Commit b40f93a8d719edd95f78cebf166f6bbfa9684b2c

Authored by daniau
1 parent 5b79a897ef

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@28 b657c933-2333-4658-acf2-d3c7c2708721

Showing 2 changed files with 1 additions and 0 deletions Inline Diff

No preview for this file type
%\documentclass[a4paper,10pt]{article} 1 1 %\documentclass[a4paper,10pt]{article}
\documentclass[a4paper,english]{article} 2 2 \documentclass[a4paper,english]{article}
3 3
\usepackage[utf8]{inputenc} 4 4 \usepackage[utf8]{inputenc}
\usepackage{a4wide} 5 5 \usepackage{a4wide}
\usepackage{eurosym} 6 6 \usepackage{eurosym}
\usepackage{url} 7 7 \usepackage{url}
8 \usepackage[colorlinks=true,hyperfigures=true]{hyperref}
%\usepackage{aeguill} 8 9 %\usepackage{aeguill}
9 10
\usepackage{graphicx} 10 11 \usepackage{graphicx}
\usepackage{babel} 11 12 \usepackage{babel}
\makeatother 12 13 \makeatother
13 14
14 15
%opening 15 16 %opening
\title{FVN Documentation} 16 17 \title{FVN Documentation}
\author{William Daniau} 17 18 \author{William Daniau}
18 19
19 20
\begin{document} 20 21 \begin{document}
21 22
\maketitle 22 23 \maketitle
23 24
%\begin{abstract} 24 25 %\begin{abstract}
25 26
%\end{abstract} 26 27 %\end{abstract}
\tableofcontents 27 28 \tableofcontents
28 29
\section{Whatis fvn,licence,disclaimer etc} 29 30 \section{Whatis fvn,licence,disclaimer etc}
\subsection{Whatis fvn} 30 31 \subsection{Whatis fvn}
fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, complex trigonometry etc. 31 32 fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, complex trigonometry etc.
32 33
Most of the work is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack. Fvn also contains a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack} for performing the numerical integration tasks. 33 34 Most of the work is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack. Fvn also contains a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack} for performing the numerical integration tasks.
34 35
This module has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in institute Femto-ST \url{http://www.femto-st.fr/}. 35 36 This module has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in institute Femto-ST \url{http://www.femto-st.fr/}.
36 37
\subsection{Licence} 37 38 \subsection{Licence}
The licence of fvn is free. You can do whatever you want with this code as far as you credit the authors. 38 39 The licence of fvn is free. You can do whatever you want with this code as far as you credit the authors.
39 40
\subsubsection*{Authors} 40 41 \subsubsection*{Authors}
As of the day this manuel is written there's only one author of fvn :\newline 41 42 As of the day this manuel is written there's only one author of fvn :\newline
William Daniau\newline 42 43 William Daniau\newline
william.daniau@femto-st.fr\newline 43 44 william.daniau@femto-st.fr\newline
44 45
\subsection{Disclaimer} 45 46 \subsection{Disclaimer}
The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use it at your own risks. The authors should not be taken responsible of anything that may result by the use of this software. 46 47 The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use it at your own risks. The authors should not be taken responsible of anything that may result by the use of this software.
47 48
\section{Naming scheme and convention} 48 49 \section{Naming scheme and convention}
The naming scheme of the routines is as follow : 49 50 The naming scheme of the routines is as follow :
\begin{verbatim} 50 51 \begin{verbatim}
fvn_x_name() 51 52 fvn_x_name()
\end{verbatim} 52 53 \end{verbatim}
where x can be s,d,c or z. 53 54 where x can be s,d,c or z.
\begin{itemize} 54 55 \begin{itemize}
\item s is for single precision real (real,real*4,real(4),real(kind=4)) 55 56 \item s is for single precision real (real,real*4,real(4),real(kind=4))
\item d for double precision real (double precision,real*8,real(8),real(kind=8)) 56 57 \item d for double precision real (double precision,real*8,real(8),real(kind=8))
\item c for single precision complex (complex,complex*8,complex(4),complex(kind=4)) 57 58 \item c for single precision complex (complex,complex*8,complex(4),complex(kind=4))
\item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8)) 58 59 \item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8))
\end{itemize} 59 60 \end{itemize}
In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout). 60 61 In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout).
61 62
\section{Linear algebra} 62 63 \section{Linear algebra}
The linear algebra routines of fvn are an interface to lapack, which make it easier to use. 63 64 The linear algebra routines of fvn are an interface to lapack, which make it easier to use.
\subsection{Matrix inversion} 64 65 \subsection{Matrix inversion}
\begin{verbatim} 65 66 \begin{verbatim}
call fvn_x_matinv(d,a,inva,status) 66 67 call fvn_x_matinv(d,a,inva,status)
\end{verbatim} 67 68 \end{verbatim}
\begin{itemize} 68 69 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 69 70 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 70 71 \item a (in) is a matrix of type x. It will remain untouched.
