Commit e9d7fe24b46cc1f7f6e226744757b297f43e6828
1 parent
f6479a913d
Exists in
master
and in
2 other branches
Added fvn_lmdif to fvn_misc
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@77 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 1427 additions and 0 deletions Side-by-side Diff
fvn_misc/fvn_misc.f90
Diff suppressed. Click to show
... | ... | @@ -311,6 +311,1433 @@ |
311 | 311 | |
312 | 312 | end subroutine |
313 | 313 | |
314 | +! | |
315 | +! | |
316 | +! | |
317 | +! Non linear least square using Levenberg-Marquardt algorithm and | |
318 | +! a finite difference jacobian | |
319 | +! | |
320 | +! This uses MINPACK Routines (http://www.netlib.org/minpack) | |
321 | +! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |
322 | +! | |
323 | + | |
324 | +subroutine fvn_lmdif(zef,m,n,a,info,tol) | |
325 | + integer(4), intent(in) :: m | |
326 | + integer(4), intent(in) :: n | |
327 | + real(8), dimension(:), intent(inout) :: a | |
328 | + integer(4), intent(out) :: info | |
329 | + real(8), intent(in), optional :: tol | |
330 | + | |
331 | + real(8) :: rtol | |
332 | + real(8), dimension(:), allocatable :: fvec | |
333 | + integer(4), dimension(:), allocatable :: iwa | |
334 | + | |
335 | + interface | |
336 | + subroutine zef(m,n,a,fvec,iflag) | |
337 | + integer(4), intent(in) :: m | |
338 | + integer(4), intent(in) :: n | |
339 | + real(8), dimension(:), intent(in) :: a | |
340 | + real(8), dimension(:), intent(inout) :: fvec | |
341 | + integer(4), intent(inout) :: iflag | |
342 | + end subroutine | |
343 | + end interface | |
344 | + | |
345 | + integer(4) :: maxfev, mode, nfev, nprint | |
346 | + real(8) :: epsfcn, ftol, gtol, xtol, fjac(m,n) | |
347 | + real(8), parameter :: factor = 100._8, zero = 0.0_8 | |
348 | + | |
349 | + allocate(fvec(m),iwa(n)) | |
350 | + | |
351 | + rtol=sqrt(epsilon(0.d0)) | |
352 | + if (present(tol)) rtol=tol | |
353 | + | |
354 | + info = 0 | |
355 | + | |
356 | + ! check the input parameters for errors. | |
357 | + | |
358 | + if (n <= 0 .or. m < n .or. rtol < zero) return | |
359 | + | |
360 | + ! call lmdif. | |
361 | + | |
362 | + maxfev = 200*(n + 1) | |
363 | + ftol = rtol | |
364 | + xtol = rtol | |
365 | + gtol = zero | |
366 | + epsfcn = zero | |
367 | + mode = 1 | |
368 | + nprint = 0 | |
369 | + | |
370 | + call lmdif(zef, m, n, a, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |
371 | + mode, factor, nprint, info, nfev, fjac, iwa) | |
372 | + | |
373 | + if (info == 8) info = 4 | |
374 | + | |
375 | + deallocate(fvec,iwa) | |
376 | +end subroutine | |
377 | + | |
378 | + | |
379 | +! MINPACK routines which are used by both LMDIF & LMDER | |
380 | +! 25 October 2001: | |
381 | +! Changed INTENT of iflag in several places to IN OUT. | |
382 | +! Changed INTENT of fvec to IN OUT in user routine FCN. | |
383 | +! Removed arguments diag and qtv from LMDIF & LMDER. | |
384 | +! Replaced several DO loops with array operations. | |
385 | +! amiller @ bigpond.net.au | |
386 | + | |
387 | + | |
388 | +! ********** | |
389 | + | |
390 | +! subroutine lmdif1 | |
391 | + | |
392 | +! The purpose of lmdif1 is to minimize the sum of the squares of m nonlinear | |
393 | +! functions in n variables by a modification of the Levenberg-Marquardt | |
394 | +! algorithm. This is done by using the more general least-squares | |
395 | +! solver lmdif. The user must provide a subroutine which calculates the | |
396 | +! functions. The jacobian is then calculated by a forward-difference | |
397 | +! approximation. | |
398 | + | |
399 | +! the subroutine statement is | |
400 | + | |
401 | +! subroutine lmdif1(fcn, m, n, x, fvec, tol, info, iwa) | |
402 | + | |
403 | +! where | |
404 | + | |
405 | +! fcn is the name of the user-supplied subroutine which calculates | |
406 | +! the functions. fcn must be declared in an external statement in the | |
407 | +! user calling program, and should be written as follows. | |
408 | + | |
409 | +! subroutine fcn(m, n, x, fvec, iflag) | |
410 | +! integer m, n, iflag | |
411 | +! REAL (dp) x(n), fvec(m) | |
412 | +! ---------- | |
413 | +! calculate the functions at x and return this vector in fvec. | |
414 | +! ---------- | |
415 | +! return | |
416 | +! end | |
417 | + | |
418 | +! the value of iflag should not be changed by fcn unless | |
419 | +! the user wants to terminate execution of lmdif1. | |
420 | +! In this case set iflag to a negative integer. | |
421 | + | |
422 | +! m is a positive integer input variable set to the number of functions. | |
423 | + | |
424 | +! n is a positive integer input variable set to the number of variables. | |
425 | +! n must not exceed m. | |
426 | + | |
427 | +! x is an array of length n. On input x must contain an initial estimate | |
428 | +! of the solution vector. On output x contains the final estimate of | |
429 | +! the solution vector. | |
430 | + | |
431 | +! fvec is an output array of length m which contains | |
432 | +! the functions evaluated at the output x. | |
433 | + | |
434 | +! tol is a nonnegative input variable. Termination occurs when the | |
435 | +! algorithm estimates either that the relative error in the sum of | |
436 | +! squares is at most tol or that the relative error between x and the | |
437 | +! solution is at most tol. | |
438 | + | |
439 | +! info is an integer output variable. If the user has terminated execution, | |
440 | +! info is set to the (negative) value of iflag. See description of fcn. | |
441 | +! Otherwise, info is set as follows. | |
442 | + | |
443 | +! info = 0 improper input parameters. | |
444 | + | |
445 | +! info = 1 algorithm estimates that the relative error | |
446 | +! in the sum of squares is at most tol. | |
447 | + | |
448 | +! info = 2 algorithm estimates that the relative error | |
449 | +! between x and the solution is at most tol. | |
450 | + | |
451 | +! info = 3 conditions for info = 1 and info = 2 both hold. | |
452 | + | |
453 | +! info = 4 fvec is orthogonal to the columns of the | |
454 | +! jacobian to machine precision. | |
455 | + | |
456 | +! info = 5 number of calls to fcn has reached or exceeded 200*(n+1). | |
457 | + | |
458 | +! info = 6 tol is too small. no further reduction in | |
459 | +! the sum of squares is possible. | |
460 | + | |
461 | +! info = 7 tol is too small. No further improvement in | |
462 | +! the approximate solution x is possible. | |
463 | + | |
464 | +! iwa is an integer work array of length n. | |
465 | + | |
466 | +! wa is a work array of length lwa. | |
467 | + | |
468 | +! lwa is a positive integer input variable not less than m*n+5*n+m. | |
469 | + | |
470 | +! subprograms called | |
471 | + | |
472 | +! user-supplied ...... fcn | |
473 | + | |
474 | +! minpack-supplied ... lmdif | |
475 | + | |
476 | +! argonne national laboratory. minpack project. march 1980. | |
477 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
478 | + | |
479 | +! ********** | |
480 | + | |
481 | +SUBROUTINE lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |
