Commit 5b79a897ef4919726d7144d7552fcc5c9ec00bbe

Authored by daniau
1 parent 42591138ec

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@27 b657c933-2333-4658-acf2-d3c7c2708721

Showing 2 changed files with 40 additions and 0 deletions Inline Diff

No preview for this file type
%\documentclass[a4paper,10pt]{article} 1 1 %\documentclass[a4paper,10pt]{article}
\documentclass[a4paper,english]{article} 2 2 \documentclass[a4paper,english]{article}
3 3
\usepackage[utf8]{inputenc} 4 4 \usepackage[utf8]{inputenc}
\usepackage{a4wide} 5 5 \usepackage{a4wide}
\usepackage{eurosym} 6 6 \usepackage{eurosym}
\usepackage{url} 7 7 \usepackage{url}
%\usepackage{aeguill} 8 8 %\usepackage{aeguill}
9 9
\usepackage{graphicx} 10 10 \usepackage{graphicx}
\usepackage{babel} 11 11 \usepackage{babel}
\makeatother 12 12 \makeatother
13 13
14 14
%opening 15 15 %opening
\title{FVN Documentation} 16 16 \title{FVN Documentation}
\author{William Daniau} 17 17 \author{William Daniau}
18 18
19 19
\begin{document} 20 20 \begin{document}
21 21
\maketitle 22 22 \maketitle
23 23
%\begin{abstract} 24 24 %\begin{abstract}
25 25
%\end{abstract} 26 26 %\end{abstract}
\tableofcontents 27 27 \tableofcontents
28 28
\section{Whatis fvn,licence,disclaimer etc} 29 29 \section{Whatis fvn,licence,disclaimer etc}
\subsection{Whatis fvn} 30 30 \subsection{Whatis fvn}
fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, complex trigonometry etc. 31 31 fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, complex trigonometry etc.
32 32
Most of the work is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack. Fvn also contains a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack} for performing the numerical integration tasks. 33 33 Most of the work is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack. Fvn also contains a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack} for performing the numerical integration tasks.
34 34
This module has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in institute Femto-ST \url{http://www.femto-st.fr/}. 35 35 This module has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in institute Femto-ST \url{http://www.femto-st.fr/}.
36 36
\subsection{Licence} 37 37 \subsection{Licence}
The licence of fvn is free. You can do whatever you want with this code as far as you credit the authors. 38 38 The licence of fvn is free. You can do whatever you want with this code as far as you credit the authors.
39 39
\subsubsection*{Authors} 40 40 \subsubsection*{Authors}
As of the day this manuel is written there's only one author of fvn :\newline 41 41 As of the day this manuel is written there's only one author of fvn :\newline
William Daniau\newline 42 42 William Daniau\newline
william.daniau@femto-st.fr\newline 43 43 william.daniau@femto-st.fr\newline
44 44
\subsection{Disclaimer} 45 45 \subsection{Disclaimer}
The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use it at your own risks. The authors should not be taken responsible of anything that may result by the use of this software. 46 46 The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use it at your own risks. The authors should not be taken responsible of anything that may result by the use of this software.
47 47
\section{Naming scheme and convention} 48 48 \section{Naming scheme and convention}
The naming scheme of the routines is as follow : 49 49 The naming scheme of the routines is as follow :
\begin{verbatim} 50 50 \begin{verbatim}
fvn_x_name() 51 51 fvn_x_name()
\end{verbatim} 52 52 \end{verbatim}
where x can be s,d,c or z. 53 53 where x can be s,d,c or z.
\begin{itemize} 54 54 \begin{itemize}
\item s is for single precision real (real,real*4,real(4),real(kind=4)) 55 55 \item s is for single precision real (real,real*4,real(4),real(kind=4))
\item d for double precision real (double precision,real*8,real(8),real(kind=8)) 56 56 \item d for double precision real (double precision,real*8,real(8),real(kind=8))
\item c for single precision complex (complex,complex*8,complex(4),complex(kind=4)) 57 57 \item c for single precision complex (complex,complex*8,complex(4),complex(kind=4))
\item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8)) 58 58 \item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8))
\end{itemize} 59 59 \end{itemize}
In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout). 60 60 In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout).
61 61
\section{Linear algebra} 62 62 \section{Linear algebra}
The linear algebra routines of fvn are an interface to lapack, which make it easier to use. 63 63 The linear algebra routines of fvn are an interface to lapack, which make it easier to use.
\subsection{Matrix inversion} 64 64 \subsection{Matrix inversion}
\begin{verbatim} 65 65 \begin{verbatim}
call fvn_x_matinv(d,a,inva,status) 66 66 call fvn_x_matinv(d,a,inva,status)
\end{verbatim} 67 67 \end{verbatim}
\begin{itemize} 68 68 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 69 69 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 70 70 \item a (in) is a matrix of type x. It will remain untouched.
