Commit 5b79a897ef4919726d7144d7552fcc5c9ec00bbe
1 parent
42591138ec
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@27 b657c933-2333-4658-acf2-d3c7c2708721
Showing 2 changed files with 40 additions and 0 deletions Side-by-side Diff
doc/fvn.pdf
No preview for this file type
doc/fvn.tex
| ... | ... | @@ -287,8 +287,17 @@ |
| 287 | 287 | |
| 288 | 288 | \end{verbatim} |
| 289 | 289 | |
| 290 | +\subsection{Identity matrix} | |
| 291 | +\begin{verbatim} | |
| 292 | + I=fvn_x_ident(n) | |
| 293 | +\end{verbatim} | |
| 294 | +\begin{itemize} | |
| 295 | + \item n (in) is an integer equal to the matrix rank | |
| 296 | +\end{itemize} | |
| 297 | +This function return the identity matrix of rank n, in the specified type (x = s,d,c,z). | |
| 290 | 298 | |
| 291 | 299 | |
| 300 | + | |
| 292 | 301 | \section{Interpolation} |
| 293 | 302 | |
| 294 | 303 | \subsection{Quadratic Interpolation} |
| 295 | 304 | |
| 296 | 305 | |
| ... | ... | @@ -861,8 +870,39 @@ |
| 861 | 870 | \end{verbatim} |
| 862 | 871 | |
| 863 | 872 | |
| 873 | +\section{Special functions} | |
| 874 | +\subsection{Gamma} | |
| 875 | +Only double precision real | |
| 876 | +\begin{verbatim} | |
| 877 | +g=fvn_d_lngamma(x) | |
| 878 | +\end{verbatim} | |
| 879 | +\begin{itemize} | |
| 880 | + \item x (in) is a real(kind=8) | |
| 881 | +\end{itemize} | |
| 882 | +This function return the natural logarithm of gamma(x) : $ln(\Gamma(x)$ | |
| 864 | 883 | |
| 884 | +\subsection{factorial} | |
| 885 | +Only double precision real | |
| 886 | +\begin{verbatim} | |
| 887 | +f=fvn_d_factorial(n) | |
| 888 | +\end{verbatim} | |
| 889 | +\begin{itemize} | |
| 890 | + \item n (in) is an integer | |
| 891 | +\end{itemize} | |
| 892 | +This function return $n!$ as a real(kind=8). Note that real value is calculated for n lower or equal 32. For higher n, the factorial is evaluated using gamma function. | |
| 865 | 893 | |
| 894 | +\subsection{Chebyshev series evaluation} | |
| 895 | +Single and double precision real. | |
| 896 | +\begin{verbatim} | |
| 897 | +s=fvn_x_csevl(x,a,n) | |
| 898 | +\end{verbatim} | |
| 899 | +\begin{itemize} | |
| 900 | + \item x is a real | |
| 901 | + \item a(n) is a real length n array | |
| 902 | + \item n is an integer | |
| 903 | +\end{itemize} | |
| 904 | + | |
| 905 | +This function evaluates a Chebyshev series at point x. The coefficients are stored in the array a. The value x must lie in the interval [-1,1] (however no test is performed). | |
| 866 | 906 | |
| 867 | 907 | \end{document} |