Commit 8a085e03510a4dc6ba9606d81bb929d53a680dfc
1 parent
f61865f463
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@15 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 140 additions and 7 deletions Inline Diff
fvnlib.f90
1 | 1 | |||
module fvn | 2 | 2 | module fvn | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 3 | 3 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! | 4 | 4 | ! | |
! fvn : a f95 module replacement for some imsl routines | 5 | 5 | ! fvn : a f95 module replacement for some imsl routines | |
! it uses lapack for linear algebra | 6 | 6 | ! it uses lapack for linear algebra | |
! it uses modified quadpack for integration | 7 | 7 | ! it uses modified quadpack for integration | |
! | 8 | 8 | ! | |
! William Daniau 2007 | 9 | 9 | ! William Daniau 2007 | |
! william.daniau@femto-st.fr | 10 | 10 | ! william.daniau@femto-st.fr | |
! | 11 | 11 | ! | |
! Routines naming scheme : | 12 | 12 | ! Routines naming scheme : | |
! | 13 | 13 | ! | |
! fvn_x_name | 14 | 14 | ! fvn_x_name | |
! where x can be s : real | 15 | 15 | ! where x can be s : real | |
! d : real double precision | 16 | 16 | ! d : real double precision | |
! c : complex | 17 | 17 | ! c : complex | |
! z : double complex | 18 | 18 | ! z : double complex | |
! | 19 | 19 | ! | |
! | 20 | 20 | ! | |
! This piece of code is totally free! Do whatever you want with it. However | 21 | 21 | ! This piece of code is totally free! Do whatever you want with it. However | |
! if you find it usefull it would be kind to give credits ;-) Nevertheless, you | 22 | 22 | ! if you find it usefull it would be kind to give credits ;-) Nevertheless, you | |
! may give credits to quadpack authors. | 23 | 23 | ! may give credits to quadpack authors. | |
! | 24 | 24 | ! | |
! svn version | 25 | 25 | ! svn version | |
! June 2007 : added some complex trigonometric functions | 26 | 26 | ! June 2007 : added some complex trigonometric functions | |
! | 27 | 27 | ! | |
! TO DO LIST : | 28 | 28 | ! TO DO LIST : | |
! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm | 29 | 29 | ! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm | |
! eigenvalues are given with no particular order. | 30 | 30 | ! eigenvalues are given with no particular order. | |
! + Generic interface for fvn_x_name family -> fvn_name | 31 | 31 | ! + Generic interface for fvn_x_name family -> fvn_name | |
! + Make some parameters optional, status for example | 32 | 32 | ! + Make some parameters optional, status for example | |
! + use f95 kinds "double complex" -> complex(kind=8) | 33 | 33 | ! + use f95 kinds "double complex" -> complex(kind=8) | |
! + unify quadpack routines | 34 | 34 | ! + unify quadpack routines | |
! + ... | 35 | 35 | ! + ... | |
! | 36 | 36 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 37 | 37 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
38 | 38 | |||
implicit none | 39 | 39 | implicit none | |
! We define pi and i for the module | 40 | 40 | ! We define pi and i for the module | |
real(kind=8),parameter :: fvn_pi = 3.141592653589793_8 | 41 | 41 | real(kind=8),parameter :: fvn_pi = 3.141592653589793_8 | |
complex(kind=8),parameter :: fvn_i = (0._8,1._8) | 42 | 42 | complex(kind=8),parameter :: fvn_i = (0._8,1._8) | |
43 | 43 | |||
44 | 44 | |||
! All quadpack routines are private to the module | 45 | 45 | ! All quadpack routines are private to the module | |
private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & | 46 | 46 | private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & | |
dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & | 47 | 47 | dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & | |
dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, & | 48 | 48 | dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, & | |
dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt | 49 | 49 | dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt | |
50 | 50 | |||
51 | 51 | |||
contains | 52 | 52 | contains | |
53 | 53 | |||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 54 | 54 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! | 55 | 55 | ! | |
! Matrix inversion subroutines | 56 | 56 | ! Matrix inversion subroutines | |
! | 57 | 57 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 58 | 58 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
subroutine fvn_s_matinv(d,a,inva,status) | 59 | 59 | subroutine fvn_s_matinv(d,a,inva,status) | |
! | 60 | 60 | ! | |
! Matrix inversion of a real matrix using BLAS and LAPACK | 61 | 61 | ! Matrix inversion of a real matrix using BLAS and LAPACK | |
! | 62 | 62 | ! | |
! d (in) : matrix rank | 63 | 63 | ! d (in) : matrix rank | |
! a (in) : input matrix | 64 | 64 | ! a (in) : input matrix | |
! inva (out) : inversed matrix | 65 | 65 | ! inva (out) : inversed matrix | |
! status (ou) : =0 if something failed | 66 | 66 | ! status (ou) : =0 if something failed | |
! | 67 | 67 | ! | |
68 | implicit none | |||
integer, intent(in) :: d | 68 | 69 | integer, intent(in) :: d | |
real, intent(in) :: a(d,d) | 69 | 70 | real, intent(in) :: a(d,d) | |
real, intent(out) :: inva(d,d) | 70 | 71 | real, intent(out) :: inva(d,d) | |
integer, intent(out) :: status | 71 | 72 | integer, intent(out) :: status | |
72 | 73 | |||
integer, allocatable :: ipiv(:) | 73 | 74 | integer, allocatable :: ipiv(:) | |
real, allocatable :: work(:) | 74 | 75 | real, allocatable :: work(:) | |
real twork(1) | 75 | 76 | real twork(1) | |
integer :: info | 76 | 77 | integer :: info | |
integer :: lwork | 77 | 78 | integer :: lwork | |
78 | 79 | |||
status=1 | 79 | 80 | status=1 | |
80 | 81 | |||
allocate(ipiv(d)) | 81 | 82 | allocate(ipiv(d)) | |
! copy a into inva using BLAS | 82 | 83 | ! copy a into inva using BLAS | |
!call scopy(d*d,a,1,inva,1) | 83 | 84 | !call scopy(d*d,a,1,inva,1) | |
inva(:,:)=a(:,:) | 84 | 85 | inva(:,:)=a(:,:) | |
! LU factorization using LAPACK | 85 | 86 | ! LU factorization using LAPACK | |
call sgetrf(d,d,inva,d,ipiv,info) | 86 | 87 | call sgetrf(d,d,inva,d,ipiv,info) | |
! if info is not equal to 0, something went wrong we exit setting status to 0 | 87 | 88 | ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
if (info /= 0) then | 88 | 89 | if (info /= 0) then | |
status=0 | 89 | 90 | status=0 | |
deallocate(ipiv) | 90 | 91 | deallocate(ipiv) | |
return | 91 | 92 | return | |
end if | 92 | 93 | end if | |
! we use the query fonction of xxxtri to obtain the optimal workspace size | 93 | 94 | ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
call sgetri(d,inva,d,ipiv,twork,-1,info) | 94 | 95 | call sgetri(d,inva,d,ipiv,twork,-1,info) | |
lwork=int(twork(1)) | 95 | 96 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 96 | 97 | allocate(work(lwork)) | |
! Matrix inversion using LAPACK | 97 | 98 | ! Matrix inversion using LAPACK | |
call sgetri(d,inva,d,ipiv,work,lwork,info) | 98 | 99 | call sgetri(d,inva,d,ipiv,work,lwork,info) | |
! again if info is not equal to 0, we exit setting status to 0 | 99 | 100 | ! again if info is not equal to 0, we exit setting status to 0 | |
if (info /= 0) then | 100 | 101 | if (info /= 0) then | |
status=0 | 101 | 102 | status=0 | |
end if | 102 | 103 | end if | |
deallocate(work) | 103 | 104 | deallocate(work) | |
deallocate(ipiv) | 104 | 105 | deallocate(ipiv) | |
end subroutine | 105 | 106 | end subroutine | |
106 | 107 | |||
subroutine fvn_d_matinv(d,a,inva,status) | 107 | 108 | subroutine fvn_d_matinv(d,a,inva,status) | |
! | 108 | 109 | ! | |
! Matrix inversion of a double precision matrix using BLAS and LAPACK | 109 | 110 | ! Matrix inversion of a double precision matrix using BLAS and LAPACK | |
! | 110 | 111 | ! | |
! d (in) : matrix rank | 111 | 112 | ! d (in) : matrix rank | |
! a (in) : input matrix | 112 | 113 | ! a (in) : input matrix | |
! inva (out) : inversed matrix | 113 | 114 | ! inva (out) : inversed matrix | |
! status (ou) : =0 if something failed | 114 | 115 | ! status (ou) : =0 if something failed | |
! | 115 | 116 | ! | |
117 | implicit none | |||
integer, intent(in) :: d | 116 | 118 | integer, intent(in) :: d | |
double precision, intent(in) :: a(d,d) | 117 | 119 | double precision, intent(in) :: a(d,d) | |
double precision, intent(out) :: inva(d,d) | 118 | 120 | double precision, intent(out) :: inva(d,d) | |
integer, intent(out) :: status | 119 | 121 | integer, intent(out) :: status | |
120 | 122 | |||
integer, allocatable :: ipiv(:) | 121 | 123 | integer, allocatable :: ipiv(:) | |
double precision, allocatable :: work(:) | 122 | 124 | double precision, allocatable :: work(:) | |
double precision :: twork(1) | 123 | 125 | double precision :: twork(1) | |
integer :: info | 124 | 126 | integer :: info | |
integer :: lwork | 125 | 127 | integer :: lwork | |
126 | 128 | |||
status=1 | 127 | 129 | status=1 | |
128 | 130 | |||
allocate(ipiv(d)) | 129 | 131 | allocate(ipiv(d)) | |
! copy a into inva using BLAS | 130 | 132 | ! copy a into inva using BLAS | |
!call dcopy(d*d,a,1,inva,1) | 131 | 133 | !call dcopy(d*d,a,1,inva,1) | |
inva(:,:)=a(:,:) | 132 | 134 | inva(:,:)=a(:,:) | |
! LU factorization using LAPACK | 133 | 135 | ! LU factorization using LAPACK | |
call dgetrf(d,d,inva,d,ipiv,info) | 134 | 136 | call dgetrf(d,d,inva,d,ipiv,info) | |
! if info is not equal to 0, something went wrong we exit setting status to 0 | 135 | 137 | ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
if (info /= 0) then | 136 | 138 | if (info /= 0) then | |
status=0 | 137 | 139 | status=0 | |
deallocate(ipiv) | 138 | 140 | deallocate(ipiv) | |
return | 139 | 141 | return | |
end if | 140 | 142 | end if | |
! we use the query fonction of xxxtri to obtain the optimal workspace size | 141 | 143 | ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
call dgetri(d,inva,d,ipiv,twork,-1,info) | 142 | 144 | call dgetri(d,inva,d,ipiv,twork,-1,info) | |
lwork=int(twork(1)) | 143 | 145 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 144 | 146 | allocate(work(lwork)) | |
! Matrix inversion using LAPACK | 145 | 147 | ! Matrix inversion using LAPACK | |
call dgetri(d,inva,d,ipiv,work,lwork,info) | 146 | 148 | call dgetri(d,inva,d,ipiv,work,lwork,info) | |
! again if info is not equal to 0, we exit setting status to 0 | 147 | 149 | ! again if info is not equal to 0, we exit setting status to 0 | |
if (info /= 0) then | 148 | 150 | if (info /= 0) then | |
status=0 | 149 | 151 | status=0 | |
end if | 150 | 152 | end if | |
deallocate(work) | 151 | 153 | deallocate(work) | |
deallocate(ipiv) | 152 | 154 | deallocate(ipiv) | |
end subroutine | 153 | 155 | end subroutine | |
154 | 156 | |||
subroutine fvn_c_matinv(d,a,inva,status) | 155 | 157 | subroutine fvn_c_matinv(d,a,inva,status) | |
! | 156 | 158 | ! | |
! Matrix inversion of a complex matrix using BLAS and LAPACK | 157 | 159 | ! Matrix inversion of a complex matrix using BLAS and LAPACK | |
! | 158 | 160 | ! | |
! d (in) : matrix rank | 159 | 161 | ! d (in) : matrix rank | |
! a (in) : input matrix | 160 | 162 | ! a (in) : input matrix | |
! inva (out) : inversed matrix | 161 | 163 | ! inva (out) : inversed matrix | |
! status (ou) : =0 if something failed | 162 | 164 | ! status (ou) : =0 if something failed | |
! | 163 | 165 | ! | |
166 | implicit none | |||
integer, intent(in) :: d | 164 | 167 | integer, intent(in) :: d | |
complex, intent(in) :: a(d,d) | 165 | 168 | complex, intent(in) :: a(d,d) | |
complex, intent(out) :: inva(d,d) | 166 | 169 | complex, intent(out) :: inva(d,d) | |
integer, intent(out) :: status | 167 | 170 | integer, intent(out) :: status | |
168 | 171 | |||
integer, allocatable :: ipiv(:) | 169 | 172 | integer, allocatable :: ipiv(:) | |
complex, allocatable :: work(:) | 170 | 173 | complex, allocatable :: work(:) | |
complex :: twork(1) | 171 | 174 | complex :: twork(1) | |
integer :: info | 172 | 175 | integer :: info | |
integer :: lwork | 173 | 176 | integer :: lwork | |
174 | 177 | |||
status=1 | 175 | 178 | status=1 | |
176 | 179 | |||
allocate(ipiv(d)) | 177 | 180 | allocate(ipiv(d)) | |
! copy a into inva using BLAS | 178 | 181 | ! copy a into inva using BLAS | |
!call ccopy(d*d,a,1,inva,1) | 179 | 182 | !call ccopy(d*d,a,1,inva,1) | |
inva(:,:)=a(:,:) | 180 | 183 | inva(:,:)=a(:,:) | |
181 | 184 | |||
! LU factorization using LAPACK | 182 | 185 | ! LU factorization using LAPACK | |
call cgetrf(d,d,inva,d,ipiv,info) | 183 | 186 | call cgetrf(d,d,inva,d,ipiv,info) | |
! if info is not equal to 0, something went wrong we exit setting status to 0 | 184 | 187 | ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
if (info /= 0) then | 185 | 188 | if (info /= 0) then | |
status=0 | 186 | 189 | status=0 | |
deallocate(ipiv) | 187 | 190 | deallocate(ipiv) | |
return | 188 | 191 | return | |
end if | 189 | 192 | end if | |
! we use the query fonction of xxxtri to obtain the optimal workspace size | 190 | 193 | ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
call cgetri(d,inva,d,ipiv,twork,-1,info) | 191 | 194 | call cgetri(d,inva,d,ipiv,twork,-1,info) | |
lwork=int(twork(1)) | 192 | 195 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 193 | 196 | allocate(work(lwork)) | |
! Matrix inversion using LAPACK | 194 | 197 | ! Matrix inversion using LAPACK | |
