Commit d32a4703383b961c2182b5ea68585cf33b41060b
1 parent
6ac82e990e
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@10 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 1779 additions and 0 deletions Side-by-side Diff
fvnlib.f90
Diff suppressed. Click to show
1 | + | |
2 | +module fvn | |
3 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
4 | +! | |
5 | +! fvn : a f95 module replacement for some imsl routines | |
6 | +! it uses lapack for linear algebra | |
7 | +! it uses modified quadpack for integration | |
8 | +! | |
9 | +! William Daniau 2007 | |
10 | +! william.daniau@femto-st.fr | |
11 | +! | |
12 | +! Routines naming scheme : | |
13 | +! | |
14 | +! fvn_x_name | |
15 | +! where x can be s : real | |
16 | +! d : real double precision | |
17 | +! c : complex | |
18 | +! z : double complex | |
19 | +! | |
20 | +! | |
21 | +! This piece of code is totally free! Do whatever you want with it. However | |
22 | +! if you find it usefull it would be kind to give credits ;-) Nevertheless, you | |
23 | +! may give credits to quadpack authors. | |
24 | +! | |
25 | +! Version 1.1 | |
26 | +! | |
27 | +! TO DO LIST : | |
28 | +! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm | |
29 | +! eigenvalues are given with no particular order. | |
30 | +! + Generic interface for fvn_x_name family -> fvn_name | |
31 | +! + Make some parameters optional, status for example | |
32 | +! + use f95 kinds "double complex" -> complex(kind=8) | |
33 | +! + unify quadpack routines | |
34 | +! + ... | |
35 | +! | |
36 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
37 | + | |
38 | +implicit none | |
39 | +! All quadpack routines are private to the module | |
40 | +private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & | |
41 | + dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & | |
42 | + dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, & | |
43 | + dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt | |
44 | + | |
45 | + | |
46 | +contains | |
47 | + | |
48 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
49 | +! | |
50 | +! Matrix inversion subroutines | |
51 | +! | |
52 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
53 | +subroutine fvn_s_matinv(d,a,inva,status) | |
54 | + ! | |
55 | + ! Matrix inversion of a real matrix using BLAS and LAPACK | |
56 | + ! | |
57 | + ! d (in) : matrix rank | |
58 | + ! a (in) : input matrix | |
59 | + ! inva (out) : inversed matrix | |
60 | + ! status (ou) : =0 if something failed | |
61 | + ! | |
62 | + integer, intent(in) :: d | |
63 | + real, intent(in) :: a(d,d) | |
64 | + real, intent(out) :: inva(d,d) | |
65 | + integer, intent(out) :: status | |
66 | + | |
67 | + integer, allocatable :: ipiv(:) | |
68 | + real, allocatable :: work(:) | |
69 | + real twork(1) | |
70 | + integer :: info | |
71 | + integer :: lwork | |
72 | + | |
73 | + status=1 | |
74 | + | |
75 | + allocate(ipiv(d)) | |
76 | + ! copy a into inva using BLAS | |
77 | + !call scopy(d*d,a,1,inva,1) | |
78 | + inva(:,:)=a(:,:) | |
79 | + ! LU factorization using LAPACK | |
80 | + call sgetrf(d,d,inva,d,ipiv,info) | |
81 | + ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
82 | + if (info /= 0) then | |
83 | + status=0 | |
84 | + deallocate(ipiv) | |
85 | + return | |
86 | + end if | |
87 | + ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
88 | + call sgetri(d,inva,d,ipiv,twork,-1,info) | |
89 | + lwork=int(twork(1)) | |
90 | + allocate(work(lwork)) | |
91 | + ! Matrix inversion using LAPACK | |
92 | + call sgetri(d,inva,d,ipiv,work,lwork,info) | |
93 | + ! again if info is not equal to 0, we exit setting status to 0 | |
94 | + if (info /= 0) then | |
95 | + status=0 | |
96 | + end if | |
97 | + deallocate(work) | |
98 | + deallocate(ipiv) | |
99 | +end subroutine | |
100 | + | |
101 | +subroutine fvn_d_matinv(d,a,inva,status) | |
102 | + ! | |
103 | + ! Matrix inversion of a double precision matrix using BLAS and LAPACK | |
104 | + ! | |
105 | + ! d (in) : matrix rank | |
106 | + ! a (in) : input matrix | |
107 | + ! inva (out) : inversed matrix | |
108 | + ! status (ou) : =0 if something failed | |
109 | + ! | |
110 | + integer, intent(in) :: d | |
111 | + double precision, intent(in) :: a(d,d) | |
112 | + double precision, intent(out) :: inva(d,d) | |
113 | + integer, intent(out) :: status | |
114 | + | |
115 | + integer, allocatable :: ipiv(:) | |
116 | + double precision, allocatable :: work(:) | |
117 | + double precision :: twork(1) | |
118 | + integer :: info | |
119 | + integer :: lwork | |
120 | + | |
121 | + status=1 | |
122 | + | |
123 | + allocate(ipiv(d)) | |
124 | + ! copy a into inva using BLAS | |
125 | + !call dcopy(d*d,a,1,inva,1) | |
126 | + inva(:,:)=a(:,:) | |
127 | + ! LU factorization using LAPACK | |
128 | + call dgetrf(d,d,inva,d,ipiv,info) | |
129 | + ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
130 | + if (info /= 0) then | |
131 | + status=0 | |
132 | + deallocate(ipiv) | |
133 | + return | |
134 | + end if | |
135 | + ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
136 | + call dgetri(d,inva,d,ipiv,twork,-1,info) | |
137 | + lwork=int(twork(1)) | |
138 | + allocate(work(lwork)) | |
139 | + ! Matrix inversion using LAPACK | |
140 | + call dgetri(d,inva,d,ipiv,work,lwork,info) | |
141 | + ! again if info is not equal to 0, we exit setting status to 0 | |
142 | + if (info /= 0) then | |
143 | + status=0 | |
144 | + end if | |
145 | + deallocate(work) | |
146 | + deallocate(ipiv) | |
147 | +end subroutine | |
148 | + | |
149 | +subroutine fvn_c_matinv(d,a,inva,status) | |
150 | + ! | |
151 | + ! Matrix inversion of a complex matrix using BLAS and LAPACK | |
152 | + ! | |
153 | + ! d (in) : matrix rank | |
154 | + ! a (in) : input matrix | |
155 | + ! inva (out) : inversed matrix | |
156 | + ! status (ou) : =0 if something failed | |
157 | + ! | |
158 | + integer, intent(in) :: d | |
159 | + complex, intent(in) :: a(d,d) | |
160 | + complex, intent(out) :: inva(d,d) | |
161 | + integer, intent(out) :: status | |
162 | + | |
163 | + integer, allocatable :: ipiv(:) | |
164 | + complex, allocatable :: work(:) | |
165 | + complex :: twork(1) | |
166 | + integer :: info | |
167 | + integer :: lwork | |
168 | + | |
169 | + status=1 | |
170 | + | |
171 | + allocate(ipiv(d)) | |
172 | + ! copy a into inva using BLAS | |
173 | + !call ccopy(d*d,a,1,inva,1) | |
174 | + inva(:,:)=a(:,:) | |
175 | + | |
176 | + ! LU factorization using LAPACK | |
177 | + call cgetrf(d,d,inva,d,ipiv,info) | |
178 | + ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
179 | + if (info /= 0) then | |
180 | + status=0 | |
181 | + deallocate(ipiv) | |
182 | + return | |
183 | + end if | |
184 | + ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
185 | + call cgetri(d,inva,d,ipiv,twork,-1,info) | |
186 | + lwork=int(twork(1)) | |
187 | + allocate(work(lwork)) | |
188 | + ! Matrix inversion using LAPACK | |
189 | + call cgetri(d,inva,d,ipiv,work,lwork,info) | |
190 | + ! again if info is not equal to 0, we exit setting status to 0 | |
191 | + if (info /= 0) then | |
192 | + status=0 | |
193 | + end if | |
194 | + deallocate(work) | |
195 | + deallocate(ipiv) | |
196 | +end subroutine | |
197 | + | |
198 | +subroutine fvn_z_matinv(d,a,inva,status) | |
199 | + ! | |
200 | + ! Matrix inversion of a double complex matrix using BLAS and LAPACK | |
201 | + ! | |
202 | + ! d (in) : matrix rank | |
203 | + ! a (in) : input matrix | |
204 | + ! inva (out) : inversed matrix | |
205 | + ! status (ou) : =0 if something failed | |
206 | + ! | |
207 | + integer, intent(in) :: d | |
208 | + double complex, intent(in) :: a(d,d) | |
209 | + double complex, intent(out) :: inva(d,d) | |
210 | + integer, intent(out) :: status | |
211 | + | |
212 | + integer, allocatable :: ipiv(:) | |
213 | + double complex, allocatable :: work(:) | |
