Commit 15adbf52baf8ed530882453ee63cbe9f4d1c2132
1 parent
126a3aed07
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@24 b657c933-2333-4658-acf2-d3c7c2708721
Showing 2 changed files with 539 additions and 0 deletions Side-by-side Diff
doc/fvn.pdf
No preview for this file type
fvnlib.f90
| ... | ... | @@ -902,6 +902,545 @@ |
| 902 | 902 | |
| 903 | 903 | end subroutine |
| 904 | 904 | |
| 905 | + | |
| 906 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
| 907 | +! | |
| 908 | +! Quadratic interpolation of tabulated function of 1,2 or 3 variables | |
| 909 | +! | |
| 910 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
| 911 | + | |
| 912 | +subroutine fvn_s_find_interval(x,i,xdata,n) | |
| 913 | + implicit none | |
| 914 | + ! This routine find the indice i where xdata(i) <= x < xdata(i+1) | |
| 915 | + ! xdata(n) must contains a set of increasingly ordered values | |
| 916 | + ! if x < xdata(1) i=0 is returned | |
| 917 | + ! if x > xdata(n) i=n is returned | |
| 918 | + ! special case is where x=xdata(n) then n-1 is returned so | |
| 919 | + ! we will not exclude the upper limit | |
| 920 | + ! a simple dichotomy method is used | |
| 921 | + | |
| 922 | + real(kind=4), intent(in) :: x | |
| 923 | + real(kind=4), intent(in), dimension(n) :: xdata | |
| 924 | + integer(kind=4), intent(in) :: n | |
| 925 | + integer(kind=4), intent(out) :: i | |
| 926 | + | |
| 927 | + integer(kind=4) :: imin,imax,imoyen | |
| 928 | + | |
| 929 | + ! special case is where x=xdata(n) then n-1 is returned so | |
| 930 | + ! we will not exclude the upper limit | |
| 931 | + if (x == xdata(n)) then | |
| 932 | + i=n-1 | |
| 933 | + return | |
| 934 | + end if | |
| 935 | + | |
| 936 | + ! if x < xdata(1) i=0 is returned | |
| 937 | + if (x < xdata(1)) then | |
| 938 | + i=0 | |
| 939 | + return | |
| 940 | + end if | |
| 941 | + | |
| 942 | + ! if x > xdata(n) i=n is returned | |
| 943 | + if (x > xdata(n)) then | |
| 944 | + i=n | |
| 945 | + return | |
| 946 | + end if | |
| 947 | + | |
| 948 | + ! here xdata(1) <= x <= xdata(n) | |
| 949 | + imin=0 | |
| 950 | + imax=n+1 | |
| 951 | + | |
| 952 | + do while((imax-imin) > 1) | |
| 953 | + imoyen=(imax+imin)/2 | |
| 954 | + if (x >= xdata(imoyen)) then | |
| 955 | + imin=imoyen | |
| 956 | + else | |
| 957 | + imax=imoyen | |
| 958 | + end if | |
| 959 | + end do | |
| 960 | + | |
| 961 | + i=imin | |
| 962 | + | |
| 963 | +end subroutine | |
| 964 | + | |
| 965 | + | |
| 966 | +subroutine fvn_d_find_interval(x,i,xdata,n) | |
| 967 | + implicit none | |
| 968 | + ! This routine find the indice i where xdata(i) <= x < xdata(i+1) | |
| 969 | + ! xdata(n) must contains a set of increasingly ordered values | |
| 970 | + ! if x < xdata(1) i=0 is returned | |
| 971 | + ! if x > xdata(n) i=n is returned | |
| 972 | + ! special case is where x=xdata(n) then n-1 is returned so | |
| 973 | + ! we will not exclude the upper limit | |
| 974 | + ! a simple dichotomy method is used | |
| 975 | + | |
| 976 | + real(kind=8), intent(in) :: x | |
| 977 | + real(kind=8), intent(in), dimension(n) :: xdata | |