call cgetri(d,inva,d,ipiv,work,lwork,info) | 195 | 198 | call cgetri(d,inva,d,ipiv,work,lwork,info) | |
! again if info is not equal to 0, we exit setting status to 0 | 196 | 199 | ! again if info is not equal to 0, we exit setting status to 0 | |
if (info /= 0) then | 197 | 200 | if (info /= 0) then | |
status=0 | 198 | 201 | status=0 | |
end if | 199 | 202 | end if | |
deallocate(work) | 200 | 203 | deallocate(work) | |
deallocate(ipiv) | 201 | 204 | deallocate(ipiv) | |
end subroutine | 202 | 205 | end subroutine | |
203 | 206 | |||
subroutine fvn_z_matinv(d,a,inva,status) | 204 | 207 | subroutine fvn_z_matinv(d,a,inva,status) | |
! | 205 | 208 | ! | |
! Matrix inversion of a double complex matrix using BLAS and LAPACK | 206 | 209 | ! Matrix inversion of a double complex matrix using BLAS and LAPACK | |
! | 207 | 210 | ! | |
! d (in) : matrix rank | 208 | 211 | ! d (in) : matrix rank | |
! a (in) : input matrix | 209 | 212 | ! a (in) : input matrix | |
! inva (out) : inversed matrix | 210 | 213 | ! inva (out) : inversed matrix | |
! status (ou) : =0 if something failed | 211 | 214 | ! status (ou) : =0 if something failed | |
! | 212 | 215 | ! | |
216 | implicit none | |||
integer, intent(in) :: d | 213 | 217 | integer, intent(in) :: d | |
double complex, intent(in) :: a(d,d) | 214 | 218 | double complex, intent(in) :: a(d,d) | |
double complex, intent(out) :: inva(d,d) | 215 | 219 | double complex, intent(out) :: inva(d,d) | |
integer, intent(out) :: status | 216 | 220 | integer, intent(out) :: status | |
217 | 221 | |||
integer, allocatable :: ipiv(:) | 218 | 222 | integer, allocatable :: ipiv(:) | |
double complex, allocatable :: work(:) | 219 | 223 | double complex, allocatable :: work(:) | |
double complex :: twork(1) | 220 | 224 | double complex :: twork(1) | |
integer :: info | 221 | 225 | integer :: info | |
integer :: lwork | 222 | 226 | integer :: lwork | |
223 | 227 | |||
status=1 | 224 | 228 | status=1 | |
225 | 229 | |||
allocate(ipiv(d)) | 226 | 230 | allocate(ipiv(d)) | |
! copy a into inva using BLAS | 227 | 231 | ! copy a into inva using BLAS | |
!call zcopy(d*d,a,1,inva,1) | 228 | 232 | !call zcopy(d*d,a,1,inva,1) | |
inva(:,:)=a(:,:) | 229 | 233 | inva(:,:)=a(:,:) | |
230 | 234 | |||
! LU factorization using LAPACK | 231 | 235 | ! LU factorization using LAPACK | |
call zgetrf(d,d,inva,d,ipiv,info) | 232 | 236 | call zgetrf(d,d,inva,d,ipiv,info) | |
! if info is not equal to 0, something went wrong we exit setting status to 0 | 233 | 237 | ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
if (info /= 0) then | 234 | 238 | if (info /= 0) then | |
status=0 | 235 | 239 | status=0 | |
deallocate(ipiv) | 236 | 240 | deallocate(ipiv) | |
return | 237 | 241 | return | |
end if | 238 | 242 | end if | |
! we use the query fonction of xxxtri to obtain the optimal workspace size | 239 | 243 | ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
call zgetri(d,inva,d,ipiv,twork,-1,info) | 240 | 244 | call zgetri(d,inva,d,ipiv,twork,-1,info) | |
lwork=int(twork(1)) | 241 | 245 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 242 | 246 | allocate(work(lwork)) | |
! Matrix inversion using LAPACK | 243 | 247 | ! Matrix inversion using LAPACK | |
call zgetri(d,inva,d,ipiv,work,lwork,info) | 244 | 248 | call zgetri(d,inva,d,ipiv,work,lwork,info) | |
! again if info is not equal to 0, we exit setting status to 0 | 245 | 249 | ! again if info is not equal to 0, we exit setting status to 0 | |
if (info /= 0) then | 246 | 250 | if (info /= 0) then | |
status=0 | 247 | 251 | status=0 | |
end if | 248 | 252 | end if | |
deallocate(work) | 249 | 253 | deallocate(work) | |
deallocate(ipiv) | 250 | 254 | deallocate(ipiv) | |
end subroutine | 251 | 255 | end subroutine | |
252 | 256 | |||
253 | 257 | |||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 254 | 258 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! | 255 | 259 | ! | |
! Determinants | 256 | 260 | ! Determinants | |
! | 257 | 261 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 258 | 262 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
function fvn_s_det(d,a,status) | 259 | 263 | function fvn_s_det(d,a,status) | |
! | 260 | 264 | ! | |
! Evaluate the determinant of a square matrix using lapack LU factorization | 261 | 265 | ! Evaluate the determinant of a square matrix using lapack LU factorization | |
! | 262 | 266 | ! | |
! d (in) : matrix rank | 263 | 267 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 264 | 268 | ! a (in) : The Matrix | |
! status (out) : =0 if LU factorization failed | 265 | 269 | ! status (out) : =0 if LU factorization failed | |
! | 266 | 270 | ! | |
271 | implicit none | |||
integer, intent(in) :: d | 267 | 272 | integer, intent(in) :: d | |
real, intent(in) :: a(d,d) | 268 | 273 | real, intent(in) :: a(d,d) | |
integer, intent(out) :: status | 269 | 274 | integer, intent(out) :: status | |
real :: fvn_s_det | 270 | 275 | real :: fvn_s_det | |
271 | 276 | |||
real, allocatable :: wc_a(:,:) | 272 | 277 | real, allocatable :: wc_a(:,:) | |
integer, allocatable :: ipiv(:) | 273 | 278 | integer, allocatable :: ipiv(:) | |
integer :: info,i | 274 | 279 | integer :: info,i | |
275 | 280 | |||
status=1 | 276 | 281 | status=1 | |
allocate(wc_a(d,d)) | 277 | 282 | allocate(wc_a(d,d)) | |
allocate(ipiv(d)) | 278 | 283 | allocate(ipiv(d)) | |
wc_a(:,:)=a(:,:) | 279 | 284 | wc_a(:,:)=a(:,:) | |
call sgetrf(d,d,wc_a,d,ipiv,info) | 280 | 285 | call sgetrf(d,d,wc_a,d,ipiv,info) | |
if (info/= 0) then | 281 | 286 | if (info/= 0) then | |
status=0 | 282 | 287 | status=0 | |
fvn_s_det=0.e0 | 283 | 288 | fvn_s_det=0.e0 | |
deallocate(ipiv) | 284 | 289 | deallocate(ipiv) | |
deallocate(wc_a) | 285 | 290 | deallocate(wc_a) | |
return | 286 | 291 | return | |
end if | 287 | 292 | end if | |
fvn_s_det=1.e0 | 288 | 293 | fvn_s_det=1.e0 | |
do i=1,d | 289 | 294 | do i=1,d | |
if (ipiv(i)==i) then | 290 | 295 | if (ipiv(i)==i) then | |
fvn_s_det=fvn_s_det*wc_a(i,i) | 291 | 296 | fvn_s_det=fvn_s_det*wc_a(i,i) | |
else | 292 | 297 | else | |
fvn_s_det=-fvn_s_det*wc_a(i,i) | 293 | 298 | fvn_s_det=-fvn_s_det*wc_a(i,i) | |
end if | 294 | 299 | end if | |
end do | 295 | 300 | end do | |
deallocate(ipiv) | 296 | 301 | deallocate(ipiv) | |
deallocate(wc_a) | 297 | 302 | deallocate(wc_a) | |
298 | 303 | |||
end function | 299 | 304 | end function | |
300 | 305 | |||
function fvn_d_det(d,a,status) | 301 | 306 | function fvn_d_det(d,a,status) | |
! | 302 | 307 | ! | |
! Evaluate the determinant of a square matrix using lapack LU factorization | 303 | 308 | ! Evaluate the determinant of a square matrix using lapack LU factorization | |
! | 304 | 309 | ! | |
! d (in) : matrix rank | 305 | 310 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 306 | 311 | ! a (in) : The Matrix | |
! status (out) : =0 if LU factorization failed | 307 | 312 | ! status (out) : =0 if LU factorization failed | |
! | 308 | 313 | ! | |
314 | implicit none | |||
integer, intent(in) :: d | 309 | 315 | integer, intent(in) :: d | |
double precision, intent(in) :: a(d,d) | 310 | 316 | double precision, intent(in) :: a(d,d) | |
integer, intent(out) :: status | 311 | 317 | integer, intent(out) :: status | |
double precision :: fvn_d_det | 312 | 318 | double precision :: fvn_d_det | |
313 | 319 | |||
double precision, allocatable :: wc_a(:,:) | 314 | 320 | double precision, allocatable :: wc_a(:,:) | |
integer, allocatable :: ipiv(:) | 315 | 321 | integer, allocatable :: ipiv(:) | |
integer :: info,i | 316 | 322 | integer :: info,i | |
317 | 323 | |||
status=1 | 318 | 324 | status=1 | |
allocate(wc_a(d,d)) | 319 | 325 | allocate(wc_a(d,d)) | |
allocate(ipiv(d)) | 320 | 326 | allocate(ipiv(d)) | |
wc_a(:,:)=a(:,:) | 321 | 327 | wc_a(:,:)=a(:,:) | |
call dgetrf(d,d,wc_a,d,ipiv,info) | 322 | 328 | call dgetrf(d,d,wc_a,d,ipiv,info) | |
if (info/= 0) then | 323 | 329 | if (info/= 0) then | |
status=0 | 324 | 330 | status=0 | |
fvn_d_det=0.d0 | 325 | 331 | fvn_d_det=0.d0 | |
deallocate(ipiv) | 326 | 332 | deallocate(ipiv) | |
deallocate(wc_a) | 327 | 333 | deallocate(wc_a) | |
return | 328 | 334 | return | |
end if | 329 | 335 | end if | |
fvn_d_det=1.d0 | 330 | 336 | fvn_d_det=1.d0 | |
do i=1,d | 331 | 337 | do i=1,d | |
if (ipiv(i)==i) then | 332 | 338 | if (ipiv(i)==i) then | |
fvn_d_det=fvn_d_det*wc_a(i,i) | 333 | 339 | fvn_d_det=fvn_d_det*wc_a(i,i) | |
else | 334 | 340 | else | |
fvn_d_det=-fvn_d_det*wc_a(i,i) | 335 | 341 | fvn_d_det=-fvn_d_det*wc_a(i,i) | |
end if | 336 | 342 | end if | |
end do | 337 | 343 | end do | |
deallocate(ipiv) | 338 | 344 | deallocate(ipiv) | |
deallocate(wc_a) | 339 | 345 | deallocate(wc_a) | |
340 | 346 | |||
end function | 341 | 347 | end function | |
342 | 348 | |||
function fvn_c_det(d,a,status) ! | 343 | 349 | function fvn_c_det(d,a,status) ! | |
! Evaluate the determinant of a square matrix using lapack LU factorization | 344 | 350 | ! Evaluate the determinant of a square matrix using lapack LU factorization | |
! | 345 | 351 | ! | |
! d (in) : matrix rank | 346 | 352 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 347 | 353 | ! a (in) : The Matrix | |
! status (out) : =0 if LU factorization failed | 348 | 354 | ! status (out) : =0 if LU factorization failed | |
! | 349 | 355 | ! | |
356 | implicit none | |||
integer, intent(in) :: d | 350 | 357 | integer, intent(in) :: d | |
complex, intent(in) :: a(d,d) | 351 | 358 | complex, intent(in) :: a(d,d) | |
integer, intent(out) :: status | 352 | 359 | integer, intent(out) :: status | |
complex :: fvn_c_det | 353 | 360 | complex :: fvn_c_det | |
354 | 361 | |||
complex, allocatable :: wc_a(:,:) | 355 | 362 | complex, allocatable :: wc_a(:,:) | |
integer, allocatable :: ipiv(:) | 356 | 363 | integer, allocatable :: ipiv(:) | |
integer :: info,i | 357 | 364 | integer :: info,i | |
358 | 365 | |||
status=1 | 359 | 366 | status=1 | |
allocate(wc_a(d,d)) | 360 | 367 | allocate(wc_a(d,d)) | |
allocate(ipiv(d)) | 361 | 368 | allocate(ipiv(d)) | |
wc_a(:,:)=a(:,:) | 362 | 369 | wc_a(:,:)=a(:,:) | |
call cgetrf(d,d,wc_a,d,ipiv,info) | 363 | 370 | call cgetrf(d,d,wc_a,d,ipiv,info) | |
if (info/= 0) then | 364 | 371 | if (info/= 0) then | |
status=0 | 365 | 372 | status=0 | |
fvn_c_det=(0.e0,0.e0) | 366 | 373 | fvn_c_det=(0.e0,0.e0) | |
deallocate(ipiv) | 367 | 374 | deallocate(ipiv) | |
deallocate(wc_a) | 368 | 375 | deallocate(wc_a) | |
return | 369 | 376 | return | |
end if | 370 | 377 | end if | |
fvn_c_det=(1.e0,0.e0) | 371 | 378 | fvn_c_det=(1.e0,0.e0) | |
do i=1,d | 372 | 379 | do i=1,d | |
if (ipiv(i)==i) then | 373 | 380 | if (ipiv(i)==i) then | |
fvn_c_det=fvn_c_det*wc_a(i,i) | 374 | 381 | fvn_c_det=fvn_c_det*wc_a(i,i) | |
else | 375 | 382 | else | |
fvn_c_det=-fvn_c_det*wc_a(i,i) | 376 | 383 | fvn_c_det=-fvn_c_det*wc_a(i,i) | |
end if | 377 | 384 | end if | |
end do | 378 | 385 | end do | |
deallocate(ipiv) | 379 | 386 | deallocate(ipiv) | |
deallocate(wc_a) | 380 | 387 | deallocate(wc_a) | |
381 | 388 | |||
end function | 382 | 389 | end function | |
383 | 390 | |||
function fvn_z_det(d,a,status) | 384 | 391 | function fvn_z_det(d,a,status) | |
! | 385 | 392 | ! | |
! Evaluate the determinant of a square matrix using lapack LU factorization | 386 | 393 | ! Evaluate the determinant of a square matrix using lapack LU factorization | |
! | 387 | 394 | ! | |
! d (in) : matrix rank | 388 | 395 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 389 | 396 | ! a (in) : The Matrix | |
! det (out) : determinant | 390 | 397 | ! det (out) : determinant | |
! status (out) : =0 if LU factorization failed | 391 | 398 | ! status (out) : =0 if LU factorization failed | |
! | 392 | 399 | ! | |
400 | implicit none | |||
integer, intent(in) :: d | 393 | 401 | integer, intent(in) :: d | |
double complex, intent(in) :: a(d,d) | 394 | 402 | double complex, intent(in) :: a(d,d) | |
integer, intent(out) :: status | 395 | 403 | integer, intent(out) :: status | |
double complex :: fvn_z_det | 396 | 404 | double complex :: fvn_z_det | |
397 | 405 | |||
double complex, allocatable :: wc_a(:,:) | 398 | 406 | double complex, allocatable :: wc_a(:,:) | |
integer, allocatable :: ipiv(:) | 399 | 407 | integer, allocatable :: ipiv(:) | |
integer :: info,i | 400 | 408 | integer :: info,i | |
401 | 409 | |||
status=1 | 402 | 410 | status=1 | |
allocate(wc_a(d,d)) | 403 | 411 | allocate(wc_a(d,d)) | |
allocate(ipiv(d)) | 404 | 412 | allocate(ipiv(d)) | |
wc_a(:,:)=a(:,:) | 405 | 413 | wc_a(:,:)=a(:,:) | |
call zgetrf(d,d,wc_a,d,ipiv,info) | 406 | 414 | call zgetrf(d,d,wc_a,d,ipiv,info) | |
if (info/= 0) then | 407 | 415 | if (info/= 0) then | |
status=0 | 408 | 416 | status=0 | |
fvn_z_det=(0.d0,0.d0) | 409 | 417 | fvn_z_det=(0.d0,0.d0) | |
deallocate(ipiv) | 410 | 418 | deallocate(ipiv) | |
deallocate(wc_a) | 411 | 419 | deallocate(wc_a) | |
return | 412 | 420 | return | |
end if | 413 | 421 | end if | |
fvn_z_det=(1.d0,0.d0) | 414 | 422 | fvn_z_det=(1.d0,0.d0) | |
do i=1,d | 415 | 423 | do i=1,d | |
if (ipiv(i)==i) then | 416 | 424 | if (ipiv(i)==i) then | |
fvn_z_det=fvn_z_det*wc_a(i,i) | 417 | 425 | fvn_z_det=fvn_z_det*wc_a(i,i) | |
else | 418 | 426 | else | |