482 | + mode, factor, nprint, info, nfev, fjac, ipvt) | |
483 | + | |
484 | +! N.B. Arguments LDFJAC, DIAG, QTF, WA1, WA2, WA3 & WA4 have been removed. | |
485 | +INTEGER, PARAMETER :: dp = 8 | |
486 | +INTEGER, INTENT(IN) :: m | |
487 | +INTEGER, INTENT(IN) :: n | |
488 | +REAL (dp), INTENT(IN OUT) :: x(:) | |
489 | +REAL (dp), INTENT(OUT) :: fvec(:) | |
490 | +REAL (dp), INTENT(IN) :: ftol | |
491 | +REAL (dp), INTENT(IN) :: xtol | |
492 | +REAL (dp), INTENT(IN OUT) :: gtol | |
493 | +INTEGER, INTENT(IN OUT) :: maxfev | |
494 | +REAL (dp), INTENT(IN OUT) :: epsfcn | |
495 | +INTEGER, INTENT(IN) :: mode | |
496 | +REAL (dp), INTENT(IN) :: factor | |
497 | +INTEGER, INTENT(IN) :: nprint | |
498 | +INTEGER, INTENT(OUT) :: info | |
499 | +INTEGER, INTENT(OUT) :: nfev | |
500 | +REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | |
501 | +INTEGER, INTENT(OUT) :: ipvt(:) | |
502 | + | |
503 | +! EXTERNAL fcn | |
504 | + | |
505 | +INTERFACE | |
506 | + SUBROUTINE fcn(m, n, x, fvec, iflag) | |
507 | + INTEGER(4), INTENT(IN) :: m, n | |
508 | + REAL (8), INTENT(IN) :: x(:) | |
509 | + REAL (8), INTENT(IN OUT) :: fvec(:) | |
510 | + INTEGER(4), INTENT(IN OUT) :: iflag | |
511 | + END SUBROUTINE fcn | |
512 | +END INTERFACE | |
513 | + | |
514 | +! ********** | |
515 | + | |
516 | +! subroutine lmdif | |
517 | + | |
518 | +! The purpose of lmdif is to minimize the sum of the squares of m nonlinear | |
519 | +! functions in n variables by a modification of the Levenberg-Marquardt | |
520 | +! algorithm. The user must provide a subroutine which calculates the | |
521 | +! functions. The jacobian is then calculated by a forward-difference | |
522 | +! approximation. | |
523 | + | |
524 | +! the subroutine statement is | |
525 | + | |
526 | +! subroutine lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, | |
527 | +! diag, mode, factor, nprint, info, nfev, fjac, | |
528 | +! ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4) | |
529 | + | |
530 | +! N.B. 7 of these arguments have been removed in this version. | |
531 | + | |
532 | +! where | |
533 | + | |
534 | +! fcn is the name of the user-supplied subroutine which calculates the | |
535 | +! functions. fcn must be declared in an external statement in the user | |
536 | +! calling program, and should be written as follows. | |
537 | + | |
538 | +! subroutine fcn(m, n, x, fvec, iflag) | |
539 | +! integer m, n, iflag | |
540 | +! REAL (dp) x(:), fvec(m) | |
541 | +! ---------- | |
542 | +! calculate the functions at x and return this vector in fvec. | |
543 | +! ---------- | |
544 | +! return | |
545 | +! end | |
546 | + | |
547 | +! the value of iflag should not be changed by fcn unless | |
548 | +! the user wants to terminate execution of lmdif. | |
549 | +! in this case set iflag to a negative integer. | |
550 | + | |
551 | +! m is a positive integer input variable set to the number of functions. | |
552 | + | |
553 | +! n is a positive integer input variable set to the number of variables. | |
554 | +! n must not exceed m. | |
555 | + | |
556 | +! x is an array of length n. On input x must contain an initial estimate | |
557 | +! of the solution vector. On output x contains the final estimate of the | |
558 | +! solution vector. | |
559 | + | |
560 | +! fvec is an output array of length m which contains | |
561 | +! the functions evaluated at the output x. | |
562 | + | |
563 | +! ftol is a nonnegative input variable. Termination occurs when both the | |
564 | +! actual and predicted relative reductions in the sum of squares are at | |
565 | +! most ftol. Therefore, ftol measures the relative error desired | |
566 | +! in the sum of squares. | |
567 | + | |
568 | +! xtol is a nonnegative input variable. Termination occurs when the | |
569 | +! relative error between two consecutive iterates is at most xtol. | |
570 | +! Therefore, xtol measures the relative error desired in the approximate | |
571 | +! solution. | |
572 | + | |
573 | +! gtol is a nonnegative input variable. Termination occurs when the cosine | |
574 | +! of the angle between fvec and any column of the jacobian is at most | |
575 | +! gtol in absolute value. Therefore, gtol measures the orthogonality | |
576 | +! desired between the function vector and the columns of the jacobian. | |
577 | + | |
578 | +! maxfev is a positive integer input variable. Termination occurs when the | |
579 | +! number of calls to fcn is at least maxfev by the end of an iteration. | |
580 | + | |
581 | +! epsfcn is an input variable used in determining a suitable step length | |
582 | +! for the forward-difference approximation. This approximation assumes | |
583 | +! that the relative errors in the functions are of the order of epsfcn. | |
584 | +! If epsfcn is less than the machine precision, it is assumed that the | |
585 | +! relative errors in the functions are of the order of the machine | |
586 | +! precision. | |
587 | + | |
588 | +! diag is an array of length n. If mode = 1 (see below), diag is | |
589 | +! internally set. If mode = 2, diag must contain positive entries that | |
590 | +! serve as multiplicative scale factors for the variables. | |
591 | + | |
592 | +! mode is an integer input variable. If mode = 1, the variables will be | |
593 | +! scaled internally. If mode = 2, the scaling is specified by the input | |
594 | +! diag. other values of mode are equivalent to mode = 1. | |
595 | + | |
596 | +! factor is a positive input variable used in determining the initial step | |
597 | +! bound. This bound is set to the product of factor and the euclidean | |
598 | +! norm of diag*x if nonzero, or else to factor itself. In most cases | |
599 | +! factor should lie in the interval (.1,100.). 100. is a generally | |
600 | +! recommended value. | |
601 | + | |
602 | +! nprint is an integer input variable that enables controlled printing of | |
603 | +! iterates if it is positive. In this case, fcn is called with iflag = 0 | |
604 | +! at the beginning of the first iteration and every nprint iterations | |
605 | +! thereafter and immediately prior to return, with x and fvec available | |
606 | +! for printing. If nprint is not positive, no special calls | |
607 | +! of fcn with iflag = 0 are made. | |
608 | + | |
609 | +! info is an integer output variable. If the user has terminated | |
610 | +! execution, info is set to the (negative) value of iflag. | |
611 | +! See description of fcn. Otherwise, info is set as follows. | |
612 | + | |
613 | +! info = 0 improper input parameters. | |
614 | + | |
615 | +! info = 1 both actual and predicted relative reductions | |
616 | +! in the sum of squares are at most ftol. | |
617 | + | |
618 | +! info = 2 relative error between two consecutive iterates <= xtol. | |
619 | + | |
620 | +! info = 3 conditions for info = 1 and info = 2 both hold. | |
621 | + | |
622 | +! info = 4 the cosine of the angle between fvec and any column of | |
623 | +! the Jacobian is at most gtol in absolute value. | |