\item inva (out) is a matrix of type x which contain the inverse of a at the end of the routine 71 71 \item inva (out) is a matrix of type x which contain the inverse of a at the end of the routine
\item status (out) is an integer equal to zero if something went wrong 72 72 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 73 73 \end{itemize}
74 74
\subsubsection*{Example} 75 75 \subsubsection*{Example}
\begin{verbatim} 76 76 \begin{verbatim}
program inv 77 77 program inv
use fvn 78 78 use fvn
implicit none 79 79 implicit none
80 80
real(8),dimension(3,3) :: a,inva 81 81 real(8),dimension(3,3) :: a,inva
integer :: status 82 82 integer :: status
83 83
call random_number(a) 84 84 call random_number(a)
a=a*100 85 85 a=a*100
86 86
call fvn_d_matinv(3,a,inva,status) 87 87 call fvn_d_matinv(3,a,inva,status)
write (*,*) a 88 88 write (*,*) a
write (*,*) 89 89 write (*,*)
write (*,*) inva 90 90 write (*,*) inva
write (*,*) 91 91 write (*,*)
write (*,*) matmul(a,inva) 92 92 write (*,*) matmul(a,inva)
end program 93 93 end program
\end{verbatim} 94 94 \end{verbatim}
95 95
96 96
97 97
\subsection{Matrix determinants} 98 98 \subsection{Matrix determinants}
\begin{verbatim} 99 99 \begin{verbatim}
det=fvn_x_det(d,a,status) 100 100 det=fvn_x_det(d,a,status)
\end{verbatim} 101 101 \end{verbatim}
\begin{itemize} 102 102 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 103 103 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 104 104 \item a (in) is a matrix of type x. It will remain untouched.
\item status (out) is an integer equal to zero if something went wrong 105 105 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 106 106 \end{itemize}
107 107
\subsubsection*{Example} 108 108 \subsubsection*{Example}
\begin{verbatim} 109 109 \begin{verbatim}
program det 110 110 program det
use fvn 111 111 use fvn
implicit none 112 112 implicit none
113 113
real(8),dimension(3,3) :: a 114 114 real(8),dimension(3,3) :: a
real(8) :: deta 115 115 real(8) :: deta
integer :: status 116 116 integer :: status
117 117
call random_number(a) 118 118 call random_number(a)
a=a*100 119 119 a=a*100
120 120
deta=fvn_d_det(3,a,status) 121 121 deta=fvn_d_det(3,a,status)
write (*,*) a 122 122 write (*,*) a
write (*,*) 123 123 write (*,*)
write (*,*) "Det = ",deta 124 124 write (*,*) "Det = ",deta
end program 125 125 end program
126 126
\end{verbatim} 127 127 \end{verbatim}
128 128
129 129
130 130
\subsection{Matrix condition} 131 131 \subsection{Matrix condition}
\begin{verbatim} 132 132 \begin{verbatim}
call fvn_x_matcon(d,a,rcond,status) 133 133 call fvn_x_matcon(d,a,rcond,status)
\end{verbatim} 134 134 \end{verbatim}
\begin{itemize} 135 135 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 136 136 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 137 137 \item a (in) is a matrix of type x. It will remain untouched.
\item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix 138 138 \item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix
\item status (out) is an integer equal to zero if something went wrong 139 139 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 140 140 \end{itemize}
141 141
The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef} 142 142 The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef}
\begin{equation} 143 143 \begin{equation}
R = \frac{1}{norm(A)*norm(invA)} 144 144 R = \frac{1}{norm(A)*norm(invA)}
\label{rconddef} 145 145 \label{rconddef}
\end{equation} 146 146 \end{equation}
147 147
The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm} 148 148 The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm}
\begin{equation} 149 149 \begin{equation}
L1 = max_j ( \sum_i{\mid A(i,j)\mid} ) 150 150 L1 = max_j ( \sum_i{\mid A(i,j)\mid} )
\label{l1norm} 151 151 \label{l1norm}
\end{equation} 152 152 \end{equation}
153 153
\subsubsection*{Example} 154 154 \subsubsection*{Example}
\begin{verbatim} 155 155 \begin{verbatim}
program cond 156 156 program cond
use fvn 157 157 use fvn
implicit none 158 158 implicit none
159 159
real(8),dimension(3,3) :: a 160 160 real(8),dimension(3,3) :: a
real(8) :: rcond 161 161 real(8) :: rcond
integer :: status 162 162 integer :: status
163 163
call random_number(a) 164 164 call random_number(a)
a=a*100 165 165 a=a*100
166 166
call fvn_d_matcon(3,a,rcond,status) 167 167 call fvn_d_matcon(3,a,rcond,status)
write (*,*) a 168 168 write (*,*) a
write (*,*) 169 169 write (*,*)
write (*,*) "Cond = ",rcond 170 170 write (*,*) "Cond = ",rcond
end program 171 171 end program
172 172
\end{verbatim} 173 173 \end{verbatim}
174 174
175 175
\subsection{Eigenvalues/Eigenvectors} 176 176 \subsection{Eigenvalues/Eigenvectors}
\begin{verbatim} 177 177 \begin{verbatim}
call fvn_x_matev(d,a,evala,eveca,status) 178 178 call fvn_x_matev(d,a,evala,eveca,status)
\end{verbatim} 179 179 \end{verbatim}
\begin{itemize} 180 180 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 181 181 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 182 182 \item a (in) is a matrix of type x. It will remain untouched.