\item inva (out) is a matrix of type x which contain the inverse of a at the end of the routine 71 72 \item inva (out) is a matrix of type x which contain the inverse of a at the end of the routine
\item status (out) is an integer equal to zero if something went wrong 72 73 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 73 74 \end{itemize}
74 75
\subsubsection*{Example} 75 76 \subsubsection*{Example}
\begin{verbatim} 76 77 \begin{verbatim}
program inv 77 78 program inv
use fvn 78 79 use fvn
implicit none 79 80 implicit none
80 81
real(8),dimension(3,3) :: a,inva 81 82 real(8),dimension(3,3) :: a,inva
integer :: status 82 83 integer :: status
83 84
call random_number(a) 84 85 call random_number(a)
a=a*100 85 86 a=a*100
86 87
call fvn_d_matinv(3,a,inva,status) 87 88 call fvn_d_matinv(3,a,inva,status)
write (*,*) a 88 89 write (*,*) a
write (*,*) 89 90 write (*,*)
write (*,*) inva 90 91 write (*,*) inva
write (*,*) 91 92 write (*,*)
write (*,*) matmul(a,inva) 92 93 write (*,*) matmul(a,inva)
end program 93 94 end program
\end{verbatim} 94 95 \end{verbatim}
95 96
96 97
97 98
\subsection{Matrix determinants} 98 99 \subsection{Matrix determinants}
\begin{verbatim} 99 100 \begin{verbatim}
det=fvn_x_det(d,a,status) 100 101 det=fvn_x_det(d,a,status)
\end{verbatim} 101 102 \end{verbatim}
\begin{itemize} 102 103 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 103 104 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 104 105 \item a (in) is a matrix of type x. It will remain untouched.
\item status (out) is an integer equal to zero if something went wrong 105 106 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 106 107 \end{itemize}
107 108
\subsubsection*{Example} 108 109 \subsubsection*{Example}
\begin{verbatim} 109 110 \begin{verbatim}
program det 110 111 program det
use fvn 111 112 use fvn
implicit none 112 113 implicit none
113 114
real(8),dimension(3,3) :: a 114 115 real(8),dimension(3,3) :: a
real(8) :: deta 115 116 real(8) :: deta
integer :: status 116 117 integer :: status
117 118
call random_number(a) 118 119 call random_number(a)
a=a*100 119 120 a=a*100
120 121
deta=fvn_d_det(3,a,status) 121 122 deta=fvn_d_det(3,a,status)
write (*,*) a 122 123 write (*,*) a
write (*,*) 123 124 write (*,*)
write (*,*) "Det = ",deta 124 125 write (*,*) "Det = ",deta
end program 125 126 end program
126 127
\end{verbatim} 127 128 \end{verbatim}
128 129
129 130
130 131
\subsection{Matrix condition} 131 132 \subsection{Matrix condition}
\begin{verbatim} 132 133 \begin{verbatim}
call fvn_x_matcon(d,a,rcond,status) 133 134 call fvn_x_matcon(d,a,rcond,status)
\end{verbatim} 134 135 \end{verbatim}
\begin{itemize} 135 136 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 136 137 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 137 138 \item a (in) is a matrix of type x. It will remain untouched.
\item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix 138 139 \item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix
\item status (out) is an integer equal to zero if something went wrong 139 140 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 140 141 \end{itemize}
141 142
The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef} 142 143 The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef}
\begin{equation} 143 144 \begin{equation}
R = \frac{1}{norm(A)*norm(invA)} 144 145 R = \frac{1}{norm(A)*norm(invA)}
\label{rconddef} 145 146 \label{rconddef}
\end{equation} 146 147 \end{equation}
147 148
The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm} 148 149 The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm}
\begin{equation} 149 150 \begin{equation}
L1 = max_j ( \sum_i{\mid A(i,j)\mid} ) 150 151 L1 = max_j ( \sum_i{\mid A(i,j)\mid} )
\label{l1norm} 151 152 \label{l1norm}
\end{equation} 152 153 \end{equation}
153 154
\subsubsection*{Example} 154 155 \subsubsection*{Example}
\begin{verbatim} 155 156 \begin{verbatim}
program cond 156 157 program cond
use fvn 157 158 use fvn
implicit none 158 159 implicit none
159 160
real(8),dimension(3,3) :: a 160 161 real(8),dimension(3,3) :: a
real(8) :: rcond 161 162 real(8) :: rcond
integer :: status 162 163 integer :: status
163 164
call random_number(a) 164 165 call random_number(a)
a=a*100 165 166 a=a*100
166 167
call fvn_d_matcon(3,a,rcond,status) 167 168 call fvn_d_matcon(3,a,rcond,status)
write (*,*) a 168 169 write (*,*) a
write (*,*) 169 170 write (*,*)
write (*,*) "Cond = ",rcond 170 171 write (*,*) "Cond = ",rcond
end program 171 172 end program
172 173
\end{verbatim} 173 174 \end{verbatim}
174 175
175 176
\subsection{Eigenvalues/Eigenvectors} 176 177 \subsection{Eigenvalues/Eigenvectors}
\begin{verbatim} 177 178 \begin{verbatim}
call fvn_x_matev(d,a,evala,eveca,status) 178 179 call fvn_x_matev(d,a,evala,eveca,status)
\end{verbatim} 179 180 \end{verbatim}
\begin{itemize} 180 181 \begin{itemize}
\item d (in) is an integer equal to the matrix rank 181 182 \item d (in) is an integer equal to the matrix rank
\item a (in) is a matrix of type x. It will remain untouched. 182 183 \item a (in) is a matrix of type x. It will remain untouched.