624 | + | |
625 | +! info = 5 number of calls to fcn has reached or exceeded maxfev. | |
626 | + | |
627 | +! info = 6 ftol is too small. no further reduction in | |
628 | +! the sum of squares is possible. | |
629 | + | |
630 | +! info = 7 xtol is too small. no further improvement in | |
631 | +! the approximate solution x is possible. | |
632 | + | |
633 | +! info = 8 gtol is too small. fvec is orthogonal to the | |
634 | +! columns of the jacobian to machine precision. | |
635 | + | |
636 | +! nfev is an integer output variable set to the number of calls to fcn. | |
637 | + | |
638 | +! fjac is an output m by n array. the upper n by n submatrix | |
639 | +! of fjac contains an upper triangular matrix r with | |
640 | +! diagonal elements of nonincreasing magnitude such that | |
641 | + | |
642 | +! t t t | |
643 | +! p *(jac *jac)*p = r *r, | |
644 | + | |
645 | +! where p is a permutation matrix and jac is the final calculated | |
646 | +! Jacobian. Column j of p is column ipvt(j) (see below) of the | |
647 | +! identity matrix. the lower trapezoidal part of fjac contains | |
648 | +! information generated during the computation of r. | |
649 | + | |
650 | +! ldfjac is a positive integer input variable not less than m | |
651 | +! which specifies the leading dimension of the array fjac. | |
652 | + | |
653 | +! ipvt is an integer output array of length n. ipvt defines a permutation | |
654 | +! matrix p such that jac*p = q*r, where jac is the final calculated | |
655 | +! jacobian, q is orthogonal (not stored), and r is upper triangular | |
656 | +! with diagonal elements of nonincreasing magnitude. | |
657 | +! Column j of p is column ipvt(j) of the identity matrix. | |
658 | + | |
659 | +! qtf is an output array of length n which contains | |
660 | +! the first n elements of the vector (q transpose)*fvec. | |
661 | + | |
662 | +! wa1, wa2, and wa3 are work arrays of length n. | |
663 | + | |
664 | +! wa4 is a work array of length m. | |
665 | + | |
666 | +! subprograms called | |
667 | + | |
668 | +! user-supplied ...... fcn | |
669 | + | |
670 | +! minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac | |
671 | + | |
672 | +! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod | |
673 | + | |
674 | +! argonne national laboratory. minpack project. march 1980. | |
675 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
676 | + | |
677 | +! ********** | |
678 | +INTEGER :: i, iflag, iter, j, l | |
679 | +REAL (dp) :: actred, delta, dirder, epsmch, fnorm, fnorm1, gnorm, & | |
680 | + par, pnorm, prered, ratio, sum, temp, temp1, temp2, xnorm | |
681 | +REAL (dp) :: diag(n), qtf(n), wa1(n), wa2(n), wa3(n), wa4(m) | |
682 | +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & | |
683 | + p25 = 0.25_dp, p75 = 0.75_dp, p0001 = 0.0001_dp, & | |
684 | + zero = 0.0_dp | |
685 | + | |
686 | +! epsmch is the machine precision. | |
687 | + | |
688 | +epsmch = EPSILON(zero) | |
689 | + | |
690 | +info = 0 | |
691 | +iflag = 0 | |
692 | +nfev = 0 | |
693 | + | |
694 | +! check the input parameters for errors. | |
695 | + | |
696 | +IF (n <= 0 .OR. m < n .OR. ftol < zero .OR. xtol < zero .OR. gtol < zero & | |
697 | + .OR. maxfev <= 0 .OR. factor <= zero) GO TO 300 | |
698 | +IF (mode /= 2) GO TO 20 | |
699 | +DO j = 1, n | |
700 | + IF (diag(j) <= zero) GO TO 300 | |
701 | +END DO | |
702 | + | |
703 | +! evaluate the function at the starting point and calculate its norm. | |
704 | + | |
705 | +20 iflag = 1 | |
706 | +CALL fcn(m, n, x, fvec, iflag) | |
707 | +nfev = 1 | |
708 | +IF (iflag < 0) GO TO 300 | |
709 | +fnorm = enorm(m, fvec) | |
710 | + | |
711 | +! initialize levenberg-marquardt parameter and iteration counter. | |
712 | + | |
713 | +par = zero | |
714 | +iter = 1 | |
715 | + | |
716 | +! beginning of the outer loop. | |
717 | + | |
718 | +! calculate the jacobian matrix. | |
719 | + | |
720 | +30 iflag = 2 | |
721 | +CALL fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | |
722 | +nfev = nfev + n | |
723 | +IF (iflag < 0) GO TO 300 | |
724 | + | |
725 | +! If requested, call fcn to enable printing of iterates. | |
726 | + | |
727 | +IF (nprint <= 0) GO TO 40 | |
728 | +iflag = 0 | |
729 | +IF (MOD(iter-1,nprint) == 0) CALL fcn(m, n, x, fvec, iflag) | |
730 | +IF (iflag < 0) GO TO 300 | |
731 | + | |
732 | +! Compute the qr factorization of the jacobian. | |
733 | + | |
734 | +40 CALL qrfac(m, n, fjac, .true., ipvt, wa1, wa2) | |
735 | + | |
736 | +! On the first iteration and if mode is 1, scale according | |
737 | +! to the norms of the columns of the initial jacobian. | |
738 | + | |
739 | +IF (iter /= 1) GO TO 80 | |
740 | +IF (mode == 2) GO TO 60 | |
741 | +DO j = 1, n | |
742 | + diag(j) = wa2(j) | |
743 | + IF (wa2(j) == zero) diag(j) = one | |
744 | +END DO | |
745 | + | |
746 | +! On the first iteration, calculate the norm of the scaled x | |
747 | +! and initialize the step bound delta. | |
748 | + | |
749 | +60 wa3(1:n) = diag(1:n)*x(1:n) | |
750 | +xnorm = enorm(n, wa3) | |
751 | +delta = factor*xnorm | |
752 | +IF (delta == zero) delta = factor | |
753 | + | |
754 | +! Form (q transpose)*fvec and store the first n components in qtf. | |
755 | + | |
756 | +80 wa4(1:m) = fvec(1:m) | |
757 | +DO j = 1, n | |
758 | + IF (fjac(j,j) == zero) GO TO 120 | |
759 | + sum = DOT_PRODUCT( fjac(j:m,j), wa4(j:m) ) | |
760 | + temp = -sum/fjac(j,j) | |
761 | + DO i = j, m | |
762 | + wa4(i) = wa4(i) + fjac(i,j)*temp | |
763 | + END DO | |
764 | + 120 fjac(j,j) = wa1(j) | |
765 | + qtf(j) = wa4(j) | |
766 | +END DO | |
767 | + | |
768 | +! compute the norm of the scaled gradient. | |
769 | + | |
770 | +gnorm = zero | |
771 | +IF (fnorm == zero) GO TO 170 | |
772 | +DO j = 1, n | |
773 | + l = ipvt(j) | |
774 | + IF (wa2(l) == zero) CYCLE | |
775 | + sum = zero | |
776 | + DO i = 1, j | |
777 | + sum = sum + fjac(i,j)*(qtf(i)/fnorm) | |
778 | + END DO | |
779 | + gnorm = MAX(gnorm, ABS(sum/wa2(l))) | |
780 | +END DO | |
781 | + | |
782 | +! test for convergence of the gradient norm. | |
783 | + | |
784 | +170 IF (gnorm <= gtol) info = 4 | |
785 | +IF (info /= 0) GO TO 300 | |
786 | + | |
787 | +! rescale if necessary. | |
788 | + | |
789 | +IF (mode == 2) GO TO 200 | |
790 | +DO j = 1, n | |
791 | + diag(j) = MAX(diag(j), wa2(j)) | |
792 | +END DO | |
793 | + | |
794 | +! beginning of the inner loop. | |
795 | + | |
796 | +! determine the Levenberg-Marquardt parameter. | |
797 | + | |
798 | +200 CALL lmpar(n, fjac, ipvt, diag, qtf, delta, par, wa1, wa2) | |
799 | + | |
800 | +! store the direction p and x + p. calculate the norm of p. | |
801 | + | |
802 | +DO j = 1, n | |
803 | + wa1(j) = -wa1(j) | |
804 | + wa2(j) = x(j) + wa1(j) | |
805 | + wa3(j) = diag(j)*wa1(j) | |
806 | +END DO | |
807 | +pnorm = enorm(n, wa3) | |
808 | + | |
809 | +! on the first iteration, adjust the initial step bound. | |
810 | + | |
811 | +IF (iter == 1) delta = MIN(delta, pnorm) | |
812 | + | |