| 978 | + integer(kind=4), intent(in) :: n | |
| 979 | + integer(kind=4), intent(out) :: i | |
| 980 | + | |
| 981 | + integer(kind=4) :: imin,imax,imoyen | |
| 982 | + | |
| 983 | + ! special case is where x=xdata(n) then n-1 is returned so | |
| 984 | + ! we will not exclude the upper limit | |
| 985 | + if (x == xdata(n)) then | |
| 986 | + i=n-1 | |
| 987 | + return | |
| 988 | + end if | |
| 989 | + | |
| 990 | + ! if x < xdata(1) i=0 is returned | |
| 991 | + if (x < xdata(1)) then | |
| 992 | + i=0 | |
| 993 | + return | |
| 994 | + end if | |
| 995 | + | |
| 996 | + ! if x > xdata(n) i=n is returned | |
| 997 | + if (x > xdata(n)) then | |
| 998 | + i=n | |
| 999 | + return | |
| 1000 | + end if | |
| 1001 | + | |
| 1002 | + ! here xdata(1) <= x <= xdata(n) | |
| 1003 | + imin=0 | |
| 1004 | + imax=n+1 | |
| 1005 | + | |
| 1006 | + do while((imax-imin) > 1) | |
| 1007 | + imoyen=(imax+imin)/2 | |
| 1008 | + if (x >= xdata(imoyen)) then | |
| 1009 | + imin=imoyen | |
| 1010 | + else | |
| 1011 | + imax=imoyen | |
| 1012 | + end if | |
| 1013 | + end do | |
| 1014 | + | |
| 1015 | + i=imin | |
| 1016 | + | |
| 1017 | +end subroutine | |
| 1018 | + | |
| 1019 | + | |
| 1020 | +function fvn_s_quad_interpol(x,n,xdata,ydata) | |
| 1021 | + implicit none | |
| 1022 | + ! This function evaluate the value of a function defined by a set of points | |
| 1023 | + ! and values, using a quadratic interpolation | |
| 1024 | + ! xdata must be increasingly ordered | |
| 1025 | + ! x must be within xdata(1) and xdata(n) to actually do interpolation | |
| 1026 | + ! otherwise extrapolation is done | |
| 1027 | + integer(kind=4), intent(in) :: n | |
| 1028 | + real(kind=4), intent(in), dimension(n) :: xdata,ydata | |
| 1029 | + real(kind=4), intent(in) :: x | |
| 1030 | + real(kind=4) :: fvn_s_quad_interpol | |
| 1031 | + | |
| 1032 | + integer(kind=4) :: iinf,base,i,j | |
| 1033 | + real(kind=4) :: p | |
| 1034 | + | |
| 1035 | + call fvn_s_find_interval(x,iinf,xdata,n) | |
| 1036 | + | |
| 1037 | + ! Settings for extrapolation | |
| 1038 | + if (iinf==0) then | |
| 1039 | + ! TODO -> Lower bound extrapolation warning | |
| 1040 | + iinf=1 | |
| 1041 | + end if | |
| 1042 | + | |
| 1043 | + if (iinf==n) then | |
| 1044 | + ! TODO -> Higher bound extrapolation warning | |
| 1045 | + iinf=n-1 | |
| 1046 | + end if | |
| 1047 | + | |
| 1048 | + ! The three points we will use are iinf-1,iinf and iinf+1 with the | |
| 1049 | + ! exception of the first interval, where iinf=1 we will use 1,2 and 3 | |
| 1050 | + if (iinf==1) then | |
| 1051 | + base=0 | |
| 1052 | + else | |
| 1053 | + base=iinf-2 | |
| 1054 | + end if | |
| 1055 | + | |
| 1056 | + ! The three points we will use are : | |
| 1057 | + ! xdata/ydata(base+1),xdata/ydata(base+2),xdata/ydata(base+3) | |
| 1058 | + | |
| 1059 | + ! Straight forward Lagrange polynomial | |
| 1060 | + fvn_s_quad_interpol=0. | |
| 1061 | + do i=1,3 | |
| 1062 | + ! polynome i | |
| 1063 | + p=ydata(base+i) | |
| 1064 | + do j=1,3 | |
| 1065 | + if (j /= i) then | |