\item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a 183 184 \item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a
\item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j). 184 185 \item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j).
\item status (out) is an integer equal to zero if something went wrong 185 186 \item status (out) is an integer equal to zero if something went wrong
\end{itemize} 186 187 \end{itemize}
187 188
\subsubsection*{Example} 188 189 \subsubsection*{Example}
\begin{verbatim} 189 190 \begin{verbatim}
program eigen 190 191 program eigen
use fvn 191 192 use fvn
implicit none 192 193 implicit none
193 194
real(8),dimension(3,3) :: a 194 195 real(8),dimension(3,3) :: a
complex(8),dimension(3) :: evala 195 196 complex(8),dimension(3) :: evala
complex(8),dimension(3,3) :: eveca 196 197 complex(8),dimension(3,3) :: eveca
integer :: status,i,j 197 198 integer :: status,i,j
198 199
call random_number(a) 199 200 call random_number(a)
a=a*100 200 201 a=a*100
201 202
call fvn_d_matev(3,a,evala,eveca,status) 202 203 call fvn_d_matev(3,a,evala,eveca,status)
write (*,*) a 203 204 write (*,*) a
write (*,*) 204 205 write (*,*)
do i=1,3 205 206 do i=1,3
write(*,*) "Eigenvalue ",i,evala(i) 206 207 write(*,*) "Eigenvalue ",i,evala(i)
write(*,*) "Associated Eigenvector :" 207 208 write(*,*) "Associated Eigenvector :"
do j=1,3 208 209 do j=1,3
write(*,*) eveca(j,i) 209 210 write(*,*) eveca(j,i)
end do 210 211 end do
write(*,*) 211 212 write(*,*)
end do 212 213 end do
213 214
end program 214 215 end program
215 216
\end{verbatim} 216 217 \end{verbatim}
217 218
218 219
\subsection{Sparse solving} 219 220 \subsection{Sparse solving}
By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems. 220 221 By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems.
221 222
The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form. 222 223 The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form.
223 224
\begin{verbatim} 224 225 \begin{verbatim}
call fvn_*_sparse_solve(n,nz,T,Ti,Tj,B,x,status) where * is either zl, zi, dl or di 225 226 call fvn_*_sparse_solve(n,nz,T,Ti,Tj,B,x,status) where * is either zl, zi, dl or di
\end{verbatim} 226 227 \end{verbatim}
\begin{itemize} 227 228 \begin{itemize}
\item For this family of subroutine the two letters (zl,zi,dl,di) decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4) 228 229 \item For this family of subroutine the two letters (zl,zi,dl,di) decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4)
\item n (in) is an integer equal to the matrix rank 229 230 \item n (in) is an integer equal to the matrix rank
\item nz (in) is an integer equal to the number of non-zero elements 230 231 \item nz (in) is an integer equal to the number of non-zero elements
\item T(nz) (in) is a complex/real array containing the non-zero elements 231 232 \item T(nz) (in) is a complex/real array containing the non-zero elements
\item Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix. 232 233 \item Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix.
\item B(n) (in) is a complex/real array containing the second member of the equation. 233 234 \item B(n) (in) is a complex/real array containing the second member of the equation.
\item x(n) (out) is a complex/real array containing the solution 234 235 \item x(n) (out) is a complex/real array containing the solution
\item status (out) is an integer which contain non-zero is something went wrong 235 236 \item status (out) is an integer which contain non-zero is something went wrong
\end{itemize} 236 237 \end{itemize}
237 238
\subsubsection*{Example} 238 239 \subsubsection*{Example}
\begin{verbatim} 239 240 \begin{verbatim}
program test_sparse 240 241 program test_sparse
241 242
use fvn 242 243 use fvn
implicit none 243 244 implicit none
244 245
integer(8), parameter :: nz=12 245 246 integer(8), parameter :: nz=12
integer(8), parameter :: n=5 246 247 integer(8), parameter :: n=5
complex(8),dimension(nz) :: A 247 248 complex(8),dimension(nz) :: A
integer(8),dimension(nz) :: Ti,Tj 248 249 integer(8),dimension(nz) :: Ti,Tj
complex(8),dimension(n) :: B,x 249 250 complex(8),dimension(n) :: B,x
integer(8) :: status 250 251 integer(8) :: status
251 252
A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),& 252 253 A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
(1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /) 253 254 (1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)
B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/) 254 255 B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /) 255 256 Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /) 256 257 Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
257 258
call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status) 258 259 call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x 259 260 write(*,*) x
260 261
end program 261 262 end program
262 263
263 264
program test_sparse 264 265 program test_sparse
265 266
use fvn 266 267 use fvn
implicit none 267 268 implicit none
268 269
integer(4), parameter :: nz=12 269 270 integer(4), parameter :: nz=12
integer(4), parameter :: n=5 270 271 integer(4), parameter :: n=5
real(8),dimension(nz) :: A 271 272 real(8),dimension(nz) :: A
integer(4),dimension(nz) :: Ti,Tj 272 273 integer(4),dimension(nz) :: Ti,Tj
real(8),dimension(n) :: B,x 273 274 real(8),dimension(n) :: B,x
integer(4) :: status 274 275 integer(4) :: status
275 276
A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /) 276 277 A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /)
B = (/ 8., 45., -3., 3., 19./) 277 278 B = (/ 8., 45., -3., 3., 19./)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /) 278 279 Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /) 279 280 Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
280 281
call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status) 281 282 call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x 282 283 write(*,*) x
283 284
end program 284 285 end program
285 286
286 287
287 288
\end{verbatim} 288 289 \end{verbatim}
289 290
\subsection{Identity matrix} 290 291 \subsection{Identity matrix}
\begin{verbatim} 291 292 \begin{verbatim}
I=fvn_x_ident(n) 292 293 I=fvn_x_ident(n)
\end{verbatim} 293 294 \end{verbatim}
\begin{itemize} 294 295 \begin{itemize}
\item n (in) is an integer equal to the matrix rank 295 296 \item n (in) is an integer equal to the matrix rank
\end{itemize} 296 297 \end{itemize}
This function return the identity matrix of rank n, in the specified type (x = s,d,c,z). 297 298 This function return the identity matrix of rank n, in the specified type (x = s,d,c,z).
