Commit e9d7fe24b46cc1f7f6e226744757b297f43e6828
1 parent
f6479a913d
Exists in
master
and in
2 other branches
Added fvn_lmdif to fvn_misc
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@77 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 1427 additions and 0 deletions Side-by-side Diff
fvn_misc/fvn_misc.f90
Diff suppressed. Click to show
| ... | ... | @@ -311,6 +311,1433 @@ |
| 311 | 311 | |
| 312 | 312 | end subroutine |
| 313 | 313 | |
| 314 | +! | |
| 315 | +! | |
| 316 | +! | |
| 317 | +! Non linear least square using Levenberg-Marquardt algorithm and | |
| 318 | +! a finite difference jacobian | |
| 319 | +! | |
| 320 | +! This uses MINPACK Routines (http://www.netlib.org/minpack) | |
| 321 | +! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |
| 322 | +! | |
| 323 | + | |
| 324 | +subroutine fvn_lmdif(zef,m,n,a,info,tol) | |
| 325 | + integer(4), intent(in) :: m | |
| 326 | + integer(4), intent(in) :: n | |
| 327 | + real(8), dimension(:), intent(inout) :: a | |
| 328 | + integer(4), intent(out) :: info | |
| 329 | + real(8), intent(in), optional :: tol | |
| 330 | + | |
| 331 | + real(8) :: rtol | |
| 332 | + real(8), dimension(:), allocatable :: fvec | |
| 333 | + integer(4), dimension(:), allocatable :: iwa | |
| 334 | + | |
| 335 | + interface | |
| 336 | + subroutine zef(m,n,a,fvec,iflag) | |
| 337 | + integer(4), intent(in) :: m | |
| 338 | + integer(4), intent(in) :: n | |
| 339 | + real(8), dimension(:), intent(in) :: a | |
| 340 | + real(8), dimension(:), intent(inout) :: fvec | |
| 341 | + integer(4), intent(inout) :: iflag | |
| 342 | + end subroutine | |
| 343 | + end interface | |
| 344 | + | |
| 345 | + integer(4) :: maxfev, mode, nfev, nprint | |
| 346 | + real(8) :: epsfcn, ftol, gtol, xtol, fjac(m,n) | |
| 347 | + real(8), parameter :: factor = 100._8, zero = 0.0_8 | |
| 348 | + | |
| 349 | + allocate(fvec(m),iwa(n)) | |
| 350 | + | |
| 351 | + rtol=sqrt(epsilon(0.d0)) | |
| 352 | + if (present(tol)) rtol=tol | |
| 353 | + | |
| 354 | + info = 0 | |
| 355 | + | |
| 356 | + ! check the input parameters for errors. | |
| 357 | + | |
| 358 | + if (n <= 0 .or. m < n .or. rtol < zero) return | |
| 359 | + | |
| 360 | + ! call lmdif. | |
| 361 | + | |
| 362 | + maxfev = 200*(n + 1) | |
| 363 | + ftol = rtol | |
| 364 | + xtol = rtol | |
| 365 | + gtol = zero | |
| 366 | + epsfcn = zero | |
| 367 | + mode = 1 | |
| 368 | + nprint = 0 | |
| 369 | + | |
| 370 | + call lmdif(zef, m, n, a, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |
| 371 | + mode, factor, nprint, info, nfev, fjac, iwa) | |
| 372 | + | |
| 373 | + if (info == 8) info = 4 | |
| 374 | + | |
| 375 | + deallocate(fvec,iwa) | |
| 376 | +end subroutine | |
| 377 | + | |
| 378 | + | |
| 379 | +! MINPACK routines which are used by both LMDIF & LMDER | |
| 380 | +! 25 October 2001: | |
| 381 | +! Changed INTENT of iflag in several places to IN OUT. | |
| 382 | +! Changed INTENT of fvec to IN OUT in user routine FCN. | |
| 383 | +! Removed arguments diag and qtv from LMDIF & LMDER. | |
| 384 | +! Replaced several DO loops with array operations. | |
| 385 | +! amiller @ bigpond.net.au | |
| 386 | + | |
| 387 | + | |
| 388 | +! ********** | |
| 389 | + | |
| 390 | +! subroutine lmdif1 | |
| 391 | + | |
| 392 | +! The purpose of lmdif1 is to minimize the sum of the squares of m nonlinear | |
| 393 | +! functions in n variables by a modification of the Levenberg-Marquardt | |
| 394 | +! algorithm. This is done by using the more general least-squares | |
| 395 | +! solver lmdif. The user must provide a subroutine which calculates the | |
| 396 | +! functions. The jacobian is then calculated by a forward-difference | |
| 397 | +! approximation. | |
| 398 | + | |
| 399 | +! the subroutine statement is | |
| 400 | + | |
| 401 | +! subroutine lmdif1(fcn, m, n, x, fvec, tol, info, iwa) | |
| 402 | + | |
| 403 | +! where | |
| 404 | + | |
| 405 | +! fcn is the name of the user-supplied subroutine which calculates | |
| 406 | +! the functions. fcn must be declared in an external statement in the | |
| 407 | +! user calling program, and should be written as follows. | |
| 408 | + | |
| 409 | +! subroutine fcn(m, n, x, fvec, iflag) | |
| 410 | +! integer m, n, iflag | |
| 411 | +! REAL (dp) x(n), fvec(m) | |
| 412 | +! ---------- | |
| 413 | +! calculate the functions at x and return this vector in fvec. | |
| 414 | +! ---------- | |
| 415 | +! return | |
| 416 | +! end | |
| 417 | + | |
| 418 | +! the value of iflag should not be changed by fcn unless | |
| 419 | +! the user wants to terminate execution of lmdif1. | |
| 420 | +! In this case set iflag to a negative integer. | |
| 421 | + | |
| 422 | +! m is a positive integer input variable set to the number of functions. | |
| 423 | + | |
| 424 | +! n is a positive integer input variable set to the number of variables. | |
| 425 | +! n must not exceed m. | |
| 426 | + | |
| 427 | +! x is an array of length n. On input x must contain an initial estimate | |
| 428 | +! of the solution vector. On output x contains the final estimate of | |
| 429 | +! the solution vector. | |
| 430 | + | |
| 431 | +! fvec is an output array of length m which contains | |
| 432 | +! the functions evaluated at the output x. | |
| 433 | + | |
| 434 | +! tol is a nonnegative input variable. Termination occurs when the | |
| 435 | +! algorithm estimates either that the relative error in the sum of | |
| 436 | +! squares is at most tol or that the relative error between x and the | |
| 437 | +! solution is at most tol. | |
| 438 | + | |
| 439 | +! info is an integer output variable. If the user has terminated execution, | |
| 440 | +! info is set to the (negative) value of iflag. See description of fcn. | |
| 441 | +! Otherwise, info is set as follows. | |
| 442 | + | |
| 443 | +! info = 0 improper input parameters. | |
| 444 | + | |
| 445 | +! info = 1 algorithm estimates that the relative error | |
| 446 | +! in the sum of squares is at most tol. | |
| 447 | + | |
| 448 | +! info = 2 algorithm estimates that the relative error | |
| 449 | +! between x and the solution is at most tol. | |
| 450 | + | |
| 451 | +! info = 3 conditions for info = 1 and info = 2 both hold. | |
| 452 | + | |
| 453 | +! info = 4 fvec is orthogonal to the columns of the | |
| 454 | +! jacobian to machine precision. | |
| 455 | + | |
| 456 | +! info = 5 number of calls to fcn has reached or exceeded 200*(n+1). | |
| 457 | + | |
| 458 | +! info = 6 tol is too small. no further reduction in | |
| 459 | +! the sum of squares is possible. | |
| 460 | + | |
| 461 | +! info = 7 tol is too small. No further improvement in | |
| 462 | +! the approximate solution x is possible. | |
| 463 | + | |
| 464 | +! iwa is an integer work array of length n. | |
| 465 | + | |
| 466 | +! wa is a work array of length lwa. | |
| 467 | + | |
| 468 | +! lwa is a positive integer input variable not less than m*n+5*n+m. | |
| 469 | + | |
| 470 | +! subprograms called | |
| 471 | + | |
| 472 | +! user-supplied ...... fcn | |
| 473 | + | |
| 474 | +! minpack-supplied ... lmdif | |
| 475 | + | |
| 476 | +! argonne national laboratory. minpack project. march 1980. | |
| 477 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
| 478 | + | |
| 479 | +! ********** | |
| 480 | + | |
| 481 | +SUBROUTINE lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |
| 482 | + mode, factor, nprint, info, nfev, fjac, ipvt) | |
| 483 | + | |
| 484 | +! N.B. Arguments LDFJAC, DIAG, QTF, WA1, WA2, WA3 & WA4 have been removed. | |
| 485 | +INTEGER, PARAMETER :: dp = 8 | |
| 486 | +INTEGER, INTENT(IN) :: m | |
| 487 | +INTEGER, INTENT(IN) :: n | |
| 488 | +REAL (dp), INTENT(IN OUT) :: x(:) | |
| 489 | +REAL (dp), INTENT(OUT) :: fvec(:) | |
| 490 | +REAL (dp), INTENT(IN) :: ftol | |
| 491 | +REAL (dp), INTENT(IN) :: xtol | |
| 492 | +REAL (dp), INTENT(IN OUT) :: gtol | |
| 493 | +INTEGER, INTENT(IN OUT) :: maxfev | |
| 494 | +REAL (dp), INTENT(IN OUT) :: epsfcn | |
| 495 | +INTEGER, INTENT(IN) :: mode | |
| 496 | +REAL (dp), INTENT(IN) :: factor | |
| 497 | +INTEGER, INTENT(IN) :: nprint | |
| 498 | +INTEGER, INTENT(OUT) :: info | |
| 499 | +INTEGER, INTENT(OUT) :: nfev | |
| 500 | +REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | |
| 501 | +INTEGER, INTENT(OUT) :: ipvt(:) | |
| 502 | + | |
| 503 | +! EXTERNAL fcn | |
| 504 | + | |
| 505 | +INTERFACE | |
| 506 | + SUBROUTINE fcn(m, n, x, fvec, iflag) | |
| 507 | + INTEGER(4), INTENT(IN) :: m, n | |
| 508 | + REAL (8), INTENT(IN) :: x(:) | |
| 509 | + REAL (8), INTENT(IN OUT) :: fvec(:) | |
| 510 | + INTEGER(4), INTENT(IN OUT) :: iflag | |
| 511 | + END SUBROUTINE fcn | |
| 512 | +END INTERFACE | |
| 513 | + | |
| 514 | +! ********** | |
| 515 | + | |
| 516 | +! subroutine lmdif | |
| 517 | + | |
| 518 | +! The purpose of lmdif is to minimize the sum of the squares of m nonlinear | |
| 519 | +! functions in n variables by a modification of the Levenberg-Marquardt | |
| 520 | +! algorithm. The user must provide a subroutine which calculates the | |
| 521 | +! functions. The jacobian is then calculated by a forward-difference | |
| 522 | +! approximation. | |
| 523 | + | |
| 524 | +! the subroutine statement is | |
| 525 | + | |
| 526 | +! subroutine lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, | |
| 527 | +! diag, mode, factor, nprint, info, nfev, fjac, | |
| 528 | +! ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4) | |
| 529 | + | |
| 530 | +! N.B. 7 of these arguments have been removed in this version. | |
| 531 | + | |
| 532 | +! where | |
| 533 | + | |
| 534 | +! fcn is the name of the user-supplied subroutine which calculates the | |
| 535 | +! functions. fcn must be declared in an external statement in the user | |
| 536 | +! calling program, and should be written as follows. | |
| 537 | + | |
| 538 | +! subroutine fcn(m, n, x, fvec, iflag) | |
| 539 | +! integer m, n, iflag | |
| 540 | +! REAL (dp) x(:), fvec(m) | |
| 541 | +! ---------- | |
| 542 | +! calculate the functions at x and return this vector in fvec. | |
| 543 | +! ---------- | |
| 544 | +! return | |
| 545 | +! end | |
| 546 | + | |
| 547 | +! the value of iflag should not be changed by fcn unless | |
| 548 | +! the user wants to terminate execution of lmdif. | |
| 549 | +! in this case set iflag to a negative integer. | |
| 550 | + | |
| 551 | +! m is a positive integer input variable set to the number of functions. | |
| 552 | + | |
| 553 | +! n is a positive integer input variable set to the number of variables. | |
| 554 | +! n must not exceed m. | |
| 555 | + | |
| 556 | +! x is an array of length n. On input x must contain an initial estimate | |
| 557 | +! of the solution vector. On output x contains the final estimate of the | |
| 558 | +! solution vector. | |
| 559 | + | |
| 560 | +! fvec is an output array of length m which contains | |
| 561 | +! the functions evaluated at the output x. | |
| 562 | + | |
| 563 | +! ftol is a nonnegative input variable. Termination occurs when both the | |
| 564 | +! actual and predicted relative reductions in the sum of squares are at | |
| 565 | +! most ftol. Therefore, ftol measures the relative error desired | |
| 566 | +! in the sum of squares. | |
| 567 | + | |
| 568 | +! xtol is a nonnegative input variable. Termination occurs when the | |
| 569 | +! relative error between two consecutive iterates is at most xtol. | |
| 570 | +! Therefore, xtol measures the relative error desired in the approximate | |
| 571 | +! solution. | |
| 572 | + | |
| 573 | +! gtol is a nonnegative input variable. Termination occurs when the cosine | |
| 574 | +! of the angle between fvec and any column of the jacobian is at most | |
| 575 | +! gtol in absolute value. Therefore, gtol measures the orthogonality | |
| 576 | +! desired between the function vector and the columns of the jacobian. | |
| 577 | + | |
| 578 | +! maxfev is a positive integer input variable. Termination occurs when the | |
| 579 | +! number of calls to fcn is at least maxfev by the end of an iteration. | |
| 580 | + | |
| 581 | +! epsfcn is an input variable used in determining a suitable step length | |
| 582 | +! for the forward-difference approximation. This approximation assumes | |
| 583 | +! that the relative errors in the functions are of the order of epsfcn. | |
| 584 | +! If epsfcn is less than the machine precision, it is assumed that the | |
| 585 | +! relative errors in the functions are of the order of the machine | |
| 586 | +! precision. | |
| 587 | + | |
| 588 | +! diag is an array of length n. If mode = 1 (see below), diag is | |
| 589 | +! internally set. If mode = 2, diag must contain positive entries that | |
| 590 | +! serve as multiplicative scale factors for the variables. | |
| 591 | + | |
| 592 | +! mode is an integer input variable. If mode = 1, the variables will be | |
| 593 | +! scaled internally. If mode = 2, the scaling is specified by the input | |
| 594 | +! diag. other values of mode are equivalent to mode = 1. | |
| 595 | + | |
| 596 | +! factor is a positive input variable used in determining the initial step | |
| 597 | +! bound. This bound is set to the product of factor and the euclidean | |
| 598 | +! norm of diag*x if nonzero, or else to factor itself. In most cases | |
| 599 | +! factor should lie in the interval (.1,100.). 100. is a generally | |
| 600 | +! recommended value. | |
| 601 | + | |
| 602 | +! nprint is an integer input variable that enables controlled printing of | |
| 603 | +! iterates if it is positive. In this case, fcn is called with iflag = 0 | |
| 604 | +! at the beginning of the first iteration and every nprint iterations | |
| 605 | +! thereafter and immediately prior to return, with x and fvec available | |
| 606 | +! for printing. If nprint is not positive, no special calls | |
| 607 | +! of fcn with iflag = 0 are made. | |
| 608 | + | |
| 609 | +! info is an integer output variable. If the user has terminated | |
| 610 | +! execution, info is set to the (negative) value of iflag. | |
| 611 | +! See description of fcn. Otherwise, info is set as follows. | |
| 612 | + | |
| 613 | +! info = 0 improper input parameters. | |
| 614 | + | |
| 615 | +! info = 1 both actual and predicted relative reductions | |
| 616 | +! in the sum of squares are at most ftol. | |
| 617 | + | |
| 618 | +! info = 2 relative error between two consecutive iterates <= xtol. | |
| 619 | + | |
| 620 | +! info = 3 conditions for info = 1 and info = 2 both hold. | |
| 621 | + | |
| 622 | +! info = 4 the cosine of the angle between fvec and any column of | |
| 623 | +! the Jacobian is at most gtol in absolute value. | |
| 624 | + | |
| 625 | +! info = 5 number of calls to fcn has reached or exceeded maxfev. | |