813 | +! evaluate the function at x + p and calculate its norm. | |
814 | + | |
815 | +iflag = 1 | |
816 | +CALL fcn(m, n, wa2, wa4, iflag) | |
817 | +nfev = nfev + 1 | |
818 | +IF (iflag < 0) GO TO 300 | |
819 | +fnorm1 = enorm(m, wa4) | |
820 | + | |
821 | +! compute the scaled actual reduction. | |
822 | + | |
823 | +actred = -one | |
824 | +IF (p1*fnorm1 < fnorm) actred = one - (fnorm1/fnorm)**2 | |
825 | + | |
826 | +! Compute the scaled predicted reduction and | |
827 | +! the scaled directional derivative. | |
828 | + | |
829 | +DO j = 1, n | |
830 | + wa3(j) = zero | |
831 | + l = ipvt(j) | |
832 | + temp = wa1(l) | |
833 | + DO i = 1, j | |
834 | + wa3(i) = wa3(i) + fjac(i,j)*temp | |
835 | + END DO | |
836 | +END DO | |
837 | +temp1 = enorm(n,wa3)/fnorm | |
838 | +temp2 = (SQRT(par)*pnorm)/fnorm | |
839 | +prered = temp1**2 + temp2**2/p5 | |
840 | +dirder = -(temp1**2 + temp2**2) | |
841 | + | |
842 | +! compute the ratio of the actual to the predicted reduction. | |
843 | + | |
844 | +ratio = zero | |
845 | +IF (prered /= zero) ratio = actred/prered | |
846 | + | |
847 | +! update the step bound. | |
848 | + | |
849 | +IF (ratio <= p25) THEN | |
850 | + IF (actred >= zero) temp = p5 | |
851 | + IF (actred < zero) temp = p5*dirder/(dirder + p5*actred) | |
852 | + IF (p1*fnorm1 >= fnorm .OR. temp < p1) temp = p1 | |
853 | + delta = temp*MIN(delta,pnorm/p1) | |
854 | + par = par/temp | |
855 | +ELSE | |
856 | + IF (par /= zero .AND. ratio < p75) GO TO 260 | |
857 | + delta = pnorm/p5 | |
858 | + par = p5*par | |
859 | +END IF | |
860 | + | |
861 | +! test for successful iteration. | |
862 | + | |
863 | +260 IF (ratio < p0001) GO TO 290 | |
864 | + | |
865 | +! successful iteration. update x, fvec, and their norms. | |
866 | + | |
867 | +DO j = 1, n | |
868 | + x(j) = wa2(j) | |
869 | + wa2(j) = diag(j)*x(j) | |
870 | +END DO | |
871 | +fvec(1:m) = wa4(1:m) | |
872 | +xnorm = enorm(n, wa2) | |
873 | +fnorm = fnorm1 | |
874 | +iter = iter + 1 | |
875 | + | |
876 | +! tests for convergence. | |
877 | + | |
878 | +290 IF (ABS(actred) <= ftol .AND. prered <= ftol .AND. p5*ratio <= one) info = 1 | |
879 | +IF (delta <= xtol*xnorm) info = 2 | |
880 | +IF (ABS(actred) <= ftol .AND. prered <= ftol & | |
881 | + .AND. p5*ratio <= one .AND. info == 2) info = 3 | |
882 | +IF (info /= 0) GO TO 300 | |
883 | + | |
884 | +! tests for termination and stringent tolerances. | |
885 | + | |
886 | +IF (nfev >= maxfev) info = 5 | |
887 | +IF (ABS(actred) <= epsmch .AND. prered <= epsmch & | |
888 | + .AND. p5*ratio <= one) info = 6 | |
889 | +IF (delta <= epsmch*xnorm) info = 7 | |
890 | +IF (gnorm <= epsmch) info = 8 | |
891 | +IF (info /= 0) GO TO 300 | |
892 | + | |
893 | +! end of the inner loop. repeat if iteration unsuccessful. | |
894 | + | |
895 | +IF (ratio < p0001) GO TO 200 | |
896 | + | |
897 | +! end of the outer loop. | |
898 | + | |
899 | +GO TO 30 | |
900 | + | |
901 | +! termination, either normal or user imposed. | |
902 | + | |
903 | +300 IF (iflag < 0) info = iflag | |
904 | +iflag = 0 | |
905 | +IF (nprint > 0) CALL fcn(m, n, x, fvec, iflag) | |
906 | +RETURN | |
907 | + | |
908 | +! last card of subroutine lmdif. | |
909 | + | |
910 | +END SUBROUTINE lmdif | |
911 | + | |
912 | + | |
913 | +! ********** | |
914 | + | |
915 | + | |
916 | +SUBROUTINE lmpar(n, r, ipvt, diag, qtb, delta, par, x, sdiag) | |
917 | + | |
918 | +! Code converted using TO_F90 by Alan Miller | |
919 | +! Date: 1999-12-09 Time: 12:46:12 | |
920 | + | |
921 | +! N.B. Arguments LDR, WA1 & WA2 have been removed. | |
922 | + | |
923 | +INTEGER, PARAMETER :: dp = 8 | |
924 | +INTEGER, INTENT(IN) :: n | |
925 | +REAL (dp), INTENT(IN OUT) :: r(:,:) | |
926 | +INTEGER, INTENT(IN) :: ipvt(:) | |
927 | +REAL (dp), INTENT(IN) :: diag(:) | |
928 | +REAL (dp), INTENT(IN) :: qtb(:) | |
929 | +REAL (dp), INTENT(IN) :: delta | |
930 | +REAL (dp), INTENT(OUT) :: par | |
931 | +REAL (dp), INTENT(OUT) :: x(:) | |
932 | +REAL (dp), INTENT(OUT) :: sdiag(:) | |
933 | + | |
934 | +! ********** | |
935 | + | |
936 | +! subroutine lmpar | |
937 | + | |
938 | +! Given an m by n matrix a, an n by n nonsingular diagonal matrix d, | |
939 | +! an m-vector b, and a positive number delta, the problem is to determine a | |
940 | +! value for the parameter par such that if x solves the system | |
941 | + | |
942 | +! a*x = b , sqrt(par)*d*x = 0 , | |
943 | + | |
944 | +! in the least squares sense, and dxnorm is the euclidean | |
945 | +! norm of d*x, then either par is zero and | |
946 | + | |
947 | +! (dxnorm-delta) <= 0.1*delta , | |
948 | + | |
949 | +! or par is positive and | |
950 | + | |
951 | +! abs(dxnorm-delta) <= 0.1*delta . | |
952 | + | |
953 | +! This subroutine completes the solution of the problem if it is provided | |
954 | +! with the necessary information from the r factorization, with column | |
955 | +! qpivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |
956 | +! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |
957 | +! elements of nonincreasing magnitude, then lmpar expects the full upper | |
958 | +! triangle of r, the permutation matrix p, and the first n components of | |
959 | +! (q transpose)*b. | |
960 | +! On output lmpar also provides an upper triangular matrix s such that | |
961 | + | |
962 | +! t t t | |
963 | +! p *(a *a + par*d*d)*p = s *s . | |
964 | + | |
965 | +! s is employed within lmpar and may be of separate interest. | |
966 | + | |
967 | +! Only a few iterations are generally needed for convergence of the algorithm. | |
968 | +! If, however, the limit of 10 iterations is reached, then the output par | |
969 | +! will contain the best value obtained so far. | |
970 | + | |
971 | +! the subroutine statement is | |
972 | + | |
973 | +! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, wa1,wa2) | |
974 | + | |
975 | +! where | |
976 | + | |
977 | +! n is a positive integer input variable set to the order of r. | |
978 | + | |
979 | +! r is an n by n array. on input the full upper triangle | |
980 | +! must contain the full upper triangle of the matrix r. | |
981 | +! On output the full upper triangle is unaltered, and the | |
982 | +! strict lower triangle contains the strict upper triangle | |
983 | +! (transposed) of the upper triangular matrix s. | |
984 | + | |
985 | +! ldr is a positive integer input variable not less than n | |
986 | +! which specifies the leading dimension of the array r. | |
987 | + | |
988 | +! ipvt is an integer input array of length n which defines the | |
989 | +! permutation matrix p such that a*p = q*r. column j of p | |
990 | +! is column ipvt(j) of the identity matrix. | |
991 | + | |
992 | +! diag is an input array of length n which must contain the | |
993 | +! diagonal elements of the matrix d. | |
994 | + | |
995 | +! qtb is an input array of length n which must contain the first | |
996 | +! n elements of the vector (q transpose)*b. | |
997 | + | |
998 | +! delta is a positive input variable which specifies an upper | |