214 | + double complex :: twork(1) | |
215 | + integer :: info | |
216 | + integer :: lwork | |
217 | + | |
218 | + status=1 | |
219 | + | |
220 | + allocate(ipiv(d)) | |
221 | + ! copy a into inva using BLAS | |
222 | + !call zcopy(d*d,a,1,inva,1) | |
223 | + inva(:,:)=a(:,:) | |
224 | + | |
225 | + ! LU factorization using LAPACK | |
226 | + call zgetrf(d,d,inva,d,ipiv,info) | |
227 | + ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
228 | + if (info /= 0) then | |
229 | + status=0 | |
230 | + deallocate(ipiv) | |
231 | + return | |
232 | + end if | |
233 | + ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
234 | + call zgetri(d,inva,d,ipiv,twork,-1,info) | |
235 | + lwork=int(twork(1)) | |
236 | + allocate(work(lwork)) | |
237 | + ! Matrix inversion using LAPACK | |
238 | + call zgetri(d,inva,d,ipiv,work,lwork,info) | |
239 | + ! again if info is not equal to 0, we exit setting status to 0 | |
240 | + if (info /= 0) then | |
241 | + status=0 | |
242 | + end if | |
243 | + deallocate(work) | |
244 | + deallocate(ipiv) | |
245 | +end subroutine | |
246 | + | |
247 | + | |
248 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
249 | +! | |
250 | +! Determinants | |
251 | +! | |
252 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
253 | +function fvn_s_det(d,a,status) | |
254 | + ! | |
255 | + ! Evaluate the determinant of a square matrix using lapack LU factorization | |
256 | + ! | |
257 | + ! d (in) : matrix rank | |
258 | + ! a (in) : The Matrix | |
259 | + ! status (out) : =0 if LU factorization failed | |
260 | + ! | |
261 | + integer, intent(in) :: d | |
262 | + real, intent(in) :: a(d,d) | |
263 | + integer, intent(out) :: status | |
264 | + real :: fvn_s_det | |
265 | + | |
266 | + real, allocatable :: wc_a(:,:) | |
267 | + integer, allocatable :: ipiv(:) | |
268 | + integer :: info,i | |
269 | + | |
270 | + status=1 | |
271 | + allocate(wc_a(d,d)) | |
272 | + allocate(ipiv(d)) | |
273 | + wc_a(:,:)=a(:,:) | |
274 | + call sgetrf(d,d,wc_a,d,ipiv,info) | |
275 | + if (info/= 0) then | |
276 | + status=0 | |
277 | + fvn_s_det=0.e0 | |
278 | + deallocate(ipiv) | |
279 | + deallocate(wc_a) | |
280 | + return | |
281 | + end if | |
282 | + fvn_s_det=1.e0 | |
283 | + do i=1,d | |
284 | + if (ipiv(i)==i) then | |
285 | + fvn_s_det=fvn_s_det*wc_a(i,i) | |
286 | + else | |
287 | + fvn_s_det=-fvn_s_det*wc_a(i,i) | |
288 | + end if | |
289 | + end do | |
290 | + deallocate(ipiv) | |
291 | + deallocate(wc_a) | |
292 | + | |
293 | +end function | |
294 | + | |
295 | +function fvn_d_det(d,a,status) | |
296 | + ! | |
297 | + ! Evaluate the determinant of a square matrix using lapack LU factorization | |
298 | + ! | |
299 | + ! d (in) : matrix rank | |
300 | + ! a (in) : The Matrix | |
301 | + ! status (out) : =0 if LU factorization failed | |
302 | + ! | |
303 | + integer, intent(in) :: d | |
304 | + double precision, intent(in) :: a(d,d) | |
305 | + integer, intent(out) :: status | |
306 | + double precision :: fvn_d_det | |
307 | + | |
308 | + double precision, allocatable :: wc_a(:,:) | |
309 | + integer, allocatable :: ipiv(:) | |
310 | + integer :: info,i | |
311 | + | |
312 | + status=1 | |
313 | + allocate(wc_a(d,d)) | |
314 | + allocate(ipiv(d)) | |
315 | + wc_a(:,:)=a(:,:) | |
316 | + call dgetrf(d,d,wc_a,d,ipiv,info) | |
317 | + if (info/= 0) then | |
318 | + status=0 | |
319 | + fvn_d_det=0.d0 | |
320 | + deallocate(ipiv) | |
321 | + deallocate(wc_a) | |
322 | + return | |
323 | + end if | |
324 | + fvn_d_det=1.d0 | |
325 | + do i=1,d | |
326 | + if (ipiv(i)==i) then | |
327 | + fvn_d_det=fvn_d_det*wc_a(i,i) | |
328 | + else | |
329 | + fvn_d_det=-fvn_d_det*wc_a(i,i) | |
330 | + end if | |
331 | + end do | |
332 | + deallocate(ipiv) | |
333 | + deallocate(wc_a) | |
334 | + | |
335 | +end function | |
336 | + | |
337 | +function fvn_c_det(d,a,status) ! | |
338 | + ! Evaluate the determinant of a square matrix using lapack LU factorization | |
339 | + ! | |
340 | + ! d (in) : matrix rank | |
341 | + ! a (in) : The Matrix | |
342 | + ! status (out) : =0 if LU factorization failed | |
343 | + ! | |
344 | + integer, intent(in) :: d | |
345 | + complex, intent(in) :: a(d,d) | |
346 | + integer, intent(out) :: status | |
347 | + complex :: fvn_c_det | |
348 | + | |
349 | + complex, allocatable :: wc_a(:,:) | |
350 | + integer, allocatable :: ipiv(:) | |
351 | + integer :: info,i | |
352 | + | |
353 | + status=1 | |
354 | + allocate(wc_a(d,d)) | |
355 | + allocate(ipiv(d)) | |
356 | + wc_a(:,:)=a(:,:) | |
357 | + call cgetrf(d,d,wc_a,d,ipiv,info) | |
358 | + if (info/= 0) then | |
359 | + status=0 | |
360 | + fvn_c_det=(0.e0,0.e0) | |
361 | + deallocate(ipiv) | |
362 | + deallocate(wc_a) | |
363 | + return | |
364 | + end if | |
365 | + fvn_c_det=(1.e0,0.e0) | |
366 | + do i=1,d | |
367 | + if (ipiv(i)==i) then | |
368 | + fvn_c_det=fvn_c_det*wc_a(i,i) | |
369 | + else | |
370 | + fvn_c_det=-fvn_c_det*wc_a(i,i) | |
371 | + end if | |
372 | + end do | |
373 | + deallocate(ipiv) | |
374 | + deallocate(wc_a) | |
375 | + | |
376 | +end function | |
377 | + | |
378 | +function fvn_z_det(d,a,status) | |
379 | + ! | |
380 | + ! Evaluate the determinant of a square matrix using lapack LU factorization | |
381 | + ! | |
382 | + ! d (in) : matrix rank | |
383 | + ! a (in) : The Matrix | |
384 | + ! det (out) : determinant | |
385 | + ! status (out) : =0 if LU factorization failed | |
386 | + ! | |
387 | + integer, intent(in) :: d | |
388 | + double complex, intent(in) :: a(d,d) | |
389 | + integer, intent(out) :: status | |
390 | + double complex :: fvn_z_det | |
391 | + | |
392 | + double complex, allocatable :: wc_a(:,:) | |
393 | + integer, allocatable :: ipiv(:) | |
394 | + integer :: info,i | |
395 | + | |
396 | + status=1 | |
397 | + allocate(wc_a(d,d)) | |
398 | + allocate(ipiv(d)) | |
399 | + wc_a(:,:)=a(:,:) | |
400 | + call zgetrf(d,d,wc_a,d,ipiv,info) | |
401 | + if (info/= 0) then | |
402 | + status=0 | |
403 | + fvn_z_det=(0.d0,0.d0) | |
404 | + deallocate(ipiv) | |
405 | + deallocate(wc_a) | |
406 | + return | |
407 | + end if | |
408 | + fvn_z_det=(1.d0,0.d0) | |
409 | + do i=1,d | |
410 | + if (ipiv(i)==i) then | |
411 | + fvn_z_det=fvn_z_det*wc_a(i,i) | |
412 | + else | |
413 | + fvn_z_det=-fvn_z_det*wc_a(i,i) | |
414 | + end if | |
415 | + end do | |
416 | + deallocate(ipiv) | |
417 | + deallocate(wc_a) | |
418 | + | |
419 | +end function | |
420 | + | |
421 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
422 | +! | |
423 | +! Condition test | |
424 | +! | |
425 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
426 | +! 1-norm | |
427 | +! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm | |
428 | +! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond | |
429 | +! | |
430 | +subroutine fvn_s_matcon(d,a,rcond,status) | |
431 | + ! Matrix condition (reciprocal of condition number) | |
432 | + ! | |
433 | + ! d (in) : matrix rank | |
434 | + ! a (in) : The Matrix | |
435 | + ! rcond (out) : guess what | |
436 | + ! status (out) : =0 if something went wrong | |
437 | + ! | |
438 | + integer, intent(in) :: d | |
439 | + real, intent(in) :: a(d,d) | |
440 | + real, intent(out) :: rcond | |
441 | + integer, intent(out) :: status | |
442 | + | |
443 | + real, allocatable :: work(:) | |
444 | + integer, allocatable :: iwork(:) | |
445 | + real :: anorm | |
446 | + real, allocatable :: wc_a(:,:) ! working copy of a | |
447 | + integer :: info | |
448 | + integer, allocatable :: ipiv(:) | |
449 | + | |
450 | + real, external :: slange | |
451 | + | |
452 | + | |
453 | + status=1 | |
454 | + | |
455 | + anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | |
456 | + | |
457 | + allocate(wc_a(d,d)) | |
458 | + !call scopy(d*d,a,1,wc_a,1) | |
459 | + wc_a(:,:)=a(:,:) | |
460 | + | |
461 | + allocate(ipiv(d)) | |