| 626 | + | |
| 627 | +! info = 6 ftol is too small. no further reduction in | |
| 628 | +! the sum of squares is possible. | |
| 629 | + | |
| 630 | +! info = 7 xtol is too small. no further improvement in | |
| 631 | +! the approximate solution x is possible. | |
| 632 | + | |
| 633 | +! info = 8 gtol is too small. fvec is orthogonal to the | |
| 634 | +! columns of the jacobian to machine precision. | |
| 635 | + | |
| 636 | +! nfev is an integer output variable set to the number of calls to fcn. | |
| 637 | + | |
| 638 | +! fjac is an output m by n array. the upper n by n submatrix | |
| 639 | +! of fjac contains an upper triangular matrix r with | |
| 640 | +! diagonal elements of nonincreasing magnitude such that | |
| 641 | + | |
| 642 | +! t t t | |
| 643 | +! p *(jac *jac)*p = r *r, | |
| 644 | + | |
| 645 | +! where p is a permutation matrix and jac is the final calculated | |
| 646 | +! Jacobian. Column j of p is column ipvt(j) (see below) of the | |
| 647 | +! identity matrix. the lower trapezoidal part of fjac contains | |
| 648 | +! information generated during the computation of r. | |
| 649 | + | |
| 650 | +! ldfjac is a positive integer input variable not less than m | |
| 651 | +! which specifies the leading dimension of the array fjac. | |
| 652 | + | |
| 653 | +! ipvt is an integer output array of length n. ipvt defines a permutation | |
| 654 | +! matrix p such that jac*p = q*r, where jac is the final calculated | |
| 655 | +! jacobian, q is orthogonal (not stored), and r is upper triangular | |
| 656 | +! with diagonal elements of nonincreasing magnitude. | |
| 657 | +! Column j of p is column ipvt(j) of the identity matrix. | |
| 658 | + | |
| 659 | +! qtf is an output array of length n which contains | |
| 660 | +! the first n elements of the vector (q transpose)*fvec. | |
| 661 | + | |
| 662 | +! wa1, wa2, and wa3 are work arrays of length n. | |
| 663 | + | |
| 664 | +! wa4 is a work array of length m. | |
| 665 | + | |
| 666 | +! subprograms called | |
| 667 | + | |
| 668 | +! user-supplied ...... fcn | |
| 669 | + | |
| 670 | +! minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac | |
| 671 | + | |
| 672 | +! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod | |
| 673 | + | |
| 674 | +! argonne national laboratory. minpack project. march 1980. | |
| 675 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
| 676 | + | |
| 677 | +! ********** | |
| 678 | +INTEGER :: i, iflag, iter, j, l | |
| 679 | +REAL (dp) :: actred, delta, dirder, epsmch, fnorm, fnorm1, gnorm, & | |
| 680 | + par, pnorm, prered, ratio, sum, temp, temp1, temp2, xnorm | |
| 681 | +REAL (dp) :: diag(n), qtf(n), wa1(n), wa2(n), wa3(n), wa4(m) | |
| 682 | +REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & | |
| 683 | + p25 = 0.25_dp, p75 = 0.75_dp, p0001 = 0.0001_dp, & | |
| 684 | + zero = 0.0_dp | |
| 685 | + | |
| 686 | +! epsmch is the machine precision. | |
| 687 | + | |
| 688 | +epsmch = EPSILON(zero) | |
| 689 | + | |
| 690 | +info = 0 | |
| 691 | +iflag = 0 | |
| 692 | +nfev = 0 | |
| 693 | + | |
| 694 | +! check the input parameters for errors. | |
| 695 | + | |
| 696 | +IF (n <= 0 .OR. m < n .OR. ftol < zero .OR. xtol < zero .OR. gtol < zero & | |
| 697 | + .OR. maxfev <= 0 .OR. factor <= zero) GO TO 300 | |
| 698 | +IF (mode /= 2) GO TO 20 | |
| 699 | +DO j = 1, n | |
| 700 | + IF (diag(j) <= zero) GO TO 300 | |
| 701 | +END DO | |
| 702 | + | |
| 703 | +! evaluate the function at the starting point and calculate its norm. | |
| 704 | + | |
| 705 | +20 iflag = 1 | |
| 706 | +CALL fcn(m, n, x, fvec, iflag) | |
| 707 | +nfev = 1 | |
| 708 | +IF (iflag < 0) GO TO 300 | |
| 709 | +fnorm = enorm(m, fvec) | |
| 710 | + | |
| 711 | +! initialize levenberg-marquardt parameter and iteration counter. | |
| 712 | + | |
| 713 | +par = zero | |
| 714 | +iter = 1 | |
| 715 | + | |
| 716 | +! beginning of the outer loop. | |
| 717 | + | |
| 718 | +! calculate the jacobian matrix. | |
| 719 | + | |
| 720 | +30 iflag = 2 | |
| 721 | +CALL fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | |
| 722 | +nfev = nfev + n | |
| 723 | +IF (iflag < 0) GO TO 300 | |
| 724 | + | |
| 725 | +! If requested, call fcn to enable printing of iterates. | |
| 726 | + | |
| 727 | +IF (nprint <= 0) GO TO 40 | |
| 728 | +iflag = 0 | |
| 729 | +IF (MOD(iter-1,nprint) == 0) CALL fcn(m, n, x, fvec, iflag) | |
| 730 | +IF (iflag < 0) GO TO 300 | |
| 731 | + | |
| 732 | +! Compute the qr factorization of the jacobian. | |
| 733 | + | |
| 734 | +40 CALL qrfac(m, n, fjac, .true., ipvt, wa1, wa2) | |
| 735 | + | |
| 736 | +! On the first iteration and if mode is 1, scale according | |
| 737 | +! to the norms of the columns of the initial jacobian. | |
| 738 | + | |
| 739 | +IF (iter /= 1) GO TO 80 | |
| 740 | +IF (mode == 2) GO TO 60 | |
| 741 | +DO j = 1, n | |
| 742 | + diag(j) = wa2(j) | |
| 743 | + IF (wa2(j) == zero) diag(j) = one | |
| 744 | +END DO | |
| 745 | + | |
| 746 | +! On the first iteration, calculate the norm of the scaled x | |
| 747 | +! and initialize the step bound delta. | |
| 748 | + | |
| 749 | +60 wa3(1:n) = diag(1:n)*x(1:n) | |
| 750 | +xnorm = enorm(n, wa3) | |
| 751 | +delta = factor*xnorm | |
| 752 | +IF (delta == zero) delta = factor | |
| 753 | + | |
| 754 | +! Form (q transpose)*fvec and store the first n components in qtf. | |
| 755 | + | |
| 756 | +80 wa4(1:m) = fvec(1:m) | |
| 757 | +DO j = 1, n | |
| 758 | + IF (fjac(j,j) == zero) GO TO 120 | |
| 759 | + sum = DOT_PRODUCT( fjac(j:m,j), wa4(j:m) ) | |
| 760 | + temp = -sum/fjac(j,j) | |
| 761 | + DO i = j, m | |
| 762 | + wa4(i) = wa4(i) + fjac(i,j)*temp | |
| 763 | + END DO | |
| 764 | + 120 fjac(j,j) = wa1(j) | |
| 765 | + qtf(j) = wa4(j) | |
| 766 | +END DO | |
| 767 | + | |
| 768 | +! compute the norm of the scaled gradient. | |
| 769 | + | |
| 770 | +gnorm = zero | |
| 771 | +IF (fnorm == zero) GO TO 170 | |
| 772 | +DO j = 1, n | |
| 773 | + l = ipvt(j) | |
| 774 | + IF (wa2(l) == zero) CYCLE | |
| 775 | + sum = zero | |
| 776 | + DO i = 1, j | |
| 777 | + sum = sum + fjac(i,j)*(qtf(i)/fnorm) | |
| 778 | + END DO | |
| 779 | + gnorm = MAX(gnorm, ABS(sum/wa2(l))) | |
| 780 | +END DO | |
| 781 | + | |
| 782 | +! test for convergence of the gradient norm. | |
| 783 | + | |
| 784 | +170 IF (gnorm <= gtol) info = 4 | |
| 785 | +IF (info /= 0) GO TO 300 | |
| 786 | + | |
| 787 | +! rescale if necessary. | |
| 788 | + | |
| 789 | +IF (mode == 2) GO TO 200 | |
| 790 | +DO j = 1, n | |
| 791 | + diag(j) = MAX(diag(j), wa2(j)) | |
| 792 | +END DO | |
| 793 | + | |
| 794 | +! beginning of the inner loop. | |
| 795 | + | |
| 796 | +! determine the Levenberg-Marquardt parameter. | |
| 797 | + | |
| 798 | +200 CALL lmpar(n, fjac, ipvt, diag, qtf, delta, par, wa1, wa2) | |
| 799 | + | |
| 800 | +! store the direction p and x + p. calculate the norm of p. | |
| 801 | + | |
| 802 | +DO j = 1, n | |
| 803 | + wa1(j) = -wa1(j) | |
| 804 | + wa2(j) = x(j) + wa1(j) | |
| 805 | + wa3(j) = diag(j)*wa1(j) | |
| 806 | +END DO | |
| 807 | +pnorm = enorm(n, wa3) | |
| 808 | + | |
| 809 | +! on the first iteration, adjust the initial step bound. | |
| 810 | + | |
| 811 | +IF (iter == 1) delta = MIN(delta, pnorm) | |
| 812 | + | |
| 813 | +! evaluate the function at x + p and calculate its norm. | |
| 814 | + | |
| 815 | +iflag = 1 | |
