +This module has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in institute Femto-ST \url{http://www.femto-st.fr/}.
  36 +
  37 +\subsection{Licence}
  38 +The licence of fvn is free. You can do whatever you want with this code as far as you credit the authors.
  39 +
  40 +\subsubsection*{Authors}
  41 +As of the day this manuel is written there's only one author of fvn :\newline
  42 +William Daniau\newline
  43 +william.daniau@femto-st.fr\newline
  44 +
  45 +\subsection{Disclaimer}
  46 +The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use it at your own risks. The authors should not be taken responsible of anything that may result by the use of this software.
  47 +
  48 +\section{Naming scheme and convention}
  49 +The naming scheme of the routines is as follow :
  50 +\begin{verbatim}
  51 + fvn_x_name()
  52 +\end{verbatim}
  53 +where x can be s,d,c or z.
  54 +\begin{itemize}
  55 + \item s is for single precision real (real,real*4,real(4),real(kind=4))
  56 + \item d for double precision real (double precision,real*8,real(8),real(kind=8))
  57 + \item c for single precision complex (complex,complex*8,complex(4),complex(kind=4))
  58 + \item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8))
  59 +\end{itemize}
  60 +In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout).
  61 +
  62 +\section{Linear algebra}
  63 +The linear algebra routines of fvn are an interface to lapack, which make it easier to use.
  64 +\subsection{Matrix inversion}
  65 +\begin{verbatim}
  66 +call fvn_x_matinv(d,a,inva,status)
  67 +\end{verbatim}
  68 +\begin{itemize}
  69 + \item d (in) is an integer equal to the matrix rank
  70 + \item a (in) is a matrix of type x. It will remain untouched.
  71 + \item inva (out) is a matrix of type x which contain the inverse of a at the end of the routine
  72 + \item status (out) is an integer equal to zero if something went wrong
  73 +\end{itemize}
  74 +
  75 +\subsubsection*{Example}
  76 +\begin{verbatim}
  77 +program inv
  78 + use fvn
  79 + implicit none
  80 +
  81 + real(8),dimension(3,3) :: a,inva
  82 + integer :: status
  83 +
  84 + call random_number(a)
  85 + a=a*100
  86 +
  87 + call fvn_d_matinv(3,a,inva,status)
  88 + write (*,*) a
  89 + write (*,*)
  90 + write (*,*) inva
  91 + write (*,*)
  92 + write (*,*) matmul(a,inva)
  93 +end program
  94 +\end{verbatim}
  95 +
  96 +
  97 +
  98 +\subsection{Matrix determinants}
  99 +\begin{verbatim}
  100 +det=fvn_x_det(d,a,status)
  101 +\end{verbatim}
  102 +\begin{itemize}
  103 + \item d (in) is an integer equal to the matrix rank
  104 + \item a (in) is a matrix of type x. It will remain untouched.
  105 + \item status (out) is an integer equal to zero if something went wrong
  106 +\end{itemize}
  107 +
  108 +\subsubsection*{Example}
  109 +\begin{verbatim}
  110 +program det
  111 + use fvn
  112 + implicit none
  113 +
  114 + real(8),dimension(3,3) :: a
  115 + real(8) :: deta
  116 + integer :: status
  117 +
  118 + call random_number(a)
  119 + a=a*100
  120 +
  121 + deta=fvn_d_det(3,a,status)
  122 + write (*,*) a
  123 + write (*,*)
  124 + write (*,*) "Det = ",deta
  125 +end program
  126 +
  127 +\end{verbatim}
  128 +
  129 +
  130 +
  131 +\subsection{Matrix condition}
  132 +\begin{verbatim}
  133 +call fvn_x_matcon(d,a,rcond,status)
  134 +\end{verbatim}
  135 +\begin{itemize}
  136 + \item d (in) is an integer equal to the matrix rank
  137 + \item a (in) is a matrix of type x. It will remain untouched.
