Commit e9d7fe24b46cc1f7f6e226744757b297f43e6828
1 parent
f6479a913d
Exists in
master
and in
2 other branches
Added fvn_lmdif to fvn_misc
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@77 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 1427 additions and 0 deletions Inline Diff
fvn_misc/fvn_misc.f90
| module fvn_misc | 1 | 1 | module fvn_misc | |
| use fvn_common | 2 | 2 | use fvn_common | |
| implicit none | 3 | 3 | implicit none | |
| 4 | 4 | |||
| ! Muller | 5 | 5 | ! Muller | |
| interface fvn_muller | 6 | 6 | interface fvn_muller | |
| module procedure fvn_z_muller | 7 | 7 | module procedure fvn_z_muller | |
| end interface fvn_muller | 8 | 8 | end interface fvn_muller | |
| 9 | 9 | |||
| contains | 10 | 10 | contains | |
| ! | 11 | 11 | ! | |
| ! Muller | 12 | 12 | ! Muller | |
| ! | 13 | 13 | ! | |
| ! | 14 | 14 | ! | |
| ! | 15 | 15 | ! | |
| ! William Daniau 2007 | 16 | 16 | ! William Daniau 2007 | |
| ! | 17 | 17 | ! | |
| ! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | 18 | 18 | ! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | |
| ! http://plato.asu.edu/ftp/other_software/muller.f | 19 | 19 | ! http://plato.asu.edu/ftp/other_software/muller.f | |
| ! | 20 | 20 | ! | |
| ! it can be used as a replacement for imsl routine dzanly with minor changes | 21 | 21 | ! it can be used as a replacement for imsl routine dzanly with minor changes | |
| ! | 22 | 22 | ! | |
| !----------------------------------------------------------------------- | 23 | 23 | !----------------------------------------------------------------------- | |
| ! | 24 | 24 | ! | |
| ! purpose - zeros of an analytic complex function | 25 | 25 | ! purpose - zeros of an analytic complex function | |
| ! using the muller method with deflation | 26 | 26 | ! using the muller method with deflation | |
| ! | 27 | 27 | ! | |
| ! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | 28 | 28 | ! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | |
| ! infer,ier) | 29 | 29 | ! infer,ier) | |
| ! | 30 | 30 | ! | |
| ! arguments f - a complex function subprogram, f(z), written | 31 | 31 | ! arguments f - a complex function subprogram, f(z), written | |
| ! by the user specifying the equation whose | 32 | 32 | ! by the user specifying the equation whose | |
| ! roots are to be found. f must appear in | 33 | 33 | ! roots are to be found. f must appear in | |
| ! an external statement in the calling pro- | 34 | 34 | ! an external statement in the calling pro- | |
| ! gram. | 35 | 35 | ! gram. | |
| ! eps - 1st stopping criterion. let fp(z)=f(z)/p | 36 | 36 | ! eps - 1st stopping criterion. let fp(z)=f(z)/p | |
| ! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | 37 | 37 | ! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | |
| ! and z(1),...,z(k-1) are previously found | 38 | 38 | ! and z(1),...,z(k-1) are previously found | |
| ! roots. if ((cdabs(f(z)).le.eps) .and. | 39 | 39 | ! roots. if ((cdabs(f(z)).le.eps) .and. | |
| ! (cdabs(fp(z)).le.eps)), then z is accepted | 40 | 40 | ! (cdabs(fp(z)).le.eps)), then z is accepted | |
| ! as a root. (input) | 41 | 41 | ! as a root. (input) | |
| ! eps1 - 2nd stopping criterion. a root is accepted | 42 | 42 | ! eps1 - 2nd stopping criterion. a root is accepted | |
| ! if two successive approximations to a given | 43 | 43 | ! if two successive approximations to a given | |
| ! root agree within eps1. (input) | 44 | 44 | ! root agree within eps1. (input) | |
| ! note. if either or both of the stopping | 45 | 45 | ! note. if either or both of the stopping | |
| ! criteria are fulfilled, the root is | 46 | 46 | ! criteria are fulfilled, the root is | |
| ! accepted. | 47 | 47 | ! accepted. | |
| ! kn - the number of known roots which must be stored | 48 | 48 | ! kn - the number of known roots which must be stored | |
| ! in x(1),...,x(kn), prior to entry to muller | 49 | 49 | ! in x(1),...,x(kn), prior to entry to muller | |
| ! nguess - the number of initial guesses provided. these | 50 | 50 | ! nguess - the number of initial guesses provided. these | |
| ! guesses must be stored in x(kn+1),..., | 51 | 51 | ! guesses must be stored in x(kn+1),..., | |
| ! x(kn+nguess). nguess must be set equal | 52 | 52 | ! x(kn+nguess). nguess must be set equal | |
| ! to zero if no guesses are provided. (input) | 53 | 53 | ! to zero if no guesses are provided. (input) | |
| ! n - the number of new roots to be found by | 54 | 54 | ! n - the number of new roots to be found by | |
| ! muller (input) | 55 | 55 | ! muller (input) | |
| ! x - a complex vector of length kn+n. x(1),..., | 56 | 56 | ! x - a complex vector of length kn+n. x(1),..., | |
| ! x(kn) on input must contain any known | 57 | 57 | ! x(kn) on input must contain any known | |
| ! roots. x(kn+1),..., x(kn+n) on input may, | 58 | 58 | ! roots. x(kn+1),..., x(kn+n) on input may, | |
| ! on user option, contain initial guesses for | 59 | 59 | ! on user option, contain initial guesses for | |
| ! the n new roots which are to be computed. | 60 | 60 | ! the n new roots which are to be computed. | |
| ! if the user does not provide an initial | 61 | 61 | ! if the user does not provide an initial | |
| ! guess, zero is used. | 62 | 62 | ! guess, zero is used. | |
| ! on output, x(kn+1),...,x(kn+n) contain the | 63 | 63 | ! on output, x(kn+1),...,x(kn+n) contain the | |
| ! approximate roots found by muller. | 64 | 64 | ! approximate roots found by muller. | |
| ! itmax - the maximum allowable number of iterations | 65 | 65 | ! itmax - the maximum allowable number of iterations | |
| ! per root (input) | 66 | 66 | ! per root (input) | |
| ! infer - an integer vector of length kn+n. on | 67 | 67 | ! infer - an integer vector of length kn+n. on | |
| ! output infer(j) contains the number of | 68 | 68 | ! output infer(j) contains the number of | |
| ! iterations used in finding the j-th root | 69 | 69 | ! iterations used in finding the j-th root | |
| ! when convergence was achieved. if | 70 | 70 | ! when convergence was achieved. if | |
| ! convergence was not obtained in itmax | 71 | 71 | ! convergence was not obtained in itmax | |
| ! iterations, infer(j) will be greater than | 72 | 72 | ! iterations, infer(j) will be greater than | |
| ! itmax (output). | 73 | 73 | ! itmax (output). | |
| ! ier - error parameter (output) | 74 | 74 | ! ier - error parameter (output) | |
| ! warning error | 75 | 75 | ! warning error | |
| ! ier = 33 indicates failure to converge with- | 76 | 76 | ! ier = 33 indicates failure to converge with- | |
| ! in itmax iterations for at least one of | 77 | 77 | ! in itmax iterations for at least one of | |
| ! the (n) new roots. | 78 | 78 | ! the (n) new roots. | |
| ! | 79 | 79 | ! | |
| ! | 80 | 80 | ! | |
| ! remarks muller always returns the last approximation for root j | 81 | 81 | ! remarks muller always returns the last approximation for root j | |
| ! in x(j). if the convergence criterion is satisfied, | 82 | 82 | ! in x(j). if the convergence criterion is satisfied, | |
| ! then infer(j) is less than or equal to itmax. if the | 83 | 83 | ! then infer(j) is less than or equal to itmax. if the | |
| ! convergence criterion is not satisified, then infer(j) | 84 | 84 | ! convergence criterion is not satisified, then infer(j) | |
| ! is set to either itmax+1 or itmax+k, with k greater | 85 | 85 | ! is set to either itmax+1 or itmax+k, with k greater | |
| ! than 1. infer(j) = itmax+1 indicates that muller did | 86 | 86 | ! than 1. infer(j) = itmax+1 indicates that muller did | |
| ! not obtain convergence in the allowed number of iter- | 87 | 87 | ! not obtain convergence in the allowed number of iter- | |
| ! ations. in this case, the user may wish to set itmax | 88 | 88 | ! ations. in this case, the user may wish to set itmax | |
| ! to a larger value. infer(j) = itmax+k means that con- | 89 | 89 | ! to a larger value. infer(j) = itmax+k means that con- | |
| ! vergence was obtained (on iteration k) for the defla- | 90 | 90 | ! vergence was obtained (on iteration k) for the defla- | |
| ! ted function | 91 | 91 | ! ted function | |
| ! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | 92 | 92 | ! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | |
| ! | 93 | 93 | ! | |
| ! but failed for f(z). in this case, better initial | 94 | 94 | ! but failed for f(z). in this case, better initial | |
| ! guesses might help or, it might be necessary to relax | 95 | 95 | ! guesses might help or, it might be necessary to relax | |
| ! the convergence criterion. | 96 | 96 | ! the convergence criterion. | |
| ! | 97 | 97 | ! | |
| !----------------------------------------------------------------------- | 98 | 98 | !----------------------------------------------------------------------- | |
| ! | 99 | 99 | ! | |
| subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | 100 | 100 | subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | |
| implicit none | 101 | 101 | implicit none | |
| double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq,eps1w | 102 | 102 | double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq,eps1w | |
| double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | 103 | 103 | double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | |
| tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | 104 | 104 | tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | |
| zero,p1,one,four,p5 | 105 | 105 | zero,p1,one,four,p5 | |
| 106 | 106 | |||
| double complex, external :: f | 107 | 107 | double complex, external :: f | |
| integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | 108 | 108 | integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | |
| knpng,jk,ick,nn,lm1,errcode | 109 | 109 | knpng,jk,ick,nn,lm1,errcode | |
