allan_modified.m 19.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
function [retval, s, errorb, tau] = allan_modified(data,tau,name,verbose)
% ALLAN_MODIFIED  Compute the modified Allan deviation for a set of
%   time-domain frequency data
% [RETVAL, S, ERRORB, TAU] = ALLAN_MODIFIED(DATA,TAU,NAME,VERBOSE)
%
% Inputs:
% DATA should be a struct and have the following fields:
%  DATA.freq or DATA.phase
%			   A vector of fractional frequency measurements (df/f) in
%			   DATA.freq *or* phase offset data (seconds) in DATA.phase
%			   If phase data is not present, it will be generated by
%			   integrating the fractional frequency data.
%			   If both fields are present, then DATA.phase will be used.
%
%  DATA.rate or DATA.time
%			   The sampling rate in Hertz (DATA.rate) or a vector of
%			   timestamps for each measurement in seconds (DATA.time).
%			   DATA.rate is used if both fields are present.
%			   If DATA.rate == 0, then the timestamps are used.
%
% TAU is an array of tau values for computing Allan deviation.
%	 TAU values must be divisible by 1/DATA.rate (data points cannot be
%	 grouped in fractional quantities!). Invalid values are ignored.
% NAME is an optional label that is added to the plot titles.
% VERBOSE sets the level of status messages:
%	 0 = silent & no data plots; 1 = status messages; 2 = all messages
%
% Outputs:
% RETVAL is the array of modified Allan deviation values at each TAU.
% S is an optional output of other statistical measures of the data (mean, std, etc).
% ERRORB is an optional output containing the error estimates for a
%   1-sigma confidence interval. These values are shown on the figure for each point.
% TAU is an optional output containing the array of tau values used in the
%   calculation (which may be a truncated subset of the input or default values).
%
% Example:
%
% To compute the modified Allan deviation for the data in the variable "lt":
% >> lt
% lt = 
%	 freq: [1x86400 double]
%	 rate: 0.5
%
% Use:
%
% >> adm = allan_modified(lt,[2 10 100],'lt data',1);
%
% The modified Allan deviation will be computed and plotted at tau = 2,10,100 seconds.
%  1-sigma confidence intervals will be indicated by vertical lines at each point.
% You can also use the default settings, which are usually a good starting point:
%
% >> adm = allan_modified(lt);
%
%
% Notes:
%  This function calculates the modifed Allan deviation (MDEV).
%  The calculation is performed using phase data. If only frequency data is
%   provided, phase data is generated by integrating the frequency data.
%  No pre-processing of the data is performed.
%  For rate-based data, MDEV is computed only for tau values greater than the
%   minimum time between samples and less than the half the total time. For
%   time-stamped data, only tau values greater than the maximum gap between
%   samples and less than half the total time are used.
%  The calculation for fixed sample rate data is *much* faster than for
%   time-stamp data. You may wish to run the rate-based calculation first,
%   then compare with time-stamp-based. Often the differences are insignificant.
%  When phase data is generated by integrating time-stamped frequency data,
%   the final data point is dropped, because there is no timestamp for it.
%   This will create a [usually small] difference between the results from
%   analyzing the same data set with timestamp data and analyzing with a
%   fixed sample rate. See note in the code near line 350.
%  You can choose between loglog and semilog plotting of results by
%   commenting in/out the appropriate line. Search for "#PLOTLOG".
%  This function has been validated using the test data from NBS Monograph
%   140, the 1000-point test data set given by Riley [1], and the example data
%   given in IEEE standard 1139-1999, Annex C.
%   The author welcomes other validation results, see contact info below.
%
% For more information, see:
% [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability,"
% Available on the web:
%  http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht
%
%
% M.A. Hopcroft
%	  mhopeng at gmail dot com
%
% I welcome your comments and feedback!
%
% MH Mar2014
% v1.24 fix bug related to generating freq data from phase with timestamps
%	   (thanks to S. David-Grignot for finding the bug)
% MH Oct2010
% v1.22 tau truncation to integer groups; tau sort
%	   plotting bugfix
% v1.20 update to match allan.m (dsplot.m, columns)
%	   discard tau values with timestamp irregularities
%

versionstr = 'allan_modified v1.24';

% MH MAR2010
% v1.1  bugfixes for irregular sample rates
%	   update consistency check
%
% MH FEB2010
% v1.0  based on allan_overlap v2.0
%

%#ok<*AGROW>


% defaults
if nargin < 4, verbose = 2; end
if nargin < 3, name=''; end
if nargin < 2 || isempty(tau), tau=2.^(-10:10); end
if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v1.1