| 1066 | + p=p*(x-xdata(base+j))/(xdata(base+i)-xdata(base+j)) | |
| 1067 | + end if | |
| 1068 | + end do | |
| 1069 | + fvn_s_quad_interpol=fvn_s_quad_interpol+p | |
| 1070 | + end do | |
| 1071 | + | |
| 1072 | +end function | |
| 1073 | + | |
| 1074 | + | |
| 1075 | +function fvn_d_quad_interpol(x,n,xdata,ydata) | |
| 1076 | + implicit none | |
| 1077 | + ! This function evaluate the value of a function defined by a set of points | |
| 1078 | + ! and values, using a quadratic interpolation | |
| 1079 | + ! xdata must be increasingly ordered | |
| 1080 | + ! x must be within xdata(1) and xdata(n) to actually do interpolation | |
| 1081 | + ! otherwise extrapolation is done | |
| 1082 | + integer(kind=4), intent(in) :: n | |
| 1083 | + real(kind=8), intent(in), dimension(n) :: xdata,ydata | |
| 1084 | + real(kind=8), intent(in) :: x | |
| 1085 | + real(kind=8) :: fvn_d_quad_interpol | |
| 1086 | + | |
| 1087 | + integer(kind=4) :: iinf,base,i,j | |
| 1088 | + real(kind=8) :: p | |
| 1089 | + | |
| 1090 | + call fvn_d_find_interval(x,iinf,xdata,n) | |
| 1091 | + | |
| 1092 | + ! Settings for extrapolation | |
| 1093 | + if (iinf==0) then | |
| 1094 | + ! TODO -> Lower bound extrapolation warning | |
| 1095 | + iinf=1 | |
| 1096 | + end if | |
| 1097 | + | |
| 1098 | + if (iinf==n) then | |
| 1099 | + ! TODO Higher bound extrapolation warning | |
| 1100 | + iinf=n-1 | |
| 1101 | + end if | |
| 1102 | + | |
| 1103 | + ! The three points we will use are iinf-1,iinf and iinf+1 with the | |
| 1104 | + ! exception of the first interval, where iinf=1 we will use 1,2 and 3 | |
| 1105 | + if (iinf==1) then | |
| 1106 | + base=0 | |
| 1107 | + else | |
| 1108 | + base=iinf-2 | |
| 1109 | + end if | |
| 1110 | + | |
| 1111 | + ! The three points we will use are : | |
| 1112 | + ! xdata/ydata(base+1),xdata/ydata(base+2),xdata/ydata(base+3) | |
| 1113 | + | |
| 1114 | + ! Straight forward Lagrange polynomial | |
| 1115 | + fvn_d_quad_interpol=0. | |
| 1116 | + do i=1,3 | |
| 1117 | + ! polynome i | |
| 1118 | + p=ydata(base+i) | |
| 1119 | + do j=1,3 | |
| 1120 | + if (j /= i) then | |
| 1121 | + p=p*(x-xdata(base+j))/(xdata(base+i)-xdata(base+j)) | |
| 1122 | + end if | |
| 1123 | + end do | |
| 1124 | + fvn_d_quad_interpol=fvn_d_quad_interpol+p | |
| 1125 | + end do | |
| 1126 | + | |
| 1127 | +end function | |
| 1128 | + | |
| 1129 | + | |
| 1130 | +function fvn_s_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata) | |
| 1131 | + implicit none | |
| 1132 | + ! This function evaluate the value of a two variable function defined by a | |
| 1133 | + ! set of points and values, using a quadratic interpolation | |
| 1134 | + ! xdata and ydata must be increasingly ordered | |
| 1135 | + ! the couple (x,y) must be as x within xdata(1) and xdata(nx) and | |
| 1136 | + ! y within ydata(1) and ydata(ny) to actually do interpolation | |
| 1137 | + ! otherwise extrapolation is done | |
| 1138 | + integer(kind=4), intent(in) :: nx,ny | |
| 1139 | + real(kind=4), intent(in) :: x,y | |