| double complex :: x(kn+n) | 110 | 110 | double complex :: x(kn+n) | |
| integer :: infer(kn+n) | 111 | 111 | integer :: infer(kn+n) | |
| 112 | 112 | |||
| 113 | 113 | |||
| data zero/(0.0d0,0.0d0)/,p1/(0.1d0,0.0d0)/, & | 114 | 114 | data zero/(0.0d0,0.0d0)/,p1/(0.1d0,0.0d0)/, & | |
| one/(1.0d0,0.0d0)/,four/(4.0d0,0.0d0)/, & | 115 | 115 | one/(1.0d0,0.0d0)/,four/(4.0d0,0.0d0)/, & | |
| p5/(0.5d0,0.0d0)/, & | 116 | 116 | p5/(0.5d0,0.0d0)/, & | |
| rzero/0.0d0/,rten/10.0d0/,rhun/100.0d0/, & | 117 | 117 | rzero/0.0d0/,rten/10.0d0/,rhun/100.0d0/, & | |
| ax/0.1d0/,ickmax/3/,rp01/0.01d0/ | 118 | 118 | ax/0.1d0/,ickmax/3/,rp01/0.01d0/ | |
| 119 | 119 | |||
| ier = 0 | 120 | 120 | ier = 0 | |
| if (n .lt. 1) then ! What the hell are doing here then ... | 121 | 121 | if (n .lt. 1) then ! What the hell are doing here then ... | |
| return | 122 | 122 | return | |
| end if | 123 | 123 | end if | |
| !eps1 = rten **(-nsig) | 124 | 124 | !eps1 = rten **(-nsig) | |
| eps1w = min(eps1,rp01) | 125 | 125 | eps1w = min(eps1,rp01) | |
| 126 | 126 | |||
| knp1 = kn+1 | 127 | 127 | knp1 = kn+1 | |
| knpn = kn+n | 128 | 128 | knpn = kn+n | |
| knpng = kn+nguess | 129 | 129 | knpng = kn+nguess | |
| do i=1,knpn | 130 | 130 | do i=1,knpn | |
| infer(i) = 0 | 131 | 131 | infer(i) = 0 | |
| if (i .gt. knpng) x(i) = zero | 132 | 132 | if (i .gt. knpng) x(i) = zero | |
| end do | 133 | 133 | end do | |
| l= knp1 | 134 | 134 | l= knp1 | |
| 135 | 135 | |||
| ic=0 | 136 | 136 | ic=0 | |
| rloop: do while (l<=knpn) ! Main loop over new roots | 137 | 137 | rloop: do while (l<=knpn) ! Main loop over new roots | |
| jk = 0 | 138 | 138 | jk = 0 | |
| ick = 0 | 139 | 139 | ick = 0 | |
| xl = x(l) | 140 | 140 | xl = x(l) | |
| icloop: do | 141 | 141 | icloop: do | |
| ic = 0 | 142 | 142 | ic = 0 | |
| h = ax | 143 | 143 | h = ax | |
| h = p1*h | 144 | 144 | h = p1*h | |
| if (cdabs(xl) .gt. ax) h = p1*xl | 145 | 145 | if (cdabs(xl) .gt. ax) h = p1*xl | |
| ! first three points are | 146 | 146 | ! first three points are | |
| ! xl+h, xl-h, xl | 147 | 147 | ! xl+h, xl-h, xl | |
| rt = xl+h | 148 | 148 | rt = xl+h | |
| call deflated_work(errcode) | 149 | 149 | call deflated_work(errcode) | |
| if (errcode == 1) then | 150 | 150 | if (errcode == 1) then | |
| exit icloop | 151 | 151 | exit icloop | |
| end if | 152 | 152 | end if | |
| 153 | 153 | |||
| z0 = fprt | 154 | 154 | z0 = fprt | |
| y0 = frt | 155 | 155 | y0 = frt | |
| x0 = rt | 156 | 156 | x0 = rt | |
| rt = xl-h | 157 | 157 | rt = xl-h | |
| call deflated_work(errcode) | 158 | 158 | call deflated_work(errcode) | |
| if (errcode == 1) then | 159 | 159 | if (errcode == 1) then | |
| exit icloop | 160 | 160 | exit icloop | |
| end if | 161 | 161 | end if | |
| 162 | 162 | |||
| z1 = fprt | 163 | 163 | z1 = fprt | |
| y1 = frt | 164 | 164 | y1 = frt | |
| h = xl-rt | 165 | 165 | h = xl-rt | |
| d = h/(rt-x0) | 166 | 166 | d = h/(rt-x0) | |
| rt = xl | 167 | 167 | rt = xl | |
| 168 | 168 | |||
| call deflated_work(errcode) | 169 | 169 | call deflated_work(errcode) | |
| if (errcode == 1) then | 170 | 170 | if (errcode == 1) then | |
| exit icloop | 171 | 171 | exit icloop | |
| end if | 172 | 172 | end if | |
| 173 | 173 | |||
| 174 | 174 | |||
| z2 = fprt | 175 | 175 | z2 = fprt | |
| y2 = frt | 176 | 176 | y2 = frt | |
| ! begin main algorithm | 177 | 177 | ! begin main algorithm | |
| iloop: do | 178 | 178 | iloop: do | |
| dd = one + d | 179 | 179 | dd = one + d | |
| t1 = z0*d*d | 180 | 180 | t1 = z0*d*d | |
| t2 = z1*dd*dd | 181 | 181 | t2 = z1*dd*dd | |
| xx = z2*dd | 182 | 182 | xx = z2*dd | |
| t3 = z2*d | 183 | 183 | t3 = z2*d | |
| bi = t1-t2+xx+t3 | 184 | 184 | bi = t1-t2+xx+t3 | |
| den = bi*bi-four*(xx*t1-t3*(t2-xx)) | 185 | 185 | den = bi*bi-four*(xx*t1-t3*(t2-xx)) | |
| ! use denominator of maximum amplitude | 186 | 186 | ! use denominator of maximum amplitude | |
| t1 = sqrt(den) | 187 | 187 | t1 = sqrt(den) | |
| qz = rhun*max(cdabs(bi),cdabs(t1)) | 188 | 188 | qz = rhun*max(cdabs(bi),cdabs(t1)) | |
| t2 = bi + t1 | 189 | 189 | t2 = bi + t1 | |
| tpq = cdabs(t2)+qz | 190 | 190 | tpq = cdabs(t2)+qz | |
| if (tpq .eq. qz) t2 = zero | 191 | 191 | if (tpq .eq. qz) t2 = zero | |
| t3 = bi - t1 | 192 | 192 | t3 = bi - t1 | |
| tpq = cdabs(t3) + qz | 193 | 193 | tpq = cdabs(t3) + qz | |
| if (tpq .eq. qz) t3 = zero | 194 | 194 | if (tpq .eq. qz) t3 = zero | |
| den = t2 | 195 | 195 | den = t2 | |
| qz = cdabs(t3)-cdabs(t2) | 196 | 196 | qz = cdabs(t3)-cdabs(t2) | |
| if (qz .gt. rzero) den = t3 | 197 | 197 | if (qz .gt. rzero) den = t3 | |
| ! test for zero denominator | 198 | 198 | ! test for zero denominator | |
| if (cdabs(den) .eq. rzero) then | 199 | 199 | if (cdabs(den) .eq. rzero) then | |
| call trans_rt() | 200 | 200 | call trans_rt() | |
| call deflated_work(errcode) | 201 | 201 | call deflated_work(errcode) | |
| if (errcode == 1) then | 202 | 202 | if (errcode == 1) then | |
| exit icloop | 203 | 203 | exit icloop | |
| end if | 204 | 204 | end if | |
| z2 = fprt | 205 | 205 | z2 = fprt | |
| y2 = frt | 206 | 206 | y2 = frt | |
| cycle iloop | 207 | 207 | cycle iloop | |
| end if | 208 | 208 | end if | |
| 209 | 209 | |||
| 210 | 210 | |||
| d = -xx/den | 211 | 211 | d = -xx/den | |
| d = d+d | 212 | 212 | d = d+d | |
| h = d*h | 213 | 213 | h = d*h | |
| rt = rt + h | 214 | 214 | rt = rt + h | |
| ! check convergence of the first kind | 215 | 215 | ! check convergence of the first kind | |
| if (cdabs(h) .le. eps1w*max(cdabs(rt),ax)) then | 216 | 216 | if (cdabs(h) .le. eps1w*max(cdabs(rt),ax)) then | |
| if (ic .ne. 0) then | 217 | 217 | if (ic .ne. 0) then | |
| exit icloop | 218 | 218 | exit icloop | |
| end if | 219 | 219 | end if | |
| ic = 1 | 220 | 220 | ic = 1 | |
| z0 = y1 | 221 | 221 | z0 = y1 | |
| z1 = y2 | 222 | 222 | z1 = y2 | |
| z2 = f(rt) | 223 | 223 | z2 = f(rt) | |
| xl = rt | 224 | 224 | xl = rt | |
| ick = ick+1 | 225 | 225 | ick = ick+1 | |
| if (ick .le. ickmax) then | 226 | 226 | if (ick .le. ickmax) then | |
| cycle iloop | 227 | 227 | cycle iloop | |
| end if | 228 | 228 | end if | |
| ! warning error, itmax = maximum | 229 | 229 | ! warning error, itmax = maximum | |
| jk = itmax + jk | 230 | 230 | jk = itmax + jk | |
| ier = 33 | 231 | 231 | ier = 33 | |
| end if | 232 | 232 | end if | |
| if (ic .ne. 0) then | 233 | 233 | if (ic .ne. 0) then | |
| cycle icloop | 234 | 234 | cycle icloop | |
| end if | 235 | 235 | end if | |
| call deflated_work(errcode) | 236 | 236 | call deflated_work(errcode) | |
| if (errcode == 1) then | 237 | 237 | if (errcode == 1) then | |
| exit icloop | 238 | 238 | exit icloop | |
| end if | 239 | 239 | end if | |
| 240 | 240 | |||
| do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | 241 | 241 | do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | |
| ! take remedial action to induce | 242 | 242 | ! take remedial action to induce | |
| ! convergence | 243 | 243 | ! convergence | |
| d = d*p5 | 244 | 244 | d = d*p5 | |
| h = h*p5 | 245 | 245 | h = h*p5 | |
| rt = rt-h | 246 | 246 | rt = rt-h | |
| call deflated_work(errcode) | 247 | 247 | call deflated_work(errcode) | |
| if (errcode == 1) then | 248 | 248 | if (errcode == 1) then | |
| exit icloop | 249 | 249 | exit icloop | |
| end if | 250 | 250 | end if | |
| end do | 251 | 251 | end do | |
| z0 = z1 | 252 | 252 | z0 = z1 | |
| z1 = z2 | 253 | 253 | z1 = z2 | |
| z2 = fprt | 254 | 254 | z2 = fprt | |
| y0 = y1 | 255 | 255 | y0 = y1 | |
| y1 = y2 | 256 | 256 | y1 = y2 | |
| y2 = frt | 257 | 257 | y2 = frt | |
| end do iloop | 258 | 258 | end do iloop | |
| end do icloop | 259 | 259 | end do icloop | |
| x(l) = rt | 260 | 260 | x(l) = rt | |
| infer(l) = jk | 261 | 261 | infer(l) = jk | |
| l = l+1 | 262 | 262 | l = l+1 | |
| end do rloop | 263 | 263 | end do rloop | |
| 264 | 264 | |||
| contains | 265 | 265 | contains | |
| subroutine trans_rt() | 266 | 266 | subroutine trans_rt() | |
| tem = rten*eps1w | 267 | 267 | tem = rten*eps1w | |
| if (cdabs(rt) .gt. ax) tem = tem*rt | 268 | 268 | if (cdabs(rt) .gt. ax) tem = tem*rt | |
| rt = rt+tem | 269 | 269 | rt = rt+tem | |
| d = (h+tem)*d/h | 270 | 270 | d = (h+tem)*d/h | |
| h = h+tem | 271 | 271 | h = h+tem | |
| end subroutine trans_rt | 272 | 272 | end subroutine trans_rt | |
| 273 | 273 | |||
| subroutine deflated_work(errcode) | 274 | 274 | subroutine deflated_work(errcode) | |
| ! errcode=0 => no errors | 275 | 275 | ! errcode=0 => no errors | |
| ! errcode=1 => jk>itmax or convergence of second kind achieved | 276 | 276 | ! errcode=1 => jk>itmax or convergence of second kind achieved | |
| integer :: errcode,flag | 277 | 277 | integer :: errcode,flag | |
| 278 | 278 | |||
| flag=1 | 279 | 279 | flag=1 | |
| loop1: do while(flag==1) | 280 | 280 | loop1: do while(flag==1) | |
| errcode=0 | 281 | 281 | errcode=0 | |
| jk = jk+1 | 282 | 282 | jk = jk+1 | |
| if (jk .gt. itmax) then | 283 | 283 | if (jk .gt. itmax) then | |
| ier=33 | 284 | 284 | ier=33 | |
| errcode=1 | 285 | 285 | errcode=1 | |
| return | 286 | 286 | return | |
| end if | 287 | 287 | end if | |
| frt = f(rt) | 288 | 288 | frt = f(rt) | |
| fprt = frt | 289 | 289 | fprt = frt | |
| if (l /= 1) then | 290 | 290 | if (l /= 1) then | |
| lm1 = l-1 | 291 | 291 | lm1 = l-1 | |
| do i=1,lm1 | 292 | 292 | do i=1,lm1 | |
| tem = rt - x(i) | 293 | 293 | tem = rt - x(i) | |
| if (cdabs(tem) .eq. rzero) then | 294 | 294 | if (cdabs(tem) .eq. rzero) then | |
| !if (ic .ne. 0) go to 15 !! ?? possible? | 295 | 295 | !if (ic .ne. 0) go to 15 !! ?? possible? | |
| call trans_rt() | 296 | 296 | call trans_rt() | |
| cycle loop1 | 297 | 297 | cycle loop1 | |
| end if | 298 | 298 | end if | |
| fprt = fprt/tem | 299 | 299 | fprt = fprt/tem | |
| end do | 300 | 300 | end do | |