| 816 | +CALL fcn(m, n, wa2, wa4, iflag) | |
| 817 | +nfev = nfev + 1 | |
| 818 | +IF (iflag < 0) GO TO 300 | |
| 819 | +fnorm1 = enorm(m, wa4) | |
| 820 | + | |
| 821 | +! compute the scaled actual reduction. | |
| 822 | + | |
| 823 | +actred = -one | |
| 824 | +IF (p1*fnorm1 < fnorm) actred = one - (fnorm1/fnorm)**2 | |
| 825 | + | |
| 826 | +! Compute the scaled predicted reduction and | |
| 827 | +! the scaled directional derivative. | |
| 828 | + | |
| 829 | +DO j = 1, n | |
| 830 | + wa3(j) = zero | |
| 831 | + l = ipvt(j) | |
| 832 | + temp = wa1(l) | |
| 833 | + DO i = 1, j | |
| 834 | + wa3(i) = wa3(i) + fjac(i,j)*temp | |
| 835 | + END DO | |
| 836 | +END DO | |
| 837 | +temp1 = enorm(n,wa3)/fnorm | |
| 838 | +temp2 = (SQRT(par)*pnorm)/fnorm | |
| 839 | +prered = temp1**2 + temp2**2/p5 | |
| 840 | +dirder = -(temp1**2 + temp2**2) | |
| 841 | + | |
| 842 | +! compute the ratio of the actual to the predicted reduction. | |
| 843 | + | |
| 844 | +ratio = zero | |
| 845 | +IF (prered /= zero) ratio = actred/prered | |
| 846 | + | |
| 847 | +! update the step bound. | |
| 848 | + | |
| 849 | +IF (ratio <= p25) THEN | |
| 850 | + IF (actred >= zero) temp = p5 | |
| 851 | + IF (actred < zero) temp = p5*dirder/(dirder + p5*actred) | |
| 852 | + IF (p1*fnorm1 >= fnorm .OR. temp < p1) temp = p1 | |
| 853 | + delta = temp*MIN(delta,pnorm/p1) | |
| 854 | + par = par/temp | |
| 855 | +ELSE | |
| 856 | + IF (par /= zero .AND. ratio < p75) GO TO 260 | |
| 857 | + delta = pnorm/p5 | |
| 858 | + par = p5*par | |
| 859 | +END IF | |
| 860 | + | |
| 861 | +! test for successful iteration. | |
| 862 | + | |
| 863 | +260 IF (ratio < p0001) GO TO 290 | |
| 864 | + | |
| 865 | +! successful iteration. update x, fvec, and their norms. | |
| 866 | + | |
| 867 | +DO j = 1, n | |
| 868 | + x(j) = wa2(j) | |
| 869 | + wa2(j) = diag(j)*x(j) | |
| 870 | +END DO | |
| 871 | +fvec(1:m) = wa4(1:m) | |
| 872 | +xnorm = enorm(n, wa2) | |
| 873 | +fnorm = fnorm1 | |
| 874 | +iter = iter + 1 | |
| 875 | + | |
| 876 | +! tests for convergence. | |
| 877 | + | |
| 878 | +290 IF (ABS(actred) <= ftol .AND. prered <= ftol .AND. p5*ratio <= one) info = 1 | |
| 879 | +IF (delta <= xtol*xnorm) info = 2 | |
| 880 | +IF (ABS(actred) <= ftol .AND. prered <= ftol & | |
| 881 | + .AND. p5*ratio <= one .AND. info == 2) info = 3 | |
| 882 | +IF (info /= 0) GO TO 300 | |
| 883 | + | |
| 884 | +! tests for termination and stringent tolerances. | |
| 885 | + | |
| 886 | +IF (nfev >= maxfev) info = 5 | |
| 887 | +IF (ABS(actred) <= epsmch .AND. prered <= epsmch & | |
| 888 | + .AND. p5*ratio <= one) info = 6 | |
| 889 | +IF (delta <= epsmch*xnorm) info = 7 | |
| 890 | +IF (gnorm <= epsmch) info = 8 | |
| 891 | +IF (info /= 0) GO TO 300 | |
| 892 | + | |
| 893 | +! end of the inner loop. repeat if iteration unsuccessful. | |
| 894 | + | |
| 895 | +IF (ratio < p0001) GO TO 200 | |
| 896 | + | |
| 897 | +! end of the outer loop. | |
| 898 | + | |
| 899 | +GO TO 30 | |
| 900 | + | |
| 901 | +! termination, either normal or user imposed. | |
| 902 | + | |
| 903 | +300 IF (iflag < 0) info = iflag | |
| 904 | +iflag = 0 | |
| 905 | +IF (nprint > 0) CALL fcn(m, n, x, fvec, iflag) | |
| 906 | +RETURN | |
| 907 | + | |
| 908 | +! last card of subroutine lmdif. | |
| 909 | + | |
| 910 | +END SUBROUTINE lmdif | |
| 911 | + | |
| 912 | + | |
| 913 | +! ********** | |
| 914 | + | |
| 915 | + | |
| 916 | +SUBROUTINE lmpar(n, r, ipvt, diag, qtb, delta, par, x, sdiag) | |
| 917 | + | |
| 918 | +! Code converted using TO_F90 by Alan Miller | |
| 919 | +! Date: 1999-12-09 Time: 12:46:12 | |
| 920 | + | |
| 921 | +! N.B. Arguments LDR, WA1 & WA2 have been removed. | |
| 922 | + | |
| 923 | +INTEGER, PARAMETER :: dp = 8 | |
| 924 | +INTEGER, INTENT(IN) :: n | |
| 925 | +REAL (dp), INTENT(IN OUT) :: r(:,:) | |
| 926 | +INTEGER, INTENT(IN) :: ipvt(:) | |
| 927 | +REAL (dp), INTENT(IN) :: diag(:) | |
| 928 | +REAL (dp), INTENT(IN) :: qtb(:) | |
| 929 | +REAL (dp), INTENT(IN) :: delta | |
| 930 | +REAL (dp), INTENT(OUT) :: par | |
| 931 | +REAL (dp), INTENT(OUT) :: x(:) | |
| 932 | +REAL (dp), INTENT(OUT) :: sdiag(:) | |
| 933 | + | |
| 934 | +! ********** | |
| 935 | + | |
| 936 | +! subroutine lmpar | |
| 937 | + | |
| 938 | +! Given an m by n matrix a, an n by n nonsingular diagonal matrix d, | |
| 939 | +! an m-vector b, and a positive number delta, the problem is to determine a | |
| 940 | +! value for the parameter par such that if x solves the system | |
| 941 | + | |
| 942 | +! a*x = b , sqrt(par)*d*x = 0 , | |
| 943 | + | |
| 944 | +! in the least squares sense, and dxnorm is the euclidean | |
| 945 | +! norm of d*x, then either par is zero and | |
| 946 | + | |
| 947 | +! (dxnorm-delta) <= 0.1*delta , | |
| 948 | + | |
| 949 | +! or par is positive and | |
| 950 | + | |
| 951 | +! abs(dxnorm-delta) <= 0.1*delta . | |
| 952 | + | |
| 953 | +! This subroutine completes the solution of the problem if it is provided | |
| 954 | +! with the necessary information from the r factorization, with column | |
| 955 | +! qpivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |
| 956 | +! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |
| 957 | +! elements of nonincreasing magnitude, then lmpar expects the full upper | |
| 958 | +! triangle of r, the permutation matrix p, and the first n components of | |
| 959 | +! (q transpose)*b. | |
| 960 | +! On output lmpar also provides an upper triangular matrix s such that | |
| 961 | + | |
| 962 | +! t t t | |
| 963 | +! p *(a *a + par*d*d)*p = s *s . | |
| 964 | + | |
| 965 | +! s is employed within lmpar and may be of separate interest. | |
| 966 | + | |
| 967 | +! Only a few iterations are generally needed for convergence of the algorithm. | |
| 968 | +! If, however, the limit of 10 iterations is reached, then the output par | |
| 969 | +! will contain the best value obtained so far. | |
| 970 | + | |
| 971 | +! the subroutine statement is | |
| 972 | + | |
| 973 | +! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, wa1,wa2) | |
| 974 | + | |
| 975 | +! where | |
| 976 | + | |
| 977 | +! n is a positive integer input variable set to the order of r. | |
| 978 | + | |
| 979 | +! r is an n by n array. on input the full upper triangle | |
| 980 | +! must contain the full upper triangle of the matrix r. | |
| 981 | +! On output the full upper triangle is unaltered, and the | |
| 982 | +! strict lower triangle contains the strict upper triangle | |
| 983 | +! (transposed) of the upper triangular matrix s. | |
| 984 | + | |
| 985 | +! ldr is a positive integer input variable not less than n | |
| 986 | +! which specifies the leading dimension of the array r. | |
| 987 | + | |
| 988 | +! ipvt is an integer input array of length n which defines the | |
| 989 | +! permutation matrix p such that a*p = q*r. column j of p | |
| 990 | +! is column ipvt(j) of the identity matrix. | |
| 991 | + | |
| 992 | +! diag is an input array of length n which must contain the | |
| 993 | +! diagonal elements of the matrix d. | |
| 994 | + | |
| 995 | +! qtb is an input array of length n which must contain the first | |
| 996 | +! n elements of the vector (q transpose)*b. | |
| 997 | + | |
| 998 | +! delta is a positive input variable which specifies an upper | |
| 999 | +! bound on the euclidean norm of d*x. | |
| 1000 | + | |