| 1140 | + real(kind=4), intent(in), dimension(nx) :: xdata | |
| 1141 | + real(kind=4), intent(in), dimension(ny) :: ydata | |
| 1142 | + real(kind=4), intent(in), dimension(nx,ny) :: zdata | |
| 1143 | + real(kind=4) :: fvn_s_quad_2d_interpol | |
| 1144 | + | |
| 1145 | + integer(kind=4) :: ixinf,iyinf,basex,basey,i | |
| 1146 | + real(kind=4),dimension(3) :: ztmp | |
| 1147 | + !real(kind=4), external :: fvn_s_quad_interpol | |
| 1148 | + | |
| 1149 | + call fvn_s_find_interval(x,ixinf,xdata,nx) | |
| 1150 | + call fvn_s_find_interval(y,iyinf,ydata,ny) | |
| 1151 | + | |
| 1152 | + ! Settings for extrapolation | |
| 1153 | + if (ixinf==0) then | |
| 1154 | + ! TODO -> Lower x bound extrapolation warning | |
| 1155 | + ixinf=1 | |
| 1156 | + end if | |
| 1157 | + | |
| 1158 | + if (ixinf==nx) then | |
| 1159 | + ! TODO -> Higher x bound extrapolation warning | |
| 1160 | + ixinf=nx-1 | |
| 1161 | + end if | |
| 1162 | + | |
| 1163 | + if (iyinf==0) then | |
| 1164 | + ! TODO -> Lower y bound extrapolation warning | |
| 1165 | + iyinf=1 | |
| 1166 | + end if | |
| 1167 | + | |
| 1168 | + if (iyinf==ny) then | |
| 1169 | + ! TODO -> Higher y bound extrapolation warning | |
| 1170 | + iyinf=ny-1 | |
| 1171 | + end if | |
| 1172 | + | |
| 1173 | + ! The three points we will use are iinf-1,iinf and iinf+1 with the | |
| 1174 | + ! exception of the first interval, where iinf=1 we will use 1,2 and 3 | |
| 1175 | + if (ixinf==1) then | |
| 1176 | + basex=0 | |
| 1177 | + else | |
| 1178 | + basex=ixinf-2 | |
| 1179 | + end if | |
| 1180 | + | |
| 1181 | + if (iyinf==1) then | |
| 1182 | + basey=0 | |
| 1183 | + else | |
| 1184 | + basey=iyinf-2 | |
| 1185 | + end if | |
| 1186 | + | |
| 1187 | + ! First we make 3 interpolations for x at y(base+1),y(base+2),y(base+3) | |
| 1188 | + ! stored in ztmp(1:3) | |
| 1189 | + do i=1,3 | |
| 1190 | + ztmp(i)=fvn_s_quad_interpol(x,nx,xdata,zdata(:,basey+i)) | |
| 1191 | + end do | |
| 1192 | + | |
| 1193 | + ! Then we make an interpolation for y using previous interpolations | |
| 1194 | + fvn_s_quad_2d_interpol=fvn_s_quad_interpol(y,3,ydata(basey+1:basey+3),ztmp) | |
| 1195 | +end function | |
| 1196 | + | |
| 1197 | + | |
| 1198 | +function fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata) | |
| 1199 | + implicit none | |
| 1200 | + ! This function evaluate the value of a two variable function defined by a | |
| 1201 | + ! set of points and values, using a quadratic interpolation | |
| 1202 | + ! xdata and ydata must be increasingly ordered | |
| 1203 | + ! the couple (x,y) must be as x within xdata(1) and xdata(nx) and | |
| 1204 | + ! y within ydata(1) and ydata(ny) to actually do interpolation | |
| 1205 | + ! otherwise extrapolation is done | |
| 1206 | + integer(kind=4), intent(in) :: nx,ny | |
| 1207 | + real(kind=8), intent(in) :: x,y | |
| 1208 | + real(kind=8), intent(in), dimension(nx) :: xdata | |
| 1209 | + real(kind=8), intent(in), dimension(ny) :: ydata | |
| 1210 | + real(kind=8), intent(in), dimension(nx,ny) :: zdata | |
| 1211 | + real(kind=8) :: fvn_d_quad_2d_interpol | |
