Compare View

switch
from
...
to
 
Commits (2)

Diff

Showing 1 changed file Inline Diff

ifcs2018_proceeding.tex
\documentclass[a4paper,conference]{IEEEtran/IEEEtran} 1 1 % JMF : revoir l'abstract : on y avait mis le Zynq7010 de la redpitaya en montrant
\usepackage{graphicx,color,hyperref} 2 2 % comment optimiser les perfs a surface finie. Ici aussi on tombait dans le cas ou`
\usepackage{amsfonts} 3 3 % la solution a 1 seul FIR n'etait simplement pas synthetisable => fusionner les deux
\usepackage{amsthm} 4 4 % contributions pour le papier TUFFC
\usepackage{amssymb} 5 5
\usepackage{amsmath} 6 6 \documentclass[a4paper,conference]{IEEEtran/IEEEtran}
\usepackage{algorithm2e} 7 7 \usepackage{graphicx,color,hyperref}
\usepackage{url,balance} 8 8 \usepackage{amsfonts}
\usepackage[normalem]{ulem} 9 9 \usepackage{amsthm}
% correct bad hyphenation here 10 10 \usepackage{amssymb}
\hyphenation{op-tical net-works semi-conduc-tor} 11 11 \usepackage{amsmath}
\textheight=26cm 12 12 \usepackage{algorithm2e}
\setlength{\footskip}{30pt} 13 13 \usepackage{url,balance}
\pagenumbering{gobble} 14 14 \usepackage[normalem]{ulem}
\begin{document} 15 15 % correct bad hyphenation here
\title{Filter optimization for real time digital processing of radiofrequency signals: application 16 16 \hyphenation{op-tical net-works semi-conduc-tor}
to oscillator metrology} 17 17 \textheight=26cm
18 18 \setlength{\footskip}{30pt}
\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, 19 19 \pagenumbering{gobble}
G. Goavec-M\'erou\IEEEauthorrefmark{1}, 20 20 \begin{document}
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} 21 21 \title{Filter optimization for real time digital processing of radiofrequency signals: application
\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } 22 22 to oscillator metrology}
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ 23 23
Email: \{pyb2,jmfriedt\}@femto-st.fr} 24 24 \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
} 25 25 G. Goavec-M\'erou\IEEEauthorrefmark{1},
\maketitle 26 26 P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
\thispagestyle{plain} 27 27 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
\pagestyle{plain} 28 28 \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
\newtheorem{definition}{Definition} 29 29 Email: \{pyb2,jmfriedt\}@femto-st.fr}
30 30 }
\begin{abstract} 31 31 \maketitle
Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to 32 32 \thispagestyle{plain}
radiofrequency signal processing. Applied to oscillator characterization in the context 33 33 \pagestyle{plain}
of ultrastable clocks, stringent filtering requirements are defined by spurious signal or 34 34 \newtheorem{definition}{Definition}
noise rejection needs. Since real time radiofrequency processing must be performed in a 35 35
Field Programmable Array to meet timing constraints, we investigate optimization strategies 36 36 \begin{abstract}
to design filters meeting rejection characteristics while limiting the hardware resources 37 37 Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
required and keeping timing constraints within the targeted measurement bandwidths. 38 38 radiofrequency signal processing. Applied to oscillator characterization in the context
\end{abstract} 39 39 of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
40 40 noise rejection needs. Since real time radiofrequency processing must be performed in a
\begin{IEEEkeywords} 41 41 Field Programmable Array to meet timing constraints, we investigate optimization strategies
Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter 42 42 to design filters meeting rejection characteristics while limiting the hardware resources
\end{IEEEkeywords} 43 43 required and keeping timing constraints within the targeted measurement bandwidths.
44 44 \end{abstract}
\section{Digital signal processing of ultrastable clock signals} 45 45
46 46 \begin{IEEEkeywords}
Analog oscillator phase noise characteristics are classically performed by downconverting 47 47 Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, 48 48 \end{IEEEkeywords}
followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In 49 49
a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by 50 50 \section{Digital signal processing of ultrastable clock signals}
multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. 51 51
52 52 Analog oscillator phase noise characteristics are classically performed by downconverting
\begin{figure}[h!tb] 53 53 the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
\begin{center} 54 54 followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
\includegraphics[width=.8\linewidth]{images/schema} 55 55 a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
\end{center} 56 56 multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
\caption{Fully digital oscillator phase noise characterization: the Device Under Test 57 57
(DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and 58 58 \begin{figure}[h!tb]
downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals 59 59 \begin{center}
and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite 60 60 \includegraphics[width=.8\linewidth]{images/schema}
Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays 61 61 \end{center}
the spectral characteristics of the phase fluctuations.} 62 62 \caption{Fully digital oscillator phase noise characterization: the Device Under Test
\label{schema} 63 63 (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
\end{figure} 64 64 downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
65 65 and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
As with the analog mixer, 66 66 Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as 67 67 the spectral characteristics of the phase fluctuations.}
well as the generation of the frequency sum signal in addition to the frequency difference. 68 68 \label{schema}
These unwanted spectral characteristics must be rejected before decimating the data stream 69 69 \end{figure}
for the phase noise spectral characterization. The characteristics introduced between the 70 70
downconverter 71 71 As with the analog mixer,
and the decimation processing blocks are core characteristics of an oscillator characterization 72 72 the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
system, and must reject out-of-band signals below the targeted phase noise -- typically in the 73 73 well as the generation of the frequency sum signal in addition to the frequency difference.
sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will 74 74 These unwanted spectral characteristics must be rejected before decimating the data stream
use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency 75 75 for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
datastream: optimizing the performance of the filter while reducing the needed resources is 76 76 downconverter
hence tackled in a systematic approach using optimization techniques. Most significantly, we 77 77 and the decimation processing blocks are core characteristics of an oscillator characterization
tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with 78 78 system, and must reject out-of-band signals below the targeted phase noise -- typically in the
tunable number of coefficients and tunable number of bits representing the coefficients and the 79 79 sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
data being processed. 80 80 use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
81 81 datastream: optimizing the performance of the filter while reducing the needed resources is
\section{Finite impulse response filter} 82 82 hence tackled in a systematic approach using optimization techniques. Most significantly, we
83 83 tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined 84 84 tunable number of coefficients and tunable number of bits representing the coefficients and the
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the 85 85 data being processed.
outputs $y_k$ 86 86
$$y_n=\sum_{k=0}^N b_k x_{n-k}$$ 87 87 \section{Finite impulse response filter}
88 88
As opposed to an implementation on a general purpose processor in which word size is defined by the 89 89 We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined
processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since 90 90 by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
not only the coefficient values and number of taps must be defined, but also the number of bits 91 91 outputs $y_k$
defining the coefficients and the sample size. For this reason, and because we consider pipeline 92 92 $$y_n=\sum_{k=0}^N b_k x_{n-k}$$
processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency 93 93
signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but 94 94 As opposed to an implementation on a general purpose processor in which word size is defined by the
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL). 95 95 processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since
Since latency is not an issue in a openloop phase noise characterization instrument, the large 96 96 not only the coefficient values and number of taps must be defined, but also the number of bits
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, 97 97 defining the coefficients and the sample size. For this reason, and because we consider pipeline
is not considered as an issue as would be in a closed loop system. 98 98 processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
99 99 signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
The coefficients are classically expressed as floating point values. However, this binary 100 100 the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL) level.
number representation is not efficient for fast arithmetic computation by an FPGA. Instead, 101 101 Since latency is not an issue in a openloop phase noise characterization instrument, the large
we select to quantify these floating point values into integer values. This quantization 102 102 numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
will result in some precision loss. 103 103 is not considered as an issue as would be in a closed loop system.
104 104
%As illustrated in Fig. \ref{float_vs_int}, we see that we aren't 105 105 The coefficients are classically expressed as floating point values. However, this binary
%need too coefficients or too sample size. If we have lot of coefficients but a small sample size, 106 106 number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
%the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality. 107 107 we select to quantify these floating point values into integer values. This quantization
108 108 will result in some precision loss.
% JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous 109 109
% AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi) 110 110 %As illustrated in Fig. \ref{float_vs_int}, we see that we aren't
% et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler 111 111 %need too coefficients or too sample size. If we have lot of coefficients but a small sample size,
112 112 %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality.
%\begin{figure}[h!tb] 113 113
%\includegraphics[width=\linewidth]{images/float-vs-integer.pdf} 114 114 % JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous
%\caption{Impact of the quantization resolution of the coefficients} 115 115 % AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi)
%\label{float_vs_int} 116 116 % et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler
%\end{figure} 117 117
118 118 %\begin{figure}[h!tb]
\begin{figure}[h!tb] 119 119 %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf}
\includegraphics[width=\linewidth]{images/demo_filtre} 120 120 %\caption{Impact of the quantization resolution of the coefficients}
\caption{Impact of the quantization resolution of the coefficients: the quantization is 121 121 %\label{float_vs_int}
set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting 122 122 %\end{figure}
the 30~first and 30~last coefficients out of the initial 128~band-pass 123 123
filter coefficients to 0 (red dots).} 124 124 \begin{figure}[h!tb]
\label{float_vs_int} 125 125 \includegraphics[width=\linewidth]{images/demo_filtre}
\end{figure} 126 126 \caption{Impact of the quantization resolution of the coefficients: the quantization is
127 127 set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
The tradeoff between quantization resolution and number of coefficients when considering 128 128 the 30~first and 30~last coefficients out of the initial 128~band-pass
integer operations is not trivial. As an illustration of the issue related to the 129 129 filter coefficients to 0 (red dots).}
relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits 130 130 \label{float_vs_int}
a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon 131 131 \end{figure}
quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the 132 132
taps become null, making the large number of coefficients irrelevant and allowing to save 133 133 The tradeoff between quantization resolution and number of coefficients when considering
processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources 134 134 integer operations is not trivial. As an illustration of the issue related to the
to reach a given rejection level, or maximizing out of band rejection for a given computational 135 135 relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
resource, will drive the investigation on cascading filters designed with varying tap resolution 136 136 a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
and tap length, as will be shown in the next section. Indeed, our development strategy closely 137 137 quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} 138 138 taps become null, making the large number of coefficients irrelevant and allowing to save
in which basic blocks are defined and characterized before being assembled \cite{hide} 139 139 processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
in a complete processing chain. In our case, assembling the filter blocks is a simpler block 140 140 to reach a given rejection level, or maximizing out of band rejection for a given computational
combination process since we assume a single value to be processed and a single value to be 141 141 resource, will drive the investigation on cascading filters designed with varying tap resolution
generated at each clock cycle. The FIR filters will not be considered to decimate in the 142 142 and tap length, as will be shown in the next section. Indeed, our development strategy closely
current implementation: the decimation is assumed to be located after the FIR cascade at the 143 143 follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
moment. 144 144 in which basic blocks are defined and characterized before being assembled \cite{hide}
145 145 in a complete processing chain. In our case, assembling the filter blocks is a simpler block
\section{Filter optimization} 146 146 combination process since we assume a single value to be processed and a single value to be
147 147 generated at each clock cycle. The FIR filters will not be considered to decimate in the
A basic approach for implementing the FIR filter is to compute the transfer function of 148 148 current implementation: the decimation is assumed to be located after the FIR cascade at the
a monolithic filter: this single filter defines all coefficients with the same resolution 149 149 moment.