\item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a 183 183 \item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a
\item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j). 184 184 \item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j).
\item status (out) is an integer equal to zero if something went wrong 185 185 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 186 186 \end{itemize}
187 187
\subsubsection*{Example} 188 188 \subsubsection*{Example}
\begin{verbatim} 189 189 \begin{verbatim}
program eigen 190 190 program eigen
use fvn 191 191 use fvn
implicit none 192 192 implicit none
193 193
real(8),dimension(3,3) :: a 194 194 real(8),dimension(3,3) :: a
complex(8),dimension(3) :: evala 195 195 complex(8),dimension(3) :: evala
complex(8),dimension(3,3) :: eveca 196 196 complex(8),dimension(3,3) :: eveca
integer :: status,i,j 197 197 integer :: status,i,j
198 198
call random_number(a) 199 199 call random_number(a)
a=a*100 200 200 a=a*100
201 201
call fvn_d_matev(3,a,evala,eveca,status) 202 202 call fvn_d_matev(3,a,evala,eveca,status)
write (*,*) a 203 203 write (*,*) a
write (*,*) 204 204 write (*,*)
do i=1,3 205 205 do i=1,3
write(*,*) "Eigenvalue ",i,evala(i) 206 206 write(*,*) "Eigenvalue ",i,evala(i)
write(*,*) "Associated Eigenvector :" 207 207 write(*,*) "Associated Eigenvector :"
do j=1,3 208 208 do j=1,3
write(*,*) eveca(j,i) 209 209 write(*,*) eveca(j,i)
end do 210 210 end do
write(*,*) 211 211 write(*,*)
end do 212 212 end do
213 213
end program 214 214 end program
215 215
\end{verbatim} 216 216 \end{verbatim}
217 217
218 218
\subsection{Sparse solving} 219 219 \subsection{Sparse solving}
By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems. 220 220 By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems.
221 221
The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form. 222 222 The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form.
223 223
\begin{verbatim} 224 224 \begin{verbatim}
call fvn_*_sparse_solve(n,nz,T,Ti,Tj,B,x,status) where * is either zl, zi, dl or di 225 225 call fvn_*_sparse_solve(n,nz,T,Ti,Tj,B,x,status) where * is either zl, zi, dl or di
\end{verbatim} 226 226 \end{verbatim}
\begin{itemize} 227 227 \begin{itemize}
\item For this family of subroutine the two letters (zl,zi,dl,di) decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4) 228 228 \item For this family of subroutine the two letters (zl,zi,dl,di) decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4)
\item n (in) is an integer equal to the matrix rank 229 229 \item n (in) is an integer equal to the matrix rank
\item nz (in) is an integer equal to the number of non-zero elements 230 230 \item nz (in) is an integer equal to the number of non-zero elements
\item T(nz) (in) is a complex/real array containing the non-zero elements 231 231 \item T(nz) (in) is a complex/real array containing the non-zero elements
\item Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix. 232 232 \item Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix.
\item B(n) (in) is a complex/real array containing the second member of the equation. 233 233 \item B(n) (in) is a complex/real array containing the second member of the equation.
\item x(n) (out) is a complex/real array containing the solution 234 234 \item x(n) (out) is a complex/real array containing the solution
\item status (out) is an integer which contain non-zero is something went wrong 235 235 \item status (out) is an integer which contain non-zero is something went wrong
\end{itemize} 236 236 \end{itemize}
237 237
\subsubsection*{Example} 238 238 \subsubsection*{Example}
\begin{verbatim} 239 239 \begin{verbatim}
program test_sparse 240 240 program test_sparse
241 241
use fvn 242 242 use fvn
implicit none 243 243 implicit none
244 244
integer(8), parameter :: nz=12 245 245 integer(8), parameter :: nz=12
integer(8), parameter :: n=5 246 246 integer(8), parameter :: n=5
complex(8),dimension(nz) :: A 247 247 complex(8),dimension(nz) :: A
integer(8),dimension(nz) :: Ti,Tj 248 248 integer(8),dimension(nz) :: Ti,Tj
complex(8),dimension(n) :: B,x 249 249 complex(8),dimension(n) :: B,x
integer(8) :: status 250 250 integer(8) :: status
251 251
A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),& 252 252 A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
(1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /) 253 253 (1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)
B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/) 254 254 B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /) 255 255 Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /) 256 256 Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
257 257
call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status) 258 258 call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x 259 259 write(*,*) x
260 260
end program 261 261 end program
262 262
263 263
program test_sparse 264 264 program test_sparse
265 265
use fvn 266 266 use fvn
implicit none 267 267 implicit none
268 268
integer(4), parameter :: nz=12 269 269 integer(4), parameter :: nz=12
integer(4), parameter :: n=5 270 270 integer(4), parameter :: n=5
real(8),dimension(nz) :: A 271 271 real(8),dimension(nz) :: A
integer(4),dimension(nz) :: Ti,Tj 272 272 integer(4),dimension(nz) :: Ti,Tj
real(8),dimension(n) :: B,x 273 273 real(8),dimension(n) :: B,x
integer(4) :: status 274 274 integer(4) :: status
275 275
A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /) 276 276 A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /)
B = (/ 8., 45., -3., 3., 19./) 277 277 B = (/ 8., 45., -3., 3., 19./)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /) 278 278 Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /) 279 279 Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
280 280
call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status) 281 281 call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x 282 282 write(*,*) x