999 | +! bound on the euclidean norm of d*x. | |
1000 | + | |
1001 | +! par is a nonnegative variable. on input par contains an | |
1002 | +! initial estimate of the levenberg-marquardt parameter. | |
1003 | +! on output par contains the final estimate. | |
1004 | + | |
1005 | +! x is an output array of length n which contains the least | |
1006 | +! squares solution of the system a*x = b, sqrt(par)*d*x = 0, | |
1007 | +! for the output par. | |
1008 | + | |
1009 | +! sdiag is an output array of length n which contains the | |
1010 | +! diagonal elements of the upper triangular matrix s. | |
1011 | + | |
1012 | +! wa1 and wa2 are work arrays of length n. | |
1013 | + | |
1014 | +! subprograms called | |
1015 | + | |
1016 | +! minpack-supplied ... dpmpar,enorm,qrsolv | |
1017 | + | |
1018 | +! fortran-supplied ... ABS,MAX,MIN,SQRT | |
1019 | + | |
1020 | +! argonne national laboratory. minpack project. march 1980. | |
1021 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
1022 | + | |
1023 | +! ********** | |
1024 | +INTEGER :: iter, j, jm1, jp1, k, l, nsing | |
1025 | +REAL (dp) :: dxnorm, dwarf, fp, gnorm, parc, parl, paru, sum, temp | |
1026 | +REAL (dp) :: wa1(n), wa2(n) | |
1027 | +REAL (dp), PARAMETER :: p1 = 0.1_dp, p001 = 0.001_dp, zero = 0.0_dp | |
1028 | + | |
1029 | +! dwarf is the smallest positive magnitude. | |
1030 | + | |
1031 | +dwarf = TINY(zero) | |
1032 | + | |
1033 | +! compute and store in x the gauss-newton direction. if the | |
1034 | +! jacobian is rank-deficient, obtain a least squares solution. | |
1035 | + | |
1036 | +nsing = n | |
1037 | +DO j = 1, n | |
1038 | + wa1(j) = qtb(j) | |
1039 | + IF (r(j,j) == zero .AND. nsing == n) nsing = j - 1 | |
1040 | + IF (nsing < n) wa1(j) = zero | |
1041 | +END DO | |
1042 | + | |
1043 | +DO k = 1, nsing | |
1044 | + j = nsing - k + 1 | |
1045 | + wa1(j) = wa1(j)/r(j,j) | |
1046 | + temp = wa1(j) | |
1047 | + jm1 = j - 1 | |
1048 | + wa1(1:jm1) = wa1(1:jm1) - r(1:jm1,j)*temp | |
1049 | +END DO | |
1050 | + | |
1051 | +DO j = 1, n | |
1052 | + l = ipvt(j) | |
1053 | + x(l) = wa1(j) | |
1054 | +END DO | |
1055 | + | |
1056 | +! initialize the iteration counter. | |
1057 | +! evaluate the function at the origin, and test | |
1058 | +! for acceptance of the gauss-newton direction. | |
1059 | + | |
1060 | +iter = 0 | |
1061 | +wa2(1:n) = diag(1:n)*x(1:n) | |
1062 | +dxnorm = enorm(n, wa2) | |
1063 | +fp = dxnorm - delta | |
1064 | +IF (fp <= p1*delta) GO TO 220 | |
1065 | + | |
1066 | +! if the jacobian is not rank deficient, the newton | |
1067 | +! step provides a lower bound, parl, for the zero of | |
1068 | +! the function. Otherwise set this bound to zero. | |
1069 | + | |
1070 | +parl = zero | |
1071 | +IF (nsing < n) GO TO 120 | |
1072 | +DO j = 1, n | |
1073 | + l = ipvt(j) | |
1074 | + wa1(j) = diag(l)*(wa2(l)/dxnorm) | |
1075 | +END DO | |
1076 | +DO j = 1, n | |
1077 | + sum = DOT_PRODUCT( r(1:j-1,j), wa1(1:j-1) ) | |
1078 | + wa1(j) = (wa1(j) - sum)/r(j,j) | |
1079 | +END DO | |
1080 | +temp = enorm(n,wa1) | |
1081 | +parl = ((fp/delta)/temp)/temp | |
1082 | + | |
1083 | +! calculate an upper bound, paru, for the zero of the function. | |
1084 | + | |
1085 | +120 DO j = 1, n | |
1086 | + sum = DOT_PRODUCT( r(1:j,j), qtb(1:j) ) | |
1087 | + l = ipvt(j) | |
1088 | + wa1(j) = sum/diag(l) | |
1089 | +END DO | |
1090 | +gnorm = enorm(n,wa1) | |
1091 | +paru = gnorm/delta | |
1092 | +IF (paru == zero) paru = dwarf/MIN(delta,p1) | |
1093 | + | |
1094 | +! if the input par lies outside of the interval (parl,paru), | |
1095 | +! set par to the closer endpoint. | |
1096 | + | |
1097 | +par = MAX(par,parl) | |
1098 | +par = MIN(par,paru) | |
1099 | +IF (par == zero) par = gnorm/dxnorm | |
1100 | + | |
1101 | +! beginning of an iteration. | |
1102 | + | |
1103 | +150 iter = iter + 1 | |
1104 | + | |
1105 | +! evaluate the function at the current value of par. | |
1106 | + | |
1107 | +IF (par == zero) par = MAX(dwarf, p001*paru) | |
1108 | +temp = SQRT(par) | |
1109 | +wa1(1:n) = temp*diag(1:n) | |
1110 | +CALL qrsolv(n, r, ipvt, wa1, qtb, x, sdiag) | |
1111 | +wa2(1:n) = diag(1:n)*x(1:n) | |
1112 | +dxnorm = enorm(n, wa2) | |
1113 | +temp = fp | |
1114 | +fp = dxnorm - delta | |
1115 | + | |
1116 | +! if the function is small enough, accept the current value | |
1117 | +! of par. also test for the exceptional cases where parl | |
1118 | +! is zero or the number of iterations has reached 10. | |
1119 | + | |
1120 | +IF (ABS(fp) <= p1*delta .OR. parl == zero .AND. fp <= temp & | |
1121 | + .AND. temp < zero .OR. iter == 10) GO TO 220 | |
1122 | + | |
1123 | +! compute the newton correction. | |
1124 | + | |
1125 | +DO j = 1, n | |
1126 | + l = ipvt(j) | |
1127 | + wa1(j) = diag(l)*(wa2(l)/dxnorm) | |
1128 | +END DO | |
1129 | +DO j = 1, n | |
1130 | + wa1(j) = wa1(j)/sdiag(j) | |
1131 | + temp = wa1(j) | |
1132 | + jp1 = j + 1 | |
1133 | + wa1(jp1:n) = wa1(jp1:n) - r(jp1:n,j)*temp | |
1134 | +END DO | |
1135 | +temp = enorm(n,wa1) | |
1136 | +parc = ((fp/delta)/temp)/temp | |
1137 | + | |
1138 | +! depending on the sign of the function, update parl or paru. | |
1139 | + | |
1140 | +IF (fp > zero) parl = MAX(parl,par) | |
1141 | +IF (fp < zero) paru = MIN(paru,par) | |
1142 | + | |
1143 | +! compute an improved estimate for par. | |
1144 | + | |
1145 | +par = MAX(parl, par+parc) | |
1146 | + | |
1147 | +! end of an iteration. | |
1148 | + | |
1149 | +GO TO 150 | |
1150 | + | |
1151 | +! termination. | |
1152 | + | |
1153 | +220 IF (iter == 0) par = zero | |
1154 | +RETURN | |
1155 | + | |
1156 | +! last card of subroutine lmpar. | |
1157 | + | |
1158 | +END SUBROUTINE lmpar | |
1159 | + | |
1160 | + | |
1161 | + | |
1162 | +SUBROUTINE qrfac(m, n, a, pivot, ipvt, rdiag, acnorm) | |
1163 | + | |
1164 | +! Code converted using TO_F90 by Alan Miller | |
1165 | +! Date: 1999-12-09 Time: 12:46:17 | |
1166 | + | |
1167 | +! N.B. Arguments LDA, LIPVT & WA have been removed. | |
1168 | +INTEGER, PARAMETER :: dp = 8 | |
1169 | +INTEGER, INTENT(IN) :: m | |
1170 | +INTEGER, INTENT(IN) :: n | |
1171 | +REAL (dp), INTENT(IN OUT) :: a(:,:) | |
1172 | +LOGICAL, INTENT(IN) :: pivot | |
1173 | +INTEGER, INTENT(OUT) :: ipvt(:) | |
1174 | +REAL (dp), INTENT(OUT) :: rdiag(:) | |
1175 | +REAL (dp), INTENT(OUT) :: acnorm(:) | |
1176 | + | |
1177 | +! ********** | |
1178 | + | |
1179 | +! subroutine qrfac | |
1180 | + | |
1181 | +! This subroutine uses Householder transformations with column pivoting | |
1182 | +! (optional) to compute a qr factorization of the m by n matrix a. | |
1183 | +! That is, qrfac determines an orthogonal matrix q, a permutation matrix p, | |
1184 | +! and an upper trapezoidal matrix r with diagonal elements of nonincreasing | |
1185 | +! magnitude, such that a*p = q*r. The householder transformation for | |
1186 | +! column k, k = 1,2,...,min(m,n), is of the form | |
1187 | + | |
1188 | +! t | |
1189 | +! i - (1/u(k))*u*u | |
1190 | + | |
1191 | +! where u has zeros in the first k-1 positions. The form of this | |