(number of bits) and processes data represented with their own resolution. Meeting the 150 150
filter shape requires a large number of coefficients, limited by resources of the FPGA since 151 151 \section{Filter optimization}
this filter must process data stream at the radiofrequency sampling rate after the mixer. 152 152
153 153 A basic approach for implementing the FIR filter is to compute the transfer function of
An optimization problem \cite{leung2004handbook} aims at improving one or many 154 154 a monolithic filter: this single filter defines all coefficients with the same resolution
performance criteria within a constrained resource environment. Amongst the tools 155 155 (number of bits) and processes data represented with their own resolution. Meeting the
developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to 156 156 filter shape requires a large number of coefficients, limited by resources of the FPGA since
formally define the stated problem and search for an optimal use of available 157 157 this filter must process data stream at the radiofrequency sampling rate after the mixer.
resources \cite{yu2007design, kodek1980design}. 158 158
159 159 An optimization problem \cite{leung2004handbook} aims at improving one or many
First we need to ensure that our problem is a real optimization problem. When 160 160 performance criteria within a constrained resource environment. Amongst the tools
designing a processing function in the FPGA, we aim at meeting some requirement such as 161 161 developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to
the throughput, the computation time or the noise rejection noise. However, due to limited 162 162 formally define the stated problem and search for an optimal use of available
resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor) 163 163 resources \cite{yu2007design, kodek1980design}.
or LUT (Look Up Table), a tradeoff must be generally searched between performance and available 164 164
computational resources: optimizing some criteria within finite, limited 165 165 First we need to ensure that our problem is a real optimization problem. When
resources indeed matches the definition of a classical optimization problem. 166 166 designing a processing function in the FPGA, we aim at meeting some requirement such as
167 167 the throughput, the computation time or the noise rejection noise. However, due to limited
Specifically the degrees of freedom when addressing the problem of replacing the single monolithic 168 168 resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor)
FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$ and 169 169 or LUT (Look Up Table), a tradeoff must be generally searched between performance and available
the number of bits $C_i$ representing the coefficients. Because each FIR in the chain is fed the output of the previous stage, 170 170 computational resources: optimizing some criteria within finite, limited
the optimization of the complete processing chain within a constrained resource environment is not 171 171 resources indeed matches the definition of a classical optimization problem.
trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which is 172 172
the number of bits needed in a worst case condition to represent the output of the FIR. Such an 173 173 Specifically the degrees of freedom when addressing the problem of replacing the single monolithic
occupied area estimate assumes that the number of gates scales as the number of bits and the number 174 174 FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$ and
of coefficients, but does not account for the detailed implementation of the hardware. Indeed, 175 175 the number of bits $C_i$ representing the coefficients. Because each FIR in the chain is fed the output of the previous stage,
various FPGA implementations will provide different hardware functionalities, and we shall consider 176
at the end of the design a synthesis step using vendor software to assess the validity of the solution 177 176 the optimization of the complete processing chain within a constrained resource environment is not
found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random 178 177 trivial. The resource occupation of a FIR filter is considered as $C_i \times N_i$ which is
Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications 179 178 the number of bits needed in a worst case condition to represent the output of the FIR. Such an
are most efficiently implemented by using DSP blocks whose input word 180 179 occupied area estimate assumes that the number of gates scales as the number of bits and the number
size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high 181 180 of coefficients, but does not account for the detailed implementation of the hardware. Indeed,
abstraction on the resource occupation is nevertheless selected in the following discussion in order 182 181 various FPGA implementations will provide different hardware functionalities, and we shall consider
to leave enough degrees of freedom in the problem to try and find original solutions: too many 183 182 at the end of the design a synthesis step using vendor software to assess the validity of the solution
constraints in the initial statement of the problem leave little room for finding an optimal solution. 184 183 found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random
185 184 Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications
\begin{figure}[h!tb] 186 185 are most efficiently implemented by using DSP blocks whose input word
\begin{center} 187 186 size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high
\includegraphics[width=.5\linewidth]{schema2} 188 187 abstraction on the resource occupation is nevertheless selected in the following discussion in order
\caption{Shape of the filter transmitted power $P$ as a function of frequency: 189 188 to leave enough degrees of freedom in the problem to try and find original solutions: too many
the bandpass BP is considered to occupy the initial 190 189 constraints in the initial statement of the problem leave little room for finding an optimal solution.