fvn_z_det=-fvn_z_det*wc_a(i,i) | 419 | 427 | fvn_z_det=-fvn_z_det*wc_a(i,i) | |
end if | 420 | 428 | end if | |
end do | 421 | 429 | end do | |
deallocate(ipiv) | 422 | 430 | deallocate(ipiv) | |
deallocate(wc_a) | 423 | 431 | deallocate(wc_a) | |
424 | 432 | |||
end function | 425 | 433 | end function | |
426 | 434 | |||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 427 | 435 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! | 428 | 436 | ! | |
! Condition test | 429 | 437 | ! Condition test | |
! | 430 | 438 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 431 | 439 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! 1-norm | 432 | 440 | ! 1-norm | |
! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm | 433 | 441 | ! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm | |
! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond | 434 | 442 | ! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond | |
! | 435 | 443 | ! | |
subroutine fvn_s_matcon(d,a,rcond,status) | 436 | 444 | subroutine fvn_s_matcon(d,a,rcond,status) | |
! Matrix condition (reciprocal of condition number) | 437 | 445 | ! Matrix condition (reciprocal of condition number) | |
! | 438 | 446 | ! | |
! d (in) : matrix rank | 439 | 447 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 440 | 448 | ! a (in) : The Matrix | |
! rcond (out) : guess what | 441 | 449 | ! rcond (out) : guess what | |
! status (out) : =0 if something went wrong | 442 | 450 | ! status (out) : =0 if something went wrong | |
! | 443 | 451 | ! | |
452 | implicit none | |||
integer, intent(in) :: d | 444 | 453 | integer, intent(in) :: d | |
real, intent(in) :: a(d,d) | 445 | 454 | real, intent(in) :: a(d,d) | |
real, intent(out) :: rcond | 446 | 455 | real, intent(out) :: rcond | |
integer, intent(out) :: status | 447 | 456 | integer, intent(out) :: status | |
448 | 457 | |||
real, allocatable :: work(:) | 449 | 458 | real, allocatable :: work(:) | |
integer, allocatable :: iwork(:) | 450 | 459 | integer, allocatable :: iwork(:) | |
real :: anorm | 451 | 460 | real :: anorm | |
real, allocatable :: wc_a(:,:) ! working copy of a | 452 | 461 | real, allocatable :: wc_a(:,:) ! working copy of a | |
integer :: info | 453 | 462 | integer :: info | |
integer, allocatable :: ipiv(:) | 454 | 463 | integer, allocatable :: ipiv(:) | |
455 | 464 | |||
real, external :: slange | 456 | 465 | real, external :: slange | |
457 | 466 | |||
458 | 467 | |||
status=1 | 459 | 468 | status=1 | |
460 | 469 | |||
anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | 461 | 470 | anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | |
462 | 471 | |||
allocate(wc_a(d,d)) | 463 | 472 | allocate(wc_a(d,d)) | |
!call scopy(d*d,a,1,wc_a,1) | 464 | 473 | !call scopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 465 | 474 | wc_a(:,:)=a(:,:) | |
466 | 475 | |||
allocate(ipiv(d)) | 467 | 476 | allocate(ipiv(d)) | |
call sgetrf(d,d,wc_a,d,ipiv,info) | 468 | 477 | call sgetrf(d,d,wc_a,d,ipiv,info) | |
if (info /= 0) then | 469 | 478 | if (info /= 0) then | |
status=0 | 470 | 479 | status=0 | |
deallocate(ipiv) | 471 | 480 | deallocate(ipiv) | |
deallocate(wc_a) | 472 | 481 | deallocate(wc_a) | |
return | 473 | 482 | return | |
end if | 474 | 483 | end if | |
allocate(work(4*d)) | 475 | 484 | allocate(work(4*d)) | |
allocate(iwork(d)) | 476 | 485 | allocate(iwork(d)) | |
call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | 477 | 486 | call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | |
if (info /= 0) then | 478 | 487 | if (info /= 0) then | |
status=0 | 479 | 488 | status=0 | |
end if | 480 | 489 | end if | |
deallocate(iwork) | 481 | 490 | deallocate(iwork) | |
deallocate(work) | 482 | 491 | deallocate(work) | |
deallocate(ipiv) | 483 | 492 | deallocate(ipiv) | |
deallocate(wc_a) | 484 | 493 | deallocate(wc_a) | |
485 | 494 | |||
end subroutine | 486 | 495 | end subroutine | |
487 | 496 | |||
subroutine fvn_d_matcon(d,a,rcond,status) | 488 | 497 | subroutine fvn_d_matcon(d,a,rcond,status) | |
! Matrix condition (reciprocal of condition number) | 489 | 498 | ! Matrix condition (reciprocal of condition number) | |
! | 490 | 499 | ! | |
! d (in) : matrix rank | 491 | 500 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 492 | 501 | ! a (in) : The Matrix | |
! rcond (out) : guess what | 493 | 502 | ! rcond (out) : guess what | |
! status (out) : =0 if something went wrong | 494 | 503 | ! status (out) : =0 if something went wrong | |
! | 495 | 504 | ! | |
505 | implicit none | |||
integer, intent(in) :: d | 496 | 506 | integer, intent(in) :: d | |
double precision, intent(in) :: a(d,d) | 497 | 507 | double precision, intent(in) :: a(d,d) | |
double precision, intent(out) :: rcond | 498 | 508 | double precision, intent(out) :: rcond | |
integer, intent(out) :: status | 499 | 509 | integer, intent(out) :: status | |
500 | 510 | |||
double precision, allocatable :: work(:) | 501 | 511 | double precision, allocatable :: work(:) | |
integer, allocatable :: iwork(:) | 502 | 512 | integer, allocatable :: iwork(:) | |
double precision :: anorm | 503 | 513 | double precision :: anorm | |
double precision, allocatable :: wc_a(:,:) ! working copy of a | 504 | 514 | double precision, allocatable :: wc_a(:,:) ! working copy of a | |
integer :: info | 505 | 515 | integer :: info | |
integer, allocatable :: ipiv(:) | 506 | 516 | integer, allocatable :: ipiv(:) | |
507 | 517 | |||
double precision, external :: dlange | 508 | 518 | double precision, external :: dlange | |
509 | 519 | |||
510 | 520 | |||
status=1 | 511 | 521 | status=1 | |
512 | 522 | |||
anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | 513 | 523 | anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | |
514 | 524 | |||
allocate(wc_a(d,d)) | 515 | 525 | allocate(wc_a(d,d)) | |
!call dcopy(d*d,a,1,wc_a,1) | 516 | 526 | !call dcopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 517 | 527 | wc_a(:,:)=a(:,:) | |
518 | 528 | |||
allocate(ipiv(d)) | 519 | 529 | allocate(ipiv(d)) | |
call dgetrf(d,d,wc_a,d,ipiv,info) | 520 | 530 | call dgetrf(d,d,wc_a,d,ipiv,info) | |
if (info /= 0) then | 521 | 531 | if (info /= 0) then | |
status=0 | 522 | 532 | status=0 | |
deallocate(ipiv) | 523 | 533 | deallocate(ipiv) | |
deallocate(wc_a) | 524 | 534 | deallocate(wc_a) | |
return | 525 | 535 | return | |
end if | 526 | 536 | end if | |
527 | 537 | |||
allocate(work(4*d)) | 528 | 538 | allocate(work(4*d)) | |
allocate(iwork(d)) | 529 | 539 | allocate(iwork(d)) | |
call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | 530 | 540 | call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | |
if (info /= 0) then | 531 | 541 | if (info /= 0) then | |
status=0 | 532 | 542 | status=0 | |
end if | 533 | 543 | end if | |
deallocate(iwork) | 534 | 544 | deallocate(iwork) | |
deallocate(work) | 535 | 545 | deallocate(work) | |
deallocate(ipiv) | 536 | 546 | deallocate(ipiv) | |
deallocate(wc_a) | 537 | 547 | deallocate(wc_a) | |
538 | 548 | |||
end subroutine | 539 | 549 | end subroutine | |
540 | 550 | |||
subroutine fvn_c_matcon(d,a,rcond,status) | 541 | 551 | subroutine fvn_c_matcon(d,a,rcond,status) | |
! Matrix condition (reciprocal of condition number) | 542 | 552 | ! Matrix condition (reciprocal of condition number) | |
! | 543 | 553 | ! | |
! d (in) : matrix rank | 544 | 554 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 545 | 555 | ! a (in) : The Matrix | |
! rcond (out) : guess what | 546 | 556 | ! rcond (out) : guess what | |
! status (out) : =0 if something went wrong | 547 | 557 | ! status (out) : =0 if something went wrong | |
! | 548 | 558 | ! | |
559 | implicit none | |||
integer, intent(in) :: d | 549 | 560 | integer, intent(in) :: d | |
complex, intent(in) :: a(d,d) | 550 | 561 | complex, intent(in) :: a(d,d) | |
real, intent(out) :: rcond | 551 | 562 | real, intent(out) :: rcond | |
integer, intent(out) :: status | 552 | 563 | integer, intent(out) :: status | |
553 | 564 | |||
real, allocatable :: rwork(:) | 554 | 565 | real, allocatable :: rwork(:) | |
complex, allocatable :: work(:) | 555 | 566 | complex, allocatable :: work(:) | |
integer, allocatable :: iwork(:) | 556 | 567 | integer, allocatable :: iwork(:) | |
real :: anorm | 557 | 568 | real :: anorm | |
complex, allocatable :: wc_a(:,:) ! working copy of a | 558 | 569 | complex, allocatable :: wc_a(:,:) ! working copy of a | |
integer :: info | 559 | 570 | integer :: info | |
integer, allocatable :: ipiv(:) | 560 | 571 | integer, allocatable :: ipiv(:) | |
561 | 572 | |||
real, external :: clange | 562 | 573 | real, external :: clange | |
563 | 574 | |||
564 | 575 | |||
status=1 | 565 | 576 | status=1 | |
566 | 577 | |||
anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | 567 | 578 | anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | |
568 | 579 | |||
allocate(wc_a(d,d)) | 569 | 580 | allocate(wc_a(d,d)) | |
!call ccopy(d*d,a,1,wc_a,1) | 570 | 581 | !call ccopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 571 | 582 | wc_a(:,:)=a(:,:) | |
572 | 583 | |||
allocate(ipiv(d)) | 573 | 584 | allocate(ipiv(d)) | |
call cgetrf(d,d,wc_a,d,ipiv,info) | 574 | 585 | call cgetrf(d,d,wc_a,d,ipiv,info) | |
if (info /= 0) then | 575 | 586 | if (info /= 0) then | |
status=0 | 576 | 587 | status=0 | |
deallocate(ipiv) | 577 | 588 | deallocate(ipiv) | |
deallocate(wc_a) | 578 | 589 | deallocate(wc_a) | |
return | 579 | 590 | return | |
end if | 580 | 591 | end if | |
allocate(work(2*d)) | 581 | 592 | allocate(work(2*d)) | |
allocate(rwork(2*d)) | 582 | 593 | allocate(rwork(2*d)) | |
call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | 583 | 594 | call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | |
if (info /= 0) then | 584 | 595 | if (info /= 0) then | |
status=0 | 585 | 596 | status=0 | |
end if | 586 | 597 | end if | |
deallocate(rwork) | 587 | 598 | deallocate(rwork) | |
deallocate(work) | 588 | 599 | deallocate(work) | |
deallocate(ipiv) | 589 | 600 | deallocate(ipiv) | |
deallocate(wc_a) | 590 | 601 | deallocate(wc_a) | |
end subroutine | 591 | 602 | end subroutine | |
592 | 603 | |||
subroutine fvn_z_matcon(d,a,rcond,status) | 593 | 604 | subroutine fvn_z_matcon(d,a,rcond,status) | |
! Matrix condition (reciprocal of condition number) | 594 | 605 | ! Matrix condition (reciprocal of condition number) | |
! | 595 | 606 | ! | |
! d (in) : matrix rank | 596 | 607 | ! d (in) : matrix rank | |
! a (in) : The Matrix | 597 | 608 | ! a (in) : The Matrix | |
! rcond (out) : guess what | 598 | 609 | ! rcond (out) : guess what | |
! status (out) : =0 if something went wrong | 599 | 610 | ! status (out) : =0 if something went wrong | |
! | 600 | 611 | ! | |
612 | implicit none | |||
integer, intent(in) :: d | 601 | 613 | integer, intent(in) :: d | |
double complex, intent(in) :: a(d,d) | 602 | 614 | double complex, intent(in) :: a(d,d) | |
double precision, intent(out) :: rcond | 603 | 615 | double precision, intent(out) :: rcond | |
integer, intent(out) :: status | 604 | 616 | integer, intent(out) :: status | |
605 | 617 | |||
double complex, allocatable :: work(:) | 606 | 618 | double complex, allocatable :: work(:) | |
double precision, allocatable :: rwork(:) | 607 | 619 | double precision, allocatable :: rwork(:) | |
double precision :: anorm | 608 | 620 | double precision :: anorm | |
double complex, allocatable :: wc_a(:,:) ! working copy of a | 609 | 621 | double complex, allocatable :: wc_a(:,:) ! working copy of a | |
integer :: info | 610 | 622 | integer :: info | |
integer, allocatable :: ipiv(:) | 611 | 623 | integer, allocatable :: ipiv(:) | |
612 | 624 | |||
double precision, external :: zlange | 613 | 625 | double precision, external :: zlange | |
614 | 626 | |||
615 | 627 | |||
status=1 | 616 | 628 | status=1 | |
617 | 629 | |||
anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | 618 | 630 | anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | |
619 | 631 | |||
allocate(wc_a(d,d)) | 620 | 632 | allocate(wc_a(d,d)) | |
!call zcopy(d*d,a,1,wc_a,1) | 621 | 633 | !call zcopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 622 | 634 | wc_a(:,:)=a(:,:) | |
623 | 635 | |||
allocate(ipiv(d)) | 624 | 636 | allocate(ipiv(d)) | |
call zgetrf(d,d,wc_a,d,ipiv,info) | 625 | 637 | call zgetrf(d,d,wc_a,d,ipiv,info) | |
if (info /= 0) then | 626 | 638 | if (info /= 0) then | |
status=0 | 627 | 639 | status=0 | |
deallocate(ipiv) | 628 | 640 | deallocate(ipiv) | |
deallocate(wc_a) | 629 | 641 | deallocate(wc_a) | |
return | 630 | 642 | return | |
end if | 631 | 643 | end if | |
632 | 644 | |||
allocate(work(2*d)) | 633 | 645 | allocate(work(2*d)) | |
allocate(rwork(2*d)) | 634 | 646 | allocate(rwork(2*d)) | |
call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | 635 | 647 | call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | |
if (info /= 0) then | 636 | 648 | if (info /= 0) then | |
status=0 | 637 | 649 | status=0 | |
end if | 638 | 650 | end if | |
deallocate(rwork) | 639 | 651 | deallocate(rwork) | |
deallocate(work) | 640 | 652 | deallocate(work) | |
deallocate(ipiv) | 641 | 653 | deallocate(ipiv) | |
deallocate(wc_a) | 642 | 654 | deallocate(wc_a) | |
end subroutine | 643 | 655 | end subroutine | |