462 | + call sgetrf(d,d,wc_a,d,ipiv,info) | |
463 | + if (info /= 0) then | |
464 | + status=0 | |
465 | + deallocate(ipiv) | |
466 | + deallocate(wc_a) | |
467 | + return | |
468 | + end if | |
469 | + allocate(work(4*d)) | |
470 | + allocate(iwork(d)) | |
471 | + call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | |
472 | + if (info /= 0) then | |
473 | + status=0 | |
474 | + end if | |
475 | + deallocate(iwork) | |
476 | + deallocate(work) | |
477 | + deallocate(ipiv) | |
478 | + deallocate(wc_a) | |
479 | + | |
480 | +end subroutine | |
481 | + | |
482 | +subroutine fvn_d_matcon(d,a,rcond,status) | |
483 | + ! Matrix condition (reciprocal of condition number) | |
484 | + ! | |
485 | + ! d (in) : matrix rank | |
486 | + ! a (in) : The Matrix | |
487 | + ! rcond (out) : guess what | |
488 | + ! status (out) : =0 if something went wrong | |
489 | + ! | |
490 | + integer, intent(in) :: d | |
491 | + double precision, intent(in) :: a(d,d) | |
492 | + double precision, intent(out) :: rcond | |
493 | + integer, intent(out) :: status | |
494 | + | |
495 | + double precision, allocatable :: work(:) | |
496 | + integer, allocatable :: iwork(:) | |
497 | + double precision :: anorm | |
498 | + double precision, allocatable :: wc_a(:,:) ! working copy of a | |
499 | + integer :: info | |
500 | + integer, allocatable :: ipiv(:) | |
501 | + | |
502 | + double precision, external :: dlange | |
503 | + | |
504 | + | |
505 | + status=1 | |
506 | + | |
507 | + anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | |
508 | + | |
509 | + allocate(wc_a(d,d)) | |
510 | + !call dcopy(d*d,a,1,wc_a,1) | |
511 | + wc_a(:,:)=a(:,:) | |
512 | + | |
513 | + allocate(ipiv(d)) | |
514 | + call dgetrf(d,d,wc_a,d,ipiv,info) | |
515 | + if (info /= 0) then | |
516 | + status=0 | |
517 | + deallocate(ipiv) | |
518 | + deallocate(wc_a) | |
519 | + return | |
520 | + end if | |
521 | + | |
522 | + allocate(work(4*d)) | |
523 | + allocate(iwork(d)) | |
524 | + call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | |
525 | + if (info /= 0) then | |
526 | + status=0 | |
527 | + end if | |
528 | + deallocate(iwork) | |
529 | + deallocate(work) | |
530 | + deallocate(ipiv) | |
531 | + deallocate(wc_a) | |
532 | + | |
533 | +end subroutine | |
534 | + | |
535 | +subroutine fvn_c_matcon(d,a,rcond,status) | |
536 | + ! Matrix condition (reciprocal of condition number) | |
537 | + ! | |
538 | + ! d (in) : matrix rank | |
539 | + ! a (in) : The Matrix | |
540 | + ! rcond (out) : guess what | |
541 | + ! status (out) : =0 if something went wrong | |
542 | + ! | |
543 | + integer, intent(in) :: d | |
544 | + complex, intent(in) :: a(d,d) | |
545 | + real, intent(out) :: rcond | |
546 | + integer, intent(out) :: status | |
547 | + | |
548 | + real, allocatable :: rwork(:) | |
549 | + complex, allocatable :: work(:) | |
550 | + integer, allocatable :: iwork(:) | |
551 | + real :: anorm | |
552 | + complex, allocatable :: wc_a(:,:) ! working copy of a | |
553 | + integer :: info | |
554 | + integer, allocatable :: ipiv(:) | |
555 | + | |
556 | + real, external :: clange | |
557 | + | |
558 | + | |
559 | + status=1 | |
560 | + | |
561 | + anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | |
562 | + | |
563 | + allocate(wc_a(d,d)) | |
564 | + !call ccopy(d*d,a,1,wc_a,1) | |
565 | + wc_a(:,:)=a(:,:) | |
566 | + | |
567 | + allocate(ipiv(d)) | |
568 | + call cgetrf(d,d,wc_a,d,ipiv,info) | |
569 | + if (info /= 0) then | |
570 | + status=0 | |
571 | + deallocate(ipiv) | |
572 | + deallocate(wc_a) | |
573 | + return | |
574 | + end if | |
575 | + allocate(work(2*d)) | |
576 | + allocate(rwork(2*d)) | |
577 | + call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | |
578 | + if (info /= 0) then | |
579 | + status=0 | |
580 | + end if | |
581 | + deallocate(rwork) | |
582 | + deallocate(work) | |
583 | + deallocate(ipiv) | |
584 | + deallocate(wc_a) | |
585 | +end subroutine | |
586 | + | |
587 | +subroutine fvn_z_matcon(d,a,rcond,status) | |
588 | + ! Matrix condition (reciprocal of condition number) | |
589 | + ! | |
590 | + ! d (in) : matrix rank | |
591 | + ! a (in) : The Matrix | |
592 | + ! rcond (out) : guess what | |
593 | + ! status (out) : =0 if something went wrong | |
594 | + ! | |
595 | + integer, intent(in) :: d | |
596 | + double complex, intent(in) :: a(d,d) | |
597 | + double precision, intent(out) :: rcond | |
598 | + integer, intent(out) :: status | |
599 | + | |
600 | + double complex, allocatable :: work(:) | |
601 | + double precision, allocatable :: rwork(:) | |
602 | + double precision :: anorm | |
603 | + double complex, allocatable :: wc_a(:,:) ! working copy of a | |
604 | + integer :: info | |
605 | + integer, allocatable :: ipiv(:) | |
606 | + | |
607 | + double precision, external :: zlange | |
608 | + | |
609 | + | |
610 | + status=1 | |
611 | + | |
612 | + anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | |
613 | + | |
614 | + allocate(wc_a(d,d)) | |
615 | + !call zcopy(d*d,a,1,wc_a,1) | |
616 | + wc_a(:,:)=a(:,:) | |
617 | + | |
618 | + allocate(ipiv(d)) | |
619 | + call zgetrf(d,d,wc_a,d,ipiv,info) | |
620 | + if (info /= 0) then | |
621 | + status=0 | |
622 | + deallocate(ipiv) | |
623 | + deallocate(wc_a) | |
624 | + return | |
625 | + end if | |
626 | + | |
627 | + allocate(work(2*d)) | |
628 | + allocate(rwork(2*d)) | |
629 | + call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | |
630 | + if (info /= 0) then | |
631 | + status=0 | |
632 | + end if | |
633 | + deallocate(rwork) | |
634 | + deallocate(work) | |
635 | + deallocate(ipiv) | |
636 | + deallocate(wc_a) | |
637 | +end subroutine | |
638 | + | |
639 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
640 | +! | |
641 | +! Valeurs propres/ Vecteurs propre | |
642 | +! | |
643 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
644 | + | |
645 | +subroutine fvn_s_matev(d,a,evala,eveca,status) | |
646 | + ! | |
647 | + ! integer d (in) : matrice rank | |
648 | + ! real a(d,d) (in) : The Matrix | |
649 | + ! complex evala(d) (out) : eigenvalues | |
650 | + ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
651 | + ! integer (out) : status =0 if something went wrong | |
652 | + ! | |
653 | + ! interfacing Lapack routine SGEEV | |
654 | + | |
655 | + integer, intent(in) :: d | |
656 | + real, intent(in) :: a(d,d) | |
657 | + complex, intent(out) :: evala(d) | |
658 | + complex, intent(out) :: eveca(d,d) | |
659 | + integer, intent(out) :: status | |
660 | + | |
661 | + real, allocatable :: wc_a(:,:) ! a working copy of a | |
662 | + integer :: info | |
663 | + integer :: lwork | |
664 | + real, allocatable :: wr(:),wi(:) | |
665 | + real :: vl ! unused but necessary for the call | |
666 | + real, allocatable :: vr(:,:) | |
667 | + real, allocatable :: work(:) | |
668 | + real :: twork(1) | |
669 | + integer i | |
670 | + integer j | |
671 | + | |
672 | + ! making a working copy of a | |
673 | + allocate(wc_a(d,d)) | |
674 | + !call scopy(d*d,a,1,wc_a,1) | |
675 | + wc_a(:,:)=a(:,:) | |
676 | + | |
677 | + allocate(wr(d)) | |
678 | + allocate(wi(d)) | |
679 | + allocate(vr(d,d)) | |
680 | + ! query optimal work size | |
681 | + call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | |
682 | + lwork=int(twork(1)) | |
683 | + allocate(work(lwork)) | |
684 | + call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | |
685 | + | |
686 | + if (info /= 0) then | |
687 | + status=0 | |
688 | + deallocate(work) | |
689 | + deallocate(vr) | |
690 | + deallocate(wi) | |
691 | + deallocate(wr) | |
692 | + deallocate(wc_a) | |
693 | + return | |
694 | + end if | |
695 | + | |
696 | + ! now fill in the results | |
697 | + i=1 | |
698 | + do while(i<=d) | |
699 | + evala(i)=cmplx(wr(i),wi(i)) | |
700 | + if (wi(i) == 0.) then ! eigenvalue is real | |
701 | + eveca(:,i)=cmplx(vr(:,i),0.) | |