40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition 191 190
width.} 192 191 \begin{figure}[h!tb]
\label{rejection-shape} 193 192 \begin{center}
\end{center} 194 193 \includegraphics[width=.5\linewidth]{schema2}
\end{figure} 195 194 \caption{Shape of the filter transmitted power $P$ as a function of frequency:
196 195 the bandpass BP is considered to occupy the initial
Following these considerations, the model is expressed as: 197 196 40\% of the Nyquist frequency range, the stopband the last 40\%, allowing 20\% transition
\begin{align} 198 197 width.}
\begin{cases} 199 198 \label{rejection-shape}
\mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\ 200 199 \end{center}
\mathcal{A}_i &= N_i * C_i\\ 201 200 \end{figure}
\Delta_i &= \Delta _{i-1} + \mathcal{P}_i 202 201
\end{cases} 203 202 Following these considerations, the model is expressed as:
\label{model-FIR} 204 203 \begin{align}
\end{align} 205 204 \begin{cases}
To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the rejection of depending on $N_i$ and $C_i$, $\mathcal{A}$ 206 205 \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\
is a theoretical area occupation of the processing block on the FPGA, and $\Delta_i$ is the total rejection for the current stage $i$. 207 206 \mathcal{A}_i &= N_i * C_i\\
Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending 208 207 \Delta_i &= \Delta _{i-1} + \mathcal{P}_i
on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an 209 208 \end{cases}
incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements. 210 209 \label{model-FIR}
Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will 211 210 \end{align}
be illustrated lated (section \ref{median}), we have designed 212 211 To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the stopband rejection dependence with $N_i$ and $C_i$, $\mathcal{A}$
a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband 213 212 is a theoretical area occupation of the processing block on the FPGA as discussed earlier, and $\Delta_i$ is the total rejection for the current stage $i$.
(Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response 214 213 Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending
in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid 215 214 on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an
ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter 216 215 incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements.
rejection capability. Weighing these two criteria allows designing the linear program to be solved. 217 216 Hence, amongst various criteria including the mean or median value of the FIR response in the stopband as will
218 217 be illustrated lated (section \ref{median}), we have designed
\begin{figure}[h!tb] 219 218 a criterion aimed at avoiding ripples in the passband and considering the maximum of the FIR spectral response in the stopband
\includegraphics[width=\linewidth]{images/noise-rejection.pdf} 220 219 (Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response
\caption{Rejection as a function of number of coefficients and number of bits} 221 220 in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid
\label{noise-rejection} 222 221 ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter
\end{figure} 223 222 rejection capability. Weighing these two criteria allows designing the linear program to be solved.
224 223
The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below 225 224 \begin{figure}[h!tb]
a user-defined threshold. The MILP solver is allowed to choose the number of successive 226 225 \includegraphics[width=\linewidth]{images/noise-rejection.pdf}
filters, within an upper bound. The last problem is to model the noise rejection. Since filter 227 226 \caption{Rejection as a function of number of coefficients and number of bits}
noise rejection capability is not modeled with linear equations, a look-up-table is generated 228 227 \label{noise-rejection}
for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each 229 228 \end{figure}
one of these conditions, the low-pass filter rejection defined as the mean power between 230 229
half the Nyquist frequency and the Nyquist frequency is stored as computed by the frequency response 231 230 The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below
of the digital filter (Fig. \ref{noise-rejection}). An intuitive analysis of this chart hints at an optimum 232 231 a user-defined threshold, or aims at minimizing the area needed to reach a given rejection ($\min(S_q)$ in
set of tap length and number of bit for representing the coefficients along the line of the pyramidal 233 232 the forthcoming discussion, Eqs. \ref{cstr_size} and \ref{cstr_rejection}).
shaped rejection capability function. 234 233 The MILP solver is allowed to choose the number of successive
235 234 filters, within an upper bound. The last problem is to model the noise rejection. Since filter
Linear program formalism for solving the problem is well documented: an objective function is 236 235 noise rejection capability is not modeled with linear equations, a look-up-table is generated
defined which is linearly dependent on the parameters to be optimized. Constraints are expressed 237 236 for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each
as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}. 238 237 one of these conditions, the low-pass filter rejection is stored as computed by the frequency response
With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this: 239 238 of the digital filter (Fig. \ref{noise-rejection}). Various rejection criteria have been investigated,
\paragraph{Variables} 240 239 including mean value of the stopband response, median value of the stopband response, or as finally
\begin{align*} 241 240 selected, maximum value in the stopband. An intuitive analysis of the chart of Fig. \ref{noise-rejection}
x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\ 242 241 hints at an optimum
& \text{ $j$ is the stage} \\ 243 242 set of tap length and number of bit for representing the coefficients along the line of the pyramidal
& \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\ 244 243 shaped rejection capability function.
\end{align*} 245 244
\paragraph{Constants} 246 245 Linear program formalism for solving the problem is well documented: an objective function is
\begin{align*} 247 246 defined which is linearly dependent on the parameters to be optimized. Constraints are expressed
\mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\ 248 247 as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}.