| end if | 301 | 301 | end if | |
| flag=0 | 302 | 302 | flag=0 | |
| end do loop1 | 303 | 303 | end do loop1 | |
| 304 | 304 | |||
| if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | 305 | 305 | if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | |
| errcode=1 | 306 | 306 | errcode=1 | |
| return | 307 | 307 | return | |
| end if | 308 | 308 | end if | |
| 309 | 309 | |||
| end subroutine deflated_work | 310 | 310 | end subroutine deflated_work | |
| 311 | 311 | |||
| end subroutine | 312 | 312 | end subroutine | |
| 313 | 313 | |||
| 314 | ! | |||
| 315 | ! | |||
| 316 | ! | |||
| 317 | ! Non linear least square using Levenberg-Marquardt algorithm and | |||
| 318 | ! a finite difference jacobian | |||
| 319 | ! | |||
| 320 | ! This uses MINPACK Routines (http://www.netlib.org/minpack) | |||
| 321 | ! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |||
| 322 | ! | |||
| 323 | ||||
| 324 | subroutine fvn_lmdif(zef,m,n,a,info,tol) | |||
| 325 | integer(4), intent(in) :: m | |||
| 326 | integer(4), intent(in) :: n | |||
| 327 | real(8), dimension(:), intent(inout) :: a | |||
| 328 | integer(4), intent(out) :: info | |||
| 329 | real(8), intent(in), optional :: tol | |||
| 330 | ||||
| 331 | real(8) :: rtol | |||
| 332 | real(8), dimension(:), allocatable :: fvec | |||
| 333 | integer(4), dimension(:), allocatable :: iwa | |||
| 334 | ||||
| 335 | interface | |||
| 336 | subroutine zef(m,n,a,fvec,iflag) | |||
| 337 | integer(4), intent(in) :: m | |||
| 338 | integer(4), intent(in) :: n | |||
| 339 | real(8), dimension(:), intent(in) :: a | |||
| 340 | real(8), dimension(:), intent(inout) :: fvec | |||
| 341 | integer(4), intent(inout) :: iflag | |||
| 342 | end subroutine | |||
| 343 | end interface | |||
| 344 | ||||
| 345 | integer(4) :: maxfev, mode, nfev, nprint | |||
| 346 | real(8) :: epsfcn, ftol, gtol, xtol, fjac(m,n) | |||
| 347 | real(8), parameter :: factor = 100._8, zero = 0.0_8 | |||
| 348 | ||||
| 349 | allocate(fvec(m),iwa(n)) | |||
| 350 | ||||
| 351 | rtol=sqrt(epsilon(0.d0)) | |||
| 352 | if (present(tol)) rtol=tol | |||
| 353 | ||||
| 354 | info = 0 | |||
| 355 | ||||
| 356 | ! check the input parameters for errors. | |||
| 357 | ||||
| 358 | if (n <= 0 .or. m < n .or. rtol < zero) return | |||
| 359 | ||||
| 360 | ! call lmdif. | |||
| 361 | ||||
| 362 | maxfev = 200*(n + 1) | |||
| 363 | ftol = rtol | |||
| 364 | xtol = rtol | |||
| 365 | gtol = zero | |||
| 366 | epsfcn = zero | |||
| 367 | mode = 1 | |||
| 368 | nprint = 0 | |||
| 369 | ||||
| 370 | call lmdif(zef, m, n, a, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |||
| 371 | mode, factor, nprint, info, nfev, fjac, iwa) | |||
| 372 | ||||
| 373 | if (info == 8) info = 4 | |||
| 374 | ||||
| 375 | deallocate(fvec,iwa) | |||
| 376 | end subroutine | |||
| 377 | ||||
| 378 | ||||
| 379 | ! MINPACK routines which are used by both LMDIF & LMDER | |||
| 380 | ! 25 October 2001: | |||
| 381 | ! Changed INTENT of iflag in several places to IN OUT. | |||
| 382 | ! Changed INTENT of fvec to IN OUT in user routine FCN. | |||
| 383 | ! Removed arguments diag and qtv from LMDIF & LMDER. | |||
| 384 | ! Replaced several DO loops with array operations. | |||
| 385 | ! amiller @ bigpond.net.au | |||
| 386 | ||||
| 387 | ||||
| 388 | ! ********** | |||
| 389 | ||||
| 390 | ! subroutine lmdif1 | |||
| 391 | ||||
| 392 | ! The purpose of lmdif1 is to minimize the sum of the squares of m nonlinear | |||
| 393 | ! functions in n variables by a modification of the Levenberg-Marquardt | |||
| 394 | ! algorithm. This is done by using the more general least-squares | |||
| 395 | ! solver lmdif. The user must provide a subroutine which calculates the | |||
| 396 | ! functions. The jacobian is then calculated by a forward-difference | |||
| 397 | ! approximation. | |||
| 398 | ||||
| 399 | ! the subroutine statement is | |||
| 400 | ||||
| 401 | ! subroutine lmdif1(fcn, m, n, x, fvec, tol, info, iwa) | |||
| 402 | ||||
| 403 | ! where | |||
| 404 | ||||
| 405 | ! fcn is the name of the user-supplied subroutine which calculates | |||
| 406 | ! the functions. fcn must be declared in an external statement in the | |||
| 407 | ! user calling program, and should be written as follows. | |||
| 408 | ||||
| 409 | ! subroutine fcn(m, n, x, fvec, iflag) | |||
| 410 | ! integer m, n, iflag | |||
| 411 | ! REAL (dp) x(n), fvec(m) | |||
| 412 | ! ---------- | |||
| 413 | ! calculate the functions at x and return this vector in fvec. | |||
| 414 | ! ---------- | |||
| 415 | ! return | |||
| 416 | ! end | |||
| 417 | ||||
| 418 | ! the value of iflag should not be changed by fcn unless | |||
| 419 | ! the user wants to terminate execution of lmdif1. | |||
| 420 | ! In this case set iflag to a negative integer. | |||
| 421 | ||||
| 422 | ! m is a positive integer input variable set to the number of functions. | |||
| 423 | ||||
| 424 | ! n is a positive integer input variable set to the number of variables. | |||
| 425 | ! n must not exceed m. | |||
| 426 | ||||
| 427 | ! x is an array of length n. On input x must contain an initial estimate | |||
| 428 | ! of the solution vector. On output x contains the final estimate of | |||
| 429 | ! the solution vector. | |||
| 430 | ||||
| 431 | ! fvec is an output array of length m which contains | |||
| 432 | ! the functions evaluated at the output x. | |||
| 433 | ||||
| 434 | ! tol is a nonnegative input variable. Termination occurs when the | |||
| 435 | ! algorithm estimates either that the relative error in the sum of | |||
| 436 | ! squares is at most tol or that the relative error between x and the | |||
| 437 | ! solution is at most tol. | |||
| 438 | ||||
| 439 | ! info is an integer output variable. If the user has terminated execution, | |||
| 440 | ! info is set to the (negative) value of iflag. See description of fcn. | |||
| 441 | ! Otherwise, info is set as follows. | |||
| 442 | ||||
| 443 | ! info = 0 improper input parameters. | |||
| 444 | ||||
| 445 | ! info = 1 algorithm estimates that the relative error | |||
| 446 | ! in the sum of squares is at most tol. | |||
| 447 | ||||
| 448 | ! info = 2 algorithm estimates that the relative error | |||
| 449 | ! between x and the solution is at most tol. | |||
| 450 | ||||
| 451 | ! info = 3 conditions for info = 1 and info = 2 both hold. | |||
| 452 | ||||
| 453 | ! info = 4 fvec is orthogonal to the columns of the | |||
| 454 | ! jacobian to machine precision. | |||
| 455 | ||||
| 456 | ! info = 5 number of calls to fcn has reached or exceeded 200*(n+1). | |||
| 457 | ||||
| 458 | ! info = 6 tol is too small. no further reduction in | |||
| 459 | ! the sum of squares is possible. | |||
| 460 | ||||
| 461 | ! info = 7 tol is too small. No further improvement in | |||
| 462 | ! the approximate solution x is possible. | |||
| 463 | ||||
| 464 | ! iwa is an integer work array of length n. | |||
| 465 | ||||
| 466 | ! wa is a work array of length lwa. | |||
| 467 | ||||
| 468 | ! lwa is a positive integer input variable not less than m*n+5*n+m. | |||
| 469 | ||||
| 470 | ! subprograms called | |||
| 471 | ||||
| 472 | ! user-supplied ...... fcn | |||
| 473 | ||||
| 474 | ! minpack-supplied ... lmdif | |||
| 475 | ||||
| 476 | ! argonne national laboratory. minpack project. march 1980. | |||
| 477 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |||
| 478 | ||||
| 479 | ! ********** | |||
| 480 | ||||
| 481 | SUBROUTINE lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |||
| 482 | mode, factor, nprint, info, nfev, fjac, ipvt) | |||
| 483 | ||||
| 484 | ! N.B. Arguments LDFJAC, DIAG, QTF, WA1, WA2, WA3 & WA4 have been removed. | |||
| 485 | INTEGER, PARAMETER :: dp = 8 | |||
| 486 | INTEGER, INTENT(IN) :: m | |||
| 487 | INTEGER, INTENT(IN) :: n | |||
| 488 | REAL (dp), INTENT(IN OUT) :: x(:) | |||
| 489 | REAL (dp), INTENT(OUT) :: fvec(:) | |||
| 490 | REAL (dp), INTENT(IN) :: ftol | |||
| 491 | REAL (dp), INTENT(IN) :: xtol | |||
| 492 | REAL (dp), INTENT(IN OUT) :: gtol | |||
| 493 | INTEGER, INTENT(IN OUT) :: maxfev | |||
| 494 | REAL (dp), INTENT(IN OUT) :: epsfcn | |||
| 495 | INTEGER, INTENT(IN) :: mode | |||
| 496 | REAL (dp), INTENT(IN) :: factor | |||
| 497 | INTEGER, INTENT(IN) :: nprint | |||
| 498 | INTEGER, INTENT(OUT) :: info | |||
| 499 | INTEGER, INTENT(OUT) :: nfev | |||
| 500 | REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | |||
| 501 | INTEGER, INTENT(OUT) :: ipvt(:) | |||
| 502 | ||||
| 503 | ! EXTERNAL fcn | |||
| 504 | ||||
| 505 | INTERFACE | |||
| 506 | SUBROUTINE fcn(m, n, x, fvec, iflag) | |||
| 507 | INTEGER(4), INTENT(IN) :: m, n | |||
| 508 | REAL (8), INTENT(IN) :: x(:) | |||
| 509 | REAL (8), INTENT(IN OUT) :: fvec(:) | |||
| 510 | INTEGER(4), INTENT(IN OUT) :: iflag | |||
| 511 | END SUBROUTINE fcn | |||
| 512 | END INTERFACE | |||
| 513 | ||||
| 514 | ! ********** | |||
| 515 | ||||
| 516 | ! subroutine lmdif | |||
| 517 | ||||
| 518 | ! The purpose of lmdif is to minimize the sum of the squares of m nonlinear | |||
| 519 | ! functions in n variables by a modification of the Levenberg-Marquardt | |||
| 520 | ! algorithm. The user must provide a subroutine which calculates the | |||
| 521 | ! functions. The jacobian is then calculated by a forward-difference | |||
| 522 | ! approximation. | |||
| 523 | ||||
| 524 | ! the subroutine statement is | |||
| 525 | ||||
| 526 | ! subroutine lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, | |||
| 527 | ! diag, mode, factor, nprint, info, nfev, fjac, | |||
| 528 | ! ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4) | |||
| 529 | ||||
| 530 | ! N.B. 7 of these arguments have been removed in this version. | |||
| 531 | ||||
| 532 | ! where | |||
| 533 | ||||
| 534 | ! fcn is the name of the user-supplied subroutine which calculates the | |||