702 | + else ! eigenvalue is complex | |
703 | + evala(i+1)=cmplx(wr(i+1),wi(i+1)) | |
704 | + eveca(:,i)=cmplx(vr(:,i),vr(:,i+1)) | |
705 | + eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1)) | |
706 | + i=i+1 | |
707 | + end if | |
708 | + i=i+1 | |
709 | + enddo | |
710 | + deallocate(work) | |
711 | + deallocate(vr) | |
712 | + deallocate(wi) | |
713 | + deallocate(wr) | |
714 | + deallocate(wc_a) | |
715 | + | |
716 | +end subroutine | |
717 | + | |
718 | +subroutine fvn_d_matev(d,a,evala,eveca,status) | |
719 | + ! | |
720 | + ! integer d (in) : matrice rank | |
721 | + ! double precision a(d,d) (in) : The Matrix | |
722 | + ! double complex evala(d) (out) : eigenvalues | |
723 | + ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
724 | + ! integer (out) : status =0 if something went wrong | |
725 | + ! | |
726 | + ! interfacing Lapack routine DGEEV | |
727 | + integer, intent(in) :: d | |
728 | + double precision, intent(in) :: a(d,d) | |
729 | + double complex, intent(out) :: evala(d) | |
730 | + double complex, intent(out) :: eveca(d,d) | |
731 | + integer, intent(out) :: status | |
732 | + | |
733 | + double precision, allocatable :: wc_a(:,:) ! a working copy of a | |
734 | + integer :: info | |
735 | + integer :: lwork | |
736 | + double precision, allocatable :: wr(:),wi(:) | |
737 | + double precision :: vl ! unused but necessary for the call | |
738 | + double precision, allocatable :: vr(:,:) | |
739 | + double precision, allocatable :: work(:) | |
740 | + double precision :: twork(1) | |
741 | + integer i | |
742 | + integer j | |
743 | + | |
744 | + ! making a working copy of a | |
745 | + allocate(wc_a(d,d)) | |
746 | + !call dcopy(d*d,a,1,wc_a,1) | |
747 | + wc_a(:,:)=a(:,:) | |
748 | + | |
749 | + allocate(wr(d)) | |
750 | + allocate(wi(d)) | |
751 | + allocate(vr(d,d)) | |
752 | + ! query optimal work size | |
753 | + call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | |
754 | + lwork=int(twork(1)) | |
755 | + allocate(work(lwork)) | |
756 | + call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | |
757 | + | |
758 | + if (info /= 0) then | |
759 | + status=0 | |
760 | + deallocate(work) | |
761 | + deallocate(vr) | |
762 | + deallocate(wi) | |
763 | + deallocate(wr) | |
764 | + deallocate(wc_a) | |
765 | + return | |
766 | + end if | |
767 | + | |
768 | + ! now fill in the results | |
769 | + i=1 | |
770 | + do while(i<=d) | |
771 | + evala(i)=dcmplx(wr(i),wi(i)) | |
772 | + if (wi(i) == 0.) then ! eigenvalue is real | |
773 | + eveca(:,i)=dcmplx(vr(:,i),0.) | |
774 | + else ! eigenvalue is complex | |
775 | + evala(i+1)=dcmplx(wr(i+1),wi(i+1)) | |
776 | + eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1)) | |
777 | + eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1)) | |
778 | + i=i+1 | |
779 | + end if | |
780 | + i=i+1 | |
781 | + enddo | |
782 | + | |
783 | + deallocate(work) | |
784 | + deallocate(vr) | |
785 | + deallocate(wi) | |
786 | + deallocate(wr) | |
787 | + deallocate(wc_a) | |
788 | + | |
789 | +end subroutine | |
790 | + | |
791 | +subroutine fvn_c_matev(d,a,evala,eveca,status) | |
792 | + ! | |
793 | + ! integer d (in) : matrice rank | |
794 | + ! complex a(d,d) (in) : The Matrix | |
795 | + ! complex evala(d) (out) : eigenvalues | |
796 | + ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
797 | + ! integer (out) : status =0 if something went wrong | |
798 | + ! | |
799 | + ! interfacing Lapack routine CGEEV | |
800 | + | |
801 | + integer, intent(in) :: d | |
802 | + complex, intent(in) :: a(d,d) | |
803 | + complex, intent(out) :: evala(d) | |
804 | + complex, intent(out) :: eveca(d,d) | |
805 | + integer, intent(out) :: status | |
806 | + | |
807 | + complex, allocatable :: wc_a(:,:) ! a working copy of a | |
808 | + integer :: info | |
809 | + integer :: lwork | |
810 | + complex, allocatable :: work(:) | |
811 | + complex :: twork(1) | |
812 | + real, allocatable :: rwork(:) | |
813 | + complex :: vl ! unused but necessary for the call | |
814 | + | |
815 | + status=1 | |
816 | + | |
817 | + ! making a working copy of a | |
818 | + allocate(wc_a(d,d)) | |
819 | + !call ccopy(d*d,a,1,wc_a,1) | |
820 | + wc_a(:,:)=a(:,:) | |
821 | + | |
822 | + | |
823 | + ! query optimal work size | |
824 | + call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | |
825 | + lwork=int(twork(1)) | |
826 | + allocate(work(lwork)) | |
827 | + allocate(rwork(2*d)) | |
828 | + call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | |
829 | + | |
830 | + if (info /= 0) then | |
831 | + status=0 | |
832 | + end if | |
833 | + deallocate(rwork) | |
834 | + deallocate(work) | |
835 | + deallocate(wc_a) | |
836 | + | |
837 | +end subroutine | |
838 | + | |
839 | +subroutine fvn_z_matev(d,a,evala,eveca,status) | |
840 | + ! | |
841 | + ! integer d (in) : matrice rank | |
842 | + ! double complex a(d,d) (in) : The Matrix | |
843 | + ! double complex evala(d) (out) : eigenvalues | |
844 | + ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
845 | + ! integer (out) : status =0 if something went wrong | |
846 | + ! | |
847 | + ! interfacing Lapack routine ZGEEV | |
848 | + | |
849 | + integer, intent(in) :: d | |
850 | + double complex, intent(in) :: a(d,d) | |
851 | + double complex, intent(out) :: evala(d) | |
852 | + double complex, intent(out) :: eveca(d,d) | |
853 | + integer, intent(out) :: status | |
854 | + | |
855 | + double complex, allocatable :: wc_a(:,:) ! a working copy of a | |
856 | + integer :: info | |
857 | + integer :: lwork | |
858 | + double complex, allocatable :: work(:) | |
859 | + double complex :: twork(1) | |
860 | + double precision, allocatable :: rwork(:) | |
861 | + double complex :: vl ! unused but necessary for the call | |
862 | + | |
863 | + status=1 | |
864 | + | |
865 | + ! making a working copy of a | |
866 | + allocate(wc_a(d,d)) | |
867 | + !call zcopy(d*d,a,1,wc_a,1) | |
868 | + wc_a(:,:)=a(:,:) | |
869 | + | |
870 | + ! query optimal work size | |
871 | + call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | |
872 | + lwork=int(twork(1)) | |
873 | + allocate(work(lwork)) | |
874 | + allocate(rwork(2*d)) | |
875 | + call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | |
876 | + | |
877 | + if (info /= 0) then | |
878 | + status=0 | |
879 | + end if | |
880 | + deallocate(rwork) | |
881 | + deallocate(work) | |
882 | + deallocate(wc_a) | |
883 | + | |
884 | +end subroutine | |
885 | + | |
886 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
887 | +! | |
888 | +! Akima spline interpolation and spline evaluation | |
889 | +! | |
890 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
891 | + | |
892 | +! Single precision | |
893 | +subroutine fvn_s_akima(n,x,y,br,co) | |
894 | + implicit none | |
895 | + integer, intent(in) :: n | |
896 | + real, intent(in) :: x(n) | |
897 | + real, intent(in) :: y(n) | |
898 | + real, intent(out) :: br(n) | |
899 | + real, intent(out) :: co(4,n) | |
900 | + | |
901 | + real, allocatable :: var(:),z(:) | |
902 | + real :: wi_1,wi | |
903 | + integer :: i | |
904 | + real :: dx,a,b | |
905 | + | |
906 | + ! br is just a copy of x | |
907 | + br(:)=x(:) | |
908 | + | |
909 | + allocate(var(n)) | |
910 | + allocate(z(n)) | |
911 | + ! evaluate the variations | |
912 | + do i=1, n-1 | |
913 | + var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | |
914 | + end do | |
915 | + var(n+2)=2.e0*var(n+1)-var(n) | |
916 | + var(n+3)=2.e0*var(n+2)-var(n+1) | |
917 | + var(2)=2.e0*var(3)-var(4) | |
918 | + var(1)=2.e0*var(2)-var(3) | |
919 | + | |
920 | + do i = 1, n | |
921 | + wi_1=abs(var(i+3)-var(i+2)) | |
922 | + wi=abs(var(i+1)-var(i)) | |
923 | + if ((wi_1+wi).eq.0.e0) then | |
924 | + z(i)=(var(i+2)+var(i+1))/2.e0 | |
925 | + else | |
926 | + z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | |
927 | + end if | |
928 | + end do | |
929 | + | |
930 | + do i=1, n-1 | |
931 | + dx=x(i+1)-x(i) | |
932 | + a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | |
933 | + b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | |
934 | + co(1,i)=y(i) | |
935 | + co(2,i)=z(i) | |
936 | + !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | |
937 | + !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | |
938 | + co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | |
939 | + co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! | |
940 | + ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | |
941 | + ! etrangement la fonction csval corrige et donne la bonne valeur ... | |
942 | + end do | |
943 | + co(1,n)=y(n) | |
944 | + co(2,n)=z(n) | |
945 | + co(3,n)=0.e0 | |
946 | + co(4,n)=0.e0 | |
947 | + | |
948 | + deallocate(z) | |
949 | + deallocate(var) | |
950 | + | |
951 | +end subroutine | |
952 | + | |
953 | +! Double precision | |
954 | +subroutine fvn_d_akima(n,x,y,br,co) | |
955 | + | |
956 | + implicit none | |
957 | + integer, intent(in) :: n | |
958 | + double precision, intent(in) :: x(n) | |
959 | + double precision, intent(in) :: y(n) | |
960 | + double precision, intent(out) :: br(n) | |
961 | + double precision, intent(out) :: co(4,n) | |
962 | + | |
963 | + double precision, allocatable :: var(:),z(:) | |
964 | + double precision :: wi_1,wi | |
965 | + integer :: i | |
966 | + double precision :: dx,a,b | |
967 | + | |
968 | + ! br is just a copy of x | |
969 | + br(:)=x(:) | |
970 | + | |
971 | + allocate(var(n)) | |
972 | + allocate(z(n)) | |
973 | + ! evaluate the variations | |
974 | + do i=1, n-1 | |
975 | + var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | |
976 | + end do | |
977 | + var(n+2)=2.d0*var(n+1)-var(n) | |
978 | + var(n+3)=2.d0*var(n+2)-var(n+1) | |
979 | + var(2)=2.d0*var(3)-var(4) | |
980 | + var(1)=2.d0*var(2)-var(3) | |
981 | + | |
982 | + do i = 1, n | |
983 | + wi_1=dabs(var(i+3)-var(i+2)) | |
984 | + wi=dabs(var(i+1)-var(i)) | |
985 | + if ((wi_1+wi).eq.0.d0) then | |
986 | + z(i)=(var(i+2)+var(i+1))/2.d0 | |
987 | + else | |
988 | + z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | |
989 | + end if | |
990 | + end do | |
991 | + | |
992 | + do i=1, n-1 | |
993 | + dx=x(i+1)-x(i) | |
994 | + a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | |
995 | + b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | |
996 | + co(1,i)=y(i) | |
997 | + co(2,i)=z(i) | |
998 | + !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | |
999 | + !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | |
1000 | + co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | |
1001 | + co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! | |
1002 | + ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | |
1003 | + ! etrangement la fonction csval corrige et donne la bonne valeur ... | |
1004 | + end do | |
1005 | + co(1,n)=y(n) | |
1006 | + co(2,n)=z(n) | |
1007 | + co(3,n)=0.d0 | |
1008 | + co(4,n)=0.d0 | |
1009 | + | |
1010 | + deallocate(z) | |
1011 | + deallocate(var) | |
1012 | + | |
1013 | +end subroutine | |
1014 | + | |
1015 | +! | |
1016 | +! Single precision spline evaluation | |
1017 | +! | |
1018 | +function fvn_s_spline_eval(x,n,br,co) | |
1019 | + implicit none | |
1020 | + real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | |
1021 | + integer, intent(in) :: n ! number of intervals | |
1022 | + real, intent(in) :: br(n+1) ! breakpoints | |
1023 | + real, intent(in) :: co(4,n+1) ! spline coeeficients | |
1024 | + real :: fvn_s_spline_eval | |
1025 | + | |
1026 | + integer :: i | |
1027 | + real :: dx | |
1028 | + | |
1029 | + if (x<=br(1)) then | |
1030 | + i=1 | |
1031 | + else if (x>=br(n+1)) then | |
1032 | + i=n | |
1033 | + else | |
1034 | + i=1 | |
1035 | + do while(x>=br(i)) | |
1036 | + i=i+1 | |
1037 | + end do | |
1038 | + i=i-1 | |
1039 | + end if | |
1040 | + dx=x-br(i) | |
1041 | + fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | |
1042 | + | |
1043 | +end function | |
1044 | + | |
1045 | +! Double precision spline evaluation | |
1046 | +function fvn_d_spline_eval(x,n,br,co) | |
1047 | + implicit none | |
1048 | + double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | |
1049 | + integer, intent(in) :: n ! number of intervals | |
1050 | + double precision, intent(in) :: br(n+1) ! breakpoints | |
1051 | + double precision, intent(in) :: co(4,n+1) ! spline coeeficients | |
1052 | + double precision :: fvn_d_spline_eval | |
1053 | + | |
1054 | + integer :: i | |
1055 | + double precision :: dx | |
1056 | + | |
1057 | + | |
1058 | + if (x<=br(1)) then | |
1059 | + i=1 | |
1060 | + else if (x>=br(n+1)) then | |
1061 | + i=n | |
1062 | + else | |
1063 | + i=1 | |
1064 | + do while(x>=br(i)) | |
1065 | + i=i+1 | |
1066 | + end do | |
1067 | + i=i-1 | |
1068 | + end if | |
1069 | + | |
1070 | + dx=x-br(i) | |
1071 | + fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | |
1072 | + | |
1073 | +end function | |
1074 | + | |
1075 | + | |
1076 | +! | |
1077 | +! Muller | |
1078 | +! | |
1079 | +! | |
1080 | +! | |
1081 | +! William Daniau 2007 | |
1082 | +! | |
1083 | +! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | |
1084 | +! http://plato.asu.edu/ftp/other_software/muller.f | |
1085 | +! | |
1086 | +! it can be used as a replacement for imsl routine dzanly with minor changes | |
1087 | +! | |
1088 | +!----------------------------------------------------------------------- | |
1089 | +! | |
1090 | +! purpose - zeros of an analytic complex function | |
1091 | +! using the muller method with deflation | |
1092 | +! | |
1093 | +! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | |
1094 | +! infer,ier) | |
1095 | +! | |
1096 | +! arguments f - a complex function subprogram, f(z), written | |
1097 | +! by the user specifying the equation whose | |
1098 | +! roots are to be found. f must appear in | |
1099 | +! an external statement in the calling pro- | |
1100 | +! gram. | |
1101 | +! eps - 1st stopping criterion. let fp(z)=f(z)/p | |
1102 | +! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | |
1103 | +! and z(1),...,z(k-1) are previously found | |
1104 | +! roots. if ((cdabs(f(z)).le.eps) .and. | |
1105 | +! (cdabs(fp(z)).le.eps)), then z is accepted | |
1106 | +! as a root. (input) | |
1107 | +! eps1 - 2nd stopping criterion. a root is accepted | |
1108 | +! if two successive approximations to a given | |
1109 | +! root agree within eps1. (input) | |
1110 | +! note. if either or both of the stopping | |
1111 | +! criteria are fulfilled, the root is | |
1112 | +! accepted. | |
1113 | +! kn - the number of known roots which must be stored | |
1114 | +! in x(1),...,x(kn), prior to entry to muller | |
1115 | +! nguess - the number of initial guesses provided. these | |
1116 | +! guesses must be stored in x(kn+1),..., | |
1117 | +! x(kn+nguess). nguess must be set equal | |
1118 | +! to zero if no guesses are provided. (input) | |
1119 | +! n - the number of new roots to be found by | |
1120 | +! muller (input) | |
1121 | +! x - a complex vector of length kn+n. x(1),..., | |
1122 | +! x(kn) on input must contain any known | |
1123 | +! roots. x(kn+1),..., x(kn+n) on input may, | |
1124 | +! on user option, contain initial guesses for | |
1125 | +! the n new roots which are to be computed. | |
1126 | +! if the user does not provide an initial | |
1127 | +! guess, zero is used. | |
1128 | +! on output, x(kn+1),...,x(kn+n) contain the | |
1129 | +! approximate roots found by muller. | |
1130 | +! itmax - the maximum allowable number of iterations | |
1131 | +! per root (input) | |
1132 | +! infer - an integer vector of length kn+n. on | |
1133 | +! output infer(j) contains the number of | |
1134 | +! iterations used in finding the j-th root | |