& \text{ $p$ is the number of different filters} \\ 249 248 With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this:
% N(i) & \text{ % Constant to let the 250 249 \paragraph{Variables}
% number of coefficients %} \\ & \text{ 251 250 \begin{align*}
% for filter $i$}\\ 252 251 x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\
% C(i) & \text{ % Constant to let the 253 252 & \text{ $j$ is the stage} \\
% number of bits of %}\\ & \text{ 254 253 & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\
% each coefficient for filter $i$}\\ 255 254 \end{align*}
\mathcal{S}_{\max} & \text{ Total space available inside the FPGA} 256 255 \paragraph{Constants}
\end{align*} 257 256 \begin{align*}
\paragraph{Constraints} 258 257 \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\
\begin{align} 259 258 & \text{ $p$ is the number of different filters} \\
1 \leq i \leq p & \nonumber\\ 260 259 % N(i) & \text{ % Constant to let the
1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\ 261 260 % number of coefficients %} \\ & \text{
\forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\ 262 261 % for filter $i$}\\
\mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\ 263 262 % C(i) & \text{ % Constant to let the
\forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\ 264 263 % number of bits of %}\\ & \text{
\mathcal{S} \leq \mathcal{S}_{\max}\nonumber \\ 265 264 % each coefficient for filter $i$}\\
\mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\ 266 265 \mathcal{S}_{\max} & \text{ Total space available inside the FPGA}
\forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\ 267 266 \end{align*}
\mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\ 268 267 \paragraph{Constraints}
& \text{ (e.g. 160~dB here)}\nonumber\\\nonumber 269 268 \begin{align}
\end{align} 270 269 1 \leq i \leq p & \nonumber\\
\paragraph{Goal} 271 270 1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\
\begin{align*} 272 271 \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\
\min \mathcal{S}_q 273 272 \mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\
\end{align*} 274 273 \forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{A}_i)} \label{cstr_size} \\
275 274 \mathcal{S} \leq \mathcal{S}_{\max}\nonumber \\
The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on 276 275 \mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\
the previous occupation and the occupation of current selected filter (it is possible 277 276 \forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \mathlarger{\sum_i (x_{i,j} \times \mathcal{R}_i)} \label{cstr_rejection} \\
that no filter is selected for this stage). And the second one \ref{cstr_rejection} 278 277 \mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\
means the same thing but for the rejection, the rejection depends the previous rejection 279 278 & \text{ (e.g. 160~dB here)}\nonumber\\\nonumber
plus the rejection of selected filter. 280 279 \end{align}
281 280 \paragraph{Goal}
\subsection{Low bandpass ripple and maximum rejection criteria} 282 281 \begin{align*}
283 282 \min \mathcal{S}_q
The MILP solver provides a solution to the problem by selecting a series of small FIR with 284 283 \end{align*}
increasing number of bits representing data and coefficients as well as an increasing number 285 284
of coefficients, instead of a single monolithic filter. 286 285 The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on
287 286 the previous occupation and the occupation of current selected filter (it is possible
\begin{figure}[h!tb] 288 287 that no filter is selected for this stage). And the second one \ref{cstr_rejection}
% \includegraphics[width=\linewidth]{images/compare-fir.pdf} 289 288 means the same thing but for the rejection, the rejection depends the previous rejection
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf} 290 289 plus the rejection of selected filter.
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR 291 290
with a cutoff frequency set at half the Nyquist frequency.} 292 291 \subsection{Low bandpass ripple and maximum rejection criteria}
\label{compare-fir} 293 292
\end{figure} 294 293 The MILP solver provides a solution to the problem by selecting a series of small FIR with
295 294 increasing number of bits representing data and coefficients as well as an increasing number
Fig. \ref{compare-fir} exhibits the 296 295 of coefficients, instead of a single monolithic filter.
performance comparison between one solution and a monolithic FIR when selecting a cutoff 297 296
frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the 298 297 \begin{figure}[h!tb]
same space usage are provided as selected by the MILP solver. The FIR cascade provides improved 299 298 % \includegraphics[width=\linewidth]{images/compare-fir.pdf}
rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to 300 299 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf}
be tuned or compensated for. 301 300 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
302 301 with a cutoff frequency set at half the Nyquist frequency.}
303 302 \label{compare-fir}
The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}. 304 303 \end{figure}
We have considered a set of resources representative of the hardware platform we work on, 305 304
Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results on 306 305 Fig. \ref{compare-fir} exhibits the
Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to 307 306 performance comparison between one solution and a monolithic FIR when selecting a cutoff
the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10 308 307 frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the
filters fit in the available resources. However, in all cases the DSP resources are fully 309 308 same space usage are provided as selected by the MILP solver. The FIR cascade provides improved
used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software, 310 309 rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to
implementing the design fails due to the excessive resource usage preventing routing the signals 311 310 be tuned or compensated for.
on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization 312 311
procedure by finding non-trivial solutions matching resource constraints, but on the other 313 312
hand also illustrates the limitation of a model with an abstraction layer that does not account 314 313 The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}.