% Formatting for plots
FontName = 'Arial';
FontSize = 14;
plotlinewidth=2;

if verbose >= 1, fprintf(1,'allan_modified: %s\n\n',versionstr); end

%% Data consistency checks
if ~(isfield(data,'phase') || isfield(data,'freq'))
	error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
end
if isfield(data,'time')
	if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
		if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
			error('The time and freq vectors are not the same length. See help for details. [con2]');
		else
			error('The time and phase vectors are not the same length. See help for details. [con1]');
		end
	end
	if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
		error('The phase vector contains invalid elements (NaN/Inf). [con3]');
	end
	if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
		error('The freq vector contains invalid elements (NaN/Inf). [con4]');
	end
	if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
		error('The time vector contains invalid elements (NaN/Inf). [con5]');
	end
end

% sort tau vector
tau=sort(tau);


%% Basic statistical tests on the data set
if ~isfield(data,'freq')
	if isfield(data,'rate') && data.rate ~= 0
		data.freq=diff(data.phase).*data.rate;
	elseif isfield(data,'time')
		data.freq=diff(data.phase)./diff(data.time);
	end
	if verbose >= 1, fprintf(1,'allan_modified: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
end
if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns

s.numpoints=length(data.freq);
s.max=max(data.freq);
s.min=min(data.freq);
s.mean=mean(data.freq);
s.median=median(data.freq);
if isfield(data,'time')
	if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
	s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
elseif isfield(data,'rate') && data.rate ~= 0;
	s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
else
	error('Either "time" or "rate" must be present in DATA. Type "help allan_modified" for details. [err1]');
end
s.std=std(data.freq);

if verbose >= 2
	fprintf(1,'allan_modified: fractional frequency data statistics:\n');
	disp(s);
end

% scale to median for plotting
medianfreq=data.freq-s.median;
sm=[]; sme=[];

% Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
MAD = median(abs(medianfreq)/0.6745);
if verbose >= 1 && any(abs(medianfreq) > 5*MAD)
	fprintf(1, 'allan_modified: NOTE: There appear to be outliers in the frequency data. See plot.\n');
end

%%%%
% There are two cases, either using timestamps or rate:

%% Fixed Sample Rate Data
%   If there is a regular interval between measurements, calculation is much
%   easier/faster
if isfield(data,'rate') && data.rate > 0 % if data rate was given
	if verbose >= 1
		fprintf(1, 'allan_modified: regular data ');
		if isfield(data,'freq')
			fprintf(1, '(%g freq data points @ %g Hz)\n',length(data.freq),data.rate);
		elseif isfield(data,'phase')
			fprintf(1, '(%g phase data points @ %g Hz)\n',length(data.phase),data.rate);
		else
			error('\n phase or freq data missing [err10]');
		end
	end
	
	% string for plot title
	name=[name ' (' num2str(data.rate) ' Hz)'];

	% what is the time interval between data points?
	tmstep = 1/data.rate;
	
	% Is there time data? Just for curiosity/plotting, does not impact calculation
	if isfield(data,'time')
		% adjust time data to remove any starting gap; first time step
		%  should not be zero for comparison with freq data
		dtime=data.time-data.time(1)+mean(diff(data.time));
		dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v1.1)
		if verbose >= 2
			fprintf(1,'allan_modified: End of timestamp data: %g sec.\n',dtime(end));
			if (data.rate - 1/mean(diff(dtime))) > 1e-6
				fprintf(1,'allan_modified: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
			end
		end
	else
		% create time axis data using rate (for plotting only)
		dtime=(tmstep:tmstep:length(data.freq)*tmstep);
	end
	
	
	% is phase data present? If not, generate it
	if ~isfield(data,'phase')
		nfreq=data.freq-s.mean;
		dphase=zeros(1,length(nfreq)+1);
		dphase(2:end) = cumsum(nfreq).*tmstep;
		if verbose >= 1, fprintf(1,'allan_modified: phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
	else
		dphase=data.phase;
	end

	
	% check the range of tau values and truncate if necessary
	% find halfway point of time record
	halftime = round(tmstep*length(data.freq)/2);
	% truncate tau to appropriate values
	tau = tau(tau >= tmstep & tau <= halftime);
	if verbose >= 2, fprintf(1, 'allan_modified: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end
  
	% find the number of data points in each tau group
	% number of samples
	N=length(dphase);
	m = data.rate.*tau;
	% only integer values allowed (no fractional groups of points)
	%tau = tau(m-round(m)<1e-8); % numerical precision issues (v1.1)
	tau = tau(m==round(m));  % The round() test is only correct for values < 2^53
	%m = m(m-round(m)<1e-8); % change to round(m) for integer test v1.22
	m = m(m==round(m));
	%m=round(m);
	
	if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n	   '); end
	
	
	% calculate the modified Allan deviation for each value of tau
	k=0; tic;
	for i = tau
		k=k+1;
		pa=[];
		if verbose >= 2, fprintf(1,'%d ',i); end
		
		mphase = dphase;
			