1192 | +! transformation and the method of pivoting first appeared in the | |
1193 | +! corresponding linpack subroutine. | |
1194 | + | |
1195 | +! the subroutine statement is | |
1196 | + | |
1197 | +! subroutine qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) | |
1198 | + | |
1199 | +! N.B. 3 of these arguments have been omitted in this version. | |
1200 | + | |
1201 | +! where | |
1202 | + | |
1203 | +! m is a positive integer input variable set to the number of rows of a. | |
1204 | + | |
1205 | +! n is a positive integer input variable set to the number of columns of a. | |
1206 | + | |
1207 | +! a is an m by n array. On input a contains the matrix for | |
1208 | +! which the qr factorization is to be computed. On output | |
1209 | +! the strict upper trapezoidal part of a contains the strict | |
1210 | +! upper trapezoidal part of r, and the lower trapezoidal | |
1211 | +! part of a contains a factored form of q (the non-trivial | |
1212 | +! elements of the u vectors described above). | |
1213 | + | |
1214 | +! lda is a positive integer input variable not less than m | |
1215 | +! which specifies the leading dimension of the array a. | |
1216 | + | |
1217 | +! pivot is a logical input variable. If pivot is set true, | |
1218 | +! then column pivoting is enforced. If pivot is set false, | |
1219 | +! then no column pivoting is done. | |
1220 | + | |
1221 | +! ipvt is an integer output array of length lipvt. ipvt | |
1222 | +! defines the permutation matrix p such that a*p = q*r. | |
1223 | +! Column j of p is column ipvt(j) of the identity matrix. | |
1224 | +! If pivot is false, ipvt is not referenced. | |
1225 | + | |
1226 | +! lipvt is a positive integer input variable. If pivot is false, | |
1227 | +! then lipvt may be as small as 1. If pivot is true, then | |
1228 | +! lipvt must be at least n. | |
1229 | + | |
1230 | +! rdiag is an output array of length n which contains the | |
1231 | +! diagonal elements of r. | |
1232 | + | |
1233 | +! acnorm is an output array of length n which contains the norms of the | |
1234 | +! corresponding columns of the input matrix a. | |
1235 | +! If this information is not needed, then acnorm can coincide with rdiag. | |
1236 | + | |
1237 | +! wa is a work array of length n. If pivot is false, then wa | |
1238 | +! can coincide with rdiag. | |
1239 | + | |
1240 | +! subprograms called | |
1241 | + | |
1242 | +! minpack-supplied ... dpmpar,enorm | |
1243 | + | |
1244 | +! fortran-supplied ... MAX,SQRT,MIN | |
1245 | + | |
1246 | +! argonne national laboratory. minpack project. march 1980. | |
1247 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
1248 | + | |
1249 | +! ********** | |
1250 | +INTEGER :: i, j, jp1, k, kmax, minmn | |
1251 | +REAL (dp) :: ajnorm, epsmch, sum, temp, wa(n) | |
1252 | +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp | |
1253 | + | |
1254 | +! epsmch is the machine precision. | |
1255 | + | |
1256 | +epsmch = EPSILON(zero) | |
1257 | + | |
1258 | +! compute the initial column norms and initialize several arrays. | |
1259 | + | |
1260 | +DO j = 1, n | |
1261 | + acnorm(j) = enorm(m,a(1:,j)) | |
1262 | + rdiag(j) = acnorm(j) | |
1263 | + wa(j) = rdiag(j) | |
1264 | + IF (pivot) ipvt(j) = j | |
1265 | +END DO | |
1266 | + | |
1267 | +! Reduce a to r with Householder transformations. | |
1268 | + | |
1269 | +minmn = MIN(m,n) | |
1270 | +DO j = 1, minmn | |
1271 | + IF (.NOT.pivot) GO TO 40 | |
1272 | + | |
1273 | +! Bring the column of largest norm into the pivot position. | |
1274 | + | |
1275 | + kmax = j | |
1276 | + DO k = j, n | |
1277 | + IF (rdiag(k) > rdiag(kmax)) kmax = k | |
1278 | + END DO | |
1279 | + IF (kmax == j) GO TO 40 | |
1280 | + DO i = 1, m | |
1281 | + temp = a(i,j) | |
1282 | + a(i,j) = a(i,kmax) | |
1283 | + a(i,kmax) = temp | |
1284 | + END DO | |
1285 | + rdiag(kmax) = rdiag(j) | |
1286 | + wa(kmax) = wa(j) | |
1287 | + k = ipvt(j) | |
1288 | + ipvt(j) = ipvt(kmax) | |
1289 | + ipvt(kmax) = k | |
1290 | + | |
1291 | +! Compute the Householder transformation to reduce the | |
1292 | +! j-th column of a to a multiple of the j-th unit vector. | |
1293 | + | |
1294 | + 40 ajnorm = enorm(m-j+1, a(j:,j)) | |
1295 | + IF (ajnorm == zero) CYCLE | |
1296 | + IF (a(j,j) < zero) ajnorm = -ajnorm | |
1297 | + a(j:m,j) = a(j:m,j)/ajnorm | |
1298 | + a(j,j) = a(j,j) + one | |
1299 | + | |
1300 | +! Apply the transformation to the remaining columns and update the norms. | |
1301 | + | |
1302 | + jp1 = j + 1 | |
1303 | + DO k = jp1, n | |
1304 | + sum = DOT_PRODUCT( a(j:m,j), a(j:m,k) ) | |
1305 | + temp = sum/a(j,j) | |
1306 | + a(j:m,k) = a(j:m,k) - temp*a(j:m,j) | |
1307 | + IF (.NOT.pivot .OR. rdiag(k) == zero) CYCLE | |
1308 | + temp = a(j,k)/rdiag(k) | |
1309 | + rdiag(k) = rdiag(k)*SQRT(MAX(zero, one-temp**2)) | |
1310 | + IF (p05*(rdiag(k)/wa(k))**2 > epsmch) CYCLE | |
1311 | + rdiag(k) = enorm(m-j, a(jp1:,k)) | |
1312 | + wa(k) = rdiag(k) | |
1313 | + END DO | |
1314 | + rdiag(j) = -ajnorm | |
1315 | +END DO | |
1316 | +RETURN | |
1317 | + | |
1318 | +! last card of subroutine qrfac. | |
1319 | + | |
1320 | +END SUBROUTINE qrfac | |
1321 | + | |
1322 | + | |
1323 | + | |
1324 | +SUBROUTINE qrsolv(n, r, ipvt, diag, qtb, x, sdiag) | |
1325 | + | |
1326 | +! N.B. Arguments LDR & WA have been removed. | |
1327 | +INTEGER, PARAMETER :: dp = 8 | |
1328 | +INTEGER, INTENT(IN) :: n | |
1329 | +REAL (dp), INTENT(IN OUT) :: r(:,:) | |
1330 | +INTEGER, INTENT(IN) :: ipvt(:) | |
1331 | +REAL (dp), INTENT(IN) :: diag(:) | |
1332 | +REAL (dp), INTENT(IN) :: qtb(:) | |
1333 | +REAL (dp), INTENT(OUT) :: x(:) | |
1334 | +REAL (dp), INTENT(OUT) :: sdiag(:) | |
1335 | + | |
1336 | +! ********** | |
1337 | + | |
1338 | +! subroutine qrsolv | |
1339 | + | |
1340 | +! Given an m by n matrix a, an n by n diagonal matrix d, and an m-vector b, | |
1341 | +! the problem is to determine an x which solves the system | |
1342 | + | |
1343 | +! a*x = b , d*x = 0 , | |
1344 | + | |
1345 | +! in the least squares sense. | |
1346 | + | |
1347 | +! This subroutine completes the solution of the problem if it is provided | |
1348 | +! with the necessary information from the qr factorization, with column | |
1349 | +! pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |
1350 | +! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |
1351 | +! elements of nonincreasing magnitude, then qrsolv expects the full upper | |
1352 | +! triangle of r, the permutation matrix p, and the first n components of | |
1353 | +! (q transpose)*b. The system a*x = b, d*x = 0, is then equivalent to | |
1354 | + | |
1355 | +! t t | |
1356 | +! r*z = q *b , p *d*p*z = 0 , | |
1357 | + | |
1358 | +! where x = p*z. if this system does not have full rank, | |
1359 | +! then a least squares solution is obtained. On output qrsolv | |
1360 | +! also provides an upper triangular matrix s such that | |
1361 | + | |
1362 | +! t t t | |
1363 | +! p *(a *a + d*d)*p = s *s . | |