  138 + \item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix
  139 + \item status (out) is an integer equal to zero if something went wrong
  140 +\end{itemize}
  141 +
  142 +The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef}
  143 +\begin{equation}
  144 + R = \frac{1}{norm(A)*norm(invA)}
  145 + \label{rconddef}
  146 +\end{equation}
  147 +
  148 +The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm}
  149 +\begin{equation}
  150 + L1 = max_j ( \sum_i{\mid A(i,j)\mid} )
  151 + \label{l1norm}
  152 +\end{equation}
  153 +
  154 +\subsubsection*{Example}
  155 +\begin{verbatim}
  156 +program cond
  157 + use fvn
  158 + implicit none
  159 +
  160 + real(8),dimension(3,3) :: a
  161 + real(8) :: rcond
  162 + integer :: status
  163 +
  164 + call random_number(a)
  165 + a=a*100
  166 +
  167 + call fvn_d_matcon(3,a,rcond,status)
  168 + write (*,*) a
  169 + write (*,*)
  170 + write (*,*) "Cond = ",rcond
  171 +end program
  172 +
  173 +\end{verbatim}
  174 +
  175 +
  176 +\subsection{Eigenvalues/Eigenvectors}
  177 +\begin{verbatim}
  178 +call fvn_x_matev(d,a,evala,eveca,status)
  179 +\end{verbatim}
  180 +\begin{itemize}
  181 + \item d (in) is an integer equal to the matrix rank
  182 + \item a (in) is a matrix of type x. It will remain untouched.
  183 + \item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a
  184 + \item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j).
  185 + \item status (out) is an integer equal to zero if something went wrong
  186 +\end{itemize}
  187 +
  188 +\subsubsection*{Example}
  189 +\begin{verbatim}
  190 +program eigen
  191 + use fvn
  192 + implicit none
  193 +
  194 + real(8),dimension(3,3) :: a
  195 + complex(8),dimension(3) :: evala
  196 + complex(8),dimension(3,3) :: eveca
  197 + integer :: status,i,j
  198 +
  199 + call random_number(a)
  200 + a=a*100
  201 +
  202 + call fvn_d_matev(3,a,evala,eveca,status)
  203 + write (*,*) a
  204 + write (*,*)
  205 + do i=1,3
  206 + write(*,*) "Eigenvalue ",i,evala(i)
  207 + write(*,*) "Associated Eigenvector :"
  208 + do j=1,3
  209 + write(*,*) eveca(j,i)
  210 + end do
  211 + write(*,*)
  212 + end do
  213 +
  214 +end program
  215 +
  216 +\end{verbatim}
  217 +
  218 +
  219 +\subsection{Sparse solving}
  220 +By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems.
  221 +
  222 +The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form.
  223 +
  224 +\begin{verbatim}
  225 +call fvn_*_sparse_solve(n,nz,T,Ti,Tj,B,x,status) where * is either zl, zi, dl or di
  226 +\end{verbatim}
  227 +\begin{itemize}
  228 + \item For this family of subroutine the two letters (zl,zi,dl,di) decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4)
  229 + \item n (in) is an integer equal to the matrix rank
  230 + \item nz (in) is an integer equal to the number of non-zero elements
  231 + \item T(nz) (in) is a complex/real array containing the non-zero elements
  232 + \item Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix.
  233 + \item B(n) (in) is a complex/real array containing the second member of the equation.