644 | 656 | |||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 645 | 657 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! | 646 | 658 | ! | |
! Valeurs propres/ Vecteurs propre | 647 | 659 | ! Valeurs propres/ Vecteurs propre | |
! | 648 | 660 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 649 | 661 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
650 | 662 | |||
subroutine fvn_s_matev(d,a,evala,eveca,status) | 651 | 663 | subroutine fvn_s_matev(d,a,evala,eveca,status) | |
! | 652 | 664 | ! | |
! integer d (in) : matrice rank | 653 | 665 | ! integer d (in) : matrice rank | |
! real a(d,d) (in) : The Matrix | 654 | 666 | ! real a(d,d) (in) : The Matrix | |
! complex evala(d) (out) : eigenvalues | 655 | 667 | ! complex evala(d) (out) : eigenvalues | |
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | 656 | 668 | ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
! integer (out) : status =0 if something went wrong | 657 | 669 | ! integer (out) : status =0 if something went wrong | |
! | 658 | 670 | ! | |
! interfacing Lapack routine SGEEV | 659 | 671 | ! interfacing Lapack routine SGEEV | |
660 | 672 | implicit none | ||
integer, intent(in) :: d | 661 | 673 | integer, intent(in) :: d | |
real, intent(in) :: a(d,d) | 662 | 674 | real, intent(in) :: a(d,d) | |
complex, intent(out) :: evala(d) | 663 | 675 | complex, intent(out) :: evala(d) | |
complex, intent(out) :: eveca(d,d) | 664 | 676 | complex, intent(out) :: eveca(d,d) | |
integer, intent(out) :: status | 665 | 677 | integer, intent(out) :: status | |
666 | 678 | |||
real, allocatable :: wc_a(:,:) ! a working copy of a | 667 | 679 | real, allocatable :: wc_a(:,:) ! a working copy of a | |
integer :: info | 668 | 680 | integer :: info | |
integer :: lwork | 669 | 681 | integer :: lwork | |
real, allocatable :: wr(:),wi(:) | 670 | 682 | real, allocatable :: wr(:),wi(:) | |
real :: vl ! unused but necessary for the call | 671 | 683 | real :: vl ! unused but necessary for the call | |
real, allocatable :: vr(:,:) | 672 | 684 | real, allocatable :: vr(:,:) | |
real, allocatable :: work(:) | 673 | 685 | real, allocatable :: work(:) | |
real :: twork(1) | 674 | 686 | real :: twork(1) | |
integer i | 675 | 687 | integer i | |
integer j | 676 | 688 | integer j | |
677 | 689 | |||
! making a working copy of a | 678 | 690 | ! making a working copy of a | |
allocate(wc_a(d,d)) | 679 | 691 | allocate(wc_a(d,d)) | |
!call scopy(d*d,a,1,wc_a,1) | 680 | 692 | !call scopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 681 | 693 | wc_a(:,:)=a(:,:) | |
682 | 694 | |||
allocate(wr(d)) | 683 | 695 | allocate(wr(d)) | |
allocate(wi(d)) | 684 | 696 | allocate(wi(d)) | |
allocate(vr(d,d)) | 685 | 697 | allocate(vr(d,d)) | |
! query optimal work size | 686 | 698 | ! query optimal work size | |
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | 687 | 699 | call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | |
lwork=int(twork(1)) | 688 | 700 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 689 | 701 | allocate(work(lwork)) | |
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | 690 | 702 | call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | |
691 | 703 | |||
if (info /= 0) then | 692 | 704 | if (info /= 0) then | |
status=0 | 693 | 705 | status=0 | |
deallocate(work) | 694 | 706 | deallocate(work) | |
deallocate(vr) | 695 | 707 | deallocate(vr) | |
deallocate(wi) | 696 | 708 | deallocate(wi) | |
deallocate(wr) | 697 | 709 | deallocate(wr) | |
deallocate(wc_a) | 698 | 710 | deallocate(wc_a) | |
return | 699 | 711 | return | |
end if | 700 | 712 | end if | |
701 | 713 | |||
! now fill in the results | 702 | 714 | ! now fill in the results | |
i=1 | 703 | 715 | i=1 | |
do while(i<=d) | 704 | 716 | do while(i<=d) | |
evala(i)=cmplx(wr(i),wi(i)) | 705 | 717 | evala(i)=cmplx(wr(i),wi(i)) | |
if (wi(i) == 0.) then ! eigenvalue is real | 706 | 718 | if (wi(i) == 0.) then ! eigenvalue is real | |
eveca(:,i)=cmplx(vr(:,i),0.) | 707 | 719 | eveca(:,i)=cmplx(vr(:,i),0.) | |
else ! eigenvalue is complex | 708 | 720 | else ! eigenvalue is complex | |
evala(i+1)=cmplx(wr(i+1),wi(i+1)) | 709 | 721 | evala(i+1)=cmplx(wr(i+1),wi(i+1)) | |
eveca(:,i)=cmplx(vr(:,i),vr(:,i+1)) | 710 | 722 | eveca(:,i)=cmplx(vr(:,i),vr(:,i+1)) | |
eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1)) | 711 | 723 | eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1)) | |
i=i+1 | 712 | 724 | i=i+1 | |
end if | 713 | 725 | end if | |
i=i+1 | 714 | 726 | i=i+1 | |
enddo | 715 | 727 | enddo | |
deallocate(work) | 716 | 728 | deallocate(work) | |
deallocate(vr) | 717 | 729 | deallocate(vr) | |
deallocate(wi) | 718 | 730 | deallocate(wi) | |
deallocate(wr) | 719 | 731 | deallocate(wr) | |
deallocate(wc_a) | 720 | 732 | deallocate(wc_a) | |
721 | 733 | |||
end subroutine | 722 | 734 | end subroutine | |
723 | 735 | |||
subroutine fvn_d_matev(d,a,evala,eveca,status) | 724 | 736 | subroutine fvn_d_matev(d,a,evala,eveca,status) | |
! | 725 | 737 | ! | |
! integer d (in) : matrice rank | 726 | 738 | ! integer d (in) : matrice rank | |
! double precision a(d,d) (in) : The Matrix | 727 | 739 | ! double precision a(d,d) (in) : The Matrix | |
! double complex evala(d) (out) : eigenvalues | 728 | 740 | ! double complex evala(d) (out) : eigenvalues | |
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | 729 | 741 | ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
! integer (out) : status =0 if something went wrong | 730 | 742 | ! integer (out) : status =0 if something went wrong | |
! | 731 | 743 | ! | |
! interfacing Lapack routine DGEEV | 732 | 744 | ! interfacing Lapack routine DGEEV | |
745 | implicit none | |||
integer, intent(in) :: d | 733 | 746 | integer, intent(in) :: d | |
double precision, intent(in) :: a(d,d) | 734 | 747 | double precision, intent(in) :: a(d,d) | |
double complex, intent(out) :: evala(d) | 735 | 748 | double complex, intent(out) :: evala(d) | |
double complex, intent(out) :: eveca(d,d) | 736 | 749 | double complex, intent(out) :: eveca(d,d) | |
integer, intent(out) :: status | 737 | 750 | integer, intent(out) :: status | |
738 | 751 | |||
double precision, allocatable :: wc_a(:,:) ! a working copy of a | 739 | 752 | double precision, allocatable :: wc_a(:,:) ! a working copy of a | |
integer :: info | 740 | 753 | integer :: info | |
integer :: lwork | 741 | 754 | integer :: lwork | |
double precision, allocatable :: wr(:),wi(:) | 742 | 755 | double precision, allocatable :: wr(:),wi(:) | |
double precision :: vl ! unused but necessary for the call | 743 | 756 | double precision :: vl ! unused but necessary for the call | |
double precision, allocatable :: vr(:,:) | 744 | 757 | double precision, allocatable :: vr(:,:) | |
double precision, allocatable :: work(:) | 745 | 758 | double precision, allocatable :: work(:) | |
double precision :: twork(1) | 746 | 759 | double precision :: twork(1) | |
integer i | 747 | 760 | integer i | |
integer j | 748 | 761 | integer j | |
749 | 762 | |||
! making a working copy of a | 750 | 763 | ! making a working copy of a | |
allocate(wc_a(d,d)) | 751 | 764 | allocate(wc_a(d,d)) | |
!call dcopy(d*d,a,1,wc_a,1) | 752 | 765 | !call dcopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 753 | 766 | wc_a(:,:)=a(:,:) | |
754 | 767 | |||
allocate(wr(d)) | 755 | 768 | allocate(wr(d)) | |
allocate(wi(d)) | 756 | 769 | allocate(wi(d)) | |
allocate(vr(d,d)) | 757 | 770 | allocate(vr(d,d)) | |
! query optimal work size | 758 | 771 | ! query optimal work size | |
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | 759 | 772 | call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | |
lwork=int(twork(1)) | 760 | 773 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 761 | 774 | allocate(work(lwork)) | |
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | 762 | 775 | call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | |
763 | 776 | |||
if (info /= 0) then | 764 | 777 | if (info /= 0) then | |
status=0 | 765 | 778 | status=0 | |
deallocate(work) | 766 | 779 | deallocate(work) | |
deallocate(vr) | 767 | 780 | deallocate(vr) | |
deallocate(wi) | 768 | 781 | deallocate(wi) | |
deallocate(wr) | 769 | 782 | deallocate(wr) | |
deallocate(wc_a) | 770 | 783 | deallocate(wc_a) | |
return | 771 | 784 | return | |
end if | 772 | 785 | end if | |
773 | 786 | |||
! now fill in the results | 774 | 787 | ! now fill in the results | |
i=1 | 775 | 788 | i=1 | |
do while(i<=d) | 776 | 789 | do while(i<=d) | |
evala(i)=dcmplx(wr(i),wi(i)) | 777 | 790 | evala(i)=dcmplx(wr(i),wi(i)) | |
if (wi(i) == 0.) then ! eigenvalue is real | 778 | 791 | if (wi(i) == 0.) then ! eigenvalue is real | |
eveca(:,i)=dcmplx(vr(:,i),0.) | 779 | 792 | eveca(:,i)=dcmplx(vr(:,i),0.) | |
else ! eigenvalue is complex | 780 | 793 | else ! eigenvalue is complex | |
evala(i+1)=dcmplx(wr(i+1),wi(i+1)) | 781 | 794 | evala(i+1)=dcmplx(wr(i+1),wi(i+1)) | |
eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1)) | 782 | 795 | eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1)) | |
eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1)) | 783 | 796 | eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1)) | |
i=i+1 | 784 | 797 | i=i+1 | |
end if | 785 | 798 | end if | |
i=i+1 | 786 | 799 | i=i+1 | |
enddo | 787 | 800 | enddo | |
788 | 801 | |||
deallocate(work) | 789 | 802 | deallocate(work) | |
deallocate(vr) | 790 | 803 | deallocate(vr) | |
deallocate(wi) | 791 | 804 | deallocate(wi) | |
deallocate(wr) | 792 | 805 | deallocate(wr) | |
deallocate(wc_a) | 793 | 806 | deallocate(wc_a) | |
794 | 807 | |||
end subroutine | 795 | 808 | end subroutine | |
796 | 809 | |||
subroutine fvn_c_matev(d,a,evala,eveca,status) | 797 | 810 | subroutine fvn_c_matev(d,a,evala,eveca,status) | |
! | 798 | 811 | ! | |
! integer d (in) : matrice rank | 799 | 812 | ! integer d (in) : matrice rank | |
! complex a(d,d) (in) : The Matrix | 800 | 813 | ! complex a(d,d) (in) : The Matrix | |
! complex evala(d) (out) : eigenvalues | 801 | 814 | ! complex evala(d) (out) : eigenvalues | |
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | 802 | 815 | ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
! integer (out) : status =0 if something went wrong | 803 | 816 | ! integer (out) : status =0 if something went wrong | |
! | 804 | 817 | ! | |
! interfacing Lapack routine CGEEV | 805 | 818 | ! interfacing Lapack routine CGEEV | |
806 | 819 | implicit none | ||
integer, intent(in) :: d | 807 | 820 | integer, intent(in) :: d | |
complex, intent(in) :: a(d,d) | 808 | 821 | complex, intent(in) :: a(d,d) | |
complex, intent(out) :: evala(d) | 809 | 822 | complex, intent(out) :: evala(d) | |
complex, intent(out) :: eveca(d,d) | 810 | 823 | complex, intent(out) :: eveca(d,d) | |
integer, intent(out) :: status | 811 | 824 | integer, intent(out) :: status | |
812 | 825 | |||
complex, allocatable :: wc_a(:,:) ! a working copy of a | 813 | 826 | complex, allocatable :: wc_a(:,:) ! a working copy of a | |
integer :: info | 814 | 827 | integer :: info | |
integer :: lwork | 815 | 828 | integer :: lwork | |
complex, allocatable :: work(:) | 816 | 829 | complex, allocatable :: work(:) | |
complex :: twork(1) | 817 | 830 | complex :: twork(1) | |
real, allocatable :: rwork(:) | 818 | 831 | real, allocatable :: rwork(:) | |
complex :: vl ! unused but necessary for the call | 819 | 832 | complex :: vl ! unused but necessary for the call | |
820 | 833 | |||
status=1 | 821 | 834 | status=1 | |
822 | 835 | |||
! making a working copy of a | 823 | 836 | ! making a working copy of a | |
allocate(wc_a(d,d)) | 824 | 837 | allocate(wc_a(d,d)) | |
!call ccopy(d*d,a,1,wc_a,1) | 825 | 838 | !call ccopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 826 | 839 | wc_a(:,:)=a(:,:) | |
827 | 840 | |||
828 | 841 | |||
! query optimal work size | 829 | 842 | ! query optimal work size | |
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | 830 | 843 | call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | |
lwork=int(twork(1)) | 831 | 844 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 832 | 845 | allocate(work(lwork)) | |
allocate(rwork(2*d)) | 833 | 846 | allocate(rwork(2*d)) | |
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | 834 | 847 | call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | |
835 | 848 | |||
if (info /= 0) then | 836 | 849 | if (info /= 0) then | |
status=0 | 837 | 850 | status=0 | |
end if | 838 | 851 | end if | |
deallocate(rwork) | 839 | 852 | deallocate(rwork) | |
deallocate(work) | 840 | 853 | deallocate(work) | |
deallocate(wc_a) | 841 | 854 | deallocate(wc_a) | |
842 | 855 | |||
end subroutine | 843 | 856 | end subroutine | |
844 | 857 | |||
subroutine fvn_z_matev(d,a,evala,eveca,status) | 845 | 858 | subroutine fvn_z_matev(d,a,evala,eveca,status) | |
! | 846 | 859 | ! | |
! integer d (in) : matrice rank | 847 | 860 | ! integer d (in) : matrice rank | |
! double complex a(d,d) (in) : The Matrix | 848 | 861 | ! double complex a(d,d) (in) : The Matrix | |
! double complex evala(d) (out) : eigenvalues | 849 | 862 | ! double complex evala(d) (out) : eigenvalues | |
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | 850 | 863 | ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