for the detailed architecture of the hardware. 315 314 We have considered a set of resources representative of the hardware platform we work on,
316 315 Avnet's Zedboard featuring a Xilinx XC7Z020-CLG484-1 Zynq System on Chip (SoC). The results reported in
\begin{table}[h!tb] 317 316 Tab. \ref{t1} emphasize that implementing the monolithic single FIR is impossible due to
\caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade 318 317 the insufficient hardware resources (exhausted LUT resources), while the FIR cascading 5 or 10
identified as optimal by the MILP solver within a finite resource criterion. The last line refers 319 318 filters fit in the available resources. However, in all cases the DSP resources are fully
to available resources on a Zynq-7020 as found on the Zedboard.} 320 319 used: while the design can be synthesized using Xilinx proprietary Vivado 2016.2 software,
\begin{center} 321 320 implementing the design fails due to the excessive resource usage preventing routing the signals
\begin{tabular}{|c|cccc|}\hline 322 321 on the FPGA. Such results emphasize on the one hand the improvement prospect of the optimization
FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline 323 322 procedure by finding non-trivial solutions matching resource constraints, but on the other
1 (monolithic) & 1 & 76183 & 220 & -162 \\ 324 323 hand also illustrates the limitation of a model with an abstraction layer that does not account
5 & 5 & 18597 & 220 & -160 \\ 325 324 for the detailed architecture of the hardware.
10 & 8 & 24729 & 220 & -161 \\\hline\hline 326 325
\textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline 327 326 \begin{table}[h!tb]
%\begin{tabular}{|c|ccccc|}\hline 328 327 \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade
%FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline 329 328 identified as optimal by the MILP solver within a finite resource criterion. The last line refers
%1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\ 330 329 to available resources on a Zynq-7020 as found on the Zedboard.}
%5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\ 331 330 \begin{center}
%10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline 332 331 \begin{tabular}{|c|cccc|}\hline
%\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline 333 332 FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline
\end{tabular} 334 333 1 (monolithic) & 1 & 76183 & 220 & -162 \\
\end{center} 335 334 5 & 5 & 18597 & 220 & -160 \\
%\vspace{-0.7cm} 336 335 10 & 8 & 24729 & 220 & -161 \\\hline\hline
\label{t1} 337 336 \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline
\end{table} 338 337 %\begin{tabular}{|c|ccccc|}\hline
339 338 %FIR & BRAM36 & BRAM18 & LUT & DSP & rejection (dB)\\\hline\hline
\subsection{Alternate criteria}\label{median} 340 339 %1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\
341 340 %5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\
Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer 342 341 %10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline
function, namely low ripple in the bandpass defined as the first 40\% of the frequency 343 342 %\textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline
range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for 344 343 \end{tabular}
demonstrating the need to properly select the optimization criterion, two cases of poor 345 344 \end{center}
filter shapes obtained by selecting the mean value and median value of the rejection, 346 345 %\vspace{-0.7cm}
with no consideration for the ripples in the bandpass. The results of the optimizations, 347 346 \label{t1}
in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}. 348 347 \end{table}
349 348
\begin{figure}[h!tb] 350 349 \subsection{Alternate criteria}\label{median}
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf} 351 350
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR 352 351 Fig. \ref{compare-fir} provides FIR solutions matching well the targeted transfer
with a cutoff frequency set at half the Nyquist frequency.} 353 352 function, namely low ripple in the bandpass defined as the first 40\% of the frequency
\label{compare-mean} 354 353 range and maximum rejection of 160~dB in the last 40\% stopband. We illustrate now, for
\end{figure} 355 354 demonstrating the need to properly select the optimization criterion, two cases of poor
356 355 filter shapes obtained by selecting the mean value and median value of the rejection,
In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not 357 356 with no consideration for the ripples in the bandpass. The results of the optimizations,
acceptable since the notch at the end of the transition band compensates for some unacceptable 358 357 in these cases, are shown in Figs. \ref{compare-mean} and \ref{compare-median}.
rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive 359 358
high frequency spurious components to be aliased at low frequency when decimating the signal. 360 359 \begin{figure}[h!tb]
Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and 361 360 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-mean-light.pdf}
and slowly decaying transfer function starting to attenuate spectral components well before the 362 361 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
transition band starts. Such issues are partly aleviated by replacing a mean rejection value with 363 362 with a cutoff frequency set at half the Nyquist frequency.}
a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for 364 363 \label{compare-mean}
the reasons stated previously and much poorer than those found with the maximum rejection criterion 365 364 \end{figure}
selected earlier (Fig. \ref{compare-fir}). 366 365
367 366 In the case of the mean value criterion (Fig. \ref{compare-mean}), the solution is not
\begin{figure}[h!tb] 368 367 acceptable since the notch at the end of the transition band compensates for some unacceptable
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf} 369 368 rise in the rejection close to the Nyquist frequency. Applying such a filter might yield excessive
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR 370 369 high frequency spurious components to be aliased at low frequency when decimating the signal.
with a cutoff frequency set at half the Nyquist frequency.} 371 370 Similarly, the lack of criterion on the bandpass shape induces a shape with poor flatness and
\label{compare-median} 372 371 and slowly decaying transfer function starting to attenuate spectral components well before the
\end{figure} 373 372 transition band starts. Such issues are partly aleviated by replacing a mean rejection value with
374 373 a median rejection value (Fig. \ref{compare-median}) but solutions remain unacceptable for
\section{Filter coefficient selection} 375 374 the reasons stated previously and much poorer than those found with the maximum rejection criterion
376 375 selected earlier (Fig. \ref{compare-fir}).