283 283
end program 284 284 end program
285 285
286 286
287 287
\end{verbatim} 288 288 \end{verbatim}
289 289
290 \subsection{Identity matrix}
291 \begin{verbatim}
292 I=fvn_x_ident(n)
293 \end{verbatim}
294 \begin{itemize}
295 \item n (in) is an integer equal to the matrix rank
296 \end{itemize}
297 This function return the identity matrix of rank n, in the specified type (x = s,d,c,z).
290 298
291 299
300
\section{Interpolation} 292 301 \section{Interpolation}
293 302
\subsection{Quadratic Interpolation} 294 303 \subsection{Quadratic Interpolation}
fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision. 295 304 fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision.
\subsubsection{One variable function} 296 305 \subsubsection{One variable function}
\begin{verbatim} 297 306 \begin{verbatim}
value=fvn_x_quad_interpol(x,n,xdata,ydata) 298 307 value=fvn_x_quad_interpol(x,n,xdata,ydata)
\end{verbatim} 299 308 \end{verbatim}
\begin{itemize} 300 309 \begin{itemize}
\item x is the real where we want to evaluate the function 301 310 \item x is the real where we want to evaluate the function
\item n is the number of tabulated values 302 311 \item n is the number of tabulated values
\item xdata(n) contains the tabulated coordinates 303 312 \item xdata(n) contains the tabulated coordinates
\item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i)) 304 313 \item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i))
\end{itemize} 305 314 \end{itemize}
xdata must be strictly increasingly ordered. 306 315 xdata must be strictly increasingly ordered.
x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation 307 316 x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation
\paragraph*{Example} 308 317 \paragraph*{Example}
\begin{verbatim} 309 318 \begin{verbatim}
program inter1d 310 319 program inter1d
311 320
use fvn 312 321 use fvn
implicit none 313 322 implicit none
314 323
integer(kind=4),parameter :: ndata=33 315 324 integer(kind=4),parameter :: ndata=33
integer(kind=4) :: i,nout 316 325 integer(kind=4) :: i,nout
real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata) 317 326 real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata)
real(kind=8) ::tv 318 327 real(kind=8) ::tv
319 328
intrinsic sin 320 329 intrinsic sin
321 330
f(x)=sin(x) 322 331 f(x)=sin(x)
323 332
xdata(1)=0. 324 333 xdata(1)=0.
fdata(1)=f(xdata(1)) 325 334 fdata(1)=f(xdata(1))
h=1./32. 326 335 h=1./32.
do i=2,ndata 327 336 do i=2,ndata
xdata(i)=xdata(i-1)+h 328 337 xdata(i)=xdata(i-1)+h
fdata(i)=f(xdata(i)) 329 338 fdata(i)=f(xdata(i))
end do 330 339 end do
call random_seed() 331 340 call random_seed()
call random_number(x) 332 341 call random_number(x)
333 342
q=fvn_d_quad_interpol(x,ndata,xdata,fdata) 334 343 q=fvn_d_quad_interpol(x,ndata,xdata,fdata)
335 344
tv=f(x) 336 345 tv=f(x)
write(*,*) "x ",x 337 346 write(*,*) "x ",x
write(*,*) "Calculated (real) value :",tv 338 347 write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q 339 348 write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv) 340 349 write(*,*) "Relative fvn error :",abs((q-tv)/tv)
341 350
end program 342 351 end program
343 352
\end{verbatim} 344 353 \end{verbatim}
345 354
346 355
\subsubsection{Two variables function} 347 356 \subsubsection{Two variables function}
\begin{verbatim} 348 357 \begin{verbatim}
value=fvn_x_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata) 349 358 value=fvn_x_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
\end{verbatim} 350 359 \end{verbatim}
\begin{itemize} 351 360 \begin{itemize}
\item x,y are the real coordinates where we want to evaluate the function 352 361 \item x,y are the real coordinates where we want to evaluate the function
\item nx is the number of tabulated values along x axis 353 362 \item nx is the number of tabulated values along x axis
\item xdata(nx) contains the tabulated x 354 363 \item xdata(nx) contains the tabulated x
\item ny is the number of tabulated values along y axis 355 364 \item ny is the number of tabulated values along y axis
\item ydata(ny) contains the tabulated y 356 365 \item ydata(ny) contains the tabulated y
\item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j)) 357 366 \item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j))
\end{itemize} 358 367 \end{itemize}
xdata and ydata must be strictly increasingly ordered. 359 368 xdata and ydata must be strictly increasingly ordered.