| 1001 | +! par is a nonnegative variable. on input par contains an | |
| 1002 | +! initial estimate of the levenberg-marquardt parameter. | |
| 1003 | +! on output par contains the final estimate. | |
| 1004 | + | |
| 1005 | +! x is an output array of length n which contains the least | |
| 1006 | +! squares solution of the system a*x = b, sqrt(par)*d*x = 0, | |
| 1007 | +! for the output par. | |
| 1008 | + | |
| 1009 | +! sdiag is an output array of length n which contains the | |
| 1010 | +! diagonal elements of the upper triangular matrix s. | |
| 1011 | + | |
| 1012 | +! wa1 and wa2 are work arrays of length n. | |
| 1013 | + | |
| 1014 | +! subprograms called | |
| 1015 | + | |
| 1016 | +! minpack-supplied ... dpmpar,enorm,qrsolv | |
| 1017 | + | |
| 1018 | +! fortran-supplied ... ABS,MAX,MIN,SQRT | |
| 1019 | + | |
| 1020 | +! argonne national laboratory. minpack project. march 1980. | |
| 1021 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
| 1022 | + | |
| 1023 | +! ********** | |
| 1024 | +INTEGER :: iter, j, jm1, jp1, k, l, nsing | |
| 1025 | +REAL (dp) :: dxnorm, dwarf, fp, gnorm, parc, parl, paru, sum, temp | |
| 1026 | +REAL (dp) :: wa1(n), wa2(n) | |
| 1027 | +REAL (dp), PARAMETER :: p1 = 0.1_dp, p001 = 0.001_dp, zero = 0.0_dp | |
| 1028 | + | |
| 1029 | +! dwarf is the smallest positive magnitude. | |
| 1030 | + | |
| 1031 | +dwarf = TINY(zero) | |
| 1032 | + | |
| 1033 | +! compute and store in x the gauss-newton direction. if the | |
| 1034 | +! jacobian is rank-deficient, obtain a least squares solution. | |
| 1035 | + | |
| 1036 | +nsing = n | |
| 1037 | +DO j = 1, n | |
| 1038 | + wa1(j) = qtb(j) | |
| 1039 | + IF (r(j,j) == zero .AND. nsing == n) nsing = j - 1 | |
| 1040 | + IF (nsing < n) wa1(j) = zero | |
| 1041 | +END DO | |
| 1042 | + | |
| 1043 | +DO k = 1, nsing | |
| 1044 | + j = nsing - k + 1 | |
| 1045 | + wa1(j) = wa1(j)/r(j,j) | |
| 1046 | + temp = wa1(j) | |
| 1047 | + jm1 = j - 1 | |
| 1048 | + wa1(1:jm1) = wa1(1:jm1) - r(1:jm1,j)*temp | |
| 1049 | +END DO | |
| 1050 | + | |
| 1051 | +DO j = 1, n | |
| 1052 | + l = ipvt(j) | |
| 1053 | + x(l) = wa1(j) | |
| 1054 | +END DO | |
| 1055 | + | |
| 1056 | +! initialize the iteration counter. | |
| 1057 | +! evaluate the function at the origin, and test | |
| 1058 | +! for acceptance of the gauss-newton direction. | |
| 1059 | + | |
| 1060 | +iter = 0 | |
| 1061 | +wa2(1:n) = diag(1:n)*x(1:n) | |
| 1062 | +dxnorm = enorm(n, wa2) | |
| 1063 | +fp = dxnorm - delta | |
| 1064 | +IF (fp <= p1*delta) GO TO 220 | |
| 1065 | + | |
| 1066 | +! if the jacobian is not rank deficient, the newton | |
| 1067 | +! step provides a lower bound, parl, for the zero of | |
| 1068 | +! the function. Otherwise set this bound to zero. | |
| 1069 | + | |
| 1070 | +parl = zero | |
| 1071 | +IF (nsing < n) GO TO 120 | |
| 1072 | +DO j = 1, n | |
| 1073 | + l = ipvt(j) | |
| 1074 | + wa1(j) = diag(l)*(wa2(l)/dxnorm) | |
| 1075 | +END DO | |
| 1076 | +DO j = 1, n | |
| 1077 | + sum = DOT_PRODUCT( r(1:j-1,j), wa1(1:j-1) ) | |
| 1078 | + wa1(j) = (wa1(j) - sum)/r(j,j) | |
| 1079 | +END DO | |
| 1080 | +temp = enorm(n,wa1) | |
| 1081 | +parl = ((fp/delta)/temp)/temp | |
| 1082 | + | |
| 1083 | +! calculate an upper bound, paru, for the zero of the function. | |
| 1084 | + | |
| 1085 | +120 DO j = 1, n | |
| 1086 | + sum = DOT_PRODUCT( r(1:j,j), qtb(1:j) ) | |
| 1087 | + l = ipvt(j) | |
| 1088 | + wa1(j) = sum/diag(l) | |
| 1089 | +END DO | |
| 1090 | +gnorm = enorm(n,wa1) | |
| 1091 | +paru = gnorm/delta | |
| 1092 | +IF (paru == zero) paru = dwarf/MIN(delta,p1) | |
| 1093 | + | |
| 1094 | +! if the input par lies outside of the interval (parl,paru), | |
| 1095 | +! set par to the closer endpoint. | |
| 1096 | + | |
| 1097 | +par = MAX(par,parl) | |
| 1098 | +par = MIN(par,paru) | |
| 1099 | +IF (par == zero) par = gnorm/dxnorm | |
| 1100 | + | |
| 1101 | +! beginning of an iteration. | |
| 1102 | + | |
| 1103 | +150 iter = iter + 1 | |
| 1104 | + | |
| 1105 | +! evaluate the function at the current value of par. | |
| 1106 | + | |
| 1107 | +IF (par == zero) par = MAX(dwarf, p001*paru) | |
| 1108 | +temp = SQRT(par) | |
| 1109 | +wa1(1:n) = temp*diag(1:n) | |
| 1110 | +CALL qrsolv(n, r, ipvt, wa1, qtb, x, sdiag) | |
| 1111 | +wa2(1:n) = diag(1:n)*x(1:n) | |
| 1112 | +dxnorm = enorm(n, wa2) | |
| 1113 | +temp = fp | |
| 1114 | +fp = dxnorm - delta | |
| 1115 | + | |
| 1116 | +! if the function is small enough, accept the current value | |
| 1117 | +! of par. also test for the exceptional cases where parl | |
| 1118 | +! is zero or the number of iterations has reached 10. | |
| 1119 | + | |
| 1120 | +IF (ABS(fp) <= p1*delta .OR. parl == zero .AND. fp <= temp & | |
| 1121 | + .AND. temp < zero .OR. iter == 10) GO TO 220 | |
| 1122 | + | |
| 1123 | +! compute the newton correction. | |
| 1124 | + | |
| 1125 | +DO j = 1, n | |
| 1126 | + l = ipvt(j) | |
| 1127 | + wa1(j) = diag(l)*(wa2(l)/dxnorm) | |
| 1128 | +END DO | |
| 1129 | +DO j = 1, n | |
| 1130 | + wa1(j) = wa1(j)/sdiag(j) | |
| 1131 | + temp = wa1(j) | |
| 1132 | + jp1 = j + 1 | |
| 1133 | + wa1(jp1:n) = wa1(jp1:n) - r(jp1:n,j)*temp | |
| 1134 | +END DO | |
| 1135 | +temp = enorm(n,wa1) | |
| 1136 | +parc = ((fp/delta)/temp)/temp | |
| 1137 | + | |
| 1138 | +! depending on the sign of the function, update parl or paru. | |
| 1139 | + | |
| 1140 | +IF (fp > zero) parl = MAX(parl,par) | |
| 1141 | +IF (fp < zero) paru = MIN(paru,par) | |
| 1142 | + | |
| 1143 | +! compute an improved estimate for par. | |
| 1144 | + | |
| 1145 | +par = MAX(parl, par+parc) | |
| 1146 | + | |
| 1147 | +! end of an iteration. | |
| 1148 | + | |
| 1149 | +GO TO 150 | |
| 1150 | + | |
| 1151 | +! termination. | |
| 1152 | + | |
| 1153 | +220 IF (iter == 0) par = zero | |
| 1154 | +RETURN | |
| 1155 | + | |
| 1156 | +! last card of subroutine lmpar. | |
| 1157 | + | |
| 1158 | +END SUBROUTINE lmpar | |
| 1159 | + | |
| 1160 | + | |
| 1161 | + | |
| 1162 | +SUBROUTINE qrfac(m, n, a, pivot, ipvt, rdiag, acnorm) | |
| 1163 | + | |
| 1164 | +! Code converted using TO_F90 by Alan Miller | |
| 1165 | +! Date: 1999-12-09 Time: 12:46:17 | |
| 1166 | + | |
| 1167 | +! N.B. Arguments LDA, LIPVT & WA have been removed. | |
| 1168 | +INTEGER, PARAMETER :: dp = 8 | |
| 1169 | +INTEGER, INTENT(IN) :: m | |
| 1170 | +INTEGER, INTENT(IN) :: n | |
| 1171 | +REAL (dp), INTENT(IN OUT) :: a(:,:) | |
| 1172 | +LOGICAL, INTENT(IN) :: pivot | |
| 1173 | +INTEGER, INTENT(OUT) :: ipvt(:) | |
| 1174 | +REAL (dp), INTENT(OUT) :: rdiag(:) | |
| 1175 | +REAL (dp), INTENT(OUT) :: acnorm(:) | |
| 1176 | + | |
| 1177 | +! ********** | |
| 1178 | + | |
| 1179 | +! subroutine qrfac | |
| 1180 | + | |
| 1181 | +! This subroutine uses Householder transformations with column pivoting | |
| 1182 | +! (optional) to compute a qr factorization of the m by n matrix a. | |
| 1183 | +! That is, qrfac determines an orthogonal matrix q, a permutation matrix p, | |
| 1184 | +! and an upper trapezoidal matrix r with diagonal elements of nonincreasing | |
| 1185 | +! magnitude, such that a*p = q*r. The householder transformation for | |
| 1186 | +! column k, k = 1,2,...,min(m,n), is of the form | |
| 1187 | + | |
| 1188 | +! t | |
| 1189 | +! i - (1/u(k))*u*u | |
| 1190 | + | |
| 1191 | +! where u has zeros in the first k-1 positions. The form of this | |