1135 | +! when convergence was achieved. if | |
1136 | +! convergence was not obtained in itmax | |
1137 | +! iterations, infer(j) will be greater than | |
1138 | +! itmax (output). | |
1139 | +! ier - error parameter (output) | |
1140 | +! warning error | |
1141 | +! ier = 33 indicates failure to converge with- | |
1142 | +! in itmax iterations for at least one of | |
1143 | +! the (n) new roots. | |
1144 | +! | |
1145 | +! | |
1146 | +! remarks muller always returns the last approximation for root j | |
1147 | +! in x(j). if the convergence criterion is satisfied, | |
1148 | +! then infer(j) is less than or equal to itmax. if the | |
1149 | +! convergence criterion is not satisified, then infer(j) | |
1150 | +! is set to either itmax+1 or itmax+k, with k greater | |
1151 | +! than 1. infer(j) = itmax+1 indicates that muller did | |
1152 | +! not obtain convergence in the allowed number of iter- | |
1153 | +! ations. in this case, the user may wish to set itmax | |
1154 | +! to a larger value. infer(j) = itmax+k means that con- | |
1155 | +! vergence was obtained (on iteration k) for the defla- | |
1156 | +! ted function | |
1157 | +! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | |
1158 | +! | |
1159 | +! but failed for f(z). in this case, better initial | |
1160 | +! guesses might help or, it might be necessary to relax | |
1161 | +! the convergence criterion. | |
1162 | +! | |
1163 | +!----------------------------------------------------------------------- | |
1164 | +! | |
1165 | +subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | |
1166 | + implicit none | |
1167 | + double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq | |
1168 | + double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | |
1169 | + tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | |
1170 | + zero,p1,one,four,p5 | |
1171 | + | |
1172 | + double complex, external :: f | |
1173 | + integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | |
1174 | + knpng,jk,ick,nn,lm1,errcode | |
1175 | + double complex :: x(kn+n) | |
1176 | + integer :: infer(kn+n) | |
1177 | + | |
1178 | + | |
1179 | + data zero/(0.0,0.0)/,p1/(0.1,0.0)/, & | |
1180 | + one/(1.0,0.0)/,four/(4.0,0.0)/, & | |
1181 | + p5/(0.5,0.0)/, & | |
1182 | + rzero/0.0/,rten/10.0/,rhun/100.0/, & | |
1183 | + ax/0.1/,ickmax/3/,rp01/0.01/ | |
1184 | + | |
1185 | + ier = 0 | |
1186 | + if (n .lt. 1) then ! What the hell are doing here then ... | |
1187 | + return | |
1188 | + end if | |
1189 | + !eps1 = rten **(-nsig) | |
1190 | + eps1 = min(eps1,rp01) | |
1191 | + | |
1192 | + knp1 = kn+1 | |
1193 | + knpn = kn+n | |
1194 | + knpng = kn+nguess | |
1195 | + do i=1,knpn | |
1196 | + infer(i) = 0 | |
1197 | + if (i .gt. knpng) x(i) = zero | |
1198 | + end do | |
1199 | + l= knp1 | |
1200 | + | |
1201 | + ic=0 | |
1202 | +rloop: do while (l<=knpn) ! Main loop over new roots | |
1203 | + jk = 0 | |
1204 | + ick = 0 | |
1205 | + xl = x(l) | |
1206 | +icloop: do | |
1207 | + ic = 0 | |
1208 | + h = ax | |
1209 | + h = p1*h | |
1210 | + if (cdabs(xl) .gt. ax) h = p1*xl | |
1211 | +! first three points are | |
1212 | +! xl+h, xl-h, xl | |
1213 | + rt = xl+h | |
1214 | + call deflated_work(errcode) | |
1215 | + if (errcode == 1) then | |
1216 | + exit icloop | |
1217 | + end if | |
1218 | + | |
1219 | + z0 = fprt | |
1220 | + y0 = frt | |
1221 | + x0 = rt | |
1222 | + rt = xl-h | |
1223 | + call deflated_work(errcode) | |
1224 | + if (errcode == 1) then | |
1225 | + exit icloop | |
1226 | + end if | |
1227 | + | |
1228 | + z1 = fprt | |
1229 | + y1 = frt | |
1230 | + h = xl-rt | |
1231 | + d = h/(rt-x0) | |
1232 | + rt = xl | |
1233 | + | |
1234 | + call deflated_work(errcode) | |
1235 | + if (errcode == 1) then | |
1236 | + exit icloop | |
1237 | + end if | |
1238 | + | |
1239 | + | |
1240 | + z2 = fprt | |
1241 | + y2 = frt | |
1242 | +! begin main algorithm | |
1243 | + iloop: do | |
1244 | + dd = one + d | |
1245 | + t1 = z0*d*d | |
1246 | + t2 = z1*dd*dd | |
1247 | + xx = z2*dd | |
1248 | + t3 = z2*d | |
1249 | + bi = t1-t2+xx+t3 | |
1250 | + den = bi*bi-four*(xx*t1-t3*(t2-xx)) | |
1251 | +! use denominator of maximum amplitude | |
1252 | + t1 = cdsqrt(den) | |
1253 | + qz = rhun*max(cdabs(bi),cdabs(t1)) | |
1254 | + t2 = bi + t1 | |
1255 | + tpq = cdabs(t2)+qz | |
1256 | + if (tpq .eq. qz) t2 = zero | |
1257 | + t3 = bi - t1 | |
1258 | + tpq = cdabs(t3) + qz | |
1259 | + if (tpq .eq. qz) t3 = zero | |
1260 | + den = t2 | |
1261 | + qz = cdabs(t3)-cdabs(t2) | |
1262 | + if (qz .gt. rzero) den = t3 | |
1263 | +! test for zero denominator | |
1264 | + if (cdabs(den) .eq. rzero) then | |
1265 | + call trans_rt() | |
1266 | + call deflated_work(errcode) | |
1267 | + if (errcode == 1) then | |
1268 | + exit icloop | |
1269 | + end if | |
1270 | + z2 = fprt | |
1271 | + y2 = frt | |
1272 | + cycle iloop | |
1273 | + end if | |
1274 | + | |
1275 | + | |
1276 | + d = -xx/den | |
1277 | + d = d+d | |
1278 | + h = d*h | |
1279 | + rt = rt + h | |
1280 | +! check convergence of the first kind | |
1281 | + if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then | |
1282 | + if (ic .ne. 0) then | |
1283 | + exit icloop | |
1284 | + end if | |
1285 | + ic = 1 | |
1286 | + z0 = y1 | |
1287 | + z1 = y2 | |
1288 | + z2 = f(rt) | |
1289 | + xl = rt | |
1290 | + ick = ick+1 | |
1291 | + if (ick .le. ickmax) then | |
1292 | + cycle iloop | |
1293 | + end if | |
1294 | +! warning error, itmax = maximum | |
1295 | + jk = itmax + jk | |
1296 | + ier = 33 | |
1297 | + end if | |
1298 | + if (ic .ne. 0) then | |
1299 | + cycle icloop | |
1300 | + end if | |
1301 | + call deflated_work(errcode) | |
1302 | + if (errcode == 1) then | |
1303 | + exit icloop | |
1304 | + end if | |
1305 | + | |
1306 | + do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | |
1307 | + ! take remedial action to induce | |
1308 | + ! convergence | |
1309 | + d = d*p5 | |
1310 | + h = h*p5 | |
1311 | + rt = rt-h | |
1312 | + call deflated_work(errcode) | |
1313 | + if (errcode == 1) then | |
1314 | + exit icloop | |
1315 | + end if | |
1316 | + end do | |
1317 | + z0 = z1 | |
1318 | + z1 = z2 | |
1319 | + z2 = fprt | |
1320 | + y0 = y1 | |
1321 | + y1 = y2 | |
1322 | + y2 = frt | |
1323 | + end do iloop | |
1324 | + end do icloop | |
1325 | + x(l) = rt | |
1326 | + infer(l) = jk | |
1327 | + l = l+1 | |
1328 | + end do rloop | |
1329 | + | |
1330 | + contains | |
1331 | + subroutine trans_rt() | |
1332 | + tem = rten*eps1 | |
1333 | + if (cdabs(rt) .gt. ax) tem = tem*rt | |
1334 | + rt = rt+tem | |
1335 | + d = (h+tem)*d/h | |
1336 | + h = h+tem | |
1337 | + end subroutine trans_rt | |
1338 | + | |
1339 | + subroutine deflated_work(errcode) | |
1340 | + ! errcode=0 => no errors | |
1341 | + ! errcode=1 => jk>itmax or convergence of second kind achieved | |
1342 | + integer :: errcode,flag | |
1343 | + | |
1344 | + flag=1 | |
1345 | + loop1: do while(flag==1) | |
1346 | + errcode=0 | |
1347 | + jk = jk+1 | |
1348 | + if (jk .gt. itmax) then | |
1349 | + ier=33 | |
1350 | + errcode=1 | |
1351 | + return | |
1352 | + end if | |
1353 | + frt = f(rt) | |
1354 | + fprt = frt | |
1355 | + if (l /= 1) then | |
1356 | + lm1 = l-1 | |
1357 | + do i=1,lm1 | |
1358 | + tem = rt - x(i) | |
1359 | + if (cdabs(tem) .eq. rzero) then | |
1360 | + !if (ic .ne. 0) go to 15 !! ?? possible? | |
1361 | + call trans_rt() | |
1362 | + cycle loop1 | |
1363 | + end if | |
1364 | + fprt = fprt/tem | |
1365 | + end do | |
1366 | + end if | |
1367 | + flag=0 | |
1368 | + end do loop1 | |
1369 | + | |
1370 | + if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | |
1371 | + errcode=1 | |
1372 | + return | |
1373 | + end if | |
1374 | + | |
1375 | + end subroutine deflated_work | |
1376 | + | |
1377 | + end subroutine | |
1378 | + | |
1379 | + | |
1380 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1381 | +! | |