298 299
299 300
300 301
\section{Interpolation} 301 302 \section{Interpolation}
302 303
\subsection{Quadratic Interpolation} 303 304 \subsection{Quadratic Interpolation}
fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision. 304 305 fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision.
\subsubsection{One variable function} 305 306 \subsubsection{One variable function}
\begin{verbatim} 306 307 \begin{verbatim}
value=fvn_x_quad_interpol(x,n,xdata,ydata) 307 308 value=fvn_x_quad_interpol(x,n,xdata,ydata)
\end{verbatim} 308 309 \end{verbatim}
\begin{itemize} 309 310 \begin{itemize}
\item x is the real where we want to evaluate the function 310 311 \item x is the real where we want to evaluate the function
\item n is the number of tabulated values 311 312 \item n is the number of tabulated values
\item xdata(n) contains the tabulated coordinates 312 313 \item xdata(n) contains the tabulated coordinates
\item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i)) 313 314 \item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i))
\end{itemize} 314 315 \end{itemize}
xdata must be strictly increasingly ordered. 315 316 xdata must be strictly increasingly ordered.
x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation 316 317 x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation
\paragraph*{Example} 317 318 \paragraph*{Example}
\begin{verbatim} 318 319 \begin{verbatim}
program inter1d 319 320 program inter1d
320 321
use fvn 321 322 use fvn
implicit none 322 323 implicit none
323 324
integer(kind=4),parameter :: ndata=33 324 325 integer(kind=4),parameter :: ndata=33
integer(kind=4) :: i,nout 325 326 integer(kind=4) :: i,nout
real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata) 326 327 real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata)
real(kind=8) ::tv 327 328 real(kind=8) ::tv
328 329
intrinsic sin 329 330 intrinsic sin
330 331
f(x)=sin(x) 331 332 f(x)=sin(x)
332 333
xdata(1)=0. 333 334 xdata(1)=0.
fdata(1)=f(xdata(1)) 334 335 fdata(1)=f(xdata(1))
h=1./32. 335 336 h=1./32.
do i=2,ndata 336 337 do i=2,ndata
xdata(i)=xdata(i-1)+h 337 338 xdata(i)=xdata(i-1)+h
fdata(i)=f(xdata(i)) 338 339 fdata(i)=f(xdata(i))
end do 339 340 end do
call random_seed() 340 341 call random_seed()
call random_number(x) 341 342 call random_number(x)
342 343
q=fvn_d_quad_interpol(x,ndata,xdata,fdata) 343 344 q=fvn_d_quad_interpol(x,ndata,xdata,fdata)
344 345
tv=f(x) 345 346 tv=f(x)
write(*,*) "x ",x 346 347 write(*,*) "x ",x
write(*,*) "Calculated (real) value :",tv 347 348 write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q 348 349 write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv) 349 350 write(*,*) "Relative fvn error :",abs((q-tv)/tv)
350 351
end program 351 352 end program
352 353
\end{verbatim} 353 354 \end{verbatim}
354 355
355 356
\subsubsection{Two variables function} 356 357 \subsubsection{Two variables function}
\begin{verbatim} 357 358 \begin{verbatim}
value=fvn_x_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata) 358 359 value=fvn_x_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
\end{verbatim} 359 360 \end{verbatim}
\begin{itemize} 360 361 \begin{itemize}
\item x,y are the real coordinates where we want to evaluate the function 361 362 \item x,y are the real coordinates where we want to evaluate the function
\item nx is the number of tabulated values along x axis 362 363 \item nx is the number of tabulated values along x axis
\item xdata(nx) contains the tabulated x 363 364 \item xdata(nx) contains the tabulated x
\item ny is the number of tabulated values along y axis 364 365 \item ny is the number of tabulated values along y axis
\item ydata(ny) contains the tabulated y 365 366 \item ydata(ny) contains the tabulated y
\item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j)) 366 367 \item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j))
\end{itemize} 367 368 \end{itemize}
xdata and ydata must be strictly increasingly ordered. 368 369 xdata and ydata must be strictly increasingly ordered.