(x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation 360 369 (x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
361 370
\paragraph*{Example} 362 371 \paragraph*{Example}
363 372
\begin{verbatim} 364 373 \begin{verbatim}
program inter2d 365 374 program inter2d
use fvn 366 375 use fvn
implicit none 367 376 implicit none
368 377
integer(kind=4),parameter :: nx=21,ny=42 369 378 integer(kind=4),parameter :: nx=21,ny=42
integer(kind=4) :: i,j 370 379 integer(kind=4) :: i,j
real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny) 371 380 real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny)
real(kind=8) :: tv 372 381 real(kind=8) :: tv
373 382
intrinsic dble,sin 374 383 intrinsic dble,sin
375 384
f(x,y)=sin(x+2.*y) 376 385 f(x,y)=sin(x+2.*y)
do i=1,nx 377 386 do i=1,nx
xdata(i)=dble(i-1)/dble(nx-1) 378 387 xdata(i)=dble(i-1)/dble(nx-1)
end do 379 388 end do
do i=1,ny 380 389 do i=1,ny
ydata(i)=dble(i-1)/dble(ny-1) 381 390 ydata(i)=dble(i-1)/dble(ny-1)
end do 382 391 end do
do i=1,nx 383 392 do i=1,nx
do j=1,ny 384 393 do j=1,ny
fdata(i,j)=f(xdata(i),ydata(j)) 385 394 fdata(i,j)=f(xdata(i),ydata(j))
end do 386 395 end do
end do 387 396 end do
call random_seed() 388 397 call random_seed()
call random_number(x) 389 398 call random_number(x)
call random_number(y) 390 399 call random_number(y)
391 400
q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata) 392 401 q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata)
tv=f(x,y) 393 402 tv=f(x,y)
394 403
write(*,*) "x y",x,y 395 404 write(*,*) "x y",x,y
write(*,*) "Calculated (real) value :",tv 396 405 write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q 397 406 write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv) 398 407 write(*,*) "Relative fvn error :",abs((q-tv)/tv)
399 408
end program 400 409 end program
401 410
\end{verbatim} 402 411 \end{verbatim}
403 412
404 413
405 414
\subsubsection{Three variables function} 406 415 \subsubsection{Three variables function}
\begin{verbatim} 407 416 \begin{verbatim}
value=fvn_x_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata) 408 417 value=fvn_x_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
\end{verbatim} 409 418 \end{verbatim}
\begin{itemize} 410 419 \begin{itemize}
\item x,y,z are the real coordinates where we want to evaluate the function 411 420 \item x,y,z are the real coordinates where we want to evaluate the function
\item nx is the number of tabulated values along x axis 412 421 \item nx is the number of tabulated values along x axis
\item xdata(nx) contains the tabulated x 413 422 \item xdata(nx) contains the tabulated x
\item ny is the number of tabulated values along y axis 414 423 \item ny is the number of tabulated values along y axis
\item ydata(ny) contains the tabulated y 415 424 \item ydata(ny) contains the tabulated y
\item nz is the number of tabulated values along z axis 416 425 \item nz is the number of tabulated values along z axis
\item zdata(ny) contains the tabulated z 417 426 \item zdata(ny) contains the tabulated z
\item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k)) 418 427 \item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k))
\end{itemize} 419 428 \end{itemize}
xdata, ydata and zdata must be strictly increasingly ordered. 420 429 xdata, ydata and zdata must be strictly increasingly ordered.
(x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation 421 430 (x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
422 431
\paragraph*{Example} 423 432 \paragraph*{Example}
\begin{verbatim} 424 433 \begin{verbatim}
program inter3d 425 434 program inter3d
use fvn 426 435 use fvn
427 436
implicit none 428 437 implicit none
429 438
integer(kind=4),parameter :: nx=21,ny=42,nz=18 430 439 integer(kind=4),parameter :: nx=21,ny=42,nz=18
integer(kind=4) :: i,j,k 431 440 integer(kind=4) :: i,j,k
real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz) 432 441 real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz)
real(kind=8) :: tv 433 442 real(kind=8) :: tv
434 443
intrinsic dble,sin 435 444 intrinsic dble,sin
436 445
f(x,y,z)=sin(x+2.*y+3.*z) 437 446 f(x,y,z)=sin(x+2.*y+3.*z)
do i=1,nx 438 447 do i=1,nx
xdata(i)=2.*(dble(i-1)/dble(nx-1)) 439 448 xdata(i)=2.*(dble(i-1)/dble(nx-1))
end do 440 449 end do
do i=1,ny 441 450 do i=1,ny
ydata(i)=2.*(dble(i-1)/dble(ny-1)) 442 451 ydata(i)=2.*(dble(i-1)/dble(ny-1))
end do 443 452 end do
do i=1,nz 444 453 do i=1,nz
zdata(i)=2.*(dble(i-1)/dble(nz-1)) 445 454 zdata(i)=2.*(dble(i-1)/dble(nz-1))
end do 446 455 end do
do i=1,nx 447 456 do i=1,nx
do j=1,ny 448 457 do j=1,ny
do k=1,nz 449 458 do k=1,nz
fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k)) 450 459 fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k))
end do 451 460 end do
end do 452 461 end do
end do 453 462 end do
call random_seed() 454 463 call random_seed()
call random_number(x) 455 464 call random_number(x)
call random_number(y) 456 465 call random_number(y)
call random_number(z) 457 466 call random_number(z)
458 467
q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata) 459 468 q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata)
tv=f(x,y,z) 460 469 tv=f(x,y,z)
461 470
write(*,*) "x y z",x,y,z 462 471 write(*,*) "x y z",x,y,z
write(*,*) "Calculated (real) value :",tv 463 472 write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q 464 473 write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv) 465 474 write(*,*) "Relative fvn error :",abs((q-tv)/tv)
466 475
end program 467 476 end program
468 477
\end{verbatim} 469 478 \end{verbatim}
470 479
\subsubsection{Utility procedure} 471 480 \subsubsection{Utility procedure}
fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array. 472 481 fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array.