1382 | +! Integration | |
1383 | +! | |
1384 | +! Only double precision coded atm | |
1385 | +! | |
1386 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1387 | + | |
1388 | + | |
1389 | +subroutine fvn_d_gauss_legendre(n,qx,qw) | |
1390 | +! | |
1391 | +! This routine compute the n Gauss Legendre abscissas and weights | |
1392 | +! Adapted from Numerical Recipes routine gauleg | |
1393 | +! | |
1394 | +! n (in) : number of points | |
1395 | +! qx(out) : abscissas | |
1396 | +! qw(out) : weights | |
1397 | +! | |
1398 | +implicit none | |
1399 | +double precision,parameter :: pi=3.141592653589793d0 | |
1400 | +integer, intent(in) :: n | |
1401 | +double precision, intent(out) :: qx(n),qw(n) | |
1402 | + | |
1403 | +integer :: m,i,j | |
1404 | +double precision :: z,z1,p1,p2,p3,pp | |
1405 | +m=(n+1)/2 | |
1406 | +do i=1,m | |
1407 | + z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0)) | |
1408 | +iloop: do | |
1409 | + p1=1.d0 | |
1410 | + p2=0.d0 | |
1411 | + do j=1,n | |
1412 | + p3=p2 | |
1413 | + p2=p1 | |
1414 | + p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j) | |
1415 | + end do | |
1416 | + pp=dble(n)*(z*p1-p2)/(z*z-1.d0) | |
1417 | + z1=z | |
1418 | + z=z1-p1/pp | |
1419 | + if (dabs(z-z1)<=epsilon(z)) then | |
1420 | + exit iloop | |
1421 | + end if | |
1422 | + end do iloop | |
1423 | + qx(i)=-z | |
1424 | + qx(n+1-i)=z | |
1425 | + qw(i)=2.d0/((1.d0-z*z)*pp*pp) | |
1426 | + qw(n+1-i)=qw(i) | |
1427 | +end do | |
1428 | +end subroutine | |
1429 | + | |
1430 | + | |
1431 | + | |
1432 | +subroutine fvn_d_gl_integ(f,a,b,n,res) | |
1433 | +! | |
1434 | +! This is a simple non adaptative integration routine | |
1435 | +! using n gauss legendre abscissas and weights | |
1436 | +! | |
1437 | +! f(in) : the function to integrate | |
1438 | +! a(in) : lower bound | |
1439 | +! b(in) : higher bound | |
1440 | +! n(in) : number of gauss legendre pairs | |
1441 | +! res(out): the evaluation of the integral | |
1442 | +! | |
1443 | +double precision,external :: f | |
1444 | +double precision, intent(in) :: a,b | |
1445 | +integer, intent(in):: n | |
1446 | +double precision, intent(out) :: res | |
1447 | + | |
1448 | +double precision, allocatable :: qx(:),qw(:) | |
1449 | +double precision :: xm,xr | |
1450 | +integer :: i | |
1451 | + | |
1452 | +! First compute n gauss legendre abs and weight | |
1453 | +allocate(qx(n)) | |
1454 | +allocate(qw(n)) | |
1455 | +call fvn_d_gauss_legendre(n,qx,qw) | |
1456 | + | |
1457 | +xm=0.5d0*(b+a) | |
1458 | +xr=0.5d0*(b-a) | |
1459 | + | |
1460 | +res=0.d0 | |
1461 | + | |
1462 | +do i=1,n | |
1463 | + res=res+qw(i)*f(xm+xr*qx(i)) | |
1464 | +end do | |
1465 | + | |
1466 | +res=xr*res | |
1467 | + | |
1468 | +deallocate(qw) | |
1469 | +deallocate(qx) | |
1470 | + | |
1471 | +end subroutine | |
1472 | + | |
1473 | +!!!!!!!!!!!!!!!!!!!!!!!! | |
1474 | +! | |
1475 | +! Simple and double adaptative Gauss Kronrod integration based on | |
1476 | +! a modified version of quadpack ( http://www.netlib.org/quadpack | |
1477 | +! | |
1478 | +! Common parameters : | |
1479 | +! | |
1480 | +! key (in) | |
1481 | +! epsabs | |
1482 | +! epsrel | |
1483 | +! | |
1484 | +! | |
1485 | +!!!!!!!!!!!!!!!!!!!!!!!! | |
1486 | + | |
1487 | +subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | |
1488 | +! | |
1489 | +! Evaluate the integral of function f(x) between a and b | |
1490 | +! | |
1491 | +! f(in) : the function | |
1492 | +! a(in) : lower bound | |
1493 | +! b(in) : higher bound | |
1494 | +! epsabs(in) : desired absolute error | |
1495 | +! epsrel(in) : desired relative error | |
1496 | +! key(in) : gauss kronrod rule | |
1497 | +! 1: 7 - 15 points | |
1498 | +! 2: 10 - 21 points | |
1499 | +! 3: 15 - 31 points | |
1500 | +! 4: 20 - 41 points | |
1501 | +! 5: 25 - 51 points | |
1502 | +! 6: 30 - 61 points | |
1503 | +! | |
1504 | +! limit(in) : maximum number of subintervals in the partition of the | |
1505 | +! given integration interval (a,b). A value of 500 will give the same | |
1506 | +! behaviour as the imsl routine dqdag | |
1507 | +! | |
1508 | +! res(out) : estimated integral value | |
1509 | +! abserr(out) : estimated absolute error | |
1510 | +! ier(out) : error flag from quadpack routines | |
1511 | +! 0 : no error | |
1512 | +! 1 : maximum number of subdivisions allowed | |
1513 | +! has been achieved. one can allow more | |
1514 | +! subdivisions by increasing the value of | |
1515 | +! limit (and taking the according dimension | |
1516 | +! adjustments into account). however, if | |
1517 | +! this yield no improvement it is advised | |
1518 | +! to analyze the integrand in order to | |
1519 | +! determine the integration difficulaties. | |
1520 | +! if the position of a local difficulty can | |
1521 | +! be determined (i.e.singularity, | |
1522 | +! discontinuity within the interval) one | |
1523 | +! will probably gain from splitting up the | |
1524 | +! interval at this point and calling the | |
1525 | +! integrator on the subranges. if possible, | |
1526 | +! an appropriate special-purpose integrator | |
1527 | +! should be used which is designed for | |
1528 | +! handling the type of difficulty involved. | |
1529 | +! 2 : the occurrence of roundoff error is | |
1530 | +! detected, which prevents the requested | |
1531 | +! tolerance from being achieved. | |
1532 | +! 3 : extremely bad integrand behaviour occurs | |
1533 | +! at some points of the integration | |
1534 | +! interval. | |
1535 | +! 6 : the input is invalid, because | |
1536 | +! (epsabs.le.0 and | |
1537 | +! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
1538 | +! or limit.lt.1 or lenw.lt.limit*4. | |
1539 | +! result, abserr, neval, last are set | |
1540 | +! to zero. | |
1541 | +! except when lenw is invalid, iwork(1), | |
1542 | +! work(limit*2+1) and work(limit*3+1) are | |
1543 | +! set to zero, work(1) is set to a and | |
1544 | +! work(limit+1) to b. | |
1545 | + | |
1546 | +implicit none | |
1547 | +double precision, external :: f | |
1548 | +double precision, intent(in) :: a,b,epsabs,epsrel | |
1549 | +integer, intent(in) :: key | |
1550 | +integer, intent(in) :: limit | |
1551 | +double precision, intent(out) :: res,abserr | |
1552 | +integer, intent(out) :: ier | |
1553 | + | |
1554 | +double precision, allocatable :: work(:) | |
1555 | +integer, allocatable :: iwork(:) | |
1556 | +integer :: lenw,neval,last | |
1557 | + | |
1558 | +! imsl value for limit is 500 | |
1559 | +lenw=limit*4 | |
1560 | + | |
1561 | +allocate(iwork(limit)) | |
1562 | +allocate(work(lenw)) | |
1563 | + | |
1564 | +call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1565 | + | |
1566 | +deallocate(work) | |
1567 | +deallocate(iwork) | |
1568 | + | |
1569 | +end subroutine | |
1570 | + | |
1571 | + | |
1572 | + | |
1573 | +subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit) | |
1574 | +! | |
1575 | +! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x) | |
1576 | +! | |
1577 | +! f(in) : the function | |
1578 | +! a(in) : lower bound | |
1579 | +! b(in) : higher bound | |
1580 | +! g(in) : external function describing lower bound for y | |
1581 | +! h(in) : external function describing higher bound for y | |
1582 | +! epsabs(in) : desired absolute error | |
1583 | +! epsrel(in) : desired relative error | |
1584 | +! key(in) : gauss kronrod rule | |
1585 | +! 1: 7 - 15 points | |
1586 | +! 2: 10 - 21 points | |
1587 | +! 3: 15 - 31 points | |
1588 | +! 4: 20 - 41 points | |
1589 | +! 5: 25 - 51 points | |
1590 | +! 6: 30 - 61 points | |
1591 | +! | |
1592 | +! limit(in) : maximum number of subintervals in the partition of the | |
1593 | +! given integration interval (a,b). A value of 500 will give the same | |
1594 | +! behaviour as the imsl routine dqdag | |
1595 | +! | |
1596 | +! res(out) : estimated integral value | |