| 1192 | +! transformation and the method of pivoting first appeared in the | |
| 1193 | +! corresponding linpack subroutine. | |
| 1194 | + | |
| 1195 | +! the subroutine statement is | |
| 1196 | + | |
| 1197 | +! subroutine qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) | |
| 1198 | + | |
| 1199 | +! N.B. 3 of these arguments have been omitted in this version. | |
| 1200 | + | |
| 1201 | +! where | |
| 1202 | + | |
| 1203 | +! m is a positive integer input variable set to the number of rows of a. | |
| 1204 | + | |
| 1205 | +! n is a positive integer input variable set to the number of columns of a. | |
| 1206 | + | |
| 1207 | +! a is an m by n array. On input a contains the matrix for | |
| 1208 | +! which the qr factorization is to be computed. On output | |
| 1209 | +! the strict upper trapezoidal part of a contains the strict | |
| 1210 | +! upper trapezoidal part of r, and the lower trapezoidal | |
| 1211 | +! part of a contains a factored form of q (the non-trivial | |
| 1212 | +! elements of the u vectors described above). | |
| 1213 | + | |
| 1214 | +! lda is a positive integer input variable not less than m | |
| 1215 | +! which specifies the leading dimension of the array a. | |
| 1216 | + | |
| 1217 | +! pivot is a logical input variable. If pivot is set true, | |
| 1218 | +! then column pivoting is enforced. If pivot is set false, | |
| 1219 | +! then no column pivoting is done. | |
| 1220 | + | |
| 1221 | +! ipvt is an integer output array of length lipvt. ipvt | |
| 1222 | +! defines the permutation matrix p such that a*p = q*r. | |
| 1223 | +! Column j of p is column ipvt(j) of the identity matrix. | |
| 1224 | +! If pivot is false, ipvt is not referenced. | |
| 1225 | + | |
| 1226 | +! lipvt is a positive integer input variable. If pivot is false, | |
| 1227 | +! then lipvt may be as small as 1. If pivot is true, then | |
| 1228 | +! lipvt must be at least n. | |
| 1229 | + | |
| 1230 | +! rdiag is an output array of length n which contains the | |
| 1231 | +! diagonal elements of r. | |
| 1232 | + | |
| 1233 | +! acnorm is an output array of length n which contains the norms of the | |
| 1234 | +! corresponding columns of the input matrix a. | |
| 1235 | +! If this information is not needed, then acnorm can coincide with rdiag. | |
| 1236 | + | |
| 1237 | +! wa is a work array of length n. If pivot is false, then wa | |
| 1238 | +! can coincide with rdiag. | |
| 1239 | + | |
| 1240 | +! subprograms called | |
| 1241 | + | |
| 1242 | +! minpack-supplied ... dpmpar,enorm | |
| 1243 | + | |
| 1244 | +! fortran-supplied ... MAX,SQRT,MIN | |
| 1245 | + | |
| 1246 | +! argonne national laboratory. minpack project. march 1980. | |
| 1247 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
| 1248 | + | |
| 1249 | +! ********** | |
| 1250 | +INTEGER :: i, j, jp1, k, kmax, minmn | |
| 1251 | +REAL (dp) :: ajnorm, epsmch, sum, temp, wa(n) | |
| 1252 | +REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp | |
| 1253 | + | |
| 1254 | +! epsmch is the machine precision. | |
| 1255 | + | |
| 1256 | +epsmch = EPSILON(zero) | |
| 1257 | + | |
| 1258 | +! compute the initial column norms and initialize several arrays. | |
| 1259 | + | |
| 1260 | +DO j = 1, n | |
| 1261 | + acnorm(j) = enorm(m,a(1:,j)) | |
| 1262 | + rdiag(j) = acnorm(j) | |
| 1263 | + wa(j) = rdiag(j) | |
| 1264 | + IF (pivot) ipvt(j) = j | |
| 1265 | +END DO | |
| 1266 | + | |
| 1267 | +! Reduce a to r with Householder transformations. | |
| 1268 | + | |
| 1269 | +minmn = MIN(m,n) | |
| 1270 | +DO j = 1, minmn | |
| 1271 | + IF (.NOT.pivot) GO TO 40 | |
| 1272 | + | |
| 1273 | +! Bring the column of largest norm into the pivot position. | |
| 1274 | + | |
| 1275 | + kmax = j | |
| 1276 | + DO k = j, n | |
| 1277 | + IF (rdiag(k) > rdiag(kmax)) kmax = k | |
| 1278 | + END DO | |
| 1279 | + IF (kmax == j) GO TO 40 | |
| 1280 | + DO i = 1, m | |
| 1281 | + temp = a(i,j) | |
| 1282 | + a(i,j) = a(i,kmax) | |
| 1283 | + a(i,kmax) = temp | |
| 1284 | + END DO | |
| 1285 | + rdiag(kmax) = rdiag(j) | |
| 1286 | + wa(kmax) = wa(j) | |
| 1287 | + k = ipvt(j) | |
| 1288 | + ipvt(j) = ipvt(kmax) | |
| 1289 | + ipvt(kmax) = k | |
| 1290 | + | |
| 1291 | +! Compute the Householder transformation to reduce the | |
| 1292 | +! j-th column of a to a multiple of the j-th unit vector. | |
| 1293 | + | |
| 1294 | + 40 ajnorm = enorm(m-j+1, a(j:,j)) | |
| 1295 | + IF (ajnorm == zero) CYCLE | |
| 1296 | + IF (a(j,j) < zero) ajnorm = -ajnorm | |
| 1297 | + a(j:m,j) = a(j:m,j)/ajnorm | |
| 1298 | + a(j,j) = a(j,j) + one | |
| 1299 | + | |
| 1300 | +! Apply the transformation to the remaining columns and update the norms. | |
| 1301 | + | |
| 1302 | + jp1 = j + 1 | |
| 1303 | + DO k = jp1, n | |
| 1304 | + sum = DOT_PRODUCT( a(j:m,j), a(j:m,k) ) | |
| 1305 | + temp = sum/a(j,j) | |
| 1306 | + a(j:m,k) = a(j:m,k) - temp*a(j:m,j) | |
| 1307 | + IF (.NOT.pivot .OR. rdiag(k) == zero) CYCLE | |
| 1308 | + temp = a(j,k)/rdiag(k) | |
| 1309 | + rdiag(k) = rdiag(k)*SQRT(MAX(zero, one-temp**2)) | |
| 1310 | + IF (p05*(rdiag(k)/wa(k))**2 > epsmch) CYCLE | |
| 1311 | + rdiag(k) = enorm(m-j, a(jp1:,k)) | |
| 1312 | + wa(k) = rdiag(k) | |
| 1313 | + END DO | |
| 1314 | + rdiag(j) = -ajnorm | |
| 1315 | +END DO | |
| 1316 | +RETURN | |
| 1317 | + | |
| 1318 | +! last card of subroutine qrfac. | |
| 1319 | + | |
| 1320 | +END SUBROUTINE qrfac | |
| 1321 | + | |
| 1322 | + | |
| 1323 | + | |
| 1324 | +SUBROUTINE qrsolv(n, r, ipvt, diag, qtb, x, sdiag) | |
| 1325 | + | |
| 1326 | +! N.B. Arguments LDR & WA have been removed. | |
| 1327 | +INTEGER, PARAMETER :: dp = 8 | |
| 1328 | +INTEGER, INTENT(IN) :: n | |
| 1329 | +REAL (dp), INTENT(IN OUT) :: r(:,:) | |
| 1330 | +INTEGER, INTENT(IN) :: ipvt(:) | |
| 1331 | +REAL (dp), INTENT(IN) :: diag(:) | |
| 1332 | +REAL (dp), INTENT(IN) :: qtb(:) | |
| 1333 | +REAL (dp), INTENT(OUT) :: x(:) | |
| 1334 | +REAL (dp), INTENT(OUT) :: sdiag(:) | |
| 1335 | + | |
| 1336 | +! ********** | |
| 1337 | + | |
| 1338 | +! subroutine qrsolv | |
| 1339 | + | |
| 1340 | +! Given an m by n matrix a, an n by n diagonal matrix d, and an m-vector b, | |
| 1341 | +! the problem is to determine an x which solves the system | |
| 1342 | + | |
| 1343 | +! a*x = b , d*x = 0 , | |
| 1344 | + | |
| 1345 | +! in the least squares sense. | |
| 1346 | + | |
| 1347 | +! This subroutine completes the solution of the problem if it is provided | |
| 1348 | +! with the necessary information from the qr factorization, with column | |
| 1349 | +! pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |
| 1350 | +! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |
| 1351 | +! elements of nonincreasing magnitude, then qrsolv expects the full upper | |
| 1352 | +! triangle of r, the permutation matrix p, and the first n components of | |
| 1353 | +! (q transpose)*b. The system a*x = b, d*x = 0, is then equivalent to | |
| 1354 | + | |
| 1355 | +! t t | |
| 1356 | +! r*z = q *b , p *d*p*z = 0 , | |
| 1357 | + | |
| 1358 | +! where x = p*z. if this system does not have full rank, | |
| 1359 | +! then a least squares solution is obtained. On output qrsolv | |
| 1360 | +! also provides an upper triangular matrix s such that | |
| 1361 | + | |
| 1362 | +! t t t | |
| 1363 | +! p *(a *a + d*d)*p = s *s . | |
| 1364 | + | |