\begin{verbatim} 473 482 \begin{verbatim}
call fvn_x_find_interval(x,i,xdata,n) 474 483 call fvn_x_find_interval(x,i,xdata,n)
\end{verbatim} 475 484 \end{verbatim}
\begin{itemize} 476 485 \begin{itemize}
\item x (in) the real value to locate 477 486 \item x (in) the real value to locate
\item i (out) the resulting indice 478 487 \item i (out) the resulting indice
\item xdata(n) (in) increasingly ordered array 479 488 \item xdata(n) (in) increasingly ordered array
\item n (in) size of the array 480 489 \item n (in) size of the array
\end{itemize} 481 490 \end{itemize}
The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned. 482 491 The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned.
483 492
484 493
485 494
\subsection{Akima spline} 486 495 \subsection{Akima spline}
fvn provides Akima spline interpolation and evaluation for both single and double precision real. 487 496 fvn provides Akima spline interpolation and evaluation for both single and double precision real.
\subsubsection{Interpolation} 488 497 \subsubsection{Interpolation}
\begin{verbatim} 489 498 \begin{verbatim}
call fvn_x_akima(n,x,y,br,co) 490 499 call fvn_x_akima(n,x,y,br,co)
\end{verbatim} 491 500 \end{verbatim}
\begin{itemize} 492 501 \begin{itemize}
\item n (in) is an integer equal to the number of points 493 502 \item n (in) is an integer equal to the number of points
\item x(n) (in) ,y(n) (in) are the known couples of coordinates 494 503 \item x(n) (in) ,y(n) (in) are the known couples of coordinates
\item br (out) on output contains a copy of x 495 504 \item br (out) on output contains a copy of x
\item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval. 496 505 \item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval.
\end{itemize} 497 506 \end{itemize}
498 507
\subsubsection{Evaluation} 499 508 \subsubsection{Evaluation}
\begin{verbatim} 500 509 \begin{verbatim}
y=fvn_x_spline_eval(x,n,br,co) 501 510 y=fvn_x_spline_eval(x,n,br,co)
\end{verbatim} 502 511 \end{verbatim}
\begin{itemize} 503 512 \begin{itemize}
\item x (in) is the point where we want to evaluate 504 513 \item x (in) is the point where we want to evaluate
\item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\ 505 514 \item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\
are the outputs of fvn\_x\_akima(n,x,y,br,co) 506 515 are the outputs of fvn\_x\_akima(n,x,y,br,co)
\end{itemize} 507 516 \end{itemize}
508 517
\subsubsection{Example} 509 518 \subsubsection{Example}
In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x). 510 519 In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x).
511 520
One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values. 512 521 One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values.