1364 | + | |
1365 | +! s is computed within qrsolv and may be of separate interest. | |
1366 | + | |
1367 | +! the subroutine statement is | |
1368 | + | |
1369 | +! subroutine qrsolv(n, r, ldr, ipvt, diag, qtb, x, sdiag, wa) | |
1370 | + | |
1371 | +! N.B. Arguments LDR and WA have been removed in this version. | |
1372 | + | |
1373 | +! where | |
1374 | + | |
1375 | +! n is a positive integer input variable set to the order of r. | |
1376 | + | |
1377 | +! r is an n by n array. On input the full upper triangle must contain | |
1378 | +! the full upper triangle of the matrix r. | |
1379 | +! On output the full upper triangle is unaltered, and the strict lower | |
1380 | +! triangle contains the strict upper triangle (transposed) of the | |
1381 | +! upper triangular matrix s. | |
1382 | + | |
1383 | +! ldr is a positive integer input variable not less than n | |
1384 | +! which specifies the leading dimension of the array r. | |
1385 | + | |
1386 | +! ipvt is an integer input array of length n which defines the | |
1387 | +! permutation matrix p such that a*p = q*r. Column j of p | |
1388 | +! is column ipvt(j) of the identity matrix. | |
1389 | + | |
1390 | +! diag is an input array of length n which must contain the | |
1391 | +! diagonal elements of the matrix d. | |
1392 | + | |
1393 | +! qtb is an input array of length n which must contain the first | |
1394 | +! n elements of the vector (q transpose)*b. | |
1395 | + | |
1396 | +! x is an output array of length n which contains the least | |
1397 | +! squares solution of the system a*x = b, d*x = 0. | |
1398 | + | |
1399 | +! sdiag is an output array of length n which contains the | |
1400 | +! diagonal elements of the upper triangular matrix s. | |
1401 | + | |
1402 | +! wa is a work array of length n. | |
1403 | + | |
1404 | +! subprograms called | |
1405 | + | |
1406 | +! fortran-supplied ... ABS,SQRT | |
1407 | + | |
1408 | +! argonne national laboratory. minpack project. march 1980. | |
1409 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
1410 | + | |
1411 | +! ********** | |
1412 | +INTEGER :: i, j, k, kp1, l, nsing | |
1413 | +REAL (dp) :: COS, cotan, qtbpj, SIN, sum, TAN, temp, wa(n) | |
1414 | +REAL (dp), PARAMETER :: p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp | |
1415 | + | |
1416 | +! Copy r and (q transpose)*b to preserve input and initialize s. | |
1417 | +! In particular, save the diagonal elements of r in x. | |
1418 | + | |
1419 | +DO j = 1, n | |
1420 | + r(j:n,j) = r(j,j:n) | |
1421 | + x(j) = r(j,j) | |
1422 | + wa(j) = qtb(j) | |
1423 | +END DO | |
1424 | + | |
1425 | +! Eliminate the diagonal matrix d using a givens rotation. | |
1426 | + | |
1427 | +DO j = 1, n | |
1428 | + | |
1429 | +! Prepare the row of d to be eliminated, locating the | |
1430 | +! diagonal element using p from the qr factorization. | |
1431 | + | |
1432 | + l = ipvt(j) | |
1433 | + IF (diag(l) == zero) CYCLE | |
1434 | + sdiag(j:n) = zero | |
1435 | + sdiag(j) = diag(l) | |
1436 | + | |
1437 | +! The transformations to eliminate the row of d modify only a single | |
1438 | +! element of (q transpose)*b beyond the first n, which is initially zero. | |
1439 | + | |
1440 | + qtbpj = zero | |
1441 | + DO k = j, n | |
1442 | + | |
1443 | +! Determine a givens rotation which eliminates the | |
1444 | +! appropriate element in the current row of d. | |
1445 | + | |
1446 | + IF (sdiag(k) == zero) CYCLE | |
1447 | + IF (ABS(r(k,k)) < ABS(sdiag(k))) THEN | |
1448 | + cotan = r(k,k)/sdiag(k) | |
1449 | + SIN = p5/SQRT(p25 + p25*cotan**2) | |
1450 | + COS = SIN*cotan | |
1451 | + ELSE | |
1452 | + TAN = sdiag(k)/r(k,k) | |
1453 | + COS = p5/SQRT(p25 + p25*TAN**2) | |
1454 | + SIN = COS*TAN | |
1455 | + END IF | |
1456 | + | |
1457 | +! Compute the modified diagonal element of r and | |
1458 | +! the modified element of ((q transpose)*b,0). | |
1459 | + | |
1460 | + r(k,k) = COS*r(k,k) + SIN*sdiag(k) | |
1461 | + temp = COS*wa(k) + SIN*qtbpj | |
1462 | + qtbpj = -SIN*wa(k) + COS*qtbpj | |
1463 | + wa(k) = temp | |
1464 | + | |
1465 | +! Accumulate the tranformation in the row of s. | |
1466 | + | |
1467 | + kp1 = k + 1 | |
1468 | + DO i = kp1, n | |
1469 | + temp = COS*r(i,k) + SIN*sdiag(i) | |
1470 | + sdiag(i) = -SIN*r(i,k) + COS*sdiag(i) | |
1471 | + r(i,k) = temp | |
1472 | + END DO | |
1473 | + END DO | |
1474 | + | |
1475 | +! Store the diagonal element of s and restore | |
1476 | +! the corresponding diagonal element of r. | |
1477 | + | |
1478 | + sdiag(j) = r(j,j) | |
1479 | + r(j,j) = x(j) | |
1480 | +END DO | |
1481 | + | |
1482 | +! Solve the triangular system for z. If the system is singular, | |
1483 | +! then obtain a least squares solution. | |
1484 | + | |
1485 | +nsing = n | |
1486 | +DO j = 1, n | |
1487 | + IF (sdiag(j) == zero .AND. nsing == n) nsing = j - 1 | |
1488 | + IF (nsing < n) wa(j) = zero | |
1489 | +END DO | |
1490 | + | |
1491 | +DO k = 1, nsing | |
1492 | + j = nsing - k + 1 | |
1493 | + sum = DOT_PRODUCT( r(j+1:nsing,j), wa(j+1:nsing) ) | |
1494 | + wa(j) = (wa(j) - sum)/sdiag(j) | |
1495 | +END DO | |
1496 | + | |
1497 | +! Permute the components of z back to components of x. | |
1498 | + | |
1499 | +DO j = 1, n | |
1500 | + l = ipvt(j) | |
1501 | + x(l) = wa(j) | |
1502 | +END DO | |
1503 | +RETURN | |
1504 | + | |
1505 | +! last card of subroutine qrsolv. | |
1506 | + | |
1507 | +END SUBROUTINE qrsolv | |
1508 | + | |
1509 | + | |
1510 | + | |
1511 | +FUNCTION enorm(n,x) RESULT(fn_val) | |
1512 | + | |
1513 | +! Code converted using TO_F90 by Alan Miller | |
1514 | +! Date: 1999-12-09 Time: 12:45:34 | |
1515 | +INTEGER, PARAMETER :: dp = 8 | |
1516 | +INTEGER, INTENT(IN) :: n | |
1517 | +REAL (dp), INTENT(IN) :: x(:) | |
1518 | +REAL (dp) :: fn_val | |
1519 | + | |
1520 | +! ********** | |
1521 | + | |
1522 | +! function enorm | |
1523 | + | |
1524 | +! given an n-vector x, this function calculates the euclidean norm of x. | |
1525 | + | |
1526 | +! the euclidean norm is computed by accumulating the sum of squares in | |
1527 | +! three different sums. The sums of squares for the small and large | |
1528 | +! components are scaled so that no overflows occur. Non-destructive | |
1529 | +! underflows are permitted. Underflows and overflows do not occur in the | |
1530 | +! computation of the unscaled sum of squares for the intermediate | |
1531 | +! components. The definitions of small, intermediate and large components | |
1532 | +! depend on two constants, rdwarf and rgiant. The main restrictions on | |
1533 | +! these constants are that rdwarf**2 not underflow and rgiant**2 not | |
1534 | +! overflow. The constants given here are suitable for every known computer. | |
1535 | + | |
1536 | +! the function statement is | |
1537 | + | |
1538 | +! REAL (dp) function enorm(n,x) | |
1539 | + | |
1540 | +! where | |
1541 | + | |
1542 | +! n is a positive integer input variable. | |
1543 | + | |
1544 | +! x is an input array of length n. | |
1545 | + | |