| 1365 | +! s is computed within qrsolv and may be of separate interest. | |
| 1366 | + | |
| 1367 | +! the subroutine statement is | |
| 1368 | + | |
| 1369 | +! subroutine qrsolv(n, r, ldr, ipvt, diag, qtb, x, sdiag, wa) | |
| 1370 | + | |
| 1371 | +! N.B. Arguments LDR and WA have been removed in this version. | |
| 1372 | + | |
| 1373 | +! where | |
| 1374 | + | |
| 1375 | +! n is a positive integer input variable set to the order of r. | |
| 1376 | + | |
| 1377 | +! r is an n by n array. On input the full upper triangle must contain | |
| 1378 | +! the full upper triangle of the matrix r. | |
| 1379 | +! On output the full upper triangle is unaltered, and the strict lower | |
| 1380 | +! triangle contains the strict upper triangle (transposed) of the | |
| 1381 | +! upper triangular matrix s. | |
| 1382 | + | |
| 1383 | +! ldr is a positive integer input variable not less than n | |
| 1384 | +! which specifies the leading dimension of the array r. | |
| 1385 | + | |
| 1386 | +! ipvt is an integer input array of length n which defines the | |
| 1387 | +! permutation matrix p such that a*p = q*r. Column j of p | |
| 1388 | +! is column ipvt(j) of the identity matrix. | |
| 1389 | + | |
| 1390 | +! diag is an input array of length n which must contain the | |
| 1391 | +! diagonal elements of the matrix d. | |
| 1392 | + | |
| 1393 | +! qtb is an input array of length n which must contain the first | |
| 1394 | +! n elements of the vector (q transpose)*b. | |
| 1395 | + | |
| 1396 | +! x is an output array of length n which contains the least | |
| 1397 | +! squares solution of the system a*x = b, d*x = 0. | |
| 1398 | + | |
| 1399 | +! sdiag is an output array of length n which contains the | |
| 1400 | +! diagonal elements of the upper triangular matrix s. | |
| 1401 | + | |
| 1402 | +! wa is a work array of length n. | |
| 1403 | + | |
| 1404 | +! subprograms called | |
| 1405 | + | |
| 1406 | +! fortran-supplied ... ABS,SQRT | |
| 1407 | + | |
| 1408 | +! argonne national laboratory. minpack project. march 1980. | |
| 1409 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
| 1410 | + | |
| 1411 | +! ********** | |
| 1412 | +INTEGER :: i, j, k, kp1, l, nsing | |
| 1413 | +REAL (dp) :: COS, cotan, qtbpj, SIN, sum, TAN, temp, wa(n) | |
| 1414 | +REAL (dp), PARAMETER :: p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp | |
| 1415 | + | |
| 1416 | +! Copy r and (q transpose)*b to preserve input and initialize s. | |
| 1417 | +! In particular, save the diagonal elements of r in x. | |
| 1418 | + | |
| 1419 | +DO j = 1, n | |
| 1420 | + r(j:n,j) = r(j,j:n) | |
| 1421 | + x(j) = r(j,j) | |
| 1422 | + wa(j) = qtb(j) | |
| 1423 | +END DO | |
| 1424 | + | |
| 1425 | +! Eliminate the diagonal matrix d using a givens rotation. | |
| 1426 | + | |
| 1427 | +DO j = 1, n | |
| 1428 | + | |
| 1429 | +! Prepare the row of d to be eliminated, locating the | |
| 1430 | +! diagonal element using p from the qr factorization. | |
| 1431 | + | |
| 1432 | + l = ipvt(j) | |
| 1433 | + IF (diag(l) == zero) CYCLE | |
| 1434 | + sdiag(j:n) = zero | |
| 1435 | + sdiag(j) = diag(l) | |
| 1436 | + | |
| 1437 | +! The transformations to eliminate the row of d modify only a single | |
| 1438 | +! element of (q transpose)*b beyond the first n, which is initially zero. | |
| 1439 | + | |
| 1440 | + qtbpj = zero | |
| 1441 | + DO k = j, n | |
| 1442 | + | |
| 1443 | +! Determine a givens rotation which eliminates the | |
| 1444 | +! appropriate element in the current row of d. | |
| 1445 | + | |
| 1446 | + IF (sdiag(k) == zero) CYCLE | |
| 1447 | + IF (ABS(r(k,k)) < ABS(sdiag(k))) THEN | |
| 1448 | + cotan = r(k,k)/sdiag(k) | |
| 1449 | + SIN = p5/SQRT(p25 + p25*cotan**2) | |
| 1450 | + COS = SIN*cotan | |
| 1451 | + ELSE | |
| 1452 | + TAN = sdiag(k)/r(k,k) | |
| 1453 | + COS = p5/SQRT(p25 + p25*TAN**2) | |
| 1454 | + SIN = COS*TAN | |
| 1455 | + END IF | |
| 1456 | + | |
| 1457 | +! Compute the modified diagonal element of r and | |
| 1458 | +! the modified element of ((q transpose)*b,0). | |
| 1459 | + | |
| 1460 | + r(k,k) = COS*r(k,k) + SIN*sdiag(k) | |
| 1461 | + temp = COS*wa(k) + SIN*qtbpj | |
| 1462 | + qtbpj = -SIN*wa(k) + COS*qtbpj | |
| 1463 | + wa(k) = temp | |
| 1464 | + | |
| 1465 | +! Accumulate the tranformation in the row of s. | |
| 1466 | + | |
| 1467 | + kp1 = k + 1 | |
| 1468 | + DO i = kp1, n | |
| 1469 | + temp = COS*r(i,k) + SIN*sdiag(i) | |
| 1470 | + sdiag(i) = -SIN*r(i,k) + COS*sdiag(i) | |
| 1471 | + r(i,k) = temp | |
| 1472 | + END DO | |
| 1473 | + END DO | |
| 1474 | + | |
| 1475 | +! Store the diagonal element of s and restore | |
| 1476 | +! the corresponding diagonal element of r. | |
| 1477 | + | |
| 1478 | + sdiag(j) = r(j,j) | |
| 1479 | + r(j,j) = x(j) | |
| 1480 | +END DO | |
| 1481 | + | |
| 1482 | +! Solve the triangular system for z. If the system is singular, | |
| 1483 | +! then obtain a least squares solution. | |
| 1484 | + | |
| 1485 | +nsing = n | |
| 1486 | +DO j = 1, n | |
| 1487 | + IF (sdiag(j) == zero .AND. nsing == n) nsing = j - 1 | |
| 1488 | + IF (nsing < n) wa(j) = zero | |
| 1489 | +END DO | |
| 1490 | + | |
| 1491 | +DO k = 1, nsing | |
| 1492 | + j = nsing - k + 1 | |
| 1493 | + sum = DOT_PRODUCT( r(j+1:nsing,j), wa(j+1:nsing) ) | |
| 1494 | + wa(j) = (wa(j) - sum)/sdiag(j) | |
| 1495 | +END DO | |
| 1496 | + | |
| 1497 | +! Permute the components of z back to components of x. | |
| 1498 | + | |
| 1499 | +DO j = 1, n | |
| 1500 | + l = ipvt(j) | |
| 1501 | + x(l) = wa(j) | |
| 1502 | +END DO | |
| 1503 | +RETURN | |
| 1504 | + | |
| 1505 | +! last card of subroutine qrsolv. | |
| 1506 | + | |
| 1507 | +END SUBROUTINE qrsolv | |
| 1508 | + | |
| 1509 | + | |
| 1510 | + | |
| 1511 | +FUNCTION enorm(n,x) RESULT(fn_val) | |
| 1512 | + | |
| 1513 | +! Code converted using TO_F90 by Alan Miller | |
| 1514 | +! Date: 1999-12-09 Time: 12:45:34 | |
| 1515 | +INTEGER, PARAMETER :: dp = 8 | |
| 1516 | +INTEGER, INTENT(IN) :: n | |
| 1517 | +REAL (dp), INTENT(IN) :: x(:) | |
| 1518 | +REAL (dp) :: fn_val | |
| 1519 | + | |
| 1520 | +! ********** | |
| 1521 | + | |
| 1522 | +! function enorm | |
| 1523 | + | |
| 1524 | +! given an n-vector x, this function calculates the euclidean norm of x. | |
| 1525 | + | |
| 1526 | +! the euclidean norm is computed by accumulating the sum of squares in | |
| 1527 | +! three different sums. The sums of squares for the small and large | |
| 1528 | +! components are scaled so that no overflows occur. Non-destructive | |
| 1529 | +! underflows are permitted. Underflows and overflows do not occur in the | |
| 1530 | +! computation of the unscaled sum of squares for the intermediate | |
| 1531 | +! components. The definitions of small, intermediate and large components | |
| 1532 | +! depend on two constants, rdwarf and rgiant. The main restrictions on | |
| 1533 | +! these constants are that rdwarf**2 not underflow and rgiant**2 not | |
| 1534 | +! overflow. The constants given here are suitable for every known computer. | |
| 1535 | + | |
| 1536 | +! the function statement is | |
| 1537 | + | |
| 1538 | +! REAL (dp) function enorm(n,x) | |
| 1539 | + | |
| 1540 | +! where | |
| 1541 | + | |
| 1542 | +! n is a positive integer input variable. | |
| 1543 | + | |
| 1544 | +! x is an input array of length n. | |
| 1545 | + | |
| 1546 | +! subprograms called | |