| 535 | ! functions. fcn must be declared in an external statement in the user | |||
| 536 | ! calling program, and should be written as follows. | |||
| 537 | ||||
| 538 | ! subroutine fcn(m, n, x, fvec, iflag) | |||
| 539 | ! integer m, n, iflag | |||
| 540 | ! REAL (dp) x(:), fvec(m) | |||
| 541 | ! ---------- | |||
| 542 | ! calculate the functions at x and return this vector in fvec. | |||
| 543 | ! ---------- | |||
| 544 | ! return | |||
| 545 | ! end | |||
| 546 | ||||
| 547 | ! the value of iflag should not be changed by fcn unless | |||
| 548 | ! the user wants to terminate execution of lmdif. | |||
| 549 | ! in this case set iflag to a negative integer. | |||
| 550 | ||||
| 551 | ! m is a positive integer input variable set to the number of functions. | |||
| 552 | ||||
| 553 | ! n is a positive integer input variable set to the number of variables. | |||
| 554 | ! n must not exceed m. | |||
| 555 | ||||
| 556 | ! x is an array of length n. On input x must contain an initial estimate | |||
| 557 | ! of the solution vector. On output x contains the final estimate of the | |||
| 558 | ! solution vector. | |||
| 559 | ||||
| 560 | ! fvec is an output array of length m which contains | |||
| 561 | ! the functions evaluated at the output x. | |||
| 562 | ||||
| 563 | ! ftol is a nonnegative input variable. Termination occurs when both the | |||
| 564 | ! actual and predicted relative reductions in the sum of squares are at | |||
| 565 | ! most ftol. Therefore, ftol measures the relative error desired | |||
| 566 | ! in the sum of squares. | |||
| 567 | ||||
| 568 | ! xtol is a nonnegative input variable. Termination occurs when the | |||
| 569 | ! relative error between two consecutive iterates is at most xtol. | |||
| 570 | ! Therefore, xtol measures the relative error desired in the approximate | |||
| 571 | ! solution. | |||
| 572 | ||||
| 573 | ! gtol is a nonnegative input variable. Termination occurs when the cosine | |||
| 574 | ! of the angle between fvec and any column of the jacobian is at most | |||
| 575 | ! gtol in absolute value. Therefore, gtol measures the orthogonality | |||
| 576 | ! desired between the function vector and the columns of the jacobian. | |||
| 577 | ||||
| 578 | ! maxfev is a positive integer input variable. Termination occurs when the | |||
| 579 | ! number of calls to fcn is at least maxfev by the end of an iteration. | |||
| 580 | ||||
| 581 | ! epsfcn is an input variable used in determining a suitable step length | |||
| 582 | ! for the forward-difference approximation. This approximation assumes | |||
| 583 | ! that the relative errors in the functions are of the order of epsfcn. | |||
| 584 | ! If epsfcn is less than the machine precision, it is assumed that the | |||
| 585 | ! relative errors in the functions are of the order of the machine | |||
| 586 | ! precision. | |||
| 587 | ||||
| 588 | ! diag is an array of length n. If mode = 1 (see below), diag is | |||
| 589 | ! internally set. If mode = 2, diag must contain positive entries that | |||
| 590 | ! serve as multiplicative scale factors for the variables. | |||
| 591 | ||||
| 592 | ! mode is an integer input variable. If mode = 1, the variables will be | |||
| 593 | ! scaled internally. If mode = 2, the scaling is specified by the input | |||
| 594 | ! diag. other values of mode are equivalent to mode = 1. | |||
| 595 | ||||
| 596 | ! factor is a positive input variable used in determining the initial step | |||
| 597 | ! bound. This bound is set to the product of factor and the euclidean | |||
| 598 | ! norm of diag*x if nonzero, or else to factor itself. In most cases | |||
| 599 | ! factor should lie in the interval (.1,100.). 100. is a generally | |||
| 600 | ! recommended value. | |||
| 601 | ||||
| 602 | ! nprint is an integer input variable that enables controlled printing of | |||
| 603 | ! iterates if it is positive. In this case, fcn is called with iflag = 0 | |||
| 604 | ! at the beginning of the first iteration and every nprint iterations | |||
| 605 | ! thereafter and immediately prior to return, with x and fvec available | |||
| 606 | ! for printing. If nprint is not positive, no special calls | |||
| 607 | ! of fcn with iflag = 0 are made. | |||
| 608 | ||||
| 609 | ! info is an integer output variable. If the user has terminated | |||
| 610 | ! execution, info is set to the (negative) value of iflag. | |||
| 611 | ! See description of fcn. Otherwise, info is set as follows. | |||
| 612 | ||||
| 613 | ! info = 0 improper input parameters. | |||
| 614 | ||||
| 615 | ! info = 1 both actual and predicted relative reductions | |||
| 616 | ! in the sum of squares are at most ftol. | |||
| 617 | ||||
| 618 | ! info = 2 relative error between two consecutive iterates <= xtol. | |||
| 619 | ||||
| 620 | ! info = 3 conditions for info = 1 and info = 2 both hold. | |||
| 621 | ||||
| 622 | ! info = 4 the cosine of the angle between fvec and any column of | |||
| 623 | ! the Jacobian is at most gtol in absolute value. | |||
| 624 | ||||
| 625 | ! info = 5 number of calls to fcn has reached or exceeded maxfev. | |||
| 626 | ||||
| 627 | ! info = 6 ftol is too small. no further reduction in | |||
| 628 | ! the sum of squares is possible. | |||
| 629 | ||||
| 630 | ! info = 7 xtol is too small. no further improvement in | |||
| 631 | ! the approximate solution x is possible. | |||
| 632 | ||||
| 633 | ! info = 8 gtol is too small. fvec is orthogonal to the | |||
| 634 | ! columns of the jacobian to machine precision. | |||
| 635 | ||||
| 636 | ! nfev is an integer output variable set to the number of calls to fcn. | |||
| 637 | ||||
| 638 | ! fjac is an output m by n array. the upper n by n submatrix | |||
| 639 | ! of fjac contains an upper triangular matrix r with | |||
| 640 | ! diagonal elements of nonincreasing magnitude such that | |||
| 641 | ||||
| 642 | ! t t t | |||
| 643 | ! p *(jac *jac)*p = r *r, | |||
| 644 | ||||
| 645 | ! where p is a permutation matrix and jac is the final calculated | |||
| 646 | ! Jacobian. Column j of p is column ipvt(j) (see below) of the | |||
| 647 | ! identity matrix. the lower trapezoidal part of fjac contains | |||
| 648 | ! information generated during the computation of r. | |||
| 649 | ||||
| 650 | ! ldfjac is a positive integer input variable not less than m | |||
| 651 | ! which specifies the leading dimension of the array fjac. | |||
| 652 | ||||
| 653 | ! ipvt is an integer output array of length n. ipvt defines a permutation | |||
| 654 | ! matrix p such that jac*p = q*r, where jac is the final calculated | |||
| 655 | ! jacobian, q is orthogonal (not stored), and r is upper triangular | |||
| 656 | ! with diagonal elements of nonincreasing magnitude. | |||
| 657 | ! Column j of p is column ipvt(j) of the identity matrix. | |||
| 658 | ||||
| 659 | ! qtf is an output array of length n which contains | |||
| 660 | ! the first n elements of the vector (q transpose)*fvec. | |||
| 661 | ||||
| 662 | ! wa1, wa2, and wa3 are work arrays of length n. | |||
| 663 | ||||
| 664 | ! wa4 is a work array of length m. | |||
| 665 | ||||
| 666 | ! subprograms called | |||
| 667 | ||||
| 668 | ! user-supplied ...... fcn | |||
| 669 | ||||
| 670 | ! minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac | |||
| 671 | ||||
| 672 | ! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod | |||
| 673 | ||||
| 674 | ! argonne national laboratory. minpack project. march 1980. | |||
| 675 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |||
| 676 | ||||
| 677 | ! ********** | |||
| 678 | INTEGER :: i, iflag, iter, j, l | |||
| 679 | REAL (dp) :: actred, delta, dirder, epsmch, fnorm, fnorm1, gnorm, & | |||
| 680 | par, pnorm, prered, ratio, sum, temp, temp1, temp2, xnorm | |||
| 681 | REAL (dp) :: diag(n), qtf(n), wa1(n), wa2(n), wa3(n), wa4(m) | |||
| 682 | REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & | |||
| 683 | p25 = 0.25_dp, p75 = 0.75_dp, p0001 = 0.0001_dp, & | |||
| 684 | zero = 0.0_dp | |||
| 685 | ||||
| 686 | ! epsmch is the machine precision. | |||
| 687 | ||||
| 688 | epsmch = EPSILON(zero) | |||
| 689 | ||||
| 690 | info = 0 | |||
| 691 | iflag = 0 | |||
| 692 | nfev = 0 | |||
| 693 | ||||
| 694 | ! check the input parameters for errors. | |||
| 695 | ||||
| 696 | IF (n <= 0 .OR. m < n .OR. ftol < zero .OR. xtol < zero .OR. gtol < zero & | |||
| 697 | .OR. maxfev <= 0 .OR. factor <= zero) GO TO 300 | |||
| 698 | IF (mode /= 2) GO TO 20 | |||
| 699 | DO j = 1, n | |||
| 700 | IF (diag(j) <= zero) GO TO 300 | |||
| 701 | END DO | |||
| 702 | ||||
| 703 | ! evaluate the function at the starting point and calculate its norm. | |||
| 704 | ||||
| 705 | 20 iflag = 1 | |||
| 706 | CALL fcn(m, n, x, fvec, iflag) | |||
| 707 | nfev = 1 | |||
| 708 | IF (iflag < 0) GO TO 300 | |||
| 709 | fnorm = enorm(m, fvec) | |||
| 710 | ||||
| 711 | ! initialize levenberg-marquardt parameter and iteration counter. | |||
| 712 | ||||
| 713 | par = zero | |||
| 714 | iter = 1 | |||
| 715 | ||||
| 716 | ! beginning of the outer loop. | |||
| 717 | ||||
| 718 | ! calculate the jacobian matrix. | |||
| 719 | ||||
| 720 | 30 iflag = 2 | |||
| 721 | CALL fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | |||
| 722 | nfev = nfev + n | |||
| 723 | IF (iflag < 0) GO TO 300 | |||
| 724 | ||||
| 725 | ! If requested, call fcn to enable printing of iterates. | |||
| 726 | ||||
| 727 | IF (nprint <= 0) GO TO 40 | |||
| 728 | iflag = 0 | |||
| 729 | IF (MOD(iter-1,nprint) == 0) CALL fcn(m, n, x, fvec, iflag) | |||
| 730 | IF (iflag < 0) GO TO 300 | |||
| 731 | ||||
| 732 | ! Compute the qr factorization of the jacobian. | |||
| 733 | ||||
| 734 | 40 CALL qrfac(m, n, fjac, .true., ipvt, wa1, wa2) | |||