513 522
\begin{verbatim} 514 523 \begin{verbatim}
program akima 515 524 program akima
use fvn 516 525 use fvn
implicit none 517 526 implicit none
518 527
integer :: nbpoints,nppoints,i 519 528 integer :: nbpoints,nppoints,i
real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d 520 529 real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d
real(8),dimension(:,:),allocatable :: coeff_fvn_d 521 530 real(8),dimension(:,:),allocatable :: coeff_fvn_d
real(8) :: xstep_d,xp_d,ty_d,fvn_y_d 522 531 real(8) :: xstep_d,xp_d,ty_d,fvn_y_d
523 532
open(2,file='fvn_akima_double.dat') 524 533 open(2,file='fvn_akima_double.dat')
open(3,file='fvn_akima_breakpoints_double.dat') 525 534 open(3,file='fvn_akima_breakpoints_double.dat')
nbpoints=30 526 535 nbpoints=30
allocate(x_d(nbpoints)) 527 536 allocate(x_d(nbpoints))
allocate(y_d(nbpoints)) 528 537 allocate(y_d(nbpoints))
allocate(breakpoints_d(nbpoints)) 529 538 allocate(breakpoints_d(nbpoints))
allocate(coeff_fvn_d(4,nbpoints)) 530 539 allocate(coeff_fvn_d(4,nbpoints))
531 540
xstep_d=20./dfloat(nbpoints) 532 541 xstep_d=20./dfloat(nbpoints)
do i=1,nbpoints 533 542 do i=1,nbpoints
x_d(i)=-10.+dfloat(i)*xstep_d 534 543 x_d(i)=-10.+dfloat(i)*xstep_d
y_d(i)=dsin(x_d(i)) 535 544 y_d(i)=dsin(x_d(i))
write(3,44) (x_d(i),y_d(i)) 536 545 write(3,44) (x_d(i),y_d(i))
end do 537 546 end do
close(3) 538 547 close(3)
539 548
call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d) 540 549 call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d)
541 550
nppoints=1000 542 551 nppoints=1000
xstep_d=22./dfloat(nppoints) 543 552 xstep_d=22./dfloat(nppoints)
do i=1,nppoints 544 553 do i=1,nppoints
xp_d=-11.+dfloat(i)*xstep_d 545 554 xp_d=-11.+dfloat(i)*xstep_d
ty_d=dsin(xp_d) 546 555 ty_d=dsin(xp_d)
fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d) 547 556 fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d)
write(2,44) (xp_d,ty_d,fvn_y_d) 548 557 write(2,44) (xp_d,ty_d,fvn_y_d)
end do 549 558 end do
550 559
close(2) 551 560 close(2)
552 561
44 FORMAT(4(1X,1PE22.14)) 553 562 44 FORMAT(4(1X,1PE22.14))
554 563
end program 555 564 end program
556 565
\end{verbatim} 557 566 \end{verbatim}
Results are plotted on figure \ref{akima} 558 567 Results are plotted on figure \ref{akima}
559 568
\begin{figure} 560 569 \begin{figure}
\begin{center} 561 570 \begin{center}
\includegraphics[width=0.9\textwidth]{akima.pdf} 562 571 \includegraphics[width=0.9\textwidth]{akima.pdf}
% akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720 563 572 % akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720
\caption{Akima Spline Interpolation} 564 573 \caption{Akima Spline Interpolation}
\label{akima} 565 574 \label{akima}
\end{center} 566 575 \end{center}
567 576
\end{figure} 568 577 \end{figure}
569 578
570 579
571 580
\section{Least square polynomial} 572 581 \section{Least square polynomial}
fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition. 573 582 fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition.
574 583
\begin{verbatim} 575 584 \begin{verbatim}
call fvn_x_lspoly(np,x,y,deg,coeff,status) 576 585 call fvn_x_lspoly(np,x,y,deg,coeff,status)
\end{verbatim} 577 586 \end{verbatim}
\begin{itemize} 578 587 \begin{itemize}
\item np (in) is an integer equal to the number of points 579 588 \item np (in) is an integer equal to the number of points
\item x(np) (in),y(np) (in) are the known coordinates 580 589 \item x(np) (in),y(np) (in) are the known coordinates
\item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np. 581 590 \item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np.
\item coeff(deg+1) (out) on output contains the polynomial coefficients 582 591 \item coeff(deg+1) (out) on output contains the polynomial coefficients
\item status (out) is an integer containing 0 if a problem occured. 583 592 \item status (out) is an integer containing 0 if a problem occured.
\end{itemize} 584 593 \end{itemize}
585 594
\subsection*{Example} 586 595 \subsection*{Example}
Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points : 587 596 Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points :
\begin{verbatim} 588 597 \begin{verbatim}
program lsp 589 598 program lsp
use fvn 590 599 use fvn
implicit none 591 600 implicit none
592 601
integer,parameter :: npoints=13,deg=3 593 602 integer,parameter :: npoints=13,deg=3
integer :: status,i 594 603 integer :: status,i
real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc 595 604 real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc
real(kind=8) :: coeff(deg+1) 596 605 real(kind=8) :: coeff(deg+1)
597 606
xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /) 598 607 xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /) 599 608 ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /)
600 609
open(2,file='fvn_lsp_double_mesure.dat') 601 610 open(2,file='fvn_lsp_double_mesure.dat')
open(3,file='fvn_lsp_double_poly.dat') 602 611 open(3,file='fvn_lsp_double_poly.dat')
603 612
do i=1,npoints 604 613 do i=1,npoints
write(2,44) xm(i),ym(i) 605 614 write(2,44) xm(i),ym(i)
end do 606 615 end do
close(2) 607 616 close(2)
608 617
609 618
call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status) 610 619 call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status)
611 620
xstep=(xm(npoints)-xm(1))/1000. 612 621 xstep=(xm(npoints)-xm(1))/1000.
do i=1,1000 613 622 do i=1,1000
xc=xm(1)+(i-1)*xstep 614 623 xc=xm(1)+(i-1)*xstep
yc=poly(xc,coeff) 615 624 yc=poly(xc,coeff)
write(3,44) xc,yc 616 625 write(3,44) xc,yc
end do 617 626 end do
close(3) 618 627 close(3)
619 628
44 FORMAT(4(1X,1PE22.14)) 620 629 44 FORMAT(4(1X,1PE22.14))
621 630
contains 622 631 contains
function poly(x,coeff) 623 632 function poly(x,coeff)
implicit none 624 633 implicit none
real(8) :: x 625 634 real(8) :: x
real(8) :: coeff(deg+1) 626 635 real(8) :: coeff(deg+1)
real(8) :: poly 627 636 real(8) :: poly
integer :: i 628 637 integer :: i
629 638
poly=0. 630 639 poly=0.