| 1547 | + | |
| 1548 | +! fortran-supplied ... ABS,SQRT | |
| 1549 | + | |
| 1550 | +! argonne national laboratory. minpack project. march 1980. | |
| 1551 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
| 1552 | + | |
| 1553 | +! ********** | |
| 1554 | +INTEGER :: i | |
| 1555 | +REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max | |
| 1556 | +REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp, rdwarf = 3.834E-20_dp, & | |
| 1557 | + rgiant = 1.304E+19_dp | |
| 1558 | + | |
| 1559 | +s1 = zero | |
| 1560 | +s2 = zero | |
| 1561 | +s3 = zero | |
| 1562 | +x1max = zero | |
| 1563 | +x3max = zero | |
| 1564 | +floatn = n | |
| 1565 | +agiant = rgiant/floatn | |
| 1566 | +DO i = 1, n | |
| 1567 | + xabs = ABS(x(i)) | |
| 1568 | + IF (xabs > rdwarf .AND. xabs < agiant) GO TO 70 | |
| 1569 | + IF (xabs <= rdwarf) GO TO 30 | |
| 1570 | + | |
| 1571 | +! sum for large components. | |
| 1572 | + | |
| 1573 | + IF (xabs <= x1max) GO TO 10 | |
| 1574 | + s1 = one + s1*(x1max/xabs)**2 | |
| 1575 | + x1max = xabs | |
| 1576 | + GO TO 20 | |
| 1577 | + | |
| 1578 | + 10 s1 = s1 + (xabs/x1max)**2 | |
| 1579 | + | |
| 1580 | + 20 GO TO 60 | |
| 1581 | + | |
| 1582 | +! sum for small components. | |
| 1583 | + | |
| 1584 | + 30 IF (xabs <= x3max) GO TO 40 | |
| 1585 | + s3 = one + s3*(x3max/xabs)**2 | |
| 1586 | + x3max = xabs | |
| 1587 | + GO TO 60 | |
| 1588 | + | |
| 1589 | + 40 IF (xabs /= zero) s3 = s3 + (xabs/x3max)**2 | |
| 1590 | + | |
| 1591 | + 60 CYCLE | |
| 1592 | + | |
| 1593 | +! sum for intermediate components. | |
| 1594 | + | |
| 1595 | + 70 s2 = s2 + xabs**2 | |
| 1596 | +END DO | |
| 1597 | + | |
| 1598 | +! calculation of norm. | |
| 1599 | + | |
| 1600 | +IF (s1 == zero) GO TO 100 | |
| 1601 | +fn_val = x1max*SQRT(s1 + (s2/x1max)/x1max) | |
| 1602 | +GO TO 120 | |
| 1603 | + | |
| 1604 | +100 IF (s2 == zero) GO TO 110 | |
| 1605 | +IF (s2 >= x3max) fn_val = SQRT(s2*(one + (x3max/s2)*(x3max*s3))) | |
| 1606 | +IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3))) | |
| 1607 | +GO TO 120 | |
| 1608 | + | |
| 1609 | +110 fn_val = x3max*SQRT(s3) | |
| 1610 | + | |
| 1611 | +120 RETURN | |
| 1612 | + | |
| 1613 | +! last card of function enorm. | |
| 1614 | + | |
| 1615 | +END FUNCTION enorm | |
| 1616 | + | |
| 1617 | + | |
| 1618 | + | |
| 1619 | +SUBROUTINE fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | |
| 1620 | + | |
| 1621 | +! Code converted using TO_F90 by Alan Miller | |
| 1622 | +! Date: 1999-12-09 Time: 12:45:44 | |
| 1623 | + | |
| 1624 | +! N.B. Arguments LDFJAC & WA have been removed. | |
| 1625 | +INTEGER, PARAMETER :: dp = 8 | |
| 1626 | +INTEGER, INTENT(IN) :: m | |
| 1627 | +INTEGER, INTENT(IN) :: n | |
| 1628 | +REAL (dp), INTENT(IN OUT) :: x(n) | |
| 1629 | +REAL (dp), INTENT(IN) :: fvec(m) | |
| 1630 | +REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | |
| 1631 | +INTEGER, INTENT(IN OUT) :: iflag | |
| 1632 | +REAL (dp), INTENT(IN) :: epsfcn | |
| 1633 | + | |
| 1634 | +INTERFACE | |
| 1635 | + SUBROUTINE fcn(m, n, x, fvec, iflag) | |
| 1636 | + INTEGER(4), INTENT(IN) :: m, n | |
| 1637 | + REAL (8), INTENT(IN) :: x(:) | |
| 1638 | + REAL (8), INTENT(IN OUT) :: fvec(:) | |
| 1639 | + INTEGER(4), INTENT(IN OUT) :: iflag | |
| 1640 | + END SUBROUTINE fcn | |
| 1641 | +END INTERFACE | |
| 1642 | + | |
| 1643 | +! ********** | |
| 1644 | + | |
| 1645 | +! subroutine fdjac2 | |
| 1646 | + | |
| 1647 | +! this subroutine computes a forward-difference approximation | |
| 1648 | +! to the m by n jacobian matrix associated with a specified | |
| 1649 | +! problem of m functions in n variables. | |
| 1650 | + | |
| 1651 | +! the subroutine statement is | |
| 1652 | + | |
| 1653 | +! subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa) | |
| 1654 | + | |
| 1655 | +! where | |
| 1656 | + | |
| 1657 | +! fcn is the name of the user-supplied subroutine which calculates the | |
| 1658 | +! functions. fcn must be declared in an external statement in the user | |
| 1659 | +! calling program, and should be written as follows. | |
| 1660 | + | |
| 1661 | +! subroutine fcn(m,n,x,fvec,iflag) | |
| 1662 | +! integer m,n,iflag | |
| 1663 | +! REAL (dp) x(n),fvec(m) | |
| 1664 | +! ---------- | |
| 1665 | +! calculate the functions at x and | |
| 1666 | +! return this vector in fvec. | |
| 1667 | +! ---------- | |
| 1668 | +! return | |
| 1669 | +! end | |
| 1670 | + | |
| 1671 | +! the value of iflag should not be changed by fcn unless | |
| 1672 | +! the user wants to terminate execution of fdjac2. | |
| 1673 | +! in this case set iflag to a negative integer. | |
| 1674 | + | |
| 1675 | +! m is a positive integer input variable set to the number of functions. | |
| 1676 | + | |
| 1677 | +! n is a positive integer input variable set to the number of variables. | |
| 1678 | +! n must not exceed m. | |
| 1679 | + | |
| 1680 | +! x is an input array of length n. | |
| 1681 | + | |
| 1682 | +! fvec is an input array of length m which must contain the | |
| 1683 | +! functions evaluated at x. | |
| 1684 | + | |
| 1685 | +! fjac is an output m by n array which contains the | |
| 1686 | +! approximation to the jacobian matrix evaluated at x. | |
| 1687 | + | |
| 1688 | +! ldfjac is a positive integer input variable not less than m | |
| 1689 | +! which specifies the leading dimension of the array fjac. | |
| 1690 | + | |
| 1691 | +! iflag is an integer variable which can be used to terminate | |
| 1692 | +! the execution of fdjac2. see description of fcn. | |
| 1693 | + | |
| 1694 | +! epsfcn is an input variable used in determining a suitable step length | |
| 1695 | +! for the forward-difference approximation. This approximation assumes | |
| 1696 | +! that the relative errors in the functions are of the order of epsfcn. | |
| 1697 | +! If epsfcn is less than the machine precision, it is assumed that the | |
| 1698 | +! relative errors in the functions are of the order of the machine | |
| 1699 | +! precision. | |
| 1700 | + | |
| 1701 | +! wa is a work array of length m. | |
| 1702 | + | |
| 1703 | +! subprograms called | |
| 1704 | + | |
| 1705 | +! user-supplied ...... fcn | |
| 1706 | + | |
| 1707 | +! minpack-supplied ... dpmpar | |
| 1708 | + | |
| 1709 | +! fortran-supplied ... ABS,MAX,SQRT | |
| 1710 | + | |
| 1711 | +! argonne national laboratory. minpack project. march 1980. | |
| 1712 | +! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
| 1713 | + | |
| 1714 | +! ********** | |
| 1715 | +INTEGER :: j | |
| 1716 | +REAL (dp) :: eps, epsmch, h, temp, wa(m) | |
| 1717 | +REAL (dp), PARAMETER :: zero = 0.0_dp | |
| 1718 | + | |
| 1719 | +! epsmch is the machine precision. | |
| 1720 | + | |
| 1721 | +epsmch = EPSILON(zero) | |
| 1722 | + | |
| 1723 | +eps = SQRT(MAX(epsfcn, epsmch)) | |
| 1724 | +DO j = 1, n | |
| 1725 | + temp = x(j) | |
| 1726 | + h = eps*ABS(temp) | |
| 1727 | + IF (h == zero) h = eps | |
| 1728 | + x(j) = temp + h | |
| 1729 | + CALL fcn(m, n, x, wa, iflag) | |
| 1730 | + IF (iflag < 0) EXIT | |
| 1731 | + x(j) = temp | |
| 1732 | + fjac(1:m,j) = (wa(1:m) - fvec(1:m))/h | |
| 1733 | +END DO | |
| 1734 | + | |
| 1735 | +RETURN | |
| 1736 | + | |
| 1737 | +! last card of subroutine fdjac2. | |
| 1738 | + | |
| 1739 | +END SUBROUTINE fdjac2 | |
| 1740 | + | |
| 314 | 1741 | |
| 315 | 1742 | |
| 316 | 1743 | end module fvn_misc |