| 735 | ||||
| 736 | ! On the first iteration and if mode is 1, scale according | |||
| 737 | ! to the norms of the columns of the initial jacobian. | |||
| 738 | ||||
| 739 | IF (iter /= 1) GO TO 80 | |||
| 740 | IF (mode == 2) GO TO 60 | |||
| 741 | DO j = 1, n | |||
| 742 | diag(j) = wa2(j) | |||
| 743 | IF (wa2(j) == zero) diag(j) = one | |||
| 744 | END DO | |||
| 745 | ||||
| 746 | ! On the first iteration, calculate the norm of the scaled x | |||
| 747 | ! and initialize the step bound delta. | |||
| 748 | ||||
| 749 | 60 wa3(1:n) = diag(1:n)*x(1:n) | |||
| 750 | xnorm = enorm(n, wa3) | |||
| 751 | delta = factor*xnorm | |||
| 752 | IF (delta == zero) delta = factor | |||
| 753 | ||||
| 754 | ! Form (q transpose)*fvec and store the first n components in qtf. | |||
| 755 | ||||
| 756 | 80 wa4(1:m) = fvec(1:m) | |||
| 757 | DO j = 1, n | |||
| 758 | IF (fjac(j,j) == zero) GO TO 120 | |||
| 759 | sum = DOT_PRODUCT( fjac(j:m,j), wa4(j:m) ) | |||
| 760 | temp = -sum/fjac(j,j) | |||
| 761 | DO i = j, m | |||
| 762 | wa4(i) = wa4(i) + fjac(i,j)*temp | |||
| 763 | END DO | |||
| 764 | 120 fjac(j,j) = wa1(j) | |||
| 765 | qtf(j) = wa4(j) | |||
| 766 | END DO | |||
| 767 | ||||
| 768 | ! compute the norm of the scaled gradient. | |||
| 769 | ||||
| 770 | gnorm = zero | |||
| 771 | IF (fnorm == zero) GO TO 170 | |||
| 772 | DO j = 1, n | |||
| 773 | l = ipvt(j) | |||
| 774 | IF (wa2(l) == zero) CYCLE | |||
| 775 | sum = zero | |||
| 776 | DO i = 1, j | |||
| 777 | sum = sum + fjac(i,j)*(qtf(i)/fnorm) | |||
| 778 | END DO | |||
| 779 | gnorm = MAX(gnorm, ABS(sum/wa2(l))) | |||
| 780 | END DO | |||
| 781 | ||||
| 782 | ! test for convergence of the gradient norm. | |||
| 783 | ||||
| 784 | 170 IF (gnorm <= gtol) info = 4 | |||
| 785 | IF (info /= 0) GO TO 300 | |||
| 786 | ||||
| 787 | ! rescale if necessary. | |||
| 788 | ||||
| 789 | IF (mode == 2) GO TO 200 | |||
| 790 | DO j = 1, n | |||
| 791 | diag(j) = MAX(diag(j), wa2(j)) | |||
| 792 | END DO | |||
| 793 | ||||
| 794 | ! beginning of the inner loop. | |||
| 795 | ||||
| 796 | ! determine the Levenberg-Marquardt parameter. | |||
| 797 | ||||
| 798 | 200 CALL lmpar(n, fjac, ipvt, diag, qtf, delta, par, wa1, wa2) | |||
| 799 | ||||
| 800 | ! store the direction p and x + p. calculate the norm of p. | |||
| 801 | ||||
| 802 | DO j = 1, n | |||
| 803 | wa1(j) = -wa1(j) | |||
| 804 | wa2(j) = x(j) + wa1(j) | |||
| 805 | wa3(j) = diag(j)*wa1(j) | |||
| 806 | END DO | |||
| 807 | pnorm = enorm(n, wa3) | |||
| 808 | ||||
| 809 | ! on the first iteration, adjust the initial step bound. | |||
| 810 | ||||
| 811 | IF (iter == 1) delta = MIN(delta, pnorm) | |||
| 812 | ||||
| 813 | ! evaluate the function at x + p and calculate its norm. | |||
| 814 | ||||
| 815 | iflag = 1 | |||
| 816 | CALL fcn(m, n, wa2, wa4, iflag) | |||
| 817 | nfev = nfev + 1 | |||
| 818 | IF (iflag < 0) GO TO 300 | |||
| 819 | fnorm1 = enorm(m, wa4) | |||
| 820 | ||||
| 821 | ! compute the scaled actual reduction. | |||
| 822 | ||||
| 823 | actred = -one | |||
| 824 | IF (p1*fnorm1 < fnorm) actred = one - (fnorm1/fnorm)**2 | |||
| 825 | ||||
| 826 | ! Compute the scaled predicted reduction and | |||
| 827 | ! the scaled directional derivative. | |||
| 828 | ||||
| 829 | DO j = 1, n | |||
| 830 | wa3(j) = zero | |||
| 831 | l = ipvt(j) | |||
| 832 | temp = wa1(l) | |||
| 833 | DO i = 1, j | |||
| 834 | wa3(i) = wa3(i) + fjac(i,j)*temp | |||
| 835 | END DO | |||
| 836 | END DO | |||
| 837 | temp1 = enorm(n,wa3)/fnorm | |||
| 838 | temp2 = (SQRT(par)*pnorm)/fnorm | |||
| 839 | prered = temp1**2 + temp2**2/p5 | |||
| 840 | dirder = -(temp1**2 + temp2**2) | |||
| 841 | ||||
| 842 | ! compute the ratio of the actual to the predicted reduction. | |||
| 843 | ||||
| 844 | ratio = zero | |||
| 845 | IF (prered /= zero) ratio = actred/prered | |||
| 846 | ||||
| 847 | ! update the step bound. | |||
| 848 | ||||
| 849 | IF (ratio <= p25) THEN | |||
| 850 | IF (actred >= zero) temp = p5 | |||
| 851 | IF (actred < zero) temp = p5*dirder/(dirder + p5*actred) | |||
| 852 | IF (p1*fnorm1 >= fnorm .OR. temp < p1) temp = p1 | |||
| 853 | delta = temp*MIN(delta,pnorm/p1) | |||
| 854 | par = par/temp | |||
| 855 | ELSE | |||
| 856 | IF (par /= zero .AND. ratio < p75) GO TO 260 | |||
| 857 | delta = pnorm/p5 | |||
| 858 | par = p5*par | |||
| 859 | END IF | |||
| 860 | ||||
| 861 | ! test for successful iteration. | |||
| 862 | ||||
| 863 | 260 IF (ratio < p0001) GO TO 290 | |||
| 864 | ||||
| 865 | ! successful iteration. update x, fvec, and their norms. | |||
| 866 | ||||
| 867 | DO j = 1, n | |||
| 868 | x(j) = wa2(j) | |||
| 869 | wa2(j) = diag(j)*x(j) | |||
| 870 | END DO | |||
| 871 | fvec(1:m) = wa4(1:m) | |||
| 872 | xnorm = enorm(n, wa2) | |||
| 873 | fnorm = fnorm1 | |||
| 874 | iter = iter + 1 | |||
| 875 | ||||
| 876 | ! tests for convergence. | |||
| 877 | ||||
| 878 | 290 IF (ABS(actred) <= ftol .AND. prered <= ftol .AND. p5*ratio <= one) info = 1 | |||
| 879 | IF (delta <= xtol*xnorm) info = 2 | |||
| 880 | IF (ABS(actred) <= ftol .AND. prered <= ftol & | |||
| 881 | .AND. p5*ratio <= one .AND. info == 2) info = 3 | |||
| 882 | IF (info /= 0) GO TO 300 | |||
| 883 | ||||
| 884 | ! tests for termination and stringent tolerances. | |||
| 885 | ||||
| 886 | IF (nfev >= maxfev) info = 5 | |||
| 887 | IF (ABS(actred) <= epsmch .AND. prered <= epsmch & | |||
| 888 | .AND. p5*ratio <= one) info = 6 | |||
| 889 | IF (delta <= epsmch*xnorm) info = 7 | |||
| 890 | IF (gnorm <= epsmch) info = 8 | |||
| 891 | IF (info /= 0) GO TO 300 | |||
| 892 | ||||
| 893 | ! end of the inner loop. repeat if iteration unsuccessful. | |||
| 894 | ||||
| 895 | IF (ratio < p0001) GO TO 200 | |||
| 896 | ||||
| 897 | ! end of the outer loop. | |||
| 898 | ||||
| 899 | GO TO 30 | |||
| 900 | ||||
| 901 | ! termination, either normal or user imposed. | |||
| 902 | ||||
| 903 | 300 IF (iflag < 0) info = iflag | |||
| 904 | iflag = 0 | |||
| 905 | IF (nprint > 0) CALL fcn(m, n, x, fvec, iflag) | |||
| 906 | RETURN | |||
| 907 | ||||
| 908 | ! last card of subroutine lmdif. | |||
| 909 | ||||
| 910 | END SUBROUTINE lmdif | |||
| 911 | ||||
| 912 | ||||
| 913 | ! ********** | |||
| 914 | ||||
| 915 | ||||
| 916 | SUBROUTINE lmpar(n, r, ipvt, diag, qtb, delta, par, x, sdiag) | |||
| 917 | ||||
| 918 | ! Code converted using TO_F90 by Alan Miller | |||
| 919 | ! Date: 1999-12-09 Time: 12:46:12 | |||
| 920 | ||||
| 921 | ! N.B. Arguments LDR, WA1 & WA2 have been removed. | |||
| 922 | ||||
| 923 | INTEGER, PARAMETER :: dp = 8 | |||
| 924 | INTEGER, INTENT(IN) :: n | |||
| 925 | REAL (dp), INTENT(IN OUT) :: r(:,:) | |||
| 926 | INTEGER, INTENT(IN) :: ipvt(:) | |||
| 927 | REAL (dp), INTENT(IN) :: diag(:) | |||
| 928 | REAL (dp), INTENT(IN) :: qtb(:) | |||
| 929 | REAL (dp), INTENT(IN) :: delta | |||
| 930 | REAL (dp), INTENT(OUT) :: par | |||
| 931 | REAL (dp), INTENT(OUT) :: x(:) | |||
| 932 | REAL (dp), INTENT(OUT) :: sdiag(:) | |||
| 933 | ||||
| 934 | ! ********** | |||
| 935 | ||||
| 936 | ! subroutine lmpar | |||
| 937 | ||||
| 938 | ! Given an m by n matrix a, an n by n nonsingular diagonal matrix d, | |||
| 939 | ! an m-vector b, and a positive number delta, the problem is to determine a | |||
| 940 | ! value for the parameter par such that if x solves the system | |||
| 941 | ||||
| 942 | ! a*x = b , sqrt(par)*d*x = 0 , | |||
| 943 | ||||
| 944 | ! in the least squares sense, and dxnorm is the euclidean | |||
| 945 | ! norm of d*x, then either par is zero and | |||
| 946 | ||||
| 947 | ! (dxnorm-delta) <= 0.1*delta , | |||
| 948 | ||||
| 949 | ! or par is positive and | |||
| 950 | ||||
| 951 | ! abs(dxnorm-delta) <= 0.1*delta . | |||
| 952 | ||||
| 953 | ! This subroutine completes the solution of the problem if it is provided | |||
| 954 | ! with the necessary information from the r factorization, with column | |||
| 955 | ! qpivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |||
| 956 | ! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |||
| 957 | ! elements of nonincreasing magnitude, then lmpar expects the full upper | |||
| 958 | ! triangle of r, the permutation matrix p, and the first n components of | |||
| 959 | ! (q transpose)*b. | |||
| 960 | ! On output lmpar also provides an upper triangular matrix s such that | |||
| 961 | ||||
| 962 | ! t t t | |||
| 963 | ! p *(a *a + par*d*d)*p = s *s . | |||
| 964 | ||||
| 965 | ! s is employed within lmpar and may be of separate interest. | |||
| 966 | ||||
| 967 | ! Only a few iterations are generally needed for convergence of the algorithm. | |||
| 968 | ! If, however, the limit of 10 iterations is reached, then the output par | |||
| 969 | ! will contain the best value obtained so far. | |||
| 970 | ||||
| 971 | ! the subroutine statement is | |||
| 972 | ||||
| 973 | ! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, wa1,wa2) | |||
| 974 | ||||
| 975 | ! where | |||
| 976 | ||||
| 977 | ! n is a positive integer input variable set to the order of r. | |||
| 978 | ||||
| 979 | ! r is an n by n array. on input the full upper triangle | |||
| 980 | ! must contain the full upper triangle of the matrix r. | |||
| 981 | ! On output the full upper triangle is unaltered, and the | |||
| 982 | ! strict lower triangle contains the strict upper triangle | |||
| 983 | ! (transposed) of the upper triangular matrix s. | |||
| 984 | ||||
| 985 | ! ldr is a positive integer input variable not less than n | |||
| 986 | ! which specifies the leading dimension of the array r. | |||
| 987 | ||||
| 988 | ! ipvt is an integer input array of length n which defines the | |||
| 989 | ! permutation matrix p such that a*p = q*r. column j of p | |||
| 990 | ! is column ipvt(j) of the identity matrix. | |||
| 991 | ||||