		% calculate overlapping "phase averages" (x_k)
		for p=1:m(k)
			
			% truncate frequency set length to an even multiple of this tau value
			mphase=mphase(1:end-rem(length(mphase),m(k)));
			% group phase values
			mp=reshape(mphase,m(k),[]);
			% find average in each "tau group" (each column of mp)
			pa(p,:)=mean(mp,1);
			% shift data vector by -1 and repeat
			mphase=circshift(dphase,(size(dphase)>1)*-p);
			
		end
			
		% create "modified" y_k freq values
		mfreq=diff(pa,1,2)./i;
		mfreq=reshape(mfreq,1,[]);
		
		% calculate modified frequency differences
		mfreqd=reshape(mfreq,m(k),[]); % Vectorize!
		mfreqd=diff(mfreqd,1,2);
		mfreqd=reshape(mfreqd,1,[]);
		
	   
		% calculate two-sample variance for this tau
		sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2)));

		% estimate error bars
		sme(k)=sm(k)/sqrt(N-3*m(k)+1);

		
	end % repeat for each value of tau
	
	if verbose >= 2, fprintf(1,'\n'); end
	calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end

	   
	
%% Irregular data (timestamp)   
elseif isfield(data,'time')
	% the interval between measurements is irregular
	%  so we must group the data by time
	if verbose >= 1, fprintf(1, 'allan_modified: irregular rate data (no fixed sample rate)\n'); end
	
	% string for plot title
	name=[name ' (timestamp)'];
	
	% adjust time to remove any initial offset
	dtime=data.time-data.time(1)+mean(diff(data.time));
	%dtime=data.time-data.time(1);
	% where is the maximum gap in time record?
	gap_pos=find(diff(dtime)==max(diff(dtime)));
	% what is average data spacing?
	avg_gap = mean(diff(dtime));
	
	if verbose >= 2
		fprintf(1, 'allan_modified: WARNING: irregular timestamp data (no fixed sample rate).\n');
		fprintf(1, '	   Calculation time may be long and the results subject to interpretation.\n');
		fprintf(1, '	   You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
		fprintf(1, '	   Continue at your own risk! (press any key to continue)\n');
		pause;
	end
	
	if verbose >= 1
		fprintf(1, 'allan_modified: End of timestamp data: %g sec\n',dtime(end));
		fprintf(1, '	   Average sample rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
		if max(diff(dtime)) ~= 1/mean(diff(dtime))
			fprintf(1, '	   Max. gap in time record: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
		end
		if max(diff(dtime)) > 5*avg_gap
			fprintf(1, '	   WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
		end
	end

	% is phase data present? If not, generate it
	if ~isfield(data,'phase')
		nfreq=data.freq-s.mean;
		% NOTE: uncommenting the following two lines will artificially
		% allow the code to give equivalent results for validation data
		% sets using fixed rate data and timestamped data by adding a
		% "phantom" data point for frequency integration. Use of this
		% phantom point can skew the results of calculations on real data.
		%nfreq(end+1)=0; % phantom freq point, with average value
		%dtime(end+1)=dtime(end)+avg_gap; % phantom average time step
		dphase=zeros(1,length(nfreq));
		dphase(2:end) = cumsum(nfreq(1:end-1)).*diff(dtime);
		if verbose >= 1, fprintf(1,'allan_modified: Phase data generated from fractional frequency data (N=%g).\n',length(dphase)); end
	else
		dphase=data.phase;
	end

	% find halfway point
	halftime = fix(dtime(end)/2);
	% truncate tau to appropriate values
	tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
	if isempty(tau)
		error('allan_modified: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
	end

%	 % save the freq data for the loop
%	 dfreq=data.freq;
	
	% number of samples
	N=length(dphase);
	m=round(tau./mean(diff(dtime)));
	
	if verbose >= 1, fprintf(1,'allan_modified: calculating modified Allan deviation...\n'); end

	k=0; tic;
	for i = tau
		
		k=k+1; pa=[];
		
		mphase = dphase; time = dtime;

		if verbose >= 2, fprintf(1,'%d ',i); end
		
		% calculate overlapping "phase averages" (x_k)
		%for j = 1:i
		for j = 1:m(k) % (v1.1)
			km=0;
			%fprintf(1,'j: %d ',j);
			