The coefficients of a single monolithic filter are computed as the impulse response 377 376
of the filter transfer function, and practically approximated by a multitude of methods 378 377 \begin{figure}[h!tb]
including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing 379 378 \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-median-light.pdf}
(Matlab's {\tt fir1} function). 380 379 \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR
381 380 with a cutoff frequency set at half the Nyquist frequency.}
\begin{figure}[h!tb] 382 381 \label{compare-median}
\includegraphics[width=\linewidth]{images/fir1-vs-firls} 383 382 \end{figure}
\caption{Evolution of the rejection capability of least-square optimized filters and Hamming 384 383
FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit 385 384 \section{Filter coefficient selection}
encoded integers.} 386 385
\label{2} 387 386 The coefficients of a single monolithic filter are computed as the impulse response
\end{figure} 388 387 of the filter transfer function, and practically approximated by a multitude of methods
389 388 including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing
Cascading filters opens a new optimization opportunity by 390 389 (Matlab's {\tt fir1} function).
selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2} 391 390
illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better 392 391 \begin{figure}[h!tb]
rejection than {\tt firls}: since the linear solver increases the number of coefficients along 393 392 \includegraphics[width=\linewidth]{images/fir1-vs-firls}
the processing chain, the type of selected filter also changes depending on the number of coefficients 394 393 \caption{Evolution of the rejection capability of least-square optimized filters and Hamming
and evolves along the processing chain. 395 394 FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit
396 395 encoded integers.}
\section{Conclusion} 397 396 \label{2}
398 397 \end{figure}
We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate 399 398
Array for improved noise rejection within constrained resource occupation, as needed for 400 399 Cascading filters opens a new optimization opportunity by
real time processing of radiofrequency signal when characterizing spectral phase noise 401 400 selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2}
characteristics of stable oscillators. The flexibility of the digital approach makes the result 402 401 illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better
best suited for closing the loop and using the measurement output in a feedback loop for 403 402 rejection than {\tt firls}: since the linear solver increases the number of coefficients along
controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior 404 403 the processing chain, the type of selected filter also changes depending on the number of coefficients
is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical 405 404 and evolves along the processing chain.
atomic transition). 406 405
407 406 \section{Conclusion}
\section*{Acknowledgement} 408 407
409 408 We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate
This work is supported by the ANR Programme d'Investissement d'Avenir in 410 409 Array for improved noise rejection within constrained resource occupation, as needed for
progress at the Time and Frequency Departments of the FEMTO-ST Institute 411 410 real time processing of radiofrequency signal when characterizing spectral phase noise
(Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. 412 411 characteristics of stable oscillators. The flexibility of the digital approach makes the result
The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and 413 412 best suited for closing the loop and using the measurement output in a feedback loop for
fruitful discussions. 414 413 controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior
415 414 is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical
\bibliographystyle{IEEEtran} 416 415 atomic transition).
\balance 417 416
\bibliography{references,biblio} 418 417 \section*{Acknowledgement}
\end{document} 419 418
420 419 This work is supported by the ANR Programme d'Investissement d'Avenir in
\section{Contexte d'ordonnancement} 421 420 progress at the Time and Frequency Departments of the FEMTO-ST Institute
Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement 422 421 (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait 423 422 The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and
nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement 424 423 fruitful discussions.
et d'optimisation. 425 424
426 425 \bibliographystyle{IEEEtran}
\subsection{D\'efinition du vocabulaire} 427 426 \balance
Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions 428 427 \bibliography{references,biblio}
importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} : 429 428 \end{document}
\begin{definition} 430 429
\label{def-ordo1} 431 430 \section{Contexte d'ordonnancement}
Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ : 432 431 Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement
$V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$. 433 432 et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait
\end{definition} 434 433 nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement
435 434 et d'optimisation.
Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances 436 435
des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de 437 436 \subsection{D\'efinition du vocabulaire}
chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors 438 437 Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions
la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son 439 438 importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} :
temps d'ex\'ecution. 440 439 \begin{definition}
441 440 \label{def-ordo1}
Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est : 442 441 Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ :
\begin{definition} 443 442 $V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$.
\label{def-ordo2} 444 443 \end{definition}
L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec 445 444
l'objectif d'optimiser un ou plusieurs critères de performance. 446 445 Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances
\end{definition} 447 446 des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de
448 447 chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors
Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}. 449 448 la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son
En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches. 450 449 temps d'ex\'ecution.
Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement. 451 450
452 451 Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est :
En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela, 453 452 \begin{definition}
il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles 454 453 \label{def-ordo2}
sont les m\'ethodes qu'on peut appliquer. 455 454 L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec
456 455 l'objectif d'optimiser un ou plusieurs critères de performance.
Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories : 457 456 \end{definition}
\begin{itemize} 458 457
\item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes 459 458 Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}.
les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e. 460 459 En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches.
\item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps, 461 460 Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement.
les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter 462 461
des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas, 463 462 En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela,
on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une 464 463 il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles
t\^ache de fin. 465 464 sont les m\'ethodes qu'on peut appliquer.
\item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où 466 465
il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème 467 466 Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories :
que nous traitons ici. 468 467 \begin{itemize}
\end{itemize} 469 468 \item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes
470 469 les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e.
Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications 471 470 \item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps,
de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes. 472 471 les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter
473 472 des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas,
Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de 474 473 on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une
critères possibles. Nous allons donc parler des principaux : 475 474 t\^ache de fin.
\begin{itemize} 476 475 \item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où
\item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation 477 476 il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème
les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des 478 477 que nous traitons ici.
t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant 479 478 \end{itemize}
la fin d'ex\'ecution au plus tôt. 480 479
\item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches 481 480 Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications
et d'optimiser ce r\'esultat. 482 481 de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes.