| 992 | ! diag is an input array of length n which must contain the | |||
| 993 | ! diagonal elements of the matrix d. | |||
| 994 | ||||
| 995 | ! qtb is an input array of length n which must contain the first | |||
| 996 | ! n elements of the vector (q transpose)*b. | |||
| 997 | ||||
| 998 | ! delta is a positive input variable which specifies an upper | |||
| 999 | ! bound on the euclidean norm of d*x. | |||
| 1000 | ||||
| 1001 | ! par is a nonnegative variable. on input par contains an | |||
| 1002 | ! initial estimate of the levenberg-marquardt parameter. | |||
| 1003 | ! on output par contains the final estimate. | |||
| 1004 | ||||
| 1005 | ! x is an output array of length n which contains the least | |||
| 1006 | ! squares solution of the system a*x = b, sqrt(par)*d*x = 0, | |||
| 1007 | ! for the output par. | |||
| 1008 | ||||
| 1009 | ! sdiag is an output array of length n which contains the | |||
| 1010 | ! diagonal elements of the upper triangular matrix s. | |||
| 1011 | ||||
| 1012 | ! wa1 and wa2 are work arrays of length n. | |||
| 1013 | ||||
| 1014 | ! subprograms called | |||
| 1015 | ||||
| 1016 | ! minpack-supplied ... dpmpar,enorm,qrsolv | |||
| 1017 | ||||
| 1018 | ! fortran-supplied ... ABS,MAX,MIN,SQRT | |||
| 1019 | ||||
| 1020 | ! argonne national laboratory. minpack project. march 1980. | |||
| 1021 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |||
| 1022 | ||||
| 1023 | ! ********** | |||
| 1024 | INTEGER :: iter, j, jm1, jp1, k, l, nsing | |||
| 1025 | REAL (dp) :: dxnorm, dwarf, fp, gnorm, parc, parl, paru, sum, temp | |||
| 1026 | REAL (dp) :: wa1(n), wa2(n) | |||
| 1027 | REAL (dp), PARAMETER :: p1 = 0.1_dp, p001 = 0.001_dp, zero = 0.0_dp | |||
| 1028 | ||||
| 1029 | ! dwarf is the smallest positive magnitude. | |||
| 1030 | ||||
| 1031 | dwarf = TINY(zero) | |||
| 1032 | ||||
| 1033 | ! compute and store in x the gauss-newton direction. if the | |||
| 1034 | ! jacobian is rank-deficient, obtain a least squares solution. | |||
| 1035 | ||||
| 1036 | nsing = n | |||
| 1037 | DO j = 1, n | |||
| 1038 | wa1(j) = qtb(j) | |||
| 1039 | IF (r(j,j) == zero .AND. nsing == n) nsing = j - 1 | |||
| 1040 | IF (nsing < n) wa1(j) = zero | |||
| 1041 | END DO | |||
| 1042 | ||||
| 1043 | DO k = 1, nsing | |||
| 1044 | j = nsing - k + 1 | |||
| 1045 | wa1(j) = wa1(j)/r(j,j) | |||
| 1046 | temp = wa1(j) | |||
| 1047 | jm1 = j - 1 | |||
| 1048 | wa1(1:jm1) = wa1(1:jm1) - r(1:jm1,j)*temp | |||
| 1049 | END DO | |||
| 1050 | ||||
| 1051 | DO j = 1, n | |||
| 1052 | l = ipvt(j) | |||
| 1053 | x(l) = wa1(j) | |||
| 1054 | END DO | |||
| 1055 | ||||
| 1056 | ! initialize the iteration counter. | |||
| 1057 | ! evaluate the function at the origin, and test | |||
| 1058 | ! for acceptance of the gauss-newton direction. | |||
| 1059 | ||||
| 1060 | iter = 0 | |||
| 1061 | wa2(1:n) = diag(1:n)*x(1:n) | |||
| 1062 | dxnorm = enorm(n, wa2) | |||
| 1063 | fp = dxnorm - delta | |||
| 1064 | IF (fp <= p1*delta) GO TO 220 | |||
| 1065 | ||||
| 1066 | ! if the jacobian is not rank deficient, the newton | |||
| 1067 | ! step provides a lower bound, parl, for the zero of | |||
| 1068 | ! the function. Otherwise set this bound to zero. | |||
| 1069 | ||||
| 1070 | parl = zero | |||
| 1071 | IF (nsing < n) GO TO 120 | |||
| 1072 | DO j = 1, n | |||
| 1073 | l = ipvt(j) | |||
| 1074 | wa1(j) = diag(l)*(wa2(l)/dxnorm) | |||
| 1075 | END DO | |||
| 1076 | DO j = 1, n | |||
| 1077 | sum = DOT_PRODUCT( r(1:j-1,j), wa1(1:j-1) ) | |||
| 1078 | wa1(j) = (wa1(j) - sum)/r(j,j) | |||
| 1079 | END DO | |||
| 1080 | temp = enorm(n,wa1) | |||
| 1081 | parl = ((fp/delta)/temp)/temp | |||
| 1082 | ||||
| 1083 | ! calculate an upper bound, paru, for the zero of the function. | |||
| 1084 | ||||
| 1085 | 120 DO j = 1, n | |||
| 1086 | sum = DOT_PRODUCT( r(1:j,j), qtb(1:j) ) | |||
| 1087 | l = ipvt(j) | |||
| 1088 | wa1(j) = sum/diag(l) | |||
| 1089 | END DO | |||
| 1090 | gnorm = enorm(n,wa1) | |||
| 1091 | paru = gnorm/delta | |||
| 1092 | IF (paru == zero) paru = dwarf/MIN(delta,p1) | |||
| 1093 | ||||
| 1094 | ! if the input par lies outside of the interval (parl,paru), | |||
| 1095 | ! set par to the closer endpoint. | |||
| 1096 | ||||
| 1097 | par = MAX(par,parl) | |||
| 1098 | par = MIN(par,paru) | |||
| 1099 | IF (par == zero) par = gnorm/dxnorm | |||
| 1100 | ||||
| 1101 | ! beginning of an iteration. | |||
| 1102 | ||||
| 1103 | 150 iter = iter + 1 | |||
| 1104 | ||||
| 1105 | ! evaluate the function at the current value of par. | |||
| 1106 | ||||
| 1107 | IF (par == zero) par = MAX(dwarf, p001*paru) | |||
| 1108 | temp = SQRT(par) | |||
| 1109 | wa1(1:n) = temp*diag(1:n) | |||
| 1110 | CALL qrsolv(n, r, ipvt, wa1, qtb, x, sdiag) | |||
| 1111 | wa2(1:n) = diag(1:n)*x(1:n) | |||
| 1112 | dxnorm = enorm(n, wa2) | |||
| 1113 | temp = fp | |||
| 1114 | fp = dxnorm - delta | |||
| 1115 | ||||
| 1116 | ! if the function is small enough, accept the current value | |||
| 1117 | ! of par. also test for the exceptional cases where parl | |||
| 1118 | ! is zero or the number of iterations has reached 10. | |||
| 1119 | ||||
| 1120 | IF (ABS(fp) <= p1*delta .OR. parl == zero .AND. fp <= temp & | |||
| 1121 | .AND. temp < zero .OR. iter == 10) GO TO 220 | |||
| 1122 | ||||
| 1123 | ! compute the newton correction. | |||
| 1124 | ||||
| 1125 | DO j = 1, n | |||
| 1126 | l = ipvt(j) | |||
| 1127 | wa1(j) = diag(l)*(wa2(l)/dxnorm) | |||
| 1128 | END DO | |||
| 1129 | DO j = 1, n | |||
| 1130 | wa1(j) = wa1(j)/sdiag(j) | |||
| 1131 | temp = wa1(j) | |||
| 1132 | jp1 = j + 1 | |||
| 1133 | wa1(jp1:n) = wa1(jp1:n) - r(jp1:n,j)*temp | |||
| 1134 | END DO | |||
| 1135 | temp = enorm(n,wa1) | |||
| 1136 | parc = ((fp/delta)/temp)/temp | |||
| 1137 | ||||
| 1138 | ! depending on the sign of the function, update parl or paru. | |||
| 1139 | ||||
| 1140 | IF (fp > zero) parl = MAX(parl,par) | |||
| 1141 | IF (fp < zero) paru = MIN(paru,par) | |||
| 1142 | ||||
| 1143 | ! compute an improved estimate for par. | |||
| 1144 | ||||
| 1145 | par = MAX(parl, par+parc) | |||
| 1146 | ||||
| 1147 | ! end of an iteration. | |||
| 1148 | ||||
| 1149 | GO TO 150 | |||
| 1150 | ||||
| 1151 | ! termination. | |||
| 1152 | ||||
| 1153 | 220 IF (iter == 0) par = zero | |||
| 1154 | RETURN | |||
| 1155 | ||||
| 1156 | ! last card of subroutine lmpar. | |||
| 1157 | ||||
| 1158 | END SUBROUTINE lmpar | |||
| 1159 | ||||
| 1160 | ||||
| 1161 | ||||
| 1162 | SUBROUTINE qrfac(m, n, a, pivot, ipvt, rdiag, acnorm) | |||
| 1163 | ||||
| 1164 | ! Code converted using TO_F90 by Alan Miller | |||
| 1165 | ! Date: 1999-12-09 Time: 12:46:17 | |||
| 1166 | ||||
| 1167 | ! N.B. Arguments LDA, LIPVT & WA have been removed. | |||
| 1168 | INTEGER, PARAMETER :: dp = 8 | |||
| 1169 | INTEGER, INTENT(IN) :: m | |||
| 1170 | INTEGER, INTENT(IN) :: n | |||
| 1171 | REAL (dp), INTENT(IN OUT) :: a(:,:) | |||
| 1172 | LOGICAL, INTENT(IN) :: pivot | |||
| 1173 | INTEGER, INTENT(OUT) :: ipvt(:) | |||
| 1174 | REAL (dp), INTENT(OUT) :: rdiag(:) | |||
| 1175 | REAL (dp), INTENT(OUT) :: acnorm(:) | |||
| 1176 | ||||
| 1177 | ! ********** | |||
| 1178 | ||||
| 1179 | ! subroutine qrfac | |||
| 1180 | ||||
| 1181 | ! This subroutine uses Householder transformations with column pivoting | |||
| 1182 | ! (optional) to compute a qr factorization of the m by n matrix a. | |||
| 1183 | ! That is, qrfac determines an orthogonal matrix q, a permutation matrix p, | |||
| 1184 | ! and an upper trapezoidal matrix r with diagonal elements of nonincreasing | |||
| 1185 | ! magnitude, such that a*p = q*r. The householder transformation for | |||
| 1186 | ! column k, k = 1,2,...,min(m,n), is of the form | |||
| 1187 | ||||
| 1188 | ! t | |||
| 1189 | ! i - (1/u(k))*u*u | |||
| 1190 | ||||
| 1191 | ! where u has zeros in the first k-1 positions. The form of this | |||
| 1192 | ! transformation and the method of pivoting first appeared in the | |||
| 1193 | ! corresponding linpack subroutine. | |||
| 1194 | ||||
| 1195 | ! the subroutine statement is | |||
| 1196 | ||||
| 1197 | ! subroutine qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) | |||
| 1198 | ||||
| 1199 | ! N.B. 3 of these arguments have been omitted in this version. | |||
| 1200 | ||||
| 1201 | ! where | |||
| 1202 | ||||
| 1203 | ! m is a positive integer input variable set to the number of rows of a. | |||
| 1204 | ||||
| 1205 | ! n is a positive integer input variable set to the number of columns of a. | |||
| 1206 | ||||
| 1207 | ! a is an m by n array. On input a contains the matrix for | |||
| 1208 | ! which the qr factorization is to be computed. On output | |||
| 1209 | ! the strict upper trapezoidal part of a contains the strict | |||
| 1210 | ! upper trapezoidal part of r, and the lower trapezoidal | |||
| 1211 | ! part of a contains a factored form of q (the non-trivial | |||
| 1212 | ! elements of the u vectors described above). | |||
| 1213 | ||||
| 1214 | ! lda is a positive integer input variable not less than m | |||
| 1215 | ! which specifies the leading dimension of the array a. | |||
| 1216 | ||||
| 1217 | ! pivot is a logical input variable. If pivot is set true, | |||
| 1218 | ! then column pivoting is enforced. If pivot is set false, | |||
| 1219 | ! then no column pivoting is done. | |||
| 1220 | ||||
| 1221 | ! ipvt is an integer output array of length lipvt. ipvt | |||
| 1222 | ! defines the permutation matrix p such that a*p = q*r. | |||
| 1223 | ! Column j of p is column ipvt(j) of the identity matrix. | |||
| 1224 | ! If pivot is false, ipvt is not referenced. | |||
| 1225 | ||||
| 1226 | ! lipvt is a positive integer input variable. If pivot is false, | |||
| 1227 | ! then lipvt may be as small as 1. If pivot is true, then | |||