1546 | +! subprograms called | |
1547 | + | |
1548 | +! fortran-supplied ... ABS,SQRT | |
1549 | + | |
1550 | +! argonne national laboratory. minpack project. march 1980. | |
1551 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
1552 | + | |
1553 | +! ********** | |
1554 | +INTEGER :: i | |
1555 | +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max | |
1556 | +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp, rdwarf = 3.834E-20_dp, & | |
1557 | + rgiant = 1.304E+19_dp | |
1558 | + | |
1559 | +s1 = zero | |
1560 | +s2 = zero | |
1561 | +s3 = zero | |
1562 | +x1max = zero | |
1563 | +x3max = zero | |
1564 | +floatn = n | |
1565 | +agiant = rgiant/floatn | |
1566 | +DO i = 1, n | |
1567 | + xabs = ABS(x(i)) | |
1568 | + IF (xabs > rdwarf .AND. xabs < agiant) GO TO 70 | |
1569 | + IF (xabs <= rdwarf) GO TO 30 | |
1570 | + | |
1571 | +! sum for large components. | |
1572 | + | |
1573 | + IF (xabs <= x1max) GO TO 10 | |
1574 | + s1 = one + s1*(x1max/xabs)**2 | |
1575 | + x1max = xabs | |
1576 | + GO TO 20 | |
1577 | + | |
1578 | + 10 s1 = s1 + (xabs/x1max)**2 | |
1579 | + | |
1580 | + 20 GO TO 60 | |
1581 | + | |
1582 | +! sum for small components. | |
1583 | + | |
1584 | + 30 IF (xabs <= x3max) GO TO 40 | |
1585 | + s3 = one + s3*(x3max/xabs)**2 | |
1586 | + x3max = xabs | |
1587 | + GO TO 60 | |
1588 | + | |
1589 | + 40 IF (xabs /= zero) s3 = s3 + (xabs/x3max)**2 | |
1590 | + | |
1591 | + 60 CYCLE | |
1592 | + | |
1593 | +! sum for intermediate components. | |
1594 | + | |
1595 | + 70 s2 = s2 + xabs**2 | |
1596 | +END DO | |
1597 | + | |
1598 | +! calculation of norm. | |
1599 | + | |
1600 | +IF (s1 == zero) GO TO 100 | |
1601 | +fn_val = x1max*SQRT(s1 + (s2/x1max)/x1max) | |
1602 | +GO TO 120 | |
1603 | + | |
1604 | +100 IF (s2 == zero) GO TO 110 | |
1605 | +IF (s2 >= x3max) fn_val = SQRT(s2*(one + (x3max/s2)*(x3max*s3))) | |
1606 | +IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) | |
1607 | +GO TO 120 | |
1608 | + | |
1609 | +110 fn_val = x3max*SQRT(s3) | |
1610 | + | |
1611 | +120 RETURN | |
1612 | + | |
1613 | +! last card of function enorm. | |
1614 | + | |
1615 | +END FUNCTION enorm | |
1616 | + | |
1617 | + | |
1618 | + | |
1619 | +SUBROUTINE fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | |
1620 | + | |
1621 | +! Code converted using TO_F90 by Alan Miller | |
1622 | +! Date: 1999-12-09 Time: 12:45:44 | |
1623 | + | |
1624 | +! N.B. Arguments LDFJAC & WA have been removed. | |
1625 | +INTEGER, PARAMETER :: dp = 8 | |
1626 | +INTEGER, INTENT(IN) :: m | |
1627 | +INTEGER, INTENT(IN) :: n | |
1628 | +REAL (dp), INTENT(IN OUT) :: x(n) | |
1629 | +REAL (dp), INTENT(IN) :: fvec(m) | |
1630 | +REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | |
1631 | +INTEGER, INTENT(IN OUT) :: iflag | |
1632 | +REAL (dp), INTENT(IN) :: epsfcn | |
1633 | + | |
1634 | +INTERFACE | |
1635 | + SUBROUTINE fcn(m, n, x, fvec, iflag) | |
1636 | + INTEGER(4), INTENT(IN) :: m, n | |
1637 | + REAL (8), INTENT(IN) :: x(:) | |
1638 | + REAL (8), INTENT(IN OUT) :: fvec(:) | |
1639 | + INTEGER(4), INTENT(IN OUT) :: iflag | |
1640 | + END SUBROUTINE fcn | |
1641 | +END INTERFACE | |
1642 | + | |
1643 | +! ********** | |
1644 | + | |
1645 | +! subroutine fdjac2 | |
1646 | + | |
1647 | +! this subroutine computes a forward-difference approximation | |
1648 | +! to the m by n jacobian matrix associated with a specified | |
1649 | +! problem of m functions in n variables. | |
1650 | + | |
1651 | +! the subroutine statement is | |
1652 | + | |
1653 | +! subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa) | |
1654 | + | |
1655 | +! where | |
1656 | + | |
1657 | +! fcn is the name of the user-supplied subroutine which calculates the | |
1658 | +! functions. fcn must be declared in an external statement in the user | |
1659 | +! calling program, and should be written as follows. | |
1660 | + | |
1661 | +! subroutine fcn(m,n,x,fvec,iflag) | |
1662 | +! integer m,n,iflag | |
1663 | +! REAL (dp) x(n),fvec(m) | |
1664 | +! ---------- | |
1665 | +! calculate the functions at x and | |
1666 | +! return this vector in fvec. | |
1667 | +! ---------- | |
1668 | +! return | |
1669 | +! end | |
1670 | + | |
1671 | +! the value of iflag should not be changed by fcn unless | |
1672 | +! the user wants to terminate execution of fdjac2. | |
1673 | +! in this case set iflag to a negative integer. | |
1674 | + | |
1675 | +! m is a positive integer input variable set to the number of functions. | |
1676 | + | |
1677 | +! n is a positive integer input variable set to the number of variables. | |
1678 | +! n must not exceed m. | |
1679 | + | |
1680 | +! x is an input array of length n. | |
1681 | + | |
1682 | +! fvec is an input array of length m which must contain the | |
1683 | +! functions evaluated at x. | |
1684 | + | |
1685 | +! fjac is an output m by n array which contains the | |
1686 | +! approximation to the jacobian matrix evaluated at x. | |
1687 | + | |
1688 | +! ldfjac is a positive integer input variable not less than m | |
1689 | +! which specifies the leading dimension of the array fjac. | |
1690 | + | |
1691 | +! iflag is an integer variable which can be used to terminate | |
1692 | +! the execution of fdjac2. see description of fcn. | |
1693 | + | |
1694 | +! epsfcn is an input variable used in determining a suitable step length | |
1695 | +! for the forward-difference approximation. This approximation assumes | |
1696 | +! that the relative errors in the functions are of the order of epsfcn. | |
1697 | +! If epsfcn is less than the machine precision, it is assumed that the | |
1698 | +! relative errors in the functions are of the order of the machine | |
1699 | +! precision. | |
1700 | + | |
1701 | +! wa is a work array of length m. | |
1702 | + | |
1703 | +! subprograms called | |
1704 | + | |
1705 | +! user-supplied ...... fcn | |
1706 | + | |
1707 | +! minpack-supplied ... dpmpar | |
1708 | + | |
1709 | +! fortran-supplied ... ABS,MAX,SQRT | |
1710 | + | |
1711 | +! argonne national laboratory. minpack project. march 1980. | |
1712 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
1713 | + | |
1714 | +! ********** | |
1715 | +INTEGER :: j | |
1716 | +REAL (dp) :: eps, epsmch, h, temp, wa(m) | |
1717 | +REAL (dp), PARAMETER :: zero = 0.0_dp | |
1718 | + | |
1719 | +! epsmch is the machine precision. | |
1720 | + | |
1721 | +epsmch = EPSILON(zero) | |
1722 | + | |
1723 | +eps = SQRT(MAX(epsfcn, epsmch)) | |
1724 | +DO j = 1, n | |
1725 | + temp = x(j) | |
1726 | + h = eps*ABS(temp) | |
1727 | + IF (h == zero) h = eps | |
1728 | + x(j) = temp + h | |
1729 | + CALL fcn(m, n, x, wa, iflag) | |
1730 | + IF (iflag < 0) EXIT | |
1731 | + x(j) = temp | |
1732 | + fjac(1:m,j) = (wa(1:m) - fvec(1:m))/h | |
1733 | +END DO | |
1734 | + | |
1735 | +RETURN | |
1736 | + | |
1737 | +! last card of subroutine fdjac2. | |
1738 | + | |
1739 | +END SUBROUTINE fdjac2 | |
1740 | + | |
314 | 1741 | |
315 | 1742 | |
316 | 1743 | end module fvn_misc |