! integer (out) : status =0 if something went wrong | 851 | 864 | ! integer (out) : status =0 if something went wrong | |
! | 852 | 865 | ! | |
! interfacing Lapack routine ZGEEV | 853 | 866 | ! interfacing Lapack routine ZGEEV | |
854 | 867 | implicit none | ||
integer, intent(in) :: d | 855 | 868 | integer, intent(in) :: d | |
double complex, intent(in) :: a(d,d) | 856 | 869 | double complex, intent(in) :: a(d,d) | |
double complex, intent(out) :: evala(d) | 857 | 870 | double complex, intent(out) :: evala(d) | |
double complex, intent(out) :: eveca(d,d) | 858 | 871 | double complex, intent(out) :: eveca(d,d) | |
integer, intent(out) :: status | 859 | 872 | integer, intent(out) :: status | |
860 | 873 | |||
double complex, allocatable :: wc_a(:,:) ! a working copy of a | 861 | 874 | double complex, allocatable :: wc_a(:,:) ! a working copy of a | |
integer :: info | 862 | 875 | integer :: info | |
integer :: lwork | 863 | 876 | integer :: lwork | |
double complex, allocatable :: work(:) | 864 | 877 | double complex, allocatable :: work(:) | |
double complex :: twork(1) | 865 | 878 | double complex :: twork(1) | |
double precision, allocatable :: rwork(:) | 866 | 879 | double precision, allocatable :: rwork(:) | |
double complex :: vl ! unused but necessary for the call | 867 | 880 | double complex :: vl ! unused but necessary for the call | |
868 | 881 | |||
status=1 | 869 | 882 | status=1 | |
870 | 883 | |||
! making a working copy of a | 871 | 884 | ! making a working copy of a | |
allocate(wc_a(d,d)) | 872 | 885 | allocate(wc_a(d,d)) | |
!call zcopy(d*d,a,1,wc_a,1) | 873 | 886 | !call zcopy(d*d,a,1,wc_a,1) | |
wc_a(:,:)=a(:,:) | 874 | 887 | wc_a(:,:)=a(:,:) | |
875 | 888 | |||
! query optimal work size | 876 | 889 | ! query optimal work size | |
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | 877 | 890 | call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | |
lwork=int(twork(1)) | 878 | 891 | lwork=int(twork(1)) | |
allocate(work(lwork)) | 879 | 892 | allocate(work(lwork)) | |
allocate(rwork(2*d)) | 880 | 893 | allocate(rwork(2*d)) | |
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | 881 | 894 | call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | |
882 | 895 | |||
if (info /= 0) then | 883 | 896 | if (info /= 0) then | |
status=0 | 884 | 897 | status=0 | |
end if | 885 | 898 | end if | |
deallocate(rwork) | 886 | 899 | deallocate(rwork) | |
deallocate(work) | 887 | 900 | deallocate(work) | |
deallocate(wc_a) | 888 | 901 | deallocate(wc_a) | |
889 | 902 | |||
end subroutine | 890 | 903 | end subroutine | |
891 | 904 | |||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 892 | 905 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! | 893 | 906 | ! | |
! Akima spline interpolation and spline evaluation | 894 | 907 | ! Akima spline interpolation and spline evaluation | |
! | 895 | 908 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 896 | 909 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
897 | 910 | |||
! Single precision | 898 | 911 | ! Single precision | |
subroutine fvn_s_akima(n,x,y,br,co) | 899 | 912 | subroutine fvn_s_akima(n,x,y,br,co) | |
implicit none | 900 | 913 | implicit none | |
integer, intent(in) :: n | 901 | 914 | integer, intent(in) :: n | |
real, intent(in) :: x(n) | 902 | 915 | real, intent(in) :: x(n) | |
real, intent(in) :: y(n) | 903 | 916 | real, intent(in) :: y(n) | |
real, intent(out) :: br(n) | 904 | 917 | real, intent(out) :: br(n) | |
real, intent(out) :: co(4,n) | 905 | 918 | real, intent(out) :: co(4,n) | |
906 | 919 | |||
real, allocatable :: var(:),z(:) | 907 | 920 | real, allocatable :: var(:),z(:) | |
real :: wi_1,wi | 908 | 921 | real :: wi_1,wi | |
integer :: i | 909 | 922 | integer :: i | |
real :: dx,a,b | 910 | 923 | real :: dx,a,b | |
911 | 924 | |||
! br is just a copy of x | 912 | 925 | ! br is just a copy of x | |
br(:)=x(:) | 913 | 926 | br(:)=x(:) | |
914 | 927 | |||
allocate(var(n)) | 915 | 928 | allocate(var(n)) | |
allocate(z(n)) | 916 | 929 | allocate(z(n)) | |
! evaluate the variations | 917 | 930 | ! evaluate the variations | |
do i=1, n-1 | 918 | 931 | do i=1, n-1 | |
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | 919 | 932 | var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | |
end do | 920 | 933 | end do | |
var(n+2)=2.e0*var(n+1)-var(n) | 921 | 934 | var(n+2)=2.e0*var(n+1)-var(n) | |
var(n+3)=2.e0*var(n+2)-var(n+1) | 922 | 935 | var(n+3)=2.e0*var(n+2)-var(n+1) | |
var(2)=2.e0*var(3)-var(4) | 923 | 936 | var(2)=2.e0*var(3)-var(4) | |
var(1)=2.e0*var(2)-var(3) | 924 | 937 | var(1)=2.e0*var(2)-var(3) | |
925 | 938 | |||
do i = 1, n | 926 | 939 | do i = 1, n | |
wi_1=abs(var(i+3)-var(i+2)) | 927 | 940 | wi_1=abs(var(i+3)-var(i+2)) | |
wi=abs(var(i+1)-var(i)) | 928 | 941 | wi=abs(var(i+1)-var(i)) | |
if ((wi_1+wi).eq.0.e0) then | 929 | 942 | if ((wi_1+wi).eq.0.e0) then | |
z(i)=(var(i+2)+var(i+1))/2.e0 | 930 | 943 | z(i)=(var(i+2)+var(i+1))/2.e0 | |
else | 931 | 944 | else | |
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | 932 | 945 | z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | |
end if | 933 | 946 | end if | |
end do | 934 | 947 | end do | |
935 | 948 | |||
do i=1, n-1 | 936 | 949 | do i=1, n-1 | |
dx=x(i+1)-x(i) | 937 | 950 | dx=x(i+1)-x(i) | |
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | 938 | 951 | a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | |
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | 939 | 952 | b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | |
co(1,i)=y(i) | 940 | 953 | co(1,i)=y(i) | |
co(2,i)=z(i) | 941 | 954 | co(2,i)=z(i) | |
!co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | 942 | 955 | !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | |
!co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | 943 | 956 | !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | |
co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | 944 | 957 | co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | |
co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! | 945 | 958 | co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! | |
! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | 946 | 959 | ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | |
! etrangement la fonction csval corrige et donne la bonne valeur ... | 947 | 960 | ! etrangement la fonction csval corrige et donne la bonne valeur ... | |
end do | 948 | 961 | end do | |
co(1,n)=y(n) | 949 | 962 | co(1,n)=y(n) | |
co(2,n)=z(n) | 950 | 963 | co(2,n)=z(n) | |
co(3,n)=0.e0 | 951 | 964 | co(3,n)=0.e0 | |
co(4,n)=0.e0 | 952 | 965 | co(4,n)=0.e0 | |
953 | 966 | |||
deallocate(z) | 954 | 967 | deallocate(z) | |
deallocate(var) | 955 | 968 | deallocate(var) | |
956 | 969 | |||
end subroutine | 957 | 970 | end subroutine | |
958 | 971 | |||
! Double precision | 959 | 972 | ! Double precision | |
subroutine fvn_d_akima(n,x,y,br,co) | 960 | 973 | subroutine fvn_d_akima(n,x,y,br,co) | |
961 | 974 | |||
implicit none | 962 | 975 | implicit none | |
integer, intent(in) :: n | 963 | 976 | integer, intent(in) :: n | |
double precision, intent(in) :: x(n) | 964 | 977 | double precision, intent(in) :: x(n) | |
double precision, intent(in) :: y(n) | 965 | 978 | double precision, intent(in) :: y(n) | |
double precision, intent(out) :: br(n) | 966 | 979 | double precision, intent(out) :: br(n) | |
double precision, intent(out) :: co(4,n) | 967 | 980 | double precision, intent(out) :: co(4,n) | |
968 | 981 | |||
double precision, allocatable :: var(:),z(:) | 969 | 982 | double precision, allocatable :: var(:),z(:) | |
double precision :: wi_1,wi | 970 | 983 | double precision :: wi_1,wi | |
integer :: i | 971 | 984 | integer :: i | |
double precision :: dx,a,b | 972 | 985 | double precision :: dx,a,b | |
973 | 986 | |||
! br is just a copy of x | 974 | 987 | ! br is just a copy of x | |
br(:)=x(:) | 975 | 988 | br(:)=x(:) | |
976 | 989 | |||
allocate(var(n)) | 977 | 990 | allocate(var(n)) | |
allocate(z(n)) | 978 | 991 | allocate(z(n)) | |
! evaluate the variations | 979 | 992 | ! evaluate the variations | |
do i=1, n-1 | 980 | 993 | do i=1, n-1 | |
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | 981 | 994 | var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | |
end do | 982 | 995 | end do | |
var(n+2)=2.d0*var(n+1)-var(n) | 983 | 996 | var(n+2)=2.d0*var(n+1)-var(n) | |
var(n+3)=2.d0*var(n+2)-var(n+1) | 984 | 997 | var(n+3)=2.d0*var(n+2)-var(n+1) | |
var(2)=2.d0*var(3)-var(4) | 985 | 998 | var(2)=2.d0*var(3)-var(4) | |
var(1)=2.d0*var(2)-var(3) | 986 | 999 | var(1)=2.d0*var(2)-var(3) | |
987 | 1000 | |||
do i = 1, n | 988 | 1001 | do i = 1, n | |
wi_1=dabs(var(i+3)-var(i+2)) | 989 | 1002 | wi_1=dabs(var(i+3)-var(i+2)) | |
wi=dabs(var(i+1)-var(i)) | 990 | 1003 | wi=dabs(var(i+1)-var(i)) | |
if ((wi_1+wi).eq.0.d0) then | 991 | 1004 | if ((wi_1+wi).eq.0.d0) then | |
z(i)=(var(i+2)+var(i+1))/2.d0 | 992 | 1005 | z(i)=(var(i+2)+var(i+1))/2.d0 | |
else | 993 | 1006 | else | |
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | 994 | 1007 | z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | |
end if | 995 | 1008 | end if | |
end do | 996 | 1009 | end do | |
997 | 1010 | |||
do i=1, n-1 | 998 | 1011 | do i=1, n-1 | |
dx=x(i+1)-x(i) | 999 | 1012 | dx=x(i+1)-x(i) | |
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | 1000 | 1013 | a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | |
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | 1001 | 1014 | b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | |
co(1,i)=y(i) | 1002 | 1015 | co(1,i)=y(i) | |
co(2,i)=z(i) | 1003 | 1016 | co(2,i)=z(i) | |
!co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | 1004 | 1017 | !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | |
!co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | 1005 | 1018 | !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | |
co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | 1006 | 1019 | co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | |
co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! | 1007 | 1020 | co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! | |
! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | 1008 | 1021 | ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | |
! etrangement la fonction csval corrige et donne la bonne valeur ... | 1009 | 1022 | ! etrangement la fonction csval corrige et donne la bonne valeur ... | |
end do | 1010 | 1023 | end do | |
co(1,n)=y(n) | 1011 | 1024 | co(1,n)=y(n) | |
co(2,n)=z(n) | 1012 | 1025 | co(2,n)=z(n) | |
co(3,n)=0.d0 | 1013 | 1026 | co(3,n)=0.d0 | |
co(4,n)=0.d0 | 1014 | 1027 | co(4,n)=0.d0 | |
1015 | 1028 | |||
deallocate(z) | 1016 | 1029 | deallocate(z) | |
deallocate(var) | 1017 | 1030 | deallocate(var) | |
1018 | 1031 | |||
end subroutine | 1019 | 1032 | end subroutine | |
1020 | 1033 | |||
! | 1021 | 1034 | ! | |
! Single precision spline evaluation | 1022 | 1035 | ! Single precision spline evaluation | |
! | 1023 | 1036 | ! | |
function fvn_s_spline_eval(x,n,br,co) | 1024 | 1037 | function fvn_s_spline_eval(x,n,br,co) | |
implicit none | 1025 | 1038 | implicit none | |
real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | 1026 | 1039 | real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | |
integer, intent(in) :: n ! number of intervals | 1027 | 1040 | integer, intent(in) :: n ! number of intervals | |
real, intent(in) :: br(n+1) ! breakpoints | 1028 | 1041 | real, intent(in) :: br(n+1) ! breakpoints | |
real, intent(in) :: co(4,n+1) ! spline coeeficients | 1029 | 1042 | real, intent(in) :: co(4,n+1) ! spline coeeficients | |
real :: fvn_s_spline_eval | 1030 | 1043 | real :: fvn_s_spline_eval | |
1031 | 1044 | |||
integer :: i | 1032 | 1045 | integer :: i | |
real :: dx | 1033 | 1046 | real :: dx | |
1034 | 1047 | |||
if (x<=br(1)) then | 1035 | 1048 | if (x<=br(1)) then | |
i=1 | 1036 | 1049 | i=1 | |
else if (x>=br(n+1)) then | 1037 | 1050 | else if (x>=br(n+1)) then | |
i=n | 1038 | 1051 | i=n | |
else | 1039 | 1052 | else | |
i=1 | 1040 | 1053 | i=1 | |
do while(x>=br(i)) | 1041 | 1054 | do while(x>=br(i)) | |
i=i+1 | 1042 | 1055 | i=i+1 | |
end do | 1043 | 1056 | end do | |
i=i-1 | 1044 | 1057 | i=i-1 | |
end if | 1045 | 1058 | end if | |
dx=x-br(i) | 1046 | 1059 | dx=x-br(i) | |
fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | 1047 | 1060 | fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | |
1048 | 1061 | |||
end function | 1049 | 1062 | end function | |
1050 | 1063 | |||
! Double precision spline evaluation | 1051 | 1064 | ! Double precision spline evaluation | |
function fvn_d_spline_eval(x,n,br,co) | 1052 | 1065 | function fvn_d_spline_eval(x,n,br,co) | |
implicit none | 1053 | 1066 | implicit none | |
double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | 1054 | 1067 | double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | |
integer, intent(in) :: n ! number of intervals | 1055 | 1068 | integer, intent(in) :: n ! number of intervals | |
double precision, intent(in) :: br(n+1) ! breakpoints | 1056 | 1069 | double precision, intent(in) :: br(n+1) ! breakpoints | |