| 1228 | ! lipvt must be at least n. | |||
| 1229 | ||||
| 1230 | ! rdiag is an output array of length n which contains the | |||
| 1231 | ! diagonal elements of r. | |||
| 1232 | ||||
| 1233 | ! acnorm is an output array of length n which contains the norms of the | |||
| 1234 | ! corresponding columns of the input matrix a. | |||
| 1235 | ! If this information is not needed, then acnorm can coincide with rdiag. | |||
| 1236 | ||||
| 1237 | ! wa is a work array of length n. If pivot is false, then wa | |||
| 1238 | ! can coincide with rdiag. | |||
| 1239 | ||||
| 1240 | ! subprograms called | |||
| 1241 | ||||
| 1242 | ! minpack-supplied ... dpmpar,enorm | |||
| 1243 | ||||
| 1244 | ! fortran-supplied ... MAX,SQRT,MIN | |||
| 1245 | ||||
| 1246 | ! argonne national laboratory. minpack project. march 1980. | |||
| 1247 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |||
| 1248 | ||||
| 1249 | ! ********** | |||
| 1250 | INTEGER :: i, j, jp1, k, kmax, minmn | |||
| 1251 | REAL (dp) :: ajnorm, epsmch, sum, temp, wa(n) | |||
| 1252 | REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp | |||
| 1253 | ||||
| 1254 | ! epsmch is the machine precision. | |||
| 1255 | ||||
| 1256 | epsmch = EPSILON(zero) | |||
| 1257 | ||||
| 1258 | ! compute the initial column norms and initialize several arrays. | |||
| 1259 | ||||
| 1260 | DO j = 1, n | |||
| 1261 | acnorm(j) = enorm(m,a(1:,j)) | |||
| 1262 | rdiag(j) = acnorm(j) | |||
| 1263 | wa(j) = rdiag(j) | |||
| 1264 | IF (pivot) ipvt(j) = j | |||
| 1265 | END DO | |||
| 1266 | ||||
| 1267 | ! Reduce a to r with Householder transformations. | |||
| 1268 | ||||
| 1269 | minmn = MIN(m,n) | |||
| 1270 | DO j = 1, minmn | |||
| 1271 | IF (.NOT.pivot) GO TO 40 | |||
| 1272 | ||||
| 1273 | ! Bring the column of largest norm into the pivot position. | |||
| 1274 | ||||
| 1275 | kmax = j | |||
| 1276 | DO k = j, n | |||
| 1277 | IF (rdiag(k) > rdiag(kmax)) kmax = k | |||
| 1278 | END DO | |||
| 1279 | IF (kmax == j) GO TO 40 | |||
| 1280 | DO i = 1, m | |||
| 1281 | temp = a(i,j) | |||
| 1282 | a(i,j) = a(i,kmax) | |||
| 1283 | a(i,kmax) = temp | |||
| 1284 | END DO | |||
| 1285 | rdiag(kmax) = rdiag(j) | |||
| 1286 | wa(kmax) = wa(j) | |||
| 1287 | k = ipvt(j) | |||
| 1288 | ipvt(j) = ipvt(kmax) | |||
| 1289 | ipvt(kmax) = k | |||
| 1290 | ||||
| 1291 | ! Compute the Householder transformation to reduce the | |||
| 1292 | ! j-th column of a to a multiple of the j-th unit vector. | |||
| 1293 | ||||
| 1294 | 40 ajnorm = enorm(m-j+1, a(j:,j)) | |||
| 1295 | IF (ajnorm == zero) CYCLE | |||
| 1296 | IF (a(j,j) < zero) ajnorm = -ajnorm | |||
| 1297 | a(j:m,j) = a(j:m,j)/ajnorm | |||
| 1298 | a(j,j) = a(j,j) + one | |||
| 1299 | ||||
| 1300 | ! Apply the transformation to the remaining columns and update the norms. | |||
| 1301 | ||||
| 1302 | jp1 = j + 1 | |||
| 1303 | DO k = jp1, n | |||
| 1304 | sum = DOT_PRODUCT( a(j:m,j), a(j:m,k) ) | |||
| 1305 | temp = sum/a(j,j) | |||
| 1306 | a(j:m,k) = a(j:m,k) - temp*a(j:m,j) | |||
| 1307 | IF (.NOT.pivot .OR. rdiag(k) == zero) CYCLE | |||
| 1308 | temp = a(j,k)/rdiag(k) | |||
| 1309 | rdiag(k) = rdiag(k)*SQRT(MAX(zero, one-temp**2)) | |||
| 1310 | IF (p05*(rdiag(k)/wa(k))**2 > epsmch) CYCLE | |||
| 1311 | rdiag(k) = enorm(m-j, a(jp1:,k)) | |||
| 1312 | wa(k) = rdiag(k) | |||
| 1313 | END DO | |||
| 1314 | rdiag(j) = -ajnorm | |||
| 1315 | END DO | |||
| 1316 | RETURN | |||
| 1317 | ||||
| 1318 | ! last card of subroutine qrfac. | |||
| 1319 | ||||
| 1320 | END SUBROUTINE qrfac | |||
| 1321 | ||||
| 1322 | ||||
| 1323 | ||||
| 1324 | SUBROUTINE qrsolv(n, r, ipvt, diag, qtb, x, sdiag) | |||
| 1325 | ||||
| 1326 | ! N.B. Arguments LDR & WA have been removed. | |||
| 1327 | INTEGER, PARAMETER :: dp = 8 | |||
| 1328 | INTEGER, INTENT(IN) :: n | |||
| 1329 | REAL (dp), INTENT(IN OUT) :: r(:,:) | |||
| 1330 | INTEGER, INTENT(IN) :: ipvt(:) | |||
| 1331 | REAL (dp), INTENT(IN) :: diag(:) | |||
| 1332 | REAL (dp), INTENT(IN) :: qtb(:) | |||
| 1333 | REAL (dp), INTENT(OUT) :: x(:) | |||
| 1334 | REAL (dp), INTENT(OUT) :: sdiag(:) | |||
| 1335 | ||||
| 1336 | ! ********** | |||
| 1337 | ||||
| 1338 | ! subroutine qrsolv | |||
| 1339 | ||||
| 1340 | ! Given an m by n matrix a, an n by n diagonal matrix d, and an m-vector b, | |||
| 1341 | ! the problem is to determine an x which solves the system | |||
| 1342 | ||||
| 1343 | ! a*x = b , d*x = 0 , | |||
| 1344 | ||||
| 1345 | ! in the least squares sense. | |||
| 1346 | ||||
| 1347 | ! This subroutine completes the solution of the problem if it is provided | |||
| 1348 | ! with the necessary information from the qr factorization, with column | |||
| 1349 | ! pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |||
| 1350 | ! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |||
| 1351 | ! elements of nonincreasing magnitude, then qrsolv expects the full upper | |||
| 1352 | ! triangle of r, the permutation matrix p, and the first n components of | |||
| 1353 | ! (q transpose)*b. The system a*x = b, d*x = 0, is then equivalent to | |||
| 1354 | ||||
| 1355 | ! t t | |||
| 1356 | ! r*z = q *b , p *d*p*z = 0 , | |||
| 1357 | ||||
| 1358 | ! where x = p*z. if this system does not have full rank, | |||
| 1359 | ! then a least squares solution is obtained. On output qrsolv | |||
| 1360 | ! also provides an upper triangular matrix s such that | |||
| 1361 | ||||
| 1362 | ! t t t | |||
| 1363 | ! p *(a *a + d*d)*p = s *s . | |||
| 1364 | ||||
| 1365 | ! s is computed within qrsolv and may be of separate interest. | |||
| 1366 | ||||
| 1367 | ! the subroutine statement is | |||
| 1368 | ||||
| 1369 | ! subroutine qrsolv(n, r, ldr, ipvt, diag, qtb, x, sdiag, wa) | |||
| 1370 | ||||
| 1371 | ! N.B. Arguments LDR and WA have been removed in this version. | |||
| 1372 | ||||
| 1373 | ! where | |||
| 1374 | ||||
| 1375 | ! n is a positive integer input variable set to the order of r. | |||
| 1376 | ||||
| 1377 | ! r is an n by n array. On input the full upper triangle must contain | |||
| 1378 | ! the full upper triangle of the matrix r. | |||
| 1379 | ! On output the full upper triangle is unaltered, and the strict lower | |||
| 1380 | ! triangle contains the strict upper triangle (transposed) of the | |||
| 1381 | ! upper triangular matrix s. | |||
| 1382 | ||||
| 1383 | ! ldr is a positive integer input variable not less than n | |||
| 1384 | ! which specifies the leading dimension of the array r. | |||
| 1385 | ||||
| 1386 | ! ipvt is an integer input array of length n which defines the | |||
| 1387 | ! permutation matrix p such that a*p = q*r. Column j of p | |||
| 1388 | ! is column ipvt(j) of the identity matrix. | |||
| 1389 | ||||
| 1390 | ! diag is an input array of length n which must contain the | |||
| 1391 | ! diagonal elements of the matrix d. | |||
| 1392 | ||||
| 1393 | ! qtb is an input array of length n which must contain the first | |||
| 1394 | ! n elements of the vector (q transpose)*b. | |||
| 1395 | ||||
| 1396 | ! x is an output array of length n which contains the least | |||
| 1397 | ! squares solution of the system a*x = b, d*x = 0. | |||
| 1398 | ||||
| 1399 | ! sdiag is an output array of length n which contains the | |||
| 1400 | ! diagonal elements of the upper triangular matrix s. | |||
| 1401 | ||||
| 1402 | ! wa is a work array of length n. | |||
| 1403 | ||||
| 1404 | ! subprograms called | |||
| 1405 | ||||
| 1406 | ! fortran-supplied ... ABS,SQRT | |||
| 1407 | ||||
| 1408 | ! argonne national laboratory. minpack project. march 1980. | |||
| 1409 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |||
| 1410 | ||||
| 1411 | ! ********** | |||
| 1412 | INTEGER :: i, j, k, kp1, l, nsing | |||
| 1413 | REAL (dp) :: COS, cotan, qtbpj, SIN, sum, TAN, temp, wa(n) | |||
| 1414 | REAL (dp), PARAMETER :: p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp | |||
| 1415 | ||||
| 1416 | ! Copy r and (q transpose)*b to preserve input and initialize s. | |||
| 1417 | ! In particular, save the diagonal elements of r in x. | |||
| 1418 | ||||
| 1419 | DO j = 1, n | |||
| 1420 | r(j:n,j) = r(j,j:n) | |||
| 1421 | x(j) = r(j,j) | |||
| 1422 | wa(j) = qtb(j) | |||
| 1423 | END DO | |||
| 1424 | ||||
| 1425 | ! Eliminate the diagonal matrix d using a givens rotation. | |||
| 1426 | ||||
| 1427 | DO j = 1, n | |||
| 1428 | ||||
| 1429 | ! Prepare the row of d to be eliminated, locating the | |||
| 1430 | ! diagonal element using p from the qr factorization. | |||
| 1431 | ||||
| 1432 | l = ipvt(j) | |||
| 1433 | IF (diag(l) == zero) CYCLE | |||
| 1434 | sdiag(j:n) = zero | |||
| 1435 | sdiag(j) = diag(l) | |||
| 1436 | ||||
| 1437 | ! The transformations to eliminate the row of d modify only a single | |||
| 1438 | ! element of (q transpose)*b beyond the first n, which is initially zero. | |||
| 1439 | ||||
| 1440 | qtbpj = zero | |||
| 1441 | DO k = j, n | |||
| 1442 | ||||
| 1443 | ! Determine a givens rotation which eliminates the | |||
| 1444 | ! appropriate element in the current row of d. | |||
| 1445 | ||||
| 1446 | IF (sdiag(k) == zero) CYCLE | |||
| 1447 | IF (ABS(r(k,k)) < ABS(sdiag(k))) THEN | |||
| 1448 | cotan = r(k,k)/sdiag(k) | |||
| 1449 | SIN = p5/SQRT(p25 + p25*cotan**2) | |||
| 1450 | COS = SIN*cotan | |||
| 1451 | ELSE | |||
| 1452 | TAN = sdiag(k)/r(k,k) | |||
| 1453 | COS = p5/SQRT(p25 + p25*TAN**2) | |||
| 1454 | SIN = COS*TAN | |||
| 1455 | END IF | |||
| 1456 | ||||
| 1457 | ! Compute the modified diagonal element of r and | |||
| 1458 | ! the modified element of ((q transpose)*b,0). | |||
| 1459 | ||||
| 1460 | r(k,k) = COS*r(k,k) + SIN*sdiag(k) | |||
| 1461 | temp = COS*wa(k) + SIN*qtbpj | |||
| 1462 | qtbpj = -SIN*wa(k) + COS*qtbpj | |||
| 1463 | wa(k) = temp | |||
| 1464 | ||||
| 1465 | ! Accumulate the tranformation in the row of s. | |||