| 1212 | + | |
| 1213 | + integer(kind=4) :: ixinf,iyinf,basex,basey,i | |
| 1214 | + real(kind=8),dimension(3) :: ztmp | |
| 1215 | + !real(kind=8), external :: fvn_d_quad_interpol | |
| 1216 | + | |
| 1217 | + call fvn_d_find_interval(x,ixinf,xdata,nx) | |
| 1218 | + call fvn_d_find_interval(y,iyinf,ydata,ny) | |
| 1219 | + | |
| 1220 | + ! Settings for extrapolation | |
| 1221 | + if (ixinf==0) then | |
| 1222 | + ! TODO -> Lower x bound extrapolation warning | |
| 1223 | + ixinf=1 | |
| 1224 | + end if | |
| 1225 | + | |
| 1226 | + if (ixinf==nx) then | |
| 1227 | + ! TODO -> Higher x bound extrapolation warning | |
| 1228 | + ixinf=nx-1 | |
| 1229 | + end if | |
| 1230 | + | |
| 1231 | + if (iyinf==0) then | |
| 1232 | + ! TODO -> Lower y bound extrapolation warning | |
| 1233 | + iyinf=1 | |
| 1234 | + end if | |
| 1235 | + | |
| 1236 | + if (iyinf==ny) then | |
| 1237 | + ! TODO -> Higher y bound extrapolation warning | |
| 1238 | + iyinf=ny-1 | |
| 1239 | + end if | |
| 1240 | + | |
| 1241 | + ! The three points we will use are iinf-1,iinf and iinf+1 with the | |
| 1242 | + ! exception of the first interval, where iinf=1 we will use 1,2 and 3 | |
| 1243 | + if (ixinf==1) then | |
| 1244 | + basex=0 | |
| 1245 | + else | |
| 1246 | + basex=ixinf-2 | |
| 1247 | + end if | |
| 1248 | + | |
| 1249 | + if (iyinf==1) then | |
| 1250 | + basey=0 | |
| 1251 | + else | |
| 1252 | + basey=iyinf-2 | |
| 1253 | + end if | |
| 1254 | + | |
| 1255 | + ! First we make 3 interpolations for x at y(base+1),y(base+2),y(base+3) | |
| 1256 | + ! stored in ztmp(1:3) | |
| 1257 | + do i=1,3 | |
| 1258 | + ztmp(i)=fvn_d_quad_interpol(x,nx,xdata,zdata(:,basey+i)) | |
| 1259 | + end do | |
| 1260 | + | |
| 1261 | + ! Then we make an interpolation for y using previous interpolations | |
| 1262 | + fvn_d_quad_2d_interpol=fvn_d_quad_interpol(y,3,ydata(basey+1:basey+3),ztmp) | |
| 1263 | +end function | |
| 1264 | + | |
| 1265 | + | |
| 1266 | +function fvn_s_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata) | |
| 1267 | + implicit none | |
| 1268 | + ! This function evaluate the value of a 3 variables function defined by a | |
| 1269 | + ! set of points and values, using a quadratic interpolation | |
| 1270 | + ! xdata, ydata and zdata must be increasingly ordered | |
| 1271 | + ! The triplet (x,y,z) must be within xdata,ydata and zdata to actually | |
| 1272 | + ! perform an interpolation, otherwise extrapolation is done | |
| 1273 | + integer(kind=4), intent(in) :: nx,ny,nz | |
| 1274 | + real(kind=4), intent(in) :: x,y,z | |
| 1275 | + real(kind=4), intent(in), dimension(nx) :: xdata | |
| 1276 | + real(kind=4), intent(in), dimension(ny) :: ydata | |
| 1277 | + real(kind=4), intent(in), dimension(nz) :: zdata | |
| 1278 | + real(kind=4), intent(in), dimension(nx,ny,nz) :: tdata | |
| 1279 | + real(kind=4) :: fvn_s_quad_3d_interpol | |
| 1280 | + | |
| 1281 | + integer(kind=4) :: ixinf,iyinf,izinf,basex,basey,basez,i,j | |
| 1282 | + !real(kind=4), external :: fvn_s_quad_interpol,fvn_s_quad_2d_interpol | |