double precision, intent(in) :: co(4,n+1) ! spline coeeficients | 1057 | 1070 | double precision, intent(in) :: co(4,n+1) ! spline coeeficients | |
double precision :: fvn_d_spline_eval | 1058 | 1071 | double precision :: fvn_d_spline_eval | |
1059 | 1072 | |||
integer :: i | 1060 | 1073 | integer :: i | |
double precision :: dx | 1061 | 1074 | double precision :: dx | |
1062 | 1075 | |||
1063 | 1076 | |||
if (x<=br(1)) then | 1064 | 1077 | if (x<=br(1)) then | |
i=1 | 1065 | 1078 | i=1 | |
else if (x>=br(n+1)) then | 1066 | 1079 | else if (x>=br(n+1)) then | |
i=n | 1067 | 1080 | i=n | |
else | 1068 | 1081 | else | |
i=1 | 1069 | 1082 | i=1 | |
do while(x>=br(i)) | 1070 | 1083 | do while(x>=br(i)) | |
i=i+1 | 1071 | 1084 | i=i+1 | |
end do | 1072 | 1085 | end do | |
i=i-1 | 1073 | 1086 | i=i-1 | |
end if | 1074 | 1087 | end if | |
1075 | 1088 | |||
dx=x-br(i) | 1076 | 1089 | dx=x-br(i) | |
fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | 1077 | 1090 | fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | |
1078 | 1091 | |||
end function | 1079 | 1092 | end function | |
1080 | 1093 | |||
1081 | 1094 | |||
1095 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |||
1096 | ! | |||
1097 | ! Least square problem | |||
! | 1082 | 1098 | ! | |
1099 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |||
1100 | ! | |||
1101 | ! | |||
1102 | subroutine fvn_d_lspoly(np,x,y,deg,coeff,status) | |||
1103 | ! | |||
1104 | ! Least square polynomial fitting | |||
1105 | ! | |||
1106 | ! Find the coefficients of the least square polynomial of a given degree | |||
1107 | ! for a set of coordinates. | |||
1108 | ! | |||
1109 | ! The degree must be lower than the number of points | |||
1110 | ! | |||
1111 | ! np (in) : number of points | |||
1112 | ! x(np) (in) : x data | |||
1113 | ! y(np) (in) : y data | |||
1114 | ! deg (in) : polynomial's degree | |||
1115 | ! coeff(deg+1) (out) : polynomial coefficients | |||
1116 | ! status (out) : =0 if a problem occurs | |||
1117 | ! | |||
1118 | implicit none | |||
1119 | ||||
1120 | integer, intent(in) :: np,deg | |||
1121 | real(kind=8), intent(in), dimension(np) :: x,y | |||
1122 | real(kind=8), intent(out), dimension(deg+1) :: coeff | |||
1123 | integer, intent(out) :: status | |||
1124 | ||||
1125 | real(kind=8), allocatable, dimension(:,:) :: mat,bmat | |||
1126 | real(kind=8),dimension(:),allocatable :: work,singval | |||
1127 | real(kind=8),dimension(1) :: twork | |||
1128 | integer :: lwork,info,rank | |||
1129 | ||||
1130 | integer :: i,j | |||
1131 | ||||
1132 | status=1 | |||
1133 | allocate(mat(np,deg+1),bmat(np,1),singval(deg+1)) | |||
1134 | ||||
1135 | ! Design matrix valorisation | |||
1136 | mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) ) | |||
1137 | ||||
1138 | ! second member valorisation | |||
1139 | bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /)) | |||
1140 | ||||
1141 | ! query workspace size | |||
1142 | call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info) | |||
1143 | lwork=twork(1) | |||
1144 | allocate(work(int(lwork))) | |||
1145 | ! real call | |||
1146 | call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info) | |||
1147 | ||||
1148 | if (info /= 0) then | |||
1149 | status=0 | |||
1150 | end if | |||
1151 | ||||
1152 | coeff = (/ (bmat(i,1),i=1,deg+1) /) | |||
1153 | ||||
1154 | deallocate(work) | |||
1155 | deallocate(mat,bmat,singval) | |||
1156 | end subroutine | |||
1157 | ||||
1158 | subroutine fvn_s_lspoly(np,x,y,deg,coeff,status) | |||
1159 | ! | |||
1160 | ! Least square polynomial fitting | |||
1161 | ! | |||
1162 | ! Find the coefficients of the least square polynomial of a given degree | |||
1163 | ! for a set of coordinates. | |||
1164 | ! | |||
1165 | ! The degree must be lower than the number of points | |||
1166 | ! | |||
1167 | ! np (in) : number of points | |||
1168 | ! x(np) (in) : x data | |||
1169 | ! y(np) (in) : y data | |||
1170 | ! deg (in) : polynomial's degree | |||
1171 | ! coeff(deg+1) (out) : polynomial coefficients | |||
1172 | ! status (out) : =0 if a problem occurs | |||
1173 | ! | |||
1174 | implicit none | |||
1175 | ||||
1176 | integer, intent(in) :: np,deg | |||
1177 | real(kind=4), intent(in), dimension(np) :: x,y | |||
1178 | real(kind=4), intent(out), dimension(deg+1) :: coeff | |||
1179 | integer, intent(out) :: status | |||
1180 | ||||
1181 | real(kind=4), allocatable, dimension(:,:) :: mat,bmat | |||
1182 | real(kind=4),dimension(:),allocatable :: work,singval | |||
1183 | real(kind=4),dimension(1) :: twork | |||
1184 | integer :: lwork,info,rank | |||
1185 | ||||
1186 | integer :: i,j | |||
1187 | ||||
1188 | status=1 | |||
1189 | allocate(mat(np,deg+1),bmat(np,1),singval(deg+1)) | |||
1190 | ||||
1191 | ! Design matrix valorisation | |||
1192 | mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) ) | |||
1193 | ||||
1194 | ! second member valorisation | |||
1195 | bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /)) | |||
1196 | ||||
1197 | ! query workspace size | |||
1198 | call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info) | |||
1199 | lwork=twork(1) | |||
1200 | allocate(work(int(lwork))) | |||
1201 | ! real call | |||
1202 | call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info) | |||
1203 | ||||
1204 | if (info /= 0) then | |||
1205 | status=0 | |||
1206 | end if | |||
1207 | ||||
1208 | coeff = (/ (bmat(i,1),i=1,deg+1) /) | |||
1209 | ||||
1210 | deallocate(work) | |||
1211 | deallocate(mat,bmat,singval) | |||
1212 | end subroutine | |||
1213 | ||||
1214 | ||||
1215 | ! | |||
! Muller | 1083 | 1216 | ! Muller | |
! | 1084 | 1217 | ! | |
! | 1085 | 1218 | ! | |
! | 1086 | 1219 | ! | |
! William Daniau 2007 | 1087 | 1220 | ! William Daniau 2007 | |
! | 1088 | 1221 | ! | |
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | 1089 | 1222 | ! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | |
! http://plato.asu.edu/ftp/other_software/muller.f | 1090 | 1223 | ! http://plato.asu.edu/ftp/other_software/muller.f | |
! | 1091 | 1224 | ! | |
! it can be used as a replacement for imsl routine dzanly with minor changes | 1092 | 1225 | ! it can be used as a replacement for imsl routine dzanly with minor changes | |
! | 1093 | 1226 | ! | |
!----------------------------------------------------------------------- | 1094 | 1227 | !----------------------------------------------------------------------- | |
! | 1095 | 1228 | ! | |
! purpose - zeros of an analytic complex function | 1096 | 1229 | ! purpose - zeros of an analytic complex function | |
! using the muller method with deflation | 1097 | 1230 | ! using the muller method with deflation | |
! | 1098 | 1231 | ! | |
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | 1099 | 1232 | ! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | |
! infer,ier) | 1100 | 1233 | ! infer,ier) | |
! | 1101 | 1234 | ! | |
! arguments f - a complex function subprogram, f(z), written | 1102 | 1235 | ! arguments f - a complex function subprogram, f(z), written | |
! by the user specifying the equation whose | 1103 | 1236 | ! by the user specifying the equation whose | |
! roots are to be found. f must appear in | 1104 | 1237 | ! roots are to be found. f must appear in | |
! an external statement in the calling pro- | 1105 | 1238 | ! an external statement in the calling pro- | |
! gram. | 1106 | 1239 | ! gram. | |
! eps - 1st stopping criterion. let fp(z)=f(z)/p | 1107 | 1240 | ! eps - 1st stopping criterion. let fp(z)=f(z)/p | |
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | 1108 | 1241 | ! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | |
! and z(1),...,z(k-1) are previously found | 1109 | 1242 | ! and z(1),...,z(k-1) are previously found | |
! roots. if ((cdabs(f(z)).le.eps) .and. | 1110 | 1243 | ! roots. if ((cdabs(f(z)).le.eps) .and. | |
! (cdabs(fp(z)).le.eps)), then z is accepted | 1111 | 1244 | ! (cdabs(fp(z)).le.eps)), then z is accepted | |
! as a root. (input) | 1112 | 1245 | ! as a root. (input) | |
! eps1 - 2nd stopping criterion. a root is accepted | 1113 | 1246 | ! eps1 - 2nd stopping criterion. a root is accepted | |
! if two successive approximations to a given | 1114 | 1247 | ! if two successive approximations to a given | |
! root agree within eps1. (input) | 1115 | 1248 | ! root agree within eps1. (input) | |
! note. if either or both of the stopping | 1116 | 1249 | ! note. if either or both of the stopping | |
! criteria are fulfilled, the root is | 1117 | 1250 | ! criteria are fulfilled, the root is | |
! accepted. | 1118 | 1251 | ! accepted. | |
! kn - the number of known roots which must be stored | 1119 | 1252 | ! kn - the number of known roots which must be stored | |
! in x(1),...,x(kn), prior to entry to muller | 1120 | 1253 | ! in x(1),...,x(kn), prior to entry to muller | |
! nguess - the number of initial guesses provided. these | 1121 | 1254 | ! nguess - the number of initial guesses provided. these | |
! guesses must be stored in x(kn+1),..., | 1122 | 1255 | ! guesses must be stored in x(kn+1),..., | |
! x(kn+nguess). nguess must be set equal | 1123 | 1256 | ! x(kn+nguess). nguess must be set equal | |
! to zero if no guesses are provided. (input) | 1124 | 1257 | ! to zero if no guesses are provided. (input) | |
! n - the number of new roots to be found by | 1125 | 1258 | ! n - the number of new roots to be found by | |
! muller (input) | 1126 | 1259 | ! muller (input) | |
! x - a complex vector of length kn+n. x(1),..., | 1127 | 1260 | ! x - a complex vector of length kn+n. x(1),..., | |
! x(kn) on input must contain any known | 1128 | 1261 | ! x(kn) on input must contain any known | |
! roots. x(kn+1),..., x(kn+n) on input may, | 1129 | 1262 | ! roots. x(kn+1),..., x(kn+n) on input may, | |
! on user option, contain initial guesses for | 1130 | 1263 | ! on user option, contain initial guesses for | |
! the n new roots which are to be computed. | 1131 | 1264 | ! the n new roots which are to be computed. | |
! if the user does not provide an initial | 1132 | 1265 | ! if the user does not provide an initial | |
! guess, zero is used. | 1133 | 1266 | ! guess, zero is used. | |
! on output, x(kn+1),...,x(kn+n) contain the | 1134 | 1267 | ! on output, x(kn+1),...,x(kn+n) contain the | |
! approximate roots found by muller. | 1135 | 1268 | ! approximate roots found by muller. | |
! itmax - the maximum allowable number of iterations | 1136 | 1269 | ! itmax - the maximum allowable number of iterations | |
! per root (input) | 1137 | 1270 | ! per root (input) | |
! infer - an integer vector of length kn+n. on | 1138 | 1271 | ! infer - an integer vector of length kn+n. on | |
! output infer(j) contains the number of | 1139 | 1272 | ! output infer(j) contains the number of | |
! iterations used in finding the j-th root | 1140 | 1273 | ! iterations used in finding the j-th root | |
! when convergence was achieved. if | 1141 | 1274 | ! when convergence was achieved. if | |
! convergence was not obtained in itmax | 1142 | 1275 | ! convergence was not obtained in itmax | |
! iterations, infer(j) will be greater than | 1143 | 1276 | ! iterations, infer(j) will be greater than | |
! itmax (output). | 1144 | 1277 | ! itmax (output). | |
! ier - error parameter (output) | 1145 | 1278 | ! ier - error parameter (output) | |
! warning error | 1146 | 1279 | ! warning error | |
! ier = 33 indicates failure to converge with- | 1147 | 1280 | ! ier = 33 indicates failure to converge with- | |
! in itmax iterations for at least one of | 1148 | 1281 | ! in itmax iterations for at least one of | |
! the (n) new roots. | 1149 | 1282 | ! the (n) new roots. | |
! | 1150 | 1283 | ! | |
! | 1151 | 1284 | ! | |
! remarks muller always returns the last approximation for root j | 1152 | 1285 | ! remarks muller always returns the last approximation for root j | |
! in x(j). if the convergence criterion is satisfied, | 1153 | 1286 | ! in x(j). if the convergence criterion is satisfied, | |
! then infer(j) is less than or equal to itmax. if the | 1154 | 1287 | ! then infer(j) is less than or equal to itmax. if the | |
! convergence criterion is not satisified, then infer(j) | 1155 | 1288 | ! convergence criterion is not satisified, then infer(j) | |
! is set to either itmax+1 or itmax+k, with k greater | 1156 | 1289 | ! is set to either itmax+1 or itmax+k, with k greater | |
! than 1. infer(j) = itmax+1 indicates that muller did | 1157 | 1290 | ! than 1. infer(j) = itmax+1 indicates that muller did | |
! not obtain convergence in the allowed number of iter- | 1158 | 1291 | ! not obtain convergence in the allowed number of iter- | |
! ations. in this case, the user may wish to set itmax | 1159 | 1292 | ! ations. in this case, the user may wish to set itmax | |
! to a larger value. infer(j) = itmax+k means that con- | 1160 | 1293 | ! to a larger value. infer(j) = itmax+k means that con- | |
! vergence was obtained (on iteration k) for the defla- | 1161 | 1294 | ! vergence was obtained (on iteration k) for the defla- | |
! ted function | 1162 | 1295 | ! ted function | |
! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | 1163 | 1296 | ! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | |
! | 1164 | 1297 | ! | |
! but failed for f(z). in this case, better initial | 1165 | 1298 | ! but failed for f(z). in this case, better initial | |
! guesses might help or, it might be necessary to relax | 1166 | 1299 | ! guesses might help or, it might be necessary to relax | |
! the convergence criterion. | 1167 | 1300 | ! the convergence criterion. | |
! | 1168 | 1301 | ! | |
!----------------------------------------------------------------------- | 1169 | 1302 | !----------------------------------------------------------------------- | |
! | 1170 | 1303 | ! | |
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | 1171 | 1304 | subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | |
implicit none | 1172 | 1305 | implicit none | |
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq | 1173 | 1306 | double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq | |
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | 1174 | 1307 | double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | |
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | 1175 | 1308 | tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | |
zero,p1,one,four,p5 | 1176 | 1309 | zero,p1,one,four,p5 | |
1177 | 1310 | |||
double complex, external :: f | 1178 | 1311 | double complex, external :: f | |
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | 1179 | 1312 | integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | |
knpng,jk,ick,nn,lm1,errcode | 1180 | 1313 | knpng,jk,ick,nn,lm1,errcode | |
double complex :: x(kn+n) | 1181 | 1314 | double complex :: x(kn+n) | |
integer :: infer(kn+n) | 1182 | 1315 | integer :: infer(kn+n) | |
1183 | 1316 | |||
1184 | 1317 | |||
data zero/(0.0,0.0)/,p1/(0.1,0.0)/, & | 1185 | 1318 | data zero/(0.0,0.0)/,p1/(0.1,0.0)/, & | |
one/(1.0,0.0)/,four/(4.0,0.0)/, & | 1186 | 1319 | one/(1.0,0.0)/,four/(4.0,0.0)/, & | |
p5/(0.5,0.0)/, & | 1187 | 1320 | p5/(0.5,0.0)/, & | |
rzero/0.0/,rten/10.0/,rhun/100.0/, & | 1188 | 1321 | rzero/0.0/,rten/10.0/,rhun/100.0/, & | |
ax/0.1/,ickmax/3/,rp01/0.01/ | 1189 | 1322 | ax/0.1/,ickmax/3/,rp01/0.01/ | |
1190 | 1323 | |||
ier = 0 | 1191 | 1324 | ier = 0 | |
if (n .lt. 1) then ! What the hell are doing here then ... | 1192 | 1325 | if (n .lt. 1) then ! What the hell are doing here then ... | |
return | 1193 | 1326 | return | |
end if | 1194 | 1327 | end if | |
!eps1 = rten **(-nsig) | 1195 | 1328 | !eps1 = rten **(-nsig) | |
eps1 = min(eps1,rp01) | 1196 | 1329 | eps1 = min(eps1,rp01) | |
1197 | 1330 | |||
knp1 = kn+1 | 1198 | 1331 | knp1 = kn+1 | |
knpn = kn+n | 1199 | 1332 | knpn = kn+n | |
knpng = kn+nguess | 1200 | 1333 | knpng = kn+nguess | |
do i=1,knpn | 1201 | 1334 | do i=1,knpn | |
infer(i) = 0 | 1202 | 1335 | infer(i) = 0 | |
if (i .gt. knpng) x(i) = zero | 1203 | 1336 | if (i .gt. knpng) x(i) = zero | |
end do | 1204 | 1337 | end do | |
l= knp1 | 1205 | 1338 | l= knp1 | |
1206 | 1339 | |||
ic=0 | 1207 | 1340 | ic=0 | |
rloop: do while (l<=knpn) ! Main loop over new roots | 1208 | 1341 | rloop: do while (l<=knpn) ! Main loop over new roots | |
jk = 0 | 1209 | 1342 | jk = 0 | |
ick = 0 | 1210 | 1343 | ick = 0 | |
xl = x(l) | 1211 | 1344 | xl = x(l) | |
icloop: do | 1212 | 1345 | icloop: do | |
ic = 0 | 1213 | 1346 | ic = 0 | |
h = ax | 1214 | 1347 | h = ax | |
h = p1*h | 1215 | 1348 | h = p1*h | |
if (cdabs(xl) .gt. ax) h = p1*xl | 1216 | 1349 | if (cdabs(xl) .gt. ax) h = p1*xl | |
! first three points are | 1217 | 1350 | ! first three points are | |
! xl+h, xl-h, xl | 1218 | 1351 | ! xl+h, xl-h, xl | |
rt = xl+h | 1219 | 1352 | rt = xl+h | |
call deflated_work(errcode) | 1220 | 1353 | call deflated_work(errcode) | |
if (errcode == 1) then | 1221 | 1354 | if (errcode == 1) then | |
exit icloop | 1222 | 1355 | exit icloop | |
end if | 1223 | 1356 | end if | |
1224 | 1357 | |||
z0 = fprt | 1225 | 1358 | z0 = fprt | |
y0 = frt | 1226 | 1359 | y0 = frt | |
x0 = rt | 1227 | 1360 | x0 = rt | |
rt = xl-h | 1228 | 1361 | rt = xl-h | |
call deflated_work(errcode) | 1229 | 1362 | call deflated_work(errcode) | |
if (errcode == 1) then | 1230 | 1363 | if (errcode == 1) then | |
exit icloop | 1231 | 1364 | exit icloop | |
end if | 1232 | 1365 | end if | |
1233 | 1366 | |||
z1 = fprt | 1234 | 1367 | z1 = fprt | |
y1 = frt | 1235 | 1368 | y1 = frt | |
h = xl-rt | 1236 | 1369 | h = xl-rt | |
d = h/(rt-x0) | 1237 | 1370 | d = h/(rt-x0) | |
rt = xl | 1238 | 1371 | rt = xl | |
1239 | 1372 | |||
call deflated_work(errcode) | 1240 | 1373 | call deflated_work(errcode) | |
if (errcode == 1) then | 1241 | 1374 | if (errcode == 1) then | |
exit icloop | 1242 | 1375 | exit icloop | |
end if | 1243 | 1376 | end if | |
1244 | 1377 | |||
1245 | 1378 | |||
z2 = fprt | 1246 | 1379 | z2 = fprt | |
y2 = frt | 1247 | 1380 | y2 = frt | |
! begin main algorithm | 1248 | 1381 | ! begin main algorithm | |
iloop: do | 1249 | 1382 | iloop: do | |
dd = one + d | 1250 | 1383 | dd = one + d | |
t1 = z0*d*d | 1251 | 1384 | t1 = z0*d*d | |
t2 = z1*dd*dd | 1252 | 1385 | t2 = z1*dd*dd | |
xx = z2*dd | 1253 | 1386 | xx = z2*dd | |
t3 = z2*d | 1254 | 1387 | t3 = z2*d | |
bi = t1-t2+xx+t3 | 1255 | 1388 | bi = t1-t2+xx+t3 | |
den = bi*bi-four*(xx*t1-t3*(t2-xx)) | 1256 | 1389 | den = bi*bi-four*(xx*t1-t3*(t2-xx)) | |
! use denominator of maximum amplitude | 1257 | 1390 | ! use denominator of maximum amplitude | |
t1 = cdsqrt(den) | 1258 | 1391 | t1 = cdsqrt(den) | |
qz = rhun*max(cdabs(bi),cdabs(t1)) | 1259 | 1392 | qz = rhun*max(cdabs(bi),cdabs(t1)) | |
t2 = bi + t1 | 1260 | 1393 | t2 = bi + t1 | |
tpq = cdabs(t2)+qz | 1261 | 1394 | tpq = cdabs(t2)+qz | |
if (tpq .eq. qz) t2 = zero | 1262 | 1395 | if (tpq .eq. qz) t2 = zero | |
t3 = bi - t1 | 1263 | 1396 | t3 = bi - t1 | |
tpq = cdabs(t3) + qz | 1264 | 1397 | tpq = cdabs(t3) + qz | |
if (tpq .eq. qz) t3 = zero | 1265 | 1398 | if (tpq .eq. qz) t3 = zero | |
den = t2 | 1266 | 1399 | den = t2 | |
qz = cdabs(t3)-cdabs(t2) | 1267 | 1400 | qz = cdabs(t3)-cdabs(t2) | |
if (qz .gt. rzero) den = t3 | 1268 | 1401 | if (qz .gt. rzero) den = t3 | |
! test for zero denominator | 1269 | 1402 | ! test for zero denominator | |
if (cdabs(den) .eq. rzero) then | 1270 | 1403 | if (cdabs(den) .eq. rzero) then | |
call trans_rt() | 1271 | 1404 | call trans_rt() | |
call deflated_work(errcode) | 1272 | 1405 | call deflated_work(errcode) | |
if (errcode == 1) then | 1273 | 1406 | if (errcode == 1) then | |
exit icloop | 1274 | 1407 | exit icloop | |
end if | 1275 | 1408 | end if | |
z2 = fprt | 1276 | 1409 | z2 = fprt | |
y2 = frt | 1277 | 1410 | y2 = frt | |
cycle iloop | 1278 | 1411 | cycle iloop | |
end if | 1279 | 1412 | end if | |
1280 | 1413 | |||
1281 | 1414 | |||
d = -xx/den | 1282 | 1415 | d = -xx/den | |
d = d+d | 1283 | 1416 | d = d+d | |
h = d*h | 1284 | 1417 | h = d*h | |
rt = rt + h | 1285 | 1418 | rt = rt + h | |
! check convergence of the first kind | 1286 | 1419 | ! check convergence of the first kind | |
if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then | 1287 | 1420 | if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then | |
if (ic .ne. 0) then | 1288 | 1421 | if (ic .ne. 0) then | |
exit icloop | 1289 | 1422 | exit icloop | |
end if | 1290 | 1423 | end if | |
ic = 1 | 1291 | 1424 | ic = 1 | |
z0 = y1 | 1292 | 1425 | z0 = y1 | |
z1 = y2 | 1293 | 1426 | z1 = y2 | |
z2 = f(rt) | 1294 | 1427 | z2 = f(rt) | |
xl = rt | 1295 | 1428 | xl = rt | |
ick = ick+1 | 1296 | 1429 | ick = ick+1 | |
if (ick .le. ickmax) then | 1297 | 1430 | if (ick .le. ickmax) then | |
cycle iloop | 1298 | 1431 | cycle iloop | |
end if | 1299 | 1432 | end if | |
! warning error, itmax = maximum | 1300 | 1433 | ! warning error, itmax = maximum | |
jk = itmax + jk | 1301 | 1434 | jk = itmax + jk | |
ier = 33 | 1302 | 1435 | ier = 33 | |
end if | 1303 | 1436 | end if | |
if (ic .ne. 0) then | 1304 | 1437 | if (ic .ne. 0) then | |
cycle icloop | 1305 | 1438 | cycle icloop | |
end if | 1306 | 1439 | end if | |
call deflated_work(errcode) | 1307 | 1440 | call deflated_work(errcode) | |
if (errcode == 1) then | 1308 | 1441 | if (errcode == 1) then | |
exit icloop | 1309 | 1442 | exit icloop | |
end if | 1310 | 1443 | end if | |
1311 | 1444 | |||
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | 1312 | 1445 | do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | |
! take remedial action to induce | 1313 | 1446 | ! take remedial action to induce | |
! convergence | 1314 | 1447 | ! convergence | |
d = d*p5 | 1315 | 1448 | d = d*p5 | |
h = h*p5 | 1316 | 1449 | h = h*p5 | |
rt = rt-h | 1317 | 1450 | rt = rt-h | |
call deflated_work(errcode) | 1318 | 1451 | call deflated_work(errcode) | |
if (errcode == 1) then | 1319 | 1452 | if (errcode == 1) then | |
exit icloop | 1320 | 1453 | exit icloop | |
end if | 1321 | 1454 | end if | |
end do | 1322 | 1455 | end do | |
z0 = z1 | 1323 | 1456 | z0 = z1 | |
z1 = z2 | 1324 | 1457 | z1 = z2 | |
z2 = fprt | 1325 | 1458 | z2 = fprt | |
y0 = y1 | 1326 | 1459 | y0 = y1 | |
y1 = y2 | 1327 | 1460 | y1 = y2 | |
y2 = frt | 1328 | 1461 | y2 = frt | |
end do iloop | 1329 | 1462 | end do iloop | |
end do icloop | 1330 | 1463 | end do icloop | |
x(l) = rt | 1331 | 1464 | x(l) = rt | |
infer(l) = jk | 1332 | 1465 | infer(l) = jk | |
l = l+1 | 1333 | 1466 | l = l+1 | |
end do rloop | 1334 | 1467 | end do rloop | |
1335 | 1468 | |||
contains | 1336 | 1469 | contains | |
subroutine trans_rt() | 1337 | 1470 | subroutine trans_rt() | |
tem = rten*eps1 | 1338 | 1471 | tem = rten*eps1 | |
if (cdabs(rt) .gt. ax) tem = tem*rt | 1339 | 1472 | if (cdabs(rt) .gt. ax) tem = tem*rt | |
rt = rt+tem | 1340 | 1473 | rt = rt+tem | |
d = (h+tem)*d/h | 1341 | 1474 | d = (h+tem)*d/h | |
h = h+tem | 1342 | 1475 | h = h+tem | |
end subroutine trans_rt | 1343 | 1476 | end subroutine trans_rt | |
1344 | 1477 | |||
subroutine deflated_work(errcode) | 1345 | 1478 | subroutine deflated_work(errcode) | |
! errcode=0 => no errors | 1346 | 1479 | ! errcode=0 => no errors | |
! errcode=1 => jk>itmax or convergence of second kind achieved | 1347 | 1480 | ! errcode=1 => jk>itmax or convergence of second kind achieved | |
integer :: errcode,flag | 1348 | 1481 | integer :: errcode,flag | |
1349 | 1482 | |||
flag=1 | 1350 | 1483 | flag=1 | |
loop1: do while(flag==1) | 1351 | 1484 | loop1: do while(flag==1) | |
errcode=0 | 1352 | 1485 | errcode=0 | |
jk = jk+1 | 1353 | 1486 | jk = jk+1 | |
if (jk .gt. itmax) then | 1354 | 1487 | if (jk .gt. itmax) then | |
ier=33 | 1355 | 1488 | ier=33 | |
errcode=1 | 1356 | 1489 | errcode=1 | |
return | 1357 | 1490 | return | |
end if | 1358 | 1491 | end if | |
frt = f(rt) | 1359 | 1492 | frt = f(rt) | |
fprt = frt | 1360 | 1493 | fprt = frt | |
if (l /= 1) then | 1361 | 1494 | if (l /= 1) then | |
lm1 = l-1 | 1362 | 1495 | lm1 = l-1 | |
do i=1,lm1 | 1363 | 1496 | do i=1,lm1 | |
tem = rt - x(i) | 1364 | 1497 | tem = rt - x(i) | |
if (cdabs(tem) .eq. rzero) then | 1365 | 1498 | if (cdabs(tem) .eq. rzero) then | |
!if (ic .ne. 0) go to 15 !! ?? possible? | 1366 | 1499 | !if (ic .ne. 0) go to 15 !! ?? possible? | |
call trans_rt() | 1367 | 1500 | call trans_rt() | |
cycle loop1 | 1368 | 1501 | cycle loop1 | |
end if | 1369 | 1502 | end if | |
fprt = fprt/tem | 1370 | 1503 | fprt = fprt/tem | |
end do | 1371 | 1504 | end do | |
end if | 1372 | 1505 | end if | |
flag=0 | 1373 | 1506 | flag=0 | |
end do loop1 | 1374 | 1507 | end do loop1 | |
1375 | 1508 | |||
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | 1376 | 1509 | if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | |
errcode=1 | 1377 | 1510 | errcode=1 | |
return | 1378 | 1511 | return | |
end if | 1379 | 1512 | end if | |
1380 | 1513 | |||
end subroutine deflated_work | 1381 | 1514 | end subroutine deflated_work | |
1382 | 1515 | |||
end subroutine | 1383 | 1516 | end subroutine | |
1384 | 1517 | |||
1385 | 1518 | |||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1386 | 1519 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
! | 1387 | 1520 | ! | |
! Integration | 1388 | 1521 | ! Integration | |
! | 1389 | 1522 | ! | |
! Only double precision coded atm | 1390 | 1523 | ! Only double precision coded atm | |
! | 1391 | 1524 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1392 | 1525 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1393 | 1526 | |||
1394 | 1527 | |||
subroutine fvn_d_gauss_legendre(n,qx,qw) | 1395 | 1528 | subroutine fvn_d_gauss_legendre(n,qx,qw) | |
! | 1396 | 1529 | ! | |
! This routine compute the n Gauss Legendre abscissas and weights | 1397 | 1530 | ! This routine compute the n Gauss Legendre abscissas and weights | |
! Adapted from Numerical Recipes routine gauleg | 1398 | 1531 | ! Adapted from Numerical Recipes routine gauleg | |
! | 1399 | 1532 | ! | |
! n (in) : number of points | 1400 | 1533 | ! n (in) : number of points | |
! qx(out) : abscissas | 1401 | 1534 | ! qx(out) : abscissas | |
! qw(out) : weights | 1402 | 1535 | ! qw(out) : weights | |
! | 1403 | 1536 | ! | |
implicit none | 1404 | 1537 | implicit none | |
double precision,parameter :: pi=3.141592653589793d0 | 1405 | 1538 | double precision,parameter :: pi=3.141592653589793d0 | |
integer, intent(in) :: n | 1406 | 1539 | integer, intent(in) :: n | |