631 640
do i=1,deg+1 632 641 do i=1,deg+1
poly=poly+coeff(i)*x**(i-1) 633 642 poly=poly+coeff(i)*x**(i-1)
end do 634 643 end do
635 644
end function 636 645 end function
end program 637 646 end program
\end{verbatim} 638 647 \end{verbatim}
The results are plotted on figure \ref{lsp} . 639 648 The results are plotted on figure \ref{lsp} .
640 649
\begin{figure} 641 650 \begin{figure}
\begin{center} 642 651 \begin{center}
\includegraphics[width=0.9\textwidth]{lsp.pdf} 643 652 \includegraphics[width=0.9\textwidth]{lsp.pdf}
\caption{Least Square Polynomial} 644 653 \caption{Least Square Polynomial}
\label{lsp} 645 654 \label{lsp}
\end{center} 646 655 \end{center}
\end{figure} 647 656 \end{figure}
648 657
649 658
650 659
\section{Zero finding} 651 660 \section{Zero finding}
fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}. 652 661 fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}.
653 662
\begin{verbatim} 654 663 \begin{verbatim}
call fvn_z_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) 655 664 call fvn_z_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
\end{verbatim} 656 665 \end{verbatim}
\begin{itemize} 657 666 \begin{itemize}
\item f (in) is the complex function (kind=8) for which we search zeros 658 667 \item f (in) is the complex function (kind=8) for which we search zeros
\item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots. if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root. 659 668 \item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots. if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root.
\item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted. 660 669 \item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted.
\item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine. 661 670 \item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine.
\item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided. 662 671 \item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided.
\item n (in) is an integer equal to the number of new roots to be found. 663 672 \item n (in) is an integer equal to the number of new roots to be found.
\item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots. x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine. 664 673 \item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots. x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine.
\item itmax (in) is an integer equal to the maximum allowable number of iterations per root. 665 674 \item itmax (in) is an integer equal to the maximum allowable number of iterations per root.
\item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved. If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax 666 675 \item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved. If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax
\item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots. 667 676 \item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots.
\end{itemize} 668 677 \end{itemize}
This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion. 669 678 This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion.
670 679
\subsection*{Example} 671 680 \subsection*{Example}
Example to find the ten roots of $x^{10}-1$ 672 681 Example to find the ten roots of $x^{10}-1$
\begin{verbatim} 673 682 \begin{verbatim}
program muller 674 683 program muller
use fvn 675 684 use fvn
implicit none 676 685 implicit none
677 686
integer :: i,info 678 687 integer :: i,info
complex(8),dimension(10) :: roots 679 688 complex(8),dimension(10) :: roots
integer,dimension(10) :: infer 680 689 integer,dimension(10) :: infer
complex(8), external :: f 681 690 complex(8), external :: f
682 691
call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info) 683 692 call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info)
684 693
write(*,*) "Error code :",info 685 694 write(*,*) "Error code :",info
do i=1,10 686 695 do i=1,10
write(*,*) roots(i),infer(i) 687 696 write(*,*) roots(i),infer(i)
enddo 688 697 enddo
end program 689 698 end program
690 699
function f(x) 691 700 function f(x)
complex(8) :: x,f 692 701 complex(8) :: x,f
f=x**10-1 693 702 f=x**10-1
end function 694 703 end function
695 704
\end{verbatim} 696 705 \end{verbatim}
697 706
698 707
\section{Trigonometry} 699 708 \section{Trigonometry}
\subsection{Complex Sine Arc} 700 709 \subsection{Complex Sine Arc}
( only complex(kind=8) version ) 701 710 ( only complex(kind=8) version )
\begin{verbatim} 702 711 \begin{verbatim}
y=fvn_z_asin(z) 703 712 y=fvn_z_asin(z)
\end{verbatim} 704 713 \end{verbatim}
This function return the complex arc sine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}. 705 714 This function return the complex arc sine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
706 715
707 716
\subsection{Complex Cosine Arc} 708 717 \subsection{Complex Cosine Arc}
( only complex(kind=8) version ) 709 718 ( only complex(kind=8) version )
\begin{verbatim} 710 719 \begin{verbatim}
y=fvn_z_acos(z) 711 720 y=fvn_z_acos(z)
\end{verbatim} 712 721 \end{verbatim}
This function return the complex arc cosine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}. 713 722 This function return the complex arc cosine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
714 723
\subsection{Real Sine Hyperbolic Arc} 715 724 \subsection{Real Sine Hyperbolic Arc}
( only real(kind=8) version ) 716 725 ( only real(kind=8) version )
\begin{verbatim} 717 726 \begin{verbatim}