\item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees. 483 482
\end{itemize} 484 483 Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de
485 484 critères possibles. Nous allons donc parler des principaux :
En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation 486 485 \begin{itemize}
multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un 487 486 \item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation
des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet 488 487 les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des
de faire le meilleur compromis entre tous les critères. 489 488 t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant
490 489 la fin d'ex\'ecution au plus tôt.
\subsection{Formalisation du problème} 491 490 \item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches
\label{formalisation} 492 491 et d'optimiser ce r\'esultat.
Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser 493 492 \item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees.
formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes} 494 493 \end{itemize}
et nous essayerons de les formaliser le plus finement possible. 495 494
496 495 En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation
Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres 497 496 multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un
que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une 498 497 des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet
t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble. 499 498 de faire le meilleur compromis entre tous les critères.
500 499
Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs : 501 500 \subsection{Formalisation du problème}
\begin{itemize} 502 501 \label{formalisation}
\item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge. 503 502 Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser
En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge. 504 503 formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes}
Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la 505 504 et nous essayerons de les formaliser le plus finement possible.
dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee 506 505
et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2 507 506 Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres
\item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements 508 507 que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une
les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$. 509 508 t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble.
\item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent). 510 509
Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du 511 510 Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs :
flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$. 512 511 \begin{itemize}
\item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp. 513 512 \item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge.
est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette 514 513 En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge.
fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$ 515 514 Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la
et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$. 516 515 dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee
\item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle 517 516 et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2
fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la 518 517 \item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements
t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$. 519 518 les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$.
\item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc. 520 519 \item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent).
Nous nommerons $\mathcal{A}_i$ cette taille. 521 520 Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du
\item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter 522 521 flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$.
la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\ 523 522 \item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp.
%TODO Est-ce vraiment un paramètre ? 524 523 est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette
\end{itemize} 525 524 fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$
526 525 et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$.
Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations 527 526 \item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle
que nous avons identifi\'ees : 528 527 fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la
\begin{itemize} 529 528 t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$.
\item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution 530 529 \item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc.
de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes. 531 530 Nous nommerons $\mathcal{A}_i$ cette taille.
\item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart 532 531 \item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter
et les paramètres internes de la t\^ache. 533 532 la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\
\item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit 534 533 %TODO Est-ce vraiment un paramètre ?
sortant et des variables internes de la t\^ache. 535 534 \end{itemize}
\item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$ 536 535
\end{itemize} 537 536 Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations
Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche, 538 537 que nous avons identifi\'ees :
sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions. 539 538 \begin{itemize}
540 539 \item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution
Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit 541 540 de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes.
un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes : 542 541 \item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart
543 542 et les paramètres internes de la t\^ache.
\paragraph{Contrainte de pr\'ecision :} 544 543 \item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit
Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre : 545 544 sortant et des variables internes de la t\^ache.
\begin{align*} 546 545 \item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$
\pi _i ^+ \geq \pi _j ^- 547 546 \end{itemize}
\end{align*} 548 547 Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche,
549 548 sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions.
\paragraph{Contrainte de d\'ebit :} 550 549
Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre : 551 550 Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit
\begin{align*} 552 551 un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes :
d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache} 553 552
\end{align*} 554 553 \paragraph{Contrainte de pr\'ecision :}
555 554 Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre :
\paragraph{Contrainte de synchronisation :} 556 555 \begin{align*}
Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles 557 556 \pi _i ^+ \geq \pi _j ^-
et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même. 558 557 \end{align*}
Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors : 559 558
\begin{align*} 560 559 \paragraph{Contrainte de d\'ebit :}
\forall \text{ chemin } \mathcal{C}1(s, .., f), 561 560 Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre :
\forall \text{ chemin } \mathcal{C}2(s, .., f) 562 561 \begin{align*}
\text{ tel que } \mathcal{C}1 \neq \mathcal{C}2 563 562 d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache}
\Rightarrow 564 563 \end{align*}
\sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i 565 564
\end{align*} 566 565 \paragraph{Contrainte de synchronisation :}
567 566 Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles
\paragraph{Contrainte de place :} 568 567 et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même.
Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ : 569 568 Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors :
\begin{align*} 570 569 \begin{align*}
\sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA} 571 570 \forall \text{ chemin } \mathcal{C}1(s, .., f),
\end{align*} 572 571 \forall \text{ chemin } \mathcal{C}2(s, .., f)
573 572 \text{ tel que } \mathcal{C}1 \neq \mathcal{C}2
\subsection{Exemples de mod\'elisation} 574 573 \Rightarrow
\label{exemples-modeles} 575 574 \sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i
Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle. 576 575 \end{align*}
Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit. 577 576
578 577 \paragraph{Contrainte de place :}
Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant 579 578 Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ :
que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$. 580 579 \begin{align*}
581 580 \sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA}
Donc d'après notre mod\'elisation : 582 581 \end{align*}
\begin{itemize} 583 582
\item $N \in \mathcal{P}_i$ 584 583 \subsection{Exemples de mod\'elisation}
%TODO N ou 1 ? 585 584 \label{exemples-modeles}