  234 + \item x(n) (out) is a complex/real array containing the solution
  235 + \item status (out) is an integer which contain non-zero is something went wrong
  236 +\end{itemize}
  237 +
  238 +\subsubsection*{Example}
  239 +\begin{verbatim}
  240 +program test_sparse
  241 +
  242 + use fvn
  243 + implicit none
  244 +
  245 + integer(8), parameter :: nz=12
  246 + integer(8), parameter :: n=5
  247 + complex(8),dimension(nz) :: A
  248 + integer(8),dimension(nz) :: Ti,Tj
  249 + complex(8),dimension(n) :: B,x
  250 + integer(8) :: status
  251 +
  252 + A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
  253 + (1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)
  254 + B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
  255 + Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
  256 + Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
  257 +
  258 + call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
  259 + write(*,*) x
  260 +
  261 +end program
  262 +
  263 +
  264 +program test_sparse
  265 +
  266 +use fvn
  267 +implicit none
  268 +
  269 +integer(4), parameter :: nz=12
  270 +integer(4), parameter :: n=5
  271 +real(8),dimension(nz) :: A
  272 +integer(4),dimension(nz) :: Ti,Tj
  273 +real(8),dimension(n) :: B,x
  274 +integer(4) :: status
  275 +
  276 +A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /)
  277 +B = (/ 8., 45., -3., 3., 19./)
  278 +Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
  279 +Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
  280 +
  281 +call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
  282 +write(*,*) x
  283 +
  284 +end program
  285 +
  286 +
  287 +
  288 +\end{verbatim}
  289 +
  290 +
  291 +
  292 +\section{Interpolation}
  293 +
  294 +\subsection{Quadratic Interpolation}
  295 +fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision.
  296 +\subsubsection{One variable function}
  297 +\begin{verbatim}
  298 + value=fvn_x_quad_interpol(x,n,xdata,ydata)
  299 +\end{verbatim}
  300 +\begin{itemize}
  301 + \item x is the real where we want to evaluate the function
  302 + \item n is the number of tabulated values
  303 + \item xdata(n) contains the tabulated coordinates
  304 + \item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i))
  305 +\end{itemize}
  306 +xdata must be strictly increasingly ordered.
  307 +x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation
  308 +\paragraph*{Example}
  309 +\begin{verbatim}
  310 +program inter1d
  311 +
  312 +use fvn
  313 +implicit none
  314 +
  315 +integer(kind=4),parameter :: ndata=33
  316 +integer(kind=4) :: i,nout
  317 +real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata)
  318 +real(kind=8) ::tv
  319 +
  320 +intrinsic sin
  321 +
  322 +f(x)=sin(x)
  323 +
  324 +xdata(1)=0.
  325 +fdata(1)=f(xdata(1))
  326 +h=1./32.
  327 +do i=2,ndata
  328 + xdata(i)=xdata(i-1)+h
  329 + fdata(i)=f(xdata(i))
  330 +end do
  331 +call random_seed()
  332 +call random_number(x)
  333 +
  334 +q=fvn_d_quad_interpol(x,ndata,xdata,fdata)
  335 +
  336 +tv=f(x)
  337 +write(*,*) "x ",x
  338 +write(*,*) "Calculated (real) value :",tv
  339 +write(*,*) "fvn interpolation :",q
  340 +write(*,*) "Relative fvn error :",abs((q-tv)/tv)
  341 +
  342 +end program
  343 +
  344 +\end{verbatim}
  345 +
  346 +
  347 +\subsubsection{Two variables function}
  348 +\begin{verbatim}
  349 +value=fvn_x_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
  350 +\end{verbatim}
  351 +\begin{itemize}
  352 + \item x,y are the real coordinates where we want to evaluate the function
  353 + \item nx is the number of tabulated values along x axis
  354 + \item xdata(nx) contains the tabulated x
  355 + \item ny is the number of tabulated values along y axis
  356 + \item ydata(ny) contains the tabulated y
  357 + \item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j))
  358 +\end{itemize}
  359 +xdata and ydata must be strictly increasingly ordered.