| 1466 | ||||
| 1467 | kp1 = k + 1 | |||
| 1468 | DO i = kp1, n | |||
| 1469 | temp = COS*r(i,k) + SIN*sdiag(i) | |||
| 1470 | sdiag(i) = -SIN*r(i,k) + COS*sdiag(i) | |||
| 1471 | r(i,k) = temp | |||
| 1472 | END DO | |||
| 1473 | END DO | |||
| 1474 | ||||
| 1475 | ! Store the diagonal element of s and restore | |||
| 1476 | ! the corresponding diagonal element of r. | |||
| 1477 | ||||
| 1478 | sdiag(j) = r(j,j) | |||
| 1479 | r(j,j) = x(j) | |||
| 1480 | END DO | |||
| 1481 | ||||
| 1482 | ! Solve the triangular system for z. If the system is singular, | |||
| 1483 | ! then obtain a least squares solution. | |||
| 1484 | ||||
| 1485 | nsing = n | |||
| 1486 | DO j = 1, n | |||
| 1487 | IF (sdiag(j) == zero .AND. nsing == n) nsing = j - 1 | |||
| 1488 | IF (nsing < n) wa(j) = zero | |||
| 1489 | END DO | |||
| 1490 | ||||
| 1491 | DO k = 1, nsing | |||
| 1492 | j = nsing - k + 1 | |||
| 1493 | sum = DOT_PRODUCT( r(j+1:nsing,j), wa(j+1:nsing) ) | |||
| 1494 | wa(j) = (wa(j) - sum)/sdiag(j) | |||
| 1495 | END DO | |||
| 1496 | ||||
| 1497 | ! Permute the components of z back to components of x. | |||
| 1498 | ||||
| 1499 | DO j = 1, n | |||
| 1500 | l = ipvt(j) | |||
| 1501 | x(l) = wa(j) | |||
| 1502 | END DO | |||
| 1503 | RETURN | |||
| 1504 | ||||
| 1505 | ! last card of subroutine qrsolv. | |||
| 1506 | ||||
| 1507 | END SUBROUTINE qrsolv | |||
| 1508 | ||||
| 1509 | ||||
| 1510 | ||||
| 1511 | FUNCTION enorm(n,x) RESULT(fn_val) | |||
| 1512 | ||||
| 1513 | ! Code converted using TO_F90 by Alan Miller | |||
| 1514 | ! Date: 1999-12-09 Time: 12:45:34 | |||
| 1515 | INTEGER, PARAMETER :: dp = 8 | |||
| 1516 | INTEGER, INTENT(IN) :: n | |||
| 1517 | REAL (dp), INTENT(IN) :: x(:) | |||
| 1518 | REAL (dp) :: fn_val | |||
| 1519 | ||||
| 1520 | ! ********** | |||
| 1521 | ||||
| 1522 | ! function enorm | |||
| 1523 | ||||
| 1524 | ! given an n-vector x, this function calculates the euclidean norm of x. | |||
| 1525 | ||||
| 1526 | ! the euclidean norm is computed by accumulating the sum of squares in | |||
| 1527 | ! three different sums. The sums of squares for the small and large | |||
| 1528 | ! components are scaled so that no overflows occur. Non-destructive | |||
| 1529 | ! underflows are permitted. Underflows and overflows do not occur in the | |||
| 1530 | ! computation of the unscaled sum of squares for the intermediate | |||
| 1531 | ! components. The definitions of small, intermediate and large components | |||
| 1532 | ! depend on two constants, rdwarf and rgiant. The main restrictions on | |||
| 1533 | ! these constants are that rdwarf**2 not underflow and rgiant**2 not | |||
| 1534 | ! overflow. The constants given here are suitable for every known computer. | |||
| 1535 | ||||
| 1536 | ! the function statement is | |||
| 1537 | ||||
| 1538 | ! REAL (dp) function enorm(n,x) | |||
| 1539 | ||||
| 1540 | ! where | |||
| 1541 | ||||
| 1542 | ! n is a positive integer input variable. | |||
| 1543 | ||||
| 1544 | ! x is an input array of length n. | |||
| 1545 | ||||
| 1546 | ! subprograms called | |||
| 1547 | ||||
| 1548 | ! fortran-supplied ... ABS,SQRT | |||
| 1549 | ||||
| 1550 | ! argonne national laboratory. minpack project. march 1980. | |||
| 1551 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |||
| 1552 | ||||
| 1553 | ! ********** | |||
| 1554 | INTEGER :: i | |||
| 1555 | REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max | |||
| 1556 | REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp, rdwarf = 3.834E-20_dp, & | |||
| 1557 | rgiant = 1.304E+19_dp | |||
| 1558 | ||||
| 1559 | s1 = zero | |||
| 1560 | s2 = zero | |||
| 1561 | s3 = zero | |||
| 1562 | x1max = zero | |||
| 1563 | x3max = zero | |||
| 1564 | floatn = n | |||
| 1565 | agiant = rgiant/floatn | |||
| 1566 | DO i = 1, n | |||
| 1567 | xabs = ABS(x(i)) | |||
| 1568 | IF (xabs > rdwarf .AND. xabs < agiant) GO TO 70 | |||
| 1569 | IF (xabs <= rdwarf) GO TO 30 | |||
| 1570 | ||||
| 1571 | ! sum for large components. | |||
| 1572 | ||||
| 1573 | IF (xabs <= x1max) GO TO 10 | |||
| 1574 | s1 = one + s1*(x1max/xabs)**2 | |||
| 1575 | x1max = xabs | |||
| 1576 | GO TO 20 | |||
| 1577 | ||||
| 1578 | 10 s1 = s1 + (xabs/x1max)**2 | |||
| 1579 | ||||
| 1580 | 20 GO TO 60 | |||
| 1581 | ||||
| 1582 | ! sum for small components. | |||
| 1583 | ||||
| 1584 | 30 IF (xabs <= x3max) GO TO 40 | |||
| 1585 | s3 = one + s3*(x3max/xabs)**2 | |||
| 1586 | x3max = xabs | |||
| 1587 | GO TO 60 | |||
| 1588 | ||||
| 1589 | 40 IF (xabs /= zero) s3 = s3 + (xabs/x3max)**2 | |||
| 1590 | ||||
| 1591 | 60 CYCLE | |||
| 1592 | ||||
| 1593 | ! sum for intermediate components. | |||
| 1594 | ||||
| 1595 | 70 s2 = s2 + xabs**2 | |||
| 1596 | END DO | |||
| 1597 | ||||
| 1598 | ! calculation of norm. | |||
| 1599 | ||||
| 1600 | IF (s1 == zero) GO TO 100 | |||
| 1601 | fn_val = x1max*SQRT(s1 + (s2/x1max)/x1max) | |||
| 1602 | GO TO 120 | |||
| 1603 | ||||
| 1604 | 100 IF (s2 == zero) GO TO 110 | |||
| 1605 | IF (s2 >= x3max) fn_val = SQRT(s2*(one + (x3max/s2)*(x3max*s3))) | |||
| 1606 | IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) | |||
| 1607 | GO TO 120 | |||
| 1608 | ||||
| 1609 | 110 fn_val = x3max*SQRT(s3) | |||
| 1610 | ||||
| 1611 | 120 RETURN | |||
| 1612 | ||||
| 1613 | ! last card of function enorm. | |||
| 1614 | ||||
| 1615 | END FUNCTION enorm | |||
| 1616 | ||||
| 1617 | ||||
| 1618 | ||||
| 1619 | SUBROUTINE fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | |||
| 1620 | ||||
| 1621 | ! Code converted using TO_F90 by Alan Miller | |||
| 1622 | ! Date: 1999-12-09 Time: 12:45:44 | |||
| 1623 | ||||
| 1624 | ! N.B. Arguments LDFJAC & WA have been removed. | |||
| 1625 | INTEGER, PARAMETER :: dp = 8 | |||
| 1626 | INTEGER, INTENT(IN) :: m | |||
| 1627 | INTEGER, INTENT(IN) :: n | |||
| 1628 | REAL (dp), INTENT(IN OUT) :: x(n) | |||
| 1629 | REAL (dp), INTENT(IN) :: fvec(m) | |||
| 1630 | REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | |||
| 1631 | INTEGER, INTENT(IN OUT) :: iflag | |||
| 1632 | REAL (dp), INTENT(IN) :: epsfcn | |||
| 1633 | ||||
| 1634 | INTERFACE | |||
| 1635 | SUBROUTINE fcn(m, n, x, fvec, iflag) | |||
| 1636 | INTEGER(4), INTENT(IN) :: m, n | |||
| 1637 | REAL (8), INTENT(IN) :: x(:) | |||
| 1638 | REAL (8), INTENT(IN OUT) :: fvec(:) | |||
| 1639 | INTEGER(4), INTENT(IN OUT) :: iflag | |||
| 1640 | END SUBROUTINE fcn | |||
| 1641 | END INTERFACE | |||
| 1642 | ||||
| 1643 | ! ********** | |||
| 1644 | ||||
| 1645 | ! subroutine fdjac2 | |||
| 1646 | ||||
| 1647 | ! this subroutine computes a forward-difference approximation | |||
| 1648 | ! to the m by n jacobian matrix associated with a specified | |||
| 1649 | ! problem of m functions in n variables. | |||
| 1650 | ||||
| 1651 | ! the subroutine statement is | |||
| 1652 | ||||
| 1653 | ! subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa) | |||
| 1654 | ||||
| 1655 | ! where | |||
| 1656 | ||||
| 1657 | ! fcn is the name of the user-supplied subroutine which calculates the | |||
| 1658 | ! functions. fcn must be declared in an external statement in the user | |||
| 1659 | ! calling program, and should be written as follows. | |||
| 1660 | ||||
| 1661 | ! subroutine fcn(m,n,x,fvec,iflag) | |||
| 1662 | ! integer m,n,iflag | |||
| 1663 | ! REAL (dp) x(n),fvec(m) | |||
| 1664 | ! ---------- | |||
| 1665 | ! calculate the functions at x and | |||
| 1666 | ! return this vector in fvec. | |||
| 1667 | ! ---------- | |||
| 1668 | ! return | |||
| 1669 | ! end | |||
| 1670 | ||||
| 1671 | ! the value of iflag should not be changed by fcn unless | |||
| 1672 | ! the user wants to terminate execution of fdjac2. | |||
| 1673 | ! in this case set iflag to a negative integer. | |||
| 1674 | ||||
| 1675 | ! m is a positive integer input variable set to the number of functions. | |||
| 1676 | ||||
| 1677 | ! n is a positive integer input variable set to the number of variables. | |||
| 1678 | ! n must not exceed m. | |||
| 1679 | ||||
| 1680 | ! x is an input array of length n. | |||
| 1681 | ||||
| 1682 | ! fvec is an input array of length m which must contain the | |||
| 1683 | ! functions evaluated at x. | |||
| 1684 | ||||
| 1685 | ! fjac is an output m by n array which contains the | |||
| 1686 | ! approximation to the jacobian matrix evaluated at x. | |||
| 1687 | ||||
| 1688 | ! ldfjac is a positive integer input variable not less than m | |||
| 1689 | ! which specifies the leading dimension of the array fjac. | |||
| 1690 | ||||
| 1691 | ! iflag is an integer variable which can be used to terminate | |||
| 1692 | ! the execution of fdjac2. see description of fcn. | |||
| 1693 | ||||
| 1694 | ! epsfcn is an input variable used in determining a suitable step length | |||
| 1695 | ! for the forward-difference approximation. This approximation assumes | |||
| 1696 | ! that the relative errors in the functions are of the order of epsfcn. | |||
| 1697 | ! If epsfcn is less than the machine precision, it is assumed that the | |||
| 1698 | ! relative errors in the functions are of the order of the machine | |||
| 1699 | ! precision. | |||
| 1700 | ||||
| 1701 | ! wa is a work array of length m. | |||
| 1702 | ||||
| 1703 | ! subprograms called | |||
| 1704 | ||||
| 1705 | ! user-supplied ...... fcn | |||
| 1706 | ||||
| 1707 | ! minpack-supplied ... dpmpar | |||
| 1708 | ||||
| 1709 | ! fortran-supplied ... ABS,MAX,SQRT | |||
| 1710 | ||||
| 1711 | ! argonne national laboratory. minpack project. march 1980. | |||
| 1712 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |||
| 1713 | ||||
| 1714 | ! ********** | |||
| 1715 | INTEGER :: j | |||
| 1716 | REAL (dp) :: eps, epsmch, h, temp, wa(m) | |||
| 1717 | REAL (dp), PARAMETER :: zero = 0.0_dp | |||
| 1718 |