(x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation 369 370 (x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
370 371
\paragraph*{Example} 371 372 \paragraph*{Example}
372 373
\begin{verbatim} 373 374 \begin{verbatim}
program inter2d 374 375 program inter2d
use fvn 375 376 use fvn
implicit none 376 377 implicit none
377 378
integer(kind=4),parameter :: nx=21,ny=42 378 379 integer(kind=4),parameter :: nx=21,ny=42
integer(kind=4) :: i,j 379 380 integer(kind=4) :: i,j
real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny) 380 381 real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny)
real(kind=8) :: tv 381 382 real(kind=8) :: tv
382 383
intrinsic dble,sin 383 384 intrinsic dble,sin
384 385
f(x,y)=sin(x+2.*y) 385 386 f(x,y)=sin(x+2.*y)
do i=1,nx 386 387 do i=1,nx
xdata(i)=dble(i-1)/dble(nx-1) 387 388 xdata(i)=dble(i-1)/dble(nx-1)
end do 388 389 end do
do i=1,ny 389 390 do i=1,ny
ydata(i)=dble(i-1)/dble(ny-1) 390 391 ydata(i)=dble(i-1)/dble(ny-1)
end do 391 392 end do
do i=1,nx 392 393 do i=1,nx
do j=1,ny 393 394 do j=1,ny
fdata(i,j)=f(xdata(i),ydata(j)) 394 395 fdata(i,j)=f(xdata(i),ydata(j))
end do 395 396 end do
end do 396 397 end do
call random_seed() 397 398 call random_seed()
call random_number(x) 398 399 call random_number(x)
call random_number(y) 399 400 call random_number(y)
400 401
q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata) 401 402 q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata)
tv=f(x,y) 402 403 tv=f(x,y)
403 404
write(*,*) "x y",x,y 404 405 write(*,*) "x y",x,y
write(*,*) "Calculated (real) value :",tv 405 406 write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q 406 407 write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv) 407 408 write(*,*) "Relative fvn error :",abs((q-tv)/tv)
408 409
end program 409 410 end program
410 411
\end{verbatim} 411 412 \end{verbatim}
412 413
413 414
414 415
\subsubsection{Three variables function} 415 416 \subsubsection{Three variables function}
\begin{verbatim} 416 417 \begin{verbatim}
value=fvn_x_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata) 417 418 value=fvn_x_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
\end{verbatim} 418 419 \end{verbatim}
\begin{itemize} 419 420 \begin{itemize}
\item x,y,z are the real coordinates where we want to evaluate the function 420 421 \item x,y,z are the real coordinates where we want to evaluate the function
\item nx is the number of tabulated values along x axis 421 422 \item nx is the number of tabulated values along x axis
\item xdata(nx) contains the tabulated x 422 423 \item xdata(nx) contains the tabulated x
\item ny is the number of tabulated values along y axis 423 424 \item ny is the number of tabulated values along y axis
\item ydata(ny) contains the tabulated y 424 425 \item ydata(ny) contains the tabulated y
\item nz is the number of tabulated values along z axis 425 426 \item nz is the number of tabulated values along z axis
\item zdata(ny) contains the tabulated z 426 427 \item zdata(ny) contains the tabulated z
\item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k)) 427 428 \item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k))
\end{itemize} 428 429 \end{itemize}
xdata, ydata and zdata must be strictly increasingly ordered. 429 430 xdata, ydata and zdata must be strictly increasingly ordered.