  360 +(x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
  361 +
  362 +\paragraph*{Example}
  363 +
  364 +\begin{verbatim}
  365 +program inter2d
  366 +use fvn
  367 +implicit none
  368 +
  369 +integer(kind=4),parameter :: nx=21,ny=42
  370 +integer(kind=4) :: i,j
  371 +real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny)
  372 +real(kind=8) :: tv
  373 +
  374 +intrinsic dble,sin
  375 +
  376 +f(x,y)=sin(x+2.*y)
  377 +do i=1,nx
  378 + xdata(i)=dble(i-1)/dble(nx-1)
  379 +end do
  380 +do i=1,ny
  381 + ydata(i)=dble(i-1)/dble(ny-1)
  382 +end do
  383 +do i=1,nx
  384 + do j=1,ny
  385 + fdata(i,j)=f(xdata(i),ydata(j))
  386 + end do
  387 +end do
  388 +call random_seed()
  389 +call random_number(x)
  390 +call random_number(y)
  391 +
  392 +q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata)
  393 +tv=f(x,y)
  394 +
  395 +write(*,*) "x y",x,y
  396 +write(*,*) "Calculated (real) value :",tv
  397 +write(*,*) "fvn interpolation :",q
  398 +write(*,*) "Relative fvn error :",abs((q-tv)/tv)
  399 +
  400 +end program
  401 +
  402 +\end{verbatim}
  403 +
  404 +
  405 +
  406 +\subsubsection{Three variables function}
  407 +\begin{verbatim}
  408 +value=fvn_x_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
  409 +\end{verbatim}
  410 +\begin{itemize}
  411 + \item x,y,z are the real coordinates where we want to evaluate the function
  412 + \item nx is the number of tabulated values along x axis
  413 + \item xdata(nx) contains the tabulated x
  414 + \item ny is the number of tabulated values along y axis
  415 + \item ydata(ny) contains the tabulated y
  416 + \item nz is the number of tabulated values along z axis
  417 + \item zdata(ny) contains the tabulated z
  418 + \item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k))
  419 +\end{itemize}
  420 +xdata, ydata and zdata must be strictly increasingly ordered.
  421 +(x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
  422 +
  423 +\paragraph*{Example}
  424 +\begin{verbatim}
  425 +program inter3d
  426 +use fvn
  427 +
  428 +implicit none
  429 +
  430 +integer(kind=4),parameter :: nx=21,ny=42,nz=18
  431 +integer(kind=4) :: i,j,k
  432 +real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz)
  433 +real(kind=8) :: tv
  434 +
  435 +intrinsic dble,sin
  436 +
  437 +f(x,y,z)=sin(x+2.*y+3.*z)
  438 +do i=1,nx
  439 + xdata(i)=2.*(dble(i-1)/dble(nx-1))
  440 +end do
  441 +do i=1,ny
  442 + ydata(i)=2.*(dble(i-1)/dble(ny-1))
  443 +end do
  444 +do i=1,nz
  445 + zdata(i)=2.*(dble(i-1)/dble(nz-1))
  446 +end do
  447 +do i=1,nx
  448 + do j=1,ny
  449 + do k=1,nz
  450 + fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k))
  451 + end do
  452 + end do
  453 +end do
  454 +call random_seed()
  455 +call random_number(x)
  456 +call random_number(y)
  457 +call random_number(z)
  458 +
  459 +q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata)
  460 +tv=f(x,y,z)
  461 +
  462 +write(*,*) "x y z",x,y,z
  463 +write(*,*) "Calculated (real) value :",tv
  464 +write(*,*) "fvn interpolation :",q
  465 +write(*,*) "Relative fvn error :",abs((q-tv)/tv)
  466 +
  467 +end program
  468 +
  469 +\end{verbatim}
  470 +
  471 +\subsubsection{Utility procedure}
  472 +fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array.
  473 +\begin{verbatim}
  474 +call fvn_x_find_interval(x,i,xdata,n)
  475 +\end{verbatim}
  476 +\begin{itemize}
  477 + \item x (in) the real value to locate
  478 + \item i (out) the resulting indice
  479 + \item xdata(n) (in) increasingly ordered array
  480 + \item n (in) size of the array
  481 +\end{itemize}
  482 +The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned.
