Commit 5b79a897ef4919726d7144d7552fcc5c9ec00bbe
1 parent
42591138ec
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@27 b657c933-2333-4658-acf2-d3c7c2708721
Showing 2 changed files with 40 additions and 0 deletions Side-by-side Diff
doc/fvn.pdf
No preview for this file type
doc/fvn.tex
... | ... | @@ -287,8 +287,17 @@ |
287 | 287 | |
288 | 288 | \end{verbatim} |
289 | 289 | |
290 | +\subsection{Identity matrix} | |
291 | +\begin{verbatim} | |
292 | + I=fvn_x_ident(n) | |
293 | +\end{verbatim} | |
294 | +\begin{itemize} | |
295 | + \item n (in) is an integer equal to the matrix rank | |
296 | +\end{itemize} | |
297 | +This function return the identity matrix of rank n, in the specified type (x = s,d,c,z). | |
290 | 298 | |
291 | 299 | |
300 | + | |
292 | 301 | \section{Interpolation} |
293 | 302 | |
294 | 303 | \subsection{Quadratic Interpolation} |
295 | 304 | |
296 | 305 | |
... | ... | @@ -861,8 +870,39 @@ |
861 | 870 | \end{verbatim} |
862 | 871 | |
863 | 872 | |
873 | +\section{Special functions} | |
874 | +\subsection{Gamma} | |
875 | +Only double precision real | |
876 | +\begin{verbatim} | |
877 | +g=fvn_d_lngamma(x) | |
878 | +\end{verbatim} | |
879 | +\begin{itemize} | |
880 | + \item x (in) is a real(kind=8) | |
881 | +\end{itemize} | |
882 | +This function return the natural logarithm of gamma(x) : $ln(\Gamma(x)$ | |
864 | 883 | |
884 | +\subsection{factorial} | |
885 | +Only double precision real | |
886 | +\begin{verbatim} | |
887 | +f=fvn_d_factorial(n) | |
888 | +\end{verbatim} | |
889 | +\begin{itemize} | |
890 | + \item n (in) is an integer | |
891 | +\end{itemize} | |
892 | +This function return $n!$ as a real(kind=8). Note that real value is calculated for n lower or equal 32. For higher n, the factorial is evaluated using gamma function. | |
865 | 893 | |
894 | +\subsection{Chebyshev series evaluation} | |
895 | +Single and double precision real. | |
896 | +\begin{verbatim} | |
897 | +s=fvn_x_csevl(x,a,n) | |
898 | +\end{verbatim} | |
899 | +\begin{itemize} | |
900 | + \item x is a real | |
901 | + \item a(n) is a real length n array | |
902 | + \item n is an integer | |
903 | +\end{itemize} | |
904 | + | |
905 | +This function evaluates a Chebyshev series at point x. The coefficients are stored in the array a. The value x must lie in the interval [-1,1] (however no test is performed). | |
866 | 906 | |
867 | 907 | \end{document} |