(x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation 430 431 (x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
431 432
\paragraph*{Example} 432 433 \paragraph*{Example}
\begin{verbatim} 433 434 \begin{verbatim}
program inter3d 434 435 program inter3d
use fvn 435 436 use fvn
436 437
implicit none 437 438 implicit none
438 439
integer(kind=4),parameter :: nx=21,ny=42,nz=18 439 440 integer(kind=4),parameter :: nx=21,ny=42,nz=18
integer(kind=4) :: i,j,k 440 441 integer(kind=4) :: i,j,k
real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz) 441 442 real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz)
real(kind=8) :: tv 442 443 real(kind=8) :: tv
443 444
intrinsic dble,sin 444 445 intrinsic dble,sin
445 446
f(x,y,z)=sin(x+2.*y+3.*z) 446 447 f(x,y,z)=sin(x+2.*y+3.*z)
do i=1,nx 447 448 do i=1,nx
xdata(i)=2.*(dble(i-1)/dble(nx-1)) 448 449 xdata(i)=2.*(dble(i-1)/dble(nx-1))
end do 449 450 end do
do i=1,ny 450 451 do i=1,ny
ydata(i)=2.*(dble(i-1)/dble(ny-1)) 451 452 ydata(i)=2.*(dble(i-1)/dble(ny-1))
end do 452 453 end do
do i=1,nz 453 454 do i=1,nz
zdata(i)=2.*(dble(i-1)/dble(nz-1)) 454 455 zdata(i)=2.*(dble(i-1)/dble(nz-1))
end do 455 456 end do
do i=1,nx 456 457 do i=1,nx
do j=1,ny 457 458 do j=1,ny
do k=1,nz 458 459 do k=1,nz
fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k)) 459 460 fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k))
end do 460 461 end do
end do 461 462 end do
end do 462 463 end do
call random_seed() 463 464 call random_seed()
call random_number(x) 464 465 call random_number(x)
call random_number(y) 465 466 call random_number(y)
call random_number(z) 466 467 call random_number(z)
467 468
q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata) 468 469 q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata)
tv=f(x,y,z) 469 470 tv=f(x,y,z)
470 471
write(*,*) "x y z",x,y,z 471 472 write(*,*) "x y z",x,y,z
write(*,*) "Calculated (real) value :",tv 472 473 write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q 473 474 write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv) 474 475 write(*,*) "Relative fvn error :",abs((q-tv)/tv)
475 476
end program 476 477 end program
477 478
\end{verbatim} 478 479 \end{verbatim}
479 480
\subsubsection{Utility procedure} 480 481 \subsubsection{Utility procedure}
fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array. 481 482 fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array.
\begin{verbatim} 482 483 \begin{verbatim}
call fvn_x_find_interval(x,i,xdata,n) 483 484 call fvn_x_find_interval(x,i,xdata,n)
\end{verbatim} 484 485 \end{verbatim}
\begin{itemize} 485 486 \begin{itemize}
\item x (in) the real value to locate 486 487 \item x (in) the real value to locate
\item i (out) the resulting indice 487 488 \item i (out) the resulting indice
\item xdata(n) (in) increasingly ordered array 488 489 \item xdata(n) (in) increasingly ordered array
\item n (in) size of the array 489 490 \item n (in) size of the array
\end{itemize} 490 491 \end{itemize}
The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned. 491 492 The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned.
492 493
493 494
494 495
\subsection{Akima spline} 495 496 \subsection{Akima spline}
fvn provides Akima spline interpolation and evaluation for both single and double precision real. 496 497 fvn provides Akima spline interpolation and evaluation for both single and double precision real.
\subsubsection{Interpolation} 497 498 \subsubsection{Interpolation}
\begin{verbatim} 498 499 \begin{verbatim}
call fvn_x_akima(n,x,y,br,co) 499 500 call fvn_x_akima(n,x,y,br,co)
\end{verbatim} 500 501 \end{verbatim}
\begin{itemize} 501 502 \begin{itemize}
\item n (in) is an integer equal to the number of points 502 503 \item n (in) is an integer equal to the number of points
\item x(n) (in) ,y(n) (in) are the known couples of coordinates 503 504 \item x(n) (in) ,y(n) (in) are the known couples of coordinates
\item br (out) on output contains a copy of x 504 505 \item br (out) on output contains a copy of x
\item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval. 505 506 \item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval.
\end{itemize} 506 507 \end{itemize}
507 508
\subsubsection{Evaluation} 508 509 \subsubsection{Evaluation}
\begin{verbatim} 509 510 \begin{verbatim}
y=fvn_x_spline_eval(x,n,br,co) 510 511 y=fvn_x_spline_eval(x,n,br,co)
\end{verbatim} 511 512 \end{verbatim}
\begin{itemize} 512 513 \begin{itemize}
\item x (in) is the point where we want to evaluate 513 514 \item x (in) is the point where we want to evaluate
\item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\ 514 515 \item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\
are the outputs of fvn\_x\_akima(n,x,y,br,co) 515 516 are the outputs of fvn\_x\_akima(n,x,y,br,co)
\end{itemize} 516 517 \end{itemize}
517 518
\subsubsection{Example} 518 519 \subsubsection{Example}
In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x). 519 520 In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x).
520 521
One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values. 521 522 One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values.