  483 +
  484 +
  485 +
  486 +\subsection{Akima spline}
  487 +fvn provides Akima spline interpolation and evaluation for both single and double precision real.
  488 +\subsubsection{Interpolation}
  489 +\begin{verbatim}
  490 +call fvn_x_akima(n,x,y,br,co)
  491 +\end{verbatim}
  492 +\begin{itemize}
  493 + \item n (in) is an integer equal to the number of points
  494 + \item x(n) (in) ,y(n) (in) are the known couples of coordinates
  495 + \item br (out) on output contains a copy of x
  496 + \item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval.
  497 +\end{itemize}
  498 +
  499 +\subsubsection{Evaluation}
  500 +\begin{verbatim}
  501 +y=fvn_x_spline_eval(x,n,br,co)
  502 +\end{verbatim}
  503 +\begin{itemize}
  504 + \item x (in) is the point where we want to evaluate
  505 + \item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\
  506 +are the outputs of fvn\_x\_akima(n,x,y,br,co)
  507 +\end{itemize}
  508 +
  509 +\subsubsection{Example}
  510 +In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x).
  511 +
  512 +One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values.
  513 +
  514 +\begin{verbatim}
  515 +program akima
  516 + use fvn
  517 + implicit none
  518 +
  519 + integer :: nbpoints,nppoints,i
  520 + real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d
  521 + real(8),dimension(:,:),allocatable :: coeff_fvn_d
  522 + real(8) :: xstep_d,xp_d,ty_d,fvn_y_d
  523 +
  524 + open(2,file='fvn_akima_double.dat')
  525 + open(3,file='fvn_akima_breakpoints_double.dat')
  526 + nbpoints=30
  527 + allocate(x_d(nbpoints))
  528 + allocate(y_d(nbpoints))
  529 + allocate(breakpoints_d(nbpoints))
  530 + allocate(coeff_fvn_d(4,nbpoints))
  531 +
  532 + xstep_d=20./dfloat(nbpoints)
  533 + do i=1,nbpoints
  534 + x_d(i)=-10.+dfloat(i)*xstep_d
  535 + y_d(i)=dsin(x_d(i))
  536 + write(3,44) (x_d(i),y_d(i))
  537 + end do
  538 + close(3)
  539 +
  540 + call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d)
  541 +
  542 + nppoints=1000
  543 + xstep_d=22./dfloat(nppoints)
  544 + do i=1,nppoints
  545 + xp_d=-11.+dfloat(i)*xstep_d
  546 + ty_d=dsin(xp_d)
  547 + fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d)
  548 + write(2,44) (xp_d,ty_d,fvn_y_d)
  549 + end do
  550 +
  551 + close(2)
  552 +
  553 +44 FORMAT(4(1X,1PE22.14))
  554 +
  555 +end program
  556 +
  557 +\end{verbatim}
  558 +Results are plotted on figure \ref{akima}
  559 +
  560 +\begin{figure}
  561 + \begin{center}
  562 + \includegraphics[width=0.9\textwidth]{akima.pdf}
  563 + % akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720
  564 + \caption{Akima Spline Interpolation}
  565 + \label{akima}
  566 +\end{center}
  567 +
  568 +\end{figure}
  569 +
  570 +
  571 +
  572 +\section{Least square polynomial}
  573 +fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition.
  574 +
  575 +\begin{verbatim}
  576 +call fvn_x_lspoly(np,x,y,deg,coeff,status)
  577 +\end{verbatim}
  578 +\begin{itemize}
  579 + \item np (in) is an integer equal to the number of points
  580 + \item x(np) (in),y(np) (in) are the known coordinates
  581 + \item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np.
  582 + \item coeff(deg+1) (out) on output contains the polynomial coefficients
  583 + \item status (out) is an integer containing 0 if a problem occured.