| 1283 | + real(kind=4),dimension(3,3) :: ttmp | |
| 1284 | + | |
| 1285 | + call fvn_s_find_interval(x,ixinf,xdata,nx) | |
| 1286 | + call fvn_s_find_interval(y,iyinf,ydata,ny) | |
| 1287 | + call fvn_s_find_interval(z,izinf,zdata,nz) | |
| 1288 | + | |
| 1289 | + ! Settings for extrapolation | |
| 1290 | + if (ixinf==0) then | |
| 1291 | + ! TODO -> Lower x bound extrapolation warning | |
| 1292 | + ixinf=1 | |
| 1293 | + end if | |
| 1294 | + | |
| 1295 | + if (ixinf==nx) then | |
| 1296 | + ! TODO -> Higher x bound extrapolation warning | |
| 1297 | + ixinf=nx-1 | |
| 1298 | + end if | |
| 1299 | + | |
| 1300 | + if (iyinf==0) then | |
| 1301 | + ! TODO -> Lower y bound extrapolation warning | |
| 1302 | + iyinf=1 | |
| 1303 | + end if | |
| 1304 | + | |
| 1305 | + if (iyinf==ny) then | |
| 1306 | + ! TODO -> Higher y bound extrapolation warning | |
| 1307 | + iyinf=ny-1 | |
| 1308 | + end if | |
| 1309 | + | |
| 1310 | + if (izinf==0) then | |
| 1311 | + ! TODO -> Lower z bound extrapolation warning | |
| 1312 | + izinf=1 | |
| 1313 | + end if | |
| 1314 | + | |
| 1315 | + if (izinf==nz) then | |
| 1316 | + ! TODO -> Higher z bound extrapolation warning | |
| 1317 | + izinf=nz-1 | |
| 1318 | + end if | |
| 1319 | + | |
| 1320 | + ! The three points we will use are iinf-1,iinf and iinf+1 with the | |
| 1321 | + ! exception of the first interval, where iinf=1 we will use 1,2 and 3 | |
| 1322 | + if (ixinf==1) then | |
| 1323 | + basex=0 | |
| 1324 | + else | |
| 1325 | + basex=ixinf-2 | |
| 1326 | + end if | |
| 1327 | + | |
| 1328 | + if (iyinf==1) then | |
| 1329 | + basey=0 | |
| 1330 | + else | |
| 1331 | + basey=iyinf-2 | |
| 1332 | + end if | |
| 1333 | + | |
| 1334 | + if (izinf==1) then | |
| 1335 | + basez=0 | |
| 1336 | + else | |
| 1337 | + basez=izinf-2 | |
| 1338 | + end if | |
| 1339 | + | |
| 1340 | + ! We first make 9 one dimensional interpolation on variable x. | |
| 1341 | + ! results are stored in ttmp | |
| 1342 | + do i=1,3 | |
| 1343 | + do j=1,3 | |
| 1344 | + ttmp(i,j)=fvn_s_quad_interpol(x,nx,xdata,tdata(:,basey+i,basez+j)) | |
| 1345 | + end do | |
| 1346 | + end do | |
| 1347 | + | |
| 1348 | + ! We then make a 2 dimensionnal interpolation on variables y and z | |
| 1349 | + fvn_s_quad_3d_interpol=fvn_s_quad_2d_interpol(y,z, & | |
| 1350 | + 3,ydata(basey+1:basey+3),3,zdata(basez+1:basez+3),ttmp) | |
| 1351 | +end function | |
| 1352 | + | |
| 1353 | + | |
| 1354 | +function fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata) | |
| 1355 | + implicit none | |
| 1356 | + ! This function evaluate the value of a 3 variables function defined by a | |
| 1357 | + ! set of points and values, using a quadratic interpolation | |
| 1358 | + ! xdata, ydata and zdata must be increasingly ordered | |
| 1359 | + ! The triplet (x,y,z) must be within xdata,ydata and zdata to actually | |
| 1360 | + ! perform an interpolation, otherwise extrapolation is done | |
| 1361 | + integer(kind=4), intent(in) :: nx,ny,nz | |
| 1362 | + real(kind=8), intent(in) :: x,y,z | |
| 1363 | + real(kind=8), intent(in), dimension(nx) :: xdata | |