522 523
\begin{verbatim} 523 524 \begin{verbatim}
program akima 524 525 program akima
use fvn 525 526 use fvn
implicit none 526 527 implicit none
527 528
integer :: nbpoints,nppoints,i 528 529 integer :: nbpoints,nppoints,i
real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d 529 530 real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d
real(8),dimension(:,:),allocatable :: coeff_fvn_d 530 531 real(8),dimension(:,:),allocatable :: coeff_fvn_d
real(8) :: xstep_d,xp_d,ty_d,fvn_y_d 531 532 real(8) :: xstep_d,xp_d,ty_d,fvn_y_d
532 533
open(2,file='fvn_akima_double.dat') 533 534 open(2,file='fvn_akima_double.dat')
open(3,file='fvn_akima_breakpoints_double.dat') 534 535 open(3,file='fvn_akima_breakpoints_double.dat')
nbpoints=30 535 536 nbpoints=30
allocate(x_d(nbpoints)) 536 537 allocate(x_d(nbpoints))
allocate(y_d(nbpoints)) 537 538 allocate(y_d(nbpoints))
allocate(breakpoints_d(nbpoints)) 538 539 allocate(breakpoints_d(nbpoints))
allocate(coeff_fvn_d(4,nbpoints)) 539 540 allocate(coeff_fvn_d(4,nbpoints))
540 541
xstep_d=20./dfloat(nbpoints) 541 542 xstep_d=20./dfloat(nbpoints)
do i=1,nbpoints 542 543 do i=1,nbpoints
x_d(i)=-10.+dfloat(i)*xstep_d 543 544 x_d(i)=-10.+dfloat(i)*xstep_d
y_d(i)=dsin(x_d(i)) 544 545 y_d(i)=dsin(x_d(i))
write(3,44) (x_d(i),y_d(i)) 545 546 write(3,44) (x_d(i),y_d(i))
end do 546 547 end do
close(3) 547 548 close(3)
548 549
call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d) 549 550 call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d)
550 551
nppoints=1000 551 552 nppoints=1000
xstep_d=22./dfloat(nppoints) 552 553 xstep_d=22./dfloat(nppoints)
do i=1,nppoints 553 554 do i=1,nppoints
xp_d=-11.+dfloat(i)*xstep_d 554 555 xp_d=-11.+dfloat(i)*xstep_d
ty_d=dsin(xp_d) 555 556 ty_d=dsin(xp_d)
fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d) 556 557 fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d)
write(2,44) (xp_d,ty_d,fvn_y_d) 557 558 write(2,44) (xp_d,ty_d,fvn_y_d)
end do 558 559 end do
559 560
close(2) 560 561 close(2)
561 562
44 FORMAT(4(1X,1PE22.14)) 562 563 44 FORMAT(4(1X,1PE22.14))
563 564
end program 564 565 end program
565 566
\end{verbatim} 566 567 \end{verbatim}
Results are plotted on figure \ref{akima} 567 568 Results are plotted on figure \ref{akima}
568 569
\begin{figure} 569 570 \begin{figure}
\begin{center} 570 571 \begin{center}
\includegraphics[width=0.9\textwidth]{akima.pdf} 571 572 \includegraphics[width=0.9\textwidth]{akima.pdf}
% akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720 572 573 % akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720
\caption{Akima Spline Interpolation} 573 574 \caption{Akima Spline Interpolation}
\label{akima} 574 575 \label{akima}
\end{center} 575 576 \end{center}
576 577
\end{figure} 577 578 \end{figure}
578 579
579 580
580 581
\section{Least square polynomial} 581 582 \section{Least square polynomial}
fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition. 582 583 fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition.
583 584
\begin{verbatim} 584 585 \begin{verbatim}
call fvn_x_lspoly(np,x,y,deg,coeff,status) 585 586 call fvn_x_lspoly(np,x,y,deg,coeff,status)
\end{verbatim} 586 587 \end{verbatim}
\begin{itemize} 587 588 \begin{itemize}
\item np (in) is an integer equal to the number of points 588 589 \item np (in) is an integer equal to the number of points
\item x(np) (in),y(np) (in) are the known coordinates 589 590 \item x(np) (in),y(np) (in) are the known coordinates
\item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np. 590 591 \item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np.
\item coeff(deg+1) (out) on output contains the polynomial coefficients 591 592 \item coeff(deg+1) (out) on output contains the polynomial coefficients
\item status (out) is an integer containing 0 if a problem occured. 592 593 \item status (out) is an integer containing 0 if a problem occured.
\end{itemize} 593 594 \end{itemize}
594 595
\subsection*{Example} 595 596 \subsection*{Example}
Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points : 596 597 Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points :
\begin{verbatim} 597 598 \begin{verbatim}
program lsp 598 599 program lsp
use fvn 599 600 use fvn
implicit none 600 601 implicit none
601 602
integer,parameter :: npoints=13,deg=3 602 603 integer,parameter :: npoints=13,deg=3
integer :: status,i 603 604 integer :: status,i
real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc 604 605 real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc
real(kind=8) :: coeff(deg+1) 605 606 real(kind=8) :: coeff(deg+1)
606 607
xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /) 607 608 xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /) 608 609 ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /)
609 610
open(2,file='fvn_lsp_double_mesure.dat') 610 611 open(2,file='fvn_lsp_double_mesure.dat')
open(3,file='fvn_lsp_double_poly.dat') 611 612 open(3,file='fvn_lsp_double_poly.dat')
612 613
do i=1,npoints 613 614 do i=1,npoints
write(2,44) xm(i),ym(i) 614 615 write(2,44) xm(i),ym(i)
end do 615 616 end do
close(2) 616 617 close(2)
617 618
618 619
call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status) 619 620 call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status)
620 621
xstep=(xm(npoints)-xm(1))/1000. 621 622 xstep=(xm(npoints)-xm(1))/1000.
do i=1,1000 622 623 do i=1,1000
xc=xm(1)+(i-1)*xstep 623 624 xc=xm(1)+(i-1)*xstep
yc=poly(xc,coeff) 624 625 yc=poly(xc,coeff)
write(3,44) xc,yc 625 626 write(3,44) xc,yc
end do 626 627 end do
close(3) 627 628 close(3)
628 629
44 FORMAT(4(1X,1PE22.14)) 629 630 44 FORMAT(4(1X,1PE22.14))
630 631
contains 631 632 contains
function poly(x,coeff) 632 633 function poly(x,coeff)
implicit none 633 634 implicit none
real(8) :: x 634 635 real(8) :: x
real(8) :: coeff(deg+1) 635 636 real(8) :: coeff(deg+1)
real(8) :: poly 636 637 real(8) :: poly
integer :: i 637 638 integer :: i
638 639
poly=0. 639 640 poly=0.