  584 +\end{itemize}
  585 +
  586 +\subsection*{Example}
  587 +Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points :
  588 +\begin{verbatim}
  589 + program lsp
  590 + use fvn
  591 + implicit none
  592 +
  593 + integer,parameter :: npoints=13,deg=3
  594 + integer :: status,i
  595 + real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc
  596 + real(kind=8) :: coeff(deg+1)
  597 +
  598 + xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
  599 + ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /)
  600 +
  601 + open(2,file='fvn_lsp_double_mesure.dat')
  602 + open(3,file='fvn_lsp_double_poly.dat')
  603 +
  604 + do i=1,npoints
  605 + write(2,44) xm(i),ym(i)
  606 + end do
  607 + close(2)
  608 +
  609 +
  610 + call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status)
  611 +
  612 + xstep=(xm(npoints)-xm(1))/1000.
  613 + do i=1,1000
  614 + xc=xm(1)+(i-1)*xstep
  615 + yc=poly(xc,coeff)
  616 + write(3,44) xc,yc
  617 + end do
  618 + close(3)
  619 +
  620 +44 FORMAT(4(1X,1PE22.14))
  621 +
  622 +contains
  623 +function poly(x,coeff)
  624 + implicit none
  625 + real(8) :: x
  626 + real(8) :: coeff(deg+1)
  627 + real(8) :: poly
  628 + integer :: i
  629 +
  630 + poly=0.
  631 +
  632 + do i=1,deg+1
  633 + poly=poly+coeff(i)*x**(i-1)
  634 + end do
  635 +
  636 +end function
  637 +end program
  638 +\end{verbatim}
  639 +The results are plotted on figure \ref{lsp} .
  640 +
  641 +\begin{figure}
  642 + \begin{center}
  643 + \includegraphics[width=0.9\textwidth]{lsp.pdf}
  644 + \caption{Least Square Polynomial}
  645 + \label{lsp}
  646 + \end{center}
  647 +\end{figure}
  648 +
  649 +
  650 +
  651 +\section{Zero finding}
  652 +fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}.
  653 +
  654 +\begin{verbatim}
  655 + call fvn_z_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
  656 +\end{verbatim}
  657 +\begin{itemize}
  658 + \item f (in) is the complex function (kind=8) for which we search zeros
  659 + \item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots. if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root.
  660 + \item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted.
  661 + \item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine.
  662 + \item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided.
  663 + \item n (in) is an integer equal to the number of new roots to be found.
  664 + \item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots. x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine.
  665 + \item itmax (in) is an integer equal to the maximum allowable number of iterations per root.
  666 + \item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved. If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax
  667 + \item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots.
  668 +\end{itemize}
  669 +This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion.
  670 +
  671 +\subsection*{Example}
  672 +Example to find the ten roots of $x^{10}-1$
  673 +\begin{verbatim}
  674 + program muller
  675 + use fvn
  676 + implicit none
  677 +
  678 + integer :: i,info
  679 + complex(8),dimension(10) :: roots
  680 + integer,dimension(10) :: infer
  681 + complex(8), external :: f
  682 +
  683 + call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info)
  684 +
  685 + write(*,*) "Error code :",info
  686 + do i=1,10
  687 + write(*,*) roots(i),infer(i)
  688 + enddo
  689 + end program
  690 +
  691 + function f(x)
  692 + complex(8) :: x,f
  693 + f=x**10-1
  694 + end function
  695 +
  696 +\end{verbatim}
  697 +
  698 +
  699 +\section{Trigonometry}
  700 +\subsection{Complex Sine Arc}
  701 +( only complex(kind=8) version )
  702 +\begin{verbatim}
  703 + y=fvn_z_asin(z)
  704 +\end{verbatim}
  705 +This function return the complex arc sine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
  706 +
  707 +
  708 +\subsection{Complex Cosine Arc}
  709 +( only complex(kind=8) version )
  710 +\begin{verbatim}
  711 + y=fvn_z_acos(z)
  712 +\end{verbatim}
  713 +This function return the complex arc cosine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
  714 +
  715 +\subsection{Real Sine Hyperbolic Arc}
  716 +( only real(kind=8) version )
  717 +\begin{verbatim}
  718 + y=fvn_d_asinh(x)
  719 +\end{verbatim}
  720 +This function return the arc hyperbolic sine of x.