| 1364 | + real(kind=8), intent(in), dimension(ny) :: ydata | |
| 1365 | + real(kind=8), intent(in), dimension(nz) :: zdata | |
| 1366 | + real(kind=8), intent(in), dimension(nx,ny,nz) :: tdata | |
| 1367 | + real(kind=8) :: fvn_d_quad_3d_interpol | |
| 1368 | + | |
| 1369 | + integer(kind=4) :: ixinf,iyinf,izinf,basex,basey,basez,i,j | |
| 1370 | + !real(kind=8), external :: fvn_d_quad_interpol,fvn_d_quad_2d_interpol | |
| 1371 | + real(kind=8),dimension(3,3) :: ttmp | |
| 1372 | + | |
| 1373 | + call fvn_d_find_interval(x,ixinf,xdata,nx) | |
| 1374 | + call fvn_d_find_interval(y,iyinf,ydata,ny) | |
| 1375 | + call fvn_d_find_interval(z,izinf,zdata,nz) | |
| 1376 | + | |
| 1377 | + ! Settings for extrapolation | |
| 1378 | + if (ixinf==0) then | |
| 1379 | + ! TODO -> Lower x bound extrapolation warning | |
| 1380 | + ixinf=1 | |
| 1381 | + end if | |
| 1382 | + | |
| 1383 | + if (ixinf==nx) then | |
| 1384 | + ! TODO -> Higher x bound extrapolation warning | |
| 1385 | + ixinf=nx-1 | |
| 1386 | + end if | |
| 1387 | + | |
| 1388 | + if (iyinf==0) then | |
| 1389 | + ! TODO -> Lower y bound extrapolation warning | |
| 1390 | + iyinf=1 | |
| 1391 | + end if | |
| 1392 | + | |
| 1393 | + if (iyinf==ny) then | |
| 1394 | + ! TODO -> Higher y bound extrapolation warning | |
| 1395 | + iyinf=ny-1 | |
| 1396 | + end if | |
| 1397 | + | |
| 1398 | + if (izinf==0) then | |
| 1399 | + ! TODO -> Lower z bound extrapolation warning | |
| 1400 | + izinf=1 | |
| 1401 | + end if | |
| 1402 | + | |
| 1403 | + if (izinf==nz) then | |
| 1404 | + ! TODO -> Higher z bound extrapolation warning | |
| 1405 | + izinf=nz-1 | |
| 1406 | + end if | |
| 1407 | + | |
| 1408 | + ! The three points we will use are iinf-1,iinf and iinf+1 with the | |
| 1409 | + ! exception of the first interval, where iinf=1 we will use 1,2 and 3 | |
| 1410 | + if (ixinf==1) then | |
| 1411 | + basex=0 | |
| 1412 | + else | |
| 1413 | + basex=ixinf-2 | |
| 1414 | + end if | |
| 1415 | + | |
| 1416 | + if (iyinf==1) then | |
| 1417 | + basey=0 | |
| 1418 | + else | |
| 1419 | + basey=iyinf-2 | |
| 1420 | + end if | |
| 1421 | + | |
| 1422 | + if (izinf==1) then | |
| 1423 | + basez=0 | |
| 1424 | + else | |
| 1425 | + basez=izinf-2 | |
| 1426 | + end if | |
| 1427 | + | |
| 1428 | + ! We first make 9 one dimensional interpolation on variable x. | |
| 1429 | + ! results are stored in ttmp | |
| 1430 | + do i=1,3 | |
| 1431 | + do j=1,3 | |
| 1432 | + ttmp(i,j)=fvn_d_quad_interpol(x,nx,xdata,tdata(:,basey+i,basez+j)) | |
| 1433 | + end do | |
| 1434 | + end do | |
| 1435 | + | |
| 1436 | + ! We then make a 2 dimensionnal interpolation on variables y and z | |
| 1437 | + fvn_d_quad_3d_interpol=fvn_d_quad_2d_interpol(y,z, & | |
| 1438 | + 3,ydata(basey+1:basey+3),3,zdata(basez+1:basez+3),ttmp) | |
| 1439 | +end function | |
| 1440 | + | |
| 1441 | + | |
| 1442 | + | |
| 1443 | + | |
| 905 | 1444 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 906 | 1445 | ! |
| 907 | 1446 | ! Akima spline interpolation and spline evaluation |