640 641
do i=1,deg+1 641 642 do i=1,deg+1
poly=poly+coeff(i)*x**(i-1) 642 643 poly=poly+coeff(i)*x**(i-1)
end do 643 644 end do
644 645
end function 645 646 end function
end program 646 647 end program
\end{verbatim} 647 648 \end{verbatim}
The results are plotted on figure \ref{lsp} . 648 649 The results are plotted on figure \ref{lsp} .
649 650
\begin{figure} 650 651 \begin{figure}
\begin{center} 651 652 \begin{center}
\includegraphics[width=0.9\textwidth]{lsp.pdf} 652 653 \includegraphics[width=0.9\textwidth]{lsp.pdf}
\caption{Least Square Polynomial} 653 654 \caption{Least Square Polynomial}
\label{lsp} 654 655 \label{lsp}
\end{center} 655 656 \end{center}
\end{figure} 656 657 \end{figure}
657 658
658 659
659 660
\section{Zero finding} 660 661 \section{Zero finding}
fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}. 661 662 fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}.
662 663
\begin{verbatim} 663 664 \begin{verbatim}
call fvn_z_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) 664 665 call fvn_z_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
\end{verbatim} 665 666 \end{verbatim}
\begin{itemize} 666 667 \begin{itemize}
\item f (in) is the complex function (kind=8) for which we search zeros 667 668 \item f (in) is the complex function (kind=8) for which we search zeros
\item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots. if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root. 668 669 \item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots. if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root.
\item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted. 669 670 \item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted.
\item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine. 670 671 \item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine.
\item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided. 671 672 \item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided.
\item n (in) is an integer equal to the number of new roots to be found. 672 673 \item n (in) is an integer equal to the number of new roots to be found.
\item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots. x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine. 673 674 \item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots. x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine.
\item itmax (in) is an integer equal to the maximum allowable number of iterations per root. 674 675 \item itmax (in) is an integer equal to the maximum allowable number of iterations per root.
\item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved. If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax 675 676 \item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved. If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax
\item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots. 676 677 \item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots.
\end{itemize} 677 678 \end{itemize}
This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion. 678 679 This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion.
679 680
\subsection*{Example} 680 681 \subsection*{Example}
Example to find the ten roots of $x^{10}-1$ 681 682 Example to find the ten roots of $x^{10}-1$
\begin{verbatim} 682 683 \begin{verbatim}
program muller 683 684 program muller
use fvn 684 685 use fvn
implicit none 685 686 implicit none
686 687
integer :: i,info 687 688 integer :: i,info
complex(8),dimension(10) :: roots 688 689 complex(8),dimension(10) :: roots
integer,dimension(10) :: infer 689 690 integer,dimension(10) :: infer
complex(8), external :: f 690 691 complex(8), external :: f
691 692
call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info) 692 693 call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info)
693 694
write(*,*) "Error code :",info 694 695 write(*,*) "Error code :",info
do i=1,10 695 696 do i=1,10
write(*,*) roots(i),infer(i) 696 697 write(*,*) roots(i),infer(i)
enddo 697 698 enddo
end program 698 699 end program
699 700
function f(x) 700 701 function f(x)
complex(8) :: x,f 701 702 complex(8) :: x,f
f=x**10-1 702 703 f=x**10-1
end function 703 704 end function
704 705
\end{verbatim} 705 706 \end{verbatim}
706 707
707 708
\section{Trigonometry} 708 709 \section{Trigonometry}
\subsection{Complex Sine Arc} 709 710 \subsection{Complex Sine Arc}
( only complex(kind=8) version ) 710 711 ( only complex(kind=8) version )
\begin{verbatim} 711 712 \begin{verbatim}
y=fvn_z_asin(z) 712 713 y=fvn_z_asin(z)
\end{verbatim} 713 714 \end{verbatim}
This function return the complex arc sine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}. 714 715 This function return the complex arc sine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
715 716
716 717
\subsection{Complex Cosine Arc} 717 718 \subsection{Complex Cosine Arc}
( only complex(kind=8) version ) 718 719 ( only complex(kind=8) version )
\begin{verbatim} 719 720 \begin{verbatim}
y=fvn_z_acos(z) 720 721 y=fvn_z_acos(z)
\end{verbatim} 721 722 \end{verbatim}
This function return the complex arc cosine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}. 722 723 This function return the complex arc cosine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
723 724
\subsection{Real Sine Hyperbolic Arc} 724 725 \subsection{Real Sine Hyperbolic Arc}