			% (v1.1) truncating not correct for overlapping samples
			% truncate data set to an even multiple of this tau value
			%mphase = mphase(time <= time(end)-rem(time(end),i));
			%time = time(time <= time(end)-rem(time(end),i));
			
		
			% break up the data into overlapping groups of tau length
			while i*km < time(end)
				km=km+1;

				% progress bar
				if verbose >= 2
					if rem(km,100)==0, fprintf(1,'.'); end
					if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
				end

				mp = mphase(i*(km-1) < (time) & (time) <= i*km);

				if ~isempty(mp)
					pa(j,km)=mean(mp);
				else
					pa(j,km)=0;
				end

			end
						
			% shift data vector by -1 and repeat
			mphase=circshift(dphase,(size(mphase)>1)*-j);
			mphase(end-j+1:end)=[];
			time=circshift(dtime,(size(time)>1)*-j);
			time(end-j+1:end)=[];
			time=time-time(1)+avg_gap; % remove time offset
			
		end		

		% create "modified" y_k freq values
		mfreq=diff(pa,1,2)./i;
		mfreq=reshape(mfreq,1,[]);
		
		% calculate modified frequency differences
		mfreqd=reshape(mfreq,m(k),[]); % Vectorize!
		mfreqd=diff(mfreqd,1,2);
		mfreqd=reshape(mfreqd,1,[]);

		% calculate two-sample variance for this tau
		%  only the first N-3*m(k)+1 samples are valid
		if length(mfreqd) >= N-3*m(k)+1
			sm(k)=sqrt((1/(2*(N-3*m(k)+1)))*(sum(mfreqd(1:N-3*m(k)+1).^2)));

			% estimate error bars
			sme(k)=sm(k)/sqrt(N);
			
			if verbose >= 2, fprintf(1,'\n'); end
		else
			if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities\n',tau(k)); end
			sm(k)=0; sme(k)=0;
		end			
		

	end

	if verbose >= 2, fprintf(1,'\n'); end
	calctime=toc; if verbose >= 2, fprintf(1,'allan_modified: Elapsed time for calculation: %g seconds\n',calctime); end
	
	% remove any points that were dropped
	tau(sm==0)=[];
	sm(sm==0)=[];
	sme(sme==0)=[];
	
	% modify time vector for plotting
	dtime=dtime(1:length(medianfreq));

else
	error('allan_modified: WARNING: no DATA.rate or DATA.time! Type "help allan_modified" for more information. [err2]');
end


%%%%%%%%
%% Plotting

if verbose >= 2 % show all data
	
	% plot the frequency data, centered on median
	if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
	try
		% dsplot makes a new figure
		hd=dsplot(dtime,medianfreq);
	catch ME
		figure;
		hd=plot(dtime,medianfreq);
		if verbose >= 1, fprintf(1,'allan_modified: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
		if verbose >= 2, fprintf(1,'			 (Message: %s)\n',ME.message); end
	end
	set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
	hold on;

	fx = xlim;
	% plot([fx(1) fx(2)],[s.median s.median],'-k');
	plot([fx(1) fx(2)],[0 0],':k');
	% show 5x Median Absolute deviation (MAD) values
	hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r');
	plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r');
	% show linear fit line
	hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');	
	title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
	%set(get(gca,'Title'),'Interpreter','none');
	xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
	if isfield(data,'units')
		ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
	else
		ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
	end
	set(gca,'FontSize',FontSize,'FontName',FontName);
	legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
	% tighten up
	xlim([dtime(1) dtime(end)]);


end % end plot raw data


if verbose >= 1 % show analysis results

	% plot Allan deviation results
	if ~isempty(sm)
		figure

		% Choose loglog or semilogx plot here	#PLOTLOG
		%semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
		loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);

		% in R14SP3, there is a bug that screws up the error bars on a semilog plot.
		%  When this is fixed, uncomment below to use normal errorbars
		%errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
		% this is a hack to approximate the error bars
		hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));

		grid on;
		title(['Modified Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
		%set(get(gca,'Title'),'Interpreter','none');
		xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
		ylabel('Modified \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
		set(gca,'FontSize',FontSize,'FontName',FontName);
		% expand the x axis a little bit so that the errors bars look nice
		adax = axis;
		axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
		
		% display the minimum value
		fprintf(1,'allan: Minimum modified ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));		
		
	elseif verbose >= 1
		fprintf(1,'allan_modified: WARNING: no values calculated.\n');
		fprintf(1,'	   Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
		fprintf(1,'Type "help allan_modified" for more information.\n\n');
	end

end % end plot analysis
		
retval = sm;
errorb = sme;

return