1597 | +! abserr(out) : estimated absolute error | |
1598 | +! ier(out) : error flag from quadpack routines | |
1599 | +! 0 : no error | |
1600 | +! 1 : maximum number of subdivisions allowed | |
1601 | +! has been achieved. one can allow more | |
1602 | +! subdivisions by increasing the value of | |
1603 | +! limit (and taking the according dimension | |
1604 | +! adjustments into account). however, if | |
1605 | +! this yield no improvement it is advised | |
1606 | +! to analyze the integrand in order to | |
1607 | +! determine the integration difficulaties. | |
1608 | +! if the position of a local difficulty can | |
1609 | +! be determined (i.e.singularity, | |
1610 | +! discontinuity within the interval) one | |
1611 | +! will probably gain from splitting up the | |
1612 | +! interval at this point and calling the | |
1613 | +! integrator on the subranges. if possible, | |
1614 | +! an appropriate special-purpose integrator | |
1615 | +! should be used which is designed for | |
1616 | +! handling the type of difficulty involved. | |
1617 | +! 2 : the occurrence of roundoff error is | |
1618 | +! detected, which prevents the requested | |
1619 | +! tolerance from being achieved. | |
1620 | +! 3 : extremely bad integrand behaviour occurs | |
1621 | +! at some points of the integration | |
1622 | +! interval. | |
1623 | +! 6 : the input is invalid, because | |
1624 | +! (epsabs.le.0 and | |
1625 | +! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
1626 | +! or limit.lt.1 or lenw.lt.limit*4. | |
1627 | +! result, abserr, neval, last are set | |
1628 | +! to zero. | |
1629 | +! except when lenw is invalid, iwork(1), | |
1630 | +! work(limit*2+1) and work(limit*3+1) are | |
1631 | +! set to zero, work(1) is set to a and | |
1632 | +! work(limit+1) to b. | |
1633 | + | |
1634 | +implicit none | |
1635 | +double precision, external:: f,g,h | |
1636 | +double precision, intent(in) :: a,b,epsabs,epsrel | |
1637 | +integer, intent(in) :: key,limit | |
1638 | +integer, intent(out) :: ier | |
1639 | +double precision, intent(out) :: res,abserr | |
1640 | + | |
1641 | + | |
1642 | +double precision, allocatable :: work(:) | |
1643 | +integer, allocatable :: iwork(:) | |
1644 | +integer :: lenw,neval,last | |
1645 | + | |
1646 | +! imsl value for limit is 500 | |
1647 | +lenw=limit*4 | |
1648 | +allocate(work(lenw)) | |
1649 | +allocate(iwork(limit)) | |
1650 | + | |
1651 | +call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1652 | + | |
1653 | +deallocate(iwork) | |
1654 | +deallocate(work) | |
1655 | +end subroutine | |
1656 | + | |
1657 | + | |
1658 | + | |
1659 | +subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | |
1660 | +! | |
1661 | +! Evaluate the single integral of function f(x,y) for y between a and b with a | |
1662 | +! given x value | |
1663 | +! | |
1664 | +! This function is used for the evaluation of the double integral fvn_d_integ_2_gk | |
1665 | +! | |
1666 | +! f(in) : the function | |
1667 | +! x(in) : x | |
1668 | +! a(in) : lower bound | |
1669 | +! b(in) : higher bound | |
1670 | +! epsabs(in) : desired absolute error | |
1671 | +! epsrel(in) : desired relative error | |
1672 | +! key(in) : gauss kronrod rule | |
1673 | +! 1: 7 - 15 points | |
1674 | +! 2: 10 - 21 points | |
1675 | +! 3: 15 - 31 points | |
1676 | +! 4: 20 - 41 points | |
1677 | +! 5: 25 - 51 points | |
1678 | +! 6: 30 - 61 points | |
1679 | +! | |
1680 | +! limit(in) : maximum number of subintervals in the partition of the | |
1681 | +! given integration interval (a,b). A value of 500 will give the same | |
1682 | +! behaviour as the imsl routine dqdag | |
1683 | +! | |
1684 | +! res(out) : estimated integral value | |
1685 | +! abserr(out) : estimated absolute error | |
1686 | +! ier(out) : error flag from quadpack routines | |
1687 | +! 0 : no error | |
1688 | +! 1 : maximum number of subdivisions allowed | |
1689 | +! has been achieved. one can allow more | |
1690 | +! subdivisions by increasing the value of | |
1691 | +! limit (and taking the according dimension | |
1692 | +! adjustments into account). however, if | |
1693 | +! this yield no improvement it is advised | |
1694 | +! to analyze the integrand in order to | |
1695 | +! determine the integration difficulaties. | |
1696 | +! if the position of a local difficulty can | |
1697 | +! be determined (i.e.singularity, | |
1698 | +! discontinuity within the interval) one | |
1699 | +! will probably gain from splitting up the | |
1700 | +! interval at this point and calling the | |
1701 | +! integrator on the subranges. if possible, | |
1702 | +! an appropriate special-purpose integrator | |
1703 | +! should be used which is designed for | |
1704 | +! handling the type of difficulty involved. | |
1705 | +! 2 : the occurrence of roundoff error is | |
1706 | +! detected, which prevents the requested | |
1707 | +! tolerance from being achieved. | |
1708 | +! 3 : extremely bad integrand behaviour occurs | |
1709 | +! at some points of the integration | |
1710 | +! interval. | |
1711 | +! 6 : the input is invalid, because | |
1712 | +! (epsabs.le.0 and | |
1713 | +! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
1714 | +! or limit.lt.1 or lenw.lt.limit*4. | |
1715 | +! result, abserr, neval, last are set | |
1716 | +! to zero. | |
1717 | +! except when lenw is invalid, iwork(1), | |
1718 | +! work(limit*2+1) and work(limit*3+1) are | |
1719 | +! set to zero, work(1) is set to a and | |
1720 | +! work(limit+1) to b. | |
1721 | + | |
1722 | +implicit none | |
1723 | +double precision, external:: f | |
1724 | +double precision, intent(in) :: x,a,b,epsabs,epsrel | |
1725 | +integer, intent(in) :: key,limit | |
1726 | +integer, intent(out) :: ier | |
1727 | +double precision, intent(out) :: res,abserr | |
1728 | + | |
1729 | + | |
1730 | +double precision, allocatable :: work(:) | |
1731 | +integer, allocatable :: iwork(:) | |
1732 | +integer :: lenw,neval,last | |
1733 | + | |
1734 | +! imsl value for limit is 500 | |
1735 | +lenw=limit*4 | |
1736 | +allocate(work(lenw)) | |
1737 | +allocate(iwork(limit)) | |
1738 | + | |
1739 | +call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1740 | + | |
1741 | +deallocate(iwork) | |
1742 | +deallocate(work) | |
1743 | +end subroutine | |
1744 | + | |
1745 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1746 | +! Include the modified quadpack files | |
1747 | +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1748 | +include "fvn_quadpack/dqag_2d_inner.f" | |
1749 | +include "fvn_quadpack/dqk15_2d_inner.f" | |
1750 | +include "fvn_quadpack/dqk31_2d_outer.f" | |
1751 | +include "fvn_quadpack/d1mach.f" | |
1752 | +include "fvn_quadpack/dqk31_2d_inner.f" | |
1753 | +include "fvn_quadpack/dqage.f" | |
1754 | +include "fvn_quadpack/dqk15.f" | |
1755 | +include "fvn_quadpack/dqk21.f" | |
1756 | +include "fvn_quadpack/dqk31.f" | |
1757 | +include "fvn_quadpack/dqk41.f" | |
1758 | +include "fvn_quadpack/dqk51.f" | |
1759 | +include "fvn_quadpack/dqk61.f" | |
1760 | +include "fvn_quadpack/dqk41_2d_outer.f" | |
1761 | +include "fvn_quadpack/dqk41_2d_inner.f" | |
1762 | +include "fvn_quadpack/dqag_2d_outer.f" | |
1763 | +include "fvn_quadpack/dqpsrt.f" | |
1764 | +include "fvn_quadpack/dqag.f" | |
1765 | +include "fvn_quadpack/dqage_2d_outer.f" | |
1766 | +include "fvn_quadpack/dqage_2d_inner.f" | |
1767 | +include "fvn_quadpack/dqk51_2d_outer.f" | |
1768 | +include "fvn_quadpack/dqk51_2d_inner.f" | |
1769 | +include "fvn_quadpack/dqk61_2d_outer.f" | |
1770 | +include "fvn_quadpack/dqk21_2d_outer.f" | |
1771 | +include "fvn_quadpack/dqk61_2d_inner.f" | |
1772 | +include "fvn_quadpack/dqk21_2d_inner.f" | |
1773 | +include "fvn_quadpack/dqk15_2d_outer.f" | |
1774 | + | |
1775 | + | |
1776 | + | |
1777 | + | |
1778 | + | |
1779 | +end module fvn |