  721 +
  722 +\subsection{Real Cosine Hyperbolic Arc}
  723 +( only real(kind=8) version )
  724 +\begin{verbatim}
  725 + y=fvn_d_acosh(x)
  726 +\end{verbatim}
  727 +This function return the arc hyperbolic cosine of x. In the current implementation error handling is ugly... it will stop program execution if argument is lesser than one.
  728 +
  729 +\section{Numerical integration}
  730 +Using an integrated slightly modified version of quadpack \url{http://www.netlib.org/quadpack}, fvn provide adaptative numerical integration (Gauss Kronrod) of real functions of 1 and 2 variables. fvn also provide a function to calculate Gauss-Legendre abscissas and weight, and a simple non adaptative integration subroutine. All routines exists only in fvn for double precision real.
  731 +
  732 +\subsection{Gauss Legendre Abscissas and Weigth}
  733 +This subroutine was inspired by Numerical Recipes routine gauleg.
  734 +\begin{verbatim}
  735 +call fvn_d_gauss_legendre(n,qx,qw)
  736 +\end{verbatim}
  737 +\begin{itemize}
  738 + \item n (in) is an integer equal to the number of Gauss Legendre points
  739 + \item qx (out) is a real(8) vector of length n containing the abscissas.
  740 + \item qw (out) is a real(8) vector of length n containing the weigths.
  741 +\end{itemize}
  742 +This subroutine computes n Gauss-Legendre abscissas and weigths
  743 +
  744 +\subsection{Gauss Legendre Numerical Integration}
  745 +\begin{verbatim}
  746 +call fvn_d_gl_integ(f,a,b,n,res)
  747 +\end{verbatim}
  748 +\begin{itemize}
  749 + \item f (in) is a real(8) function to integrate
  750 + \item a (in) and b (in) are real(8) respectively lower and higher bound of integration
  751 + \item n (in) is an integer equal to the number of Gauss Legendre points to use
  752 + \item res (out) is a real(8) containing the result
  753 +\end{itemize}
  754 +This function is a simple Gauss Legendre integration subroutine, which evaluate the integral of function f as in equation \ref{intsple} using n Gauss-Legendre pairs.
  755 +
  756 +\subsection{Gauss Kronrod Adaptative Integration}
  757 +This kind of numerical integration is an iterative procedure which try to achieve a given precision.
  758 +\subsubsection{Numerical integration of a one variable function}
  759 +\begin{verbatim}
  760 +call fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
  761 +\end{verbatim}
  762 +This routine evaluate the integral of function f as in equation \ref{intsple}
  763 +\begin{itemize}
  764 + \item f (in) is an external real(8) function of one variable
  765 + \item a (in) and b (in) are real(8) respectively lower an higher bound of integration
  766 + \item epsabs (in) and epsrel (in) are real(8) respectively desired absolute and relative error
  767 + \item key (in) is an integer between 1 and 6 correspondind to the Gauss-Kronrod rule to use :
  768 + \begin{itemize}
  769 + \item 1 : 7 - 15 points
  770 + \item 2 : 10 - 21 points
  771 + \item 3 : 15 - 31 points
  772 + \item 4 : 20 - 41 points
  773 + \item 5 : 25 - 51 points
  774 + \item 6 : 30 - 61 points
  775 + \end{itemize}
  776 + \item res (out) is a real(8) containing the estimation of the integration.
