Commit 5b79a897ef4919726d7144d7552fcc5c9ec00bbe

Authored by daniau
1 parent 42591138ec

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@27 b657c933-2333-4658-acf2-d3c7c2708721

Showing 2 changed files with 40 additions and 0 deletions Side-by-side Diff

No preview for this file type
... ... @@ -287,8 +287,17 @@
287 287  
288 288 \end{verbatim}
289 289  
  290 +\subsection{Identity matrix}
  291 +\begin{verbatim}
  292 + I=fvn_x_ident(n)
  293 +\end{verbatim}
  294 +\begin{itemize}
  295 + \item n (in) is an integer equal to the matrix rank
  296 +\end{itemize}
  297 +This function return the identity matrix of rank n, in the specified type (x = s,d,c,z).
290 298  
291 299  
  300 +
292 301 \section{Interpolation}
293 302  
294 303 \subsection{Quadratic Interpolation}
295 304  
296 305  
... ... @@ -861,8 +870,39 @@
861 870 \end{verbatim}
862 871  
863 872  
  873 +\section{Special functions}
  874 +\subsection{Gamma}
  875 +Only double precision real
  876 +\begin{verbatim}
  877 +g=fvn_d_lngamma(x)
  878 +\end{verbatim}
  879 +\begin{itemize}
  880 + \item x (in) is a real(kind=8)
  881 +\end{itemize}
  882 +This function return the natural logarithm of gamma(x) : $ln(\Gamma(x)$
864 883  
  884 +\subsection{factorial}
  885 +Only double precision real
  886 +\begin{verbatim}
  887 +f=fvn_d_factorial(n)
  888 +\end{verbatim}
  889 +\begin{itemize}
  890 + \item n (in) is an integer
  891 +\end{itemize}
  892 +This function return $n!$ as a real(kind=8). Note that real value is calculated for n lower or equal 32. For higher n, the factorial is evaluated using gamma function.
865 893  
  894 +\subsection{Chebyshev series evaluation}
  895 +Single and double precision real.
  896 +\begin{verbatim}
  897 +s=fvn_x_csevl(x,a,n)
  898 +\end{verbatim}
  899 +\begin{itemize}
  900 + \item x is a real
  901 + \item a(n) is a real length n array
  902 + \item n is an integer
  903 +\end{itemize}
  904 +
  905 +This function evaluates a Chebyshev series at point x. The coefficients are stored in the array a. The value x must lie in the interval [-1,1] (however no test is performed).
866 906  
867 907 \end{document}