  777 + \item abserr (out) is a real(8) equal to the estimated absolute error
  778 + \item ier (out) is an integer used as an error flag
  779 + \begin{itemize}
  780 + \item 0 : no error
  781 + \item 1 : maximum number of subdivisions allowed has been achieved. one can allow more subdivisions by increasing the value of limit (and taking the according dimension adjustments into account). however, if this yield no improvement it is advised to analyze the integrand in order to determine the integration difficulaties. If the position of a local difficulty can be determined (i.e.singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. If possible, an appropriate special-purpose integrator should be used which is designed for handling the type of difficulty involved.
  782 + \item 2 : the occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved.
  783 + \item 3 : extremely bad integrand behaviour occurs at some points of the integration interval.
  784 + \item 6 : the input is invalid, because (epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) or limit.lt.1 or lenw.lt.limit*4. result, abserr, neval, last are set to zero. Except when lenw is invalid, iwork(1), work(limit*2+1) and work(limit*3+1) are set to zero, work(1) is set to a and work(limit+1) to b.
  785 + \end{itemize}
  786 + \item limit (in) is an integer equal to maximum number of subintervals in the partition of the given integration interval (a,b). A value of 500 will usually give good results.
  787 +\end{itemize}
  788 +
  789 +\begin{equation}
  790 + \int_a^b f(x)~dx
  791 + \label{intsple}
  792 +\end{equation}
  793 +
  794 +
  795 +
  796 +
  797 +\subsubsection{Numerical integration of a two variable function}
  798 +\begin{verbatim}
  799 +call fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
  800 +\end{verbatim}
  801 +This function evaluate the integral of a function f(x,y) as defined in equation \ref{intdble}. The parameters of same name as in the previous paragraph have exactly the same function and behaviour thus only what differs is decribed here
  802 +\begin{itemize}
  803 + \item a (in) and b (in) are real(8) corresponding respectively to lower and higher bound of integration for the x variable.
  804 + \item g(x) (in) and h(x) (in) are external functions describing the lower and higher bound of integration for the y variable as a function of x.
  805 +\end{itemize}
  806 +
  807 +\begin{equation}
  808 + \int_a^b \int_{g(x)}^{h(x)} f(x,y)~dy~dx
  809 + \label{intdble}
  810 +\end{equation}
  811 +
  812 +\subsubsection*{Example}
  813 +\begin{verbatim}
  814 +program integ
  815 + use fvn
  816 + implicit none
  817 +
  818 + real(8), external :: f1,f2,g,h
  819 + real(8) :: a,b,epsabs,epsrel,abserr,res
  820 + integer :: key,ier
  821 +
  822 + a=0.
  823 + b=1.
  824 + epsabs=1d-8
  825 + epsrel=1d-8
  826 + key=2
  827 + call fvn_d_integ_1_gk(f1,a,b,epsabs,epsrel,key,res,abserr,ier,500)
  828 + write(*,*) "Integration of x*x between 0 and 1 : "
  829 + write(*,*) res
  830 +
  831 + call fvn_d_integ_2_gk(f2,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,500)
  832 + write(*,*) "Integration of x*y between 0 and 1 on both x and y : "
  833 + write(*,*) res
  834 +
  835 +
  836 +end program
  837 +
  838 +function f1(x)
  839 + implicit none
  840 + real(8) :: x,f1
  841 + f1=x*x
  842 +end function
  843 +
  844 +function f2(x,y)
  845 + implicit none
  846 + real(8) :: x,y,f2
  847 + f2=x*y
  848 +end function
  849 +
  850 +function g(x)
  851 + implicit none
  852 + real(8) :: x,g
  853 + g=0.
  854 +end function
  855 +
  856 +function h(x)
  857 + implicit none
  858 + real(8) :: x,h
  859 + h=1.
  860 +end function
  861 +\end{verbatim}
  862 +
  863 +
  864 +
  865 +
  866 +
  867 +\end{document}
No preview for this file type