double precision, intent(out) :: qx(n),qw(n) | 1407 | 1540 | double precision, intent(out) :: qx(n),qw(n) | |
1408 | 1541 | |||
integer :: m,i,j | 1409 | 1542 | integer :: m,i,j | |
double precision :: z,z1,p1,p2,p3,pp | 1410 | 1543 | double precision :: z,z1,p1,p2,p3,pp | |
m=(n+1)/2 | 1411 | 1544 | m=(n+1)/2 | |
do i=1,m | 1412 | 1545 | do i=1,m | |
z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0)) | 1413 | 1546 | z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0)) | |
iloop: do | 1414 | 1547 | iloop: do | |
p1=1.d0 | 1415 | 1548 | p1=1.d0 | |
p2=0.d0 | 1416 | 1549 | p2=0.d0 | |
do j=1,n | 1417 | 1550 | do j=1,n | |
p3=p2 | 1418 | 1551 | p3=p2 | |
p2=p1 | 1419 | 1552 | p2=p1 | |
p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j) | 1420 | 1553 | p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j) | |
end do | 1421 | 1554 | end do | |
pp=dble(n)*(z*p1-p2)/(z*z-1.d0) | 1422 | 1555 | pp=dble(n)*(z*p1-p2)/(z*z-1.d0) | |
z1=z | 1423 | 1556 | z1=z | |
z=z1-p1/pp | 1424 | 1557 | z=z1-p1/pp | |
if (dabs(z-z1)<=epsilon(z)) then | 1425 | 1558 | if (dabs(z-z1)<=epsilon(z)) then | |
exit iloop | 1426 | 1559 | exit iloop | |
end if | 1427 | 1560 | end if | |
end do iloop | 1428 | 1561 | end do iloop | |
qx(i)=-z | 1429 | 1562 | qx(i)=-z | |
qx(n+1-i)=z | 1430 | 1563 | qx(n+1-i)=z | |
qw(i)=2.d0/((1.d0-z*z)*pp*pp) | 1431 | 1564 | qw(i)=2.d0/((1.d0-z*z)*pp*pp) | |
qw(n+1-i)=qw(i) | 1432 | 1565 | qw(n+1-i)=qw(i) | |
end do | 1433 | 1566 | end do | |
end subroutine | 1434 | 1567 | end subroutine | |
1435 | 1568 | |||
1436 | 1569 | |||
1437 | 1570 | |||
subroutine fvn_d_gl_integ(f,a,b,n,res) | 1438 | 1571 | subroutine fvn_d_gl_integ(f,a,b,n,res) | |
! | 1439 | 1572 | ! | |
! This is a simple non adaptative integration routine | 1440 | 1573 | ! This is a simple non adaptative integration routine | |
! using n gauss legendre abscissas and weights | 1441 | 1574 | ! using n gauss legendre abscissas and weights | |
! | 1442 | 1575 | ! | |
! f(in) : the function to integrate | 1443 | 1576 | ! f(in) : the function to integrate | |
! a(in) : lower bound | 1444 | 1577 | ! a(in) : lower bound | |
! b(in) : higher bound | 1445 | 1578 | ! b(in) : higher bound | |
! n(in) : number of gauss legendre pairs | 1446 | 1579 | ! n(in) : number of gauss legendre pairs | |
! res(out): the evaluation of the integral | 1447 | 1580 | ! res(out): the evaluation of the integral | |
! | 1448 | 1581 | ! | |
double precision,external :: f | 1449 | 1582 | double precision,external :: f | |
double precision, intent(in) :: a,b | 1450 | 1583 | double precision, intent(in) :: a,b | |
integer, intent(in):: n | 1451 | 1584 | integer, intent(in):: n | |
double precision, intent(out) :: res | 1452 | 1585 | double precision, intent(out) :: res | |
1453 | 1586 | |||
double precision, allocatable :: qx(:),qw(:) | 1454 | 1587 | double precision, allocatable :: qx(:),qw(:) | |
double precision :: xm,xr | 1455 | 1588 | double precision :: xm,xr | |
integer :: i | 1456 | 1589 | integer :: i | |
1457 | 1590 | |||
! First compute n gauss legendre abs and weight | 1458 | 1591 | ! First compute n gauss legendre abs and weight | |
allocate(qx(n)) | 1459 | 1592 | allocate(qx(n)) | |
allocate(qw(n)) | 1460 | 1593 | allocate(qw(n)) | |
call fvn_d_gauss_legendre(n,qx,qw) | 1461 | 1594 | call fvn_d_gauss_legendre(n,qx,qw) | |
1462 | 1595 | |||
xm=0.5d0*(b+a) | 1463 | 1596 | xm=0.5d0*(b+a) | |
xr=0.5d0*(b-a) | 1464 | 1597 | xr=0.5d0*(b-a) | |
1465 | 1598 | |||
res=0.d0 | 1466 | 1599 | res=0.d0 | |
1467 | 1600 | |||
do i=1,n | 1468 | 1601 | do i=1,n | |
res=res+qw(i)*f(xm+xr*qx(i)) | 1469 | 1602 | res=res+qw(i)*f(xm+xr*qx(i)) | |
end do | 1470 | 1603 | end do | |
1471 | 1604 | |||
res=xr*res | 1472 | 1605 | res=xr*res | |
1473 | 1606 | |||
deallocate(qw) | 1474 | 1607 | deallocate(qw) | |
deallocate(qx) | 1475 | 1608 | deallocate(qx) | |
1476 | 1609 | |||
end subroutine | 1477 | 1610 | end subroutine | |
1478 | 1611 | |||
!!!!!!!!!!!!!!!!!!!!!!!! | 1479 | 1612 | !!!!!!!!!!!!!!!!!!!!!!!! | |
! | 1480 | 1613 | ! | |
! Simple and double adaptative Gauss Kronrod integration based on | 1481 | 1614 | ! Simple and double adaptative Gauss Kronrod integration based on | |
! a modified version of quadpack ( http://www.netlib.org/quadpack | 1482 | 1615 | ! a modified version of quadpack ( http://www.netlib.org/quadpack | |
! | 1483 | 1616 | ! | |
! Common parameters : | 1484 | 1617 | ! Common parameters : | |
! | 1485 | 1618 | ! | |
! key (in) | 1486 | 1619 | ! key (in) | |
! epsabs | 1487 | 1620 | ! epsabs | |
! epsrel | 1488 | 1621 | ! epsrel | |
! | 1489 | 1622 | ! | |
! | 1490 | 1623 | ! | |
!!!!!!!!!!!!!!!!!!!!!!!! | 1491 | 1624 | !!!!!!!!!!!!!!!!!!!!!!!! | |
1492 | 1625 | |||
subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | 1493 | 1626 | subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | |
! | 1494 | 1627 | ! | |
! Evaluate the integral of function f(x) between a and b | 1495 | 1628 | ! Evaluate the integral of function f(x) between a and b | |
! | 1496 | 1629 | ! | |
! f(in) : the function | 1497 | 1630 | ! f(in) : the function | |
! a(in) : lower bound | 1498 | 1631 | ! a(in) : lower bound | |
! b(in) : higher bound | 1499 | 1632 | ! b(in) : higher bound | |
! epsabs(in) : desired absolute error | 1500 | 1633 | ! epsabs(in) : desired absolute error | |
! epsrel(in) : desired relative error | 1501 | 1634 | ! epsrel(in) : desired relative error | |
! key(in) : gauss kronrod rule | 1502 | 1635 | ! key(in) : gauss kronrod rule | |
! 1: 7 - 15 points | 1503 | 1636 | ! 1: 7 - 15 points | |
! 2: 10 - 21 points | 1504 | 1637 | ! 2: 10 - 21 points | |
! 3: 15 - 31 points | 1505 | 1638 | ! 3: 15 - 31 points | |
! 4: 20 - 41 points | 1506 | 1639 | ! 4: 20 - 41 points | |
! 5: 25 - 51 points | 1507 | 1640 | ! 5: 25 - 51 points | |
! 6: 30 - 61 points | 1508 | 1641 | ! 6: 30 - 61 points | |
! | 1509 | 1642 | ! | |
! limit(in) : maximum number of subintervals in the partition of the | 1510 | 1643 | ! limit(in) : maximum number of subintervals in the partition of the | |
! given integration interval (a,b). A value of 500 will give the same | 1511 | 1644 | ! given integration interval (a,b). A value of 500 will give the same | |
! behaviour as the imsl routine dqdag | 1512 | 1645 | ! behaviour as the imsl routine dqdag | |
! | 1513 | 1646 | ! | |
! res(out) : estimated integral value | 1514 | 1647 | ! res(out) : estimated integral value | |
! abserr(out) : estimated absolute error | 1515 | 1648 | ! abserr(out) : estimated absolute error | |
! ier(out) : error flag from quadpack routines | 1516 | 1649 | ! ier(out) : error flag from quadpack routines | |
! 0 : no error | 1517 | 1650 | ! 0 : no error | |
! 1 : maximum number of subdivisions allowed | 1518 | 1651 | ! 1 : maximum number of subdivisions allowed | |
! has been achieved. one can allow more | 1519 | 1652 | ! has been achieved. one can allow more | |
! subdivisions by increasing the value of | 1520 | 1653 | ! subdivisions by increasing the value of | |
! limit (and taking the according dimension | 1521 | 1654 | ! limit (and taking the according dimension | |
! adjustments into account). however, if | 1522 | 1655 | ! adjustments into account). however, if | |
! this yield no improvement it is advised | 1523 | 1656 | ! this yield no improvement it is advised | |
! to analyze the integrand in order to | 1524 | 1657 | ! to analyze the integrand in order to | |
! determine the integration difficulaties. | 1525 | 1658 | ! determine the integration difficulaties. | |
! if the position of a local difficulty can | 1526 | 1659 | ! if the position of a local difficulty can | |
! be determined (i.e.singularity, | 1527 | 1660 | ! be determined (i.e.singularity, | |
! discontinuity within the interval) one | 1528 | 1661 | ! discontinuity within the interval) one | |
! will probably gain from splitting up the | 1529 | 1662 | ! will probably gain from splitting up the | |
! interval at this point and calling the | 1530 | 1663 | ! interval at this point and calling the | |
! integrator on the subranges. if possible, | 1531 | 1664 | ! integrator on the subranges. if possible, | |
! an appropriate special-purpose integrator | 1532 | 1665 | ! an appropriate special-purpose integrator | |
! should be used which is designed for | 1533 | 1666 | ! should be used which is designed for | |
! handling the type of difficulty involved. | 1534 | 1667 | ! handling the type of difficulty involved. | |
! 2 : the occurrence of roundoff error is | 1535 | 1668 | ! 2 : the occurrence of roundoff error is | |
! detected, which prevents the requested | 1536 | 1669 | ! detected, which prevents the requested | |
! tolerance from being achieved. | 1537 | 1670 | ! tolerance from being achieved. | |
! 3 : extremely bad integrand behaviour occurs | 1538 | 1671 | ! 3 : extremely bad integrand behaviour occurs | |
! at some points of the integration | 1539 | 1672 | ! at some points of the integration | |
! interval. | 1540 | 1673 | ! interval. | |
! 6 : the input is invalid, because | 1541 | 1674 | ! 6 : the input is invalid, because | |
! (epsabs.le.0 and | 1542 | 1675 | ! (epsabs.le.0 and | |
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | 1543 | 1676 | ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
! or limit.lt.1 or lenw.lt.limit*4. | 1544 | 1677 | ! or limit.lt.1 or lenw.lt.limit*4. | |
! result, abserr, neval, last are set | 1545 | 1678 | ! result, abserr, neval, last are set | |
! to zero. | 1546 | 1679 | ! to zero. | |
! except when lenw is invalid, iwork(1), | 1547 | 1680 | ! except when lenw is invalid, iwork(1), | |
! work(limit*2+1) and work(limit*3+1) are | 1548 | 1681 | ! work(limit*2+1) and work(limit*3+1) are | |
! set to zero, work(1) is set to a and | 1549 | 1682 | ! set to zero, work(1) is set to a and | |
! work(limit+1) to b. | 1550 | 1683 | ! work(limit+1) to b. | |
1551 | 1684 | |||
implicit none | 1552 | 1685 | implicit none | |
double precision, external :: f | 1553 | 1686 | double precision, external :: f | |
double precision, intent(in) :: a,b,epsabs,epsrel | 1554 | 1687 | double precision, intent(in) :: a,b,epsabs,epsrel | |
integer, intent(in) :: key | 1555 | 1688 | integer, intent(in) :: key | |
integer, intent(in) :: limit | 1556 | 1689 | integer, intent(in) :: limit | |
double precision, intent(out) :: res,abserr | 1557 | 1690 | double precision, intent(out) :: res,abserr | |
integer, intent(out) :: ier | 1558 | 1691 | integer, intent(out) :: ier | |
1559 | 1692 | |||
double precision, allocatable :: work(:) | 1560 | 1693 | double precision, allocatable :: work(:) | |
integer, allocatable :: iwork(:) | 1561 | 1694 | integer, allocatable :: iwork(:) | |
integer :: lenw,neval,last | 1562 | 1695 | integer :: lenw,neval,last | |
1563 | 1696 | |||
! imsl value for limit is 500 | 1564 | 1697 | ! imsl value for limit is 500 | |
lenw=limit*4 | 1565 | 1698 | lenw=limit*4 | |
1566 | 1699 | |||
allocate(iwork(limit)) | 1567 | 1700 | allocate(iwork(limit)) | |
allocate(work(lenw)) | 1568 | 1701 | allocate(work(lenw)) | |
1569 | 1702 | |||
call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | 1570 | 1703 | call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1571 | 1704 | |||
deallocate(work) | 1572 | 1705 | deallocate(work) | |
deallocate(iwork) | 1573 | 1706 | deallocate(iwork) | |
1574 | 1707 | |||
end subroutine | 1575 | 1708 | end subroutine | |
1576 | 1709 | |||
1577 | 1710 | |||
1578 | 1711 | |||
subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit) | 1579 | 1712 | subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit) | |
! | 1580 | 1713 | ! | |
! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x) | 1581 | 1714 | ! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x) | |
! | 1582 | 1715 | ! | |
! f(in) : the function | 1583 | 1716 | ! f(in) : the function | |
! a(in) : lower bound | 1584 | 1717 | ! a(in) : lower bound | |
! b(in) : higher bound | 1585 | 1718 | ! b(in) : higher bound | |
! g(in) : external function describing lower bound for y | 1586 | 1719 | ! g(in) : external function describing lower bound for y | |
! h(in) : external function describing higher bound for y | 1587 | 1720 | ! h(in) : external function describing higher bound for y | |
! epsabs(in) : desired absolute error | 1588 | 1721 | ! epsabs(in) : desired absolute error | |
! epsrel(in) : desired relative error | 1589 | 1722 | ! epsrel(in) : desired relative error | |
! key(in) : gauss kronrod rule | 1590 | 1723 | ! key(in) : gauss kronrod rule | |
! 1: 7 - 15 points | 1591 | 1724 | ! 1: 7 - 15 points | |
! 2: 10 - 21 points | 1592 | 1725 | ! 2: 10 - 21 points | |
! 3: 15 - 31 points | 1593 | 1726 | ! 3: 15 - 31 points | |
! 4: 20 - 41 points | 1594 | 1727 | ! 4: 20 - 41 points | |
! 5: 25 - 51 points | 1595 | 1728 | ! 5: 25 - 51 points | |
! 6: 30 - 61 points | 1596 | 1729 | ! 6: 30 - 61 points | |
! | 1597 | 1730 | ! | |
! limit(in) : maximum number of subintervals in the partition of the | 1598 | 1731 | ! limit(in) : maximum number of subintervals in the partition of the | |
! given integration interval (a,b). A value of 500 will give the same | 1599 | 1732 | ! given integration interval (a,b). A value of 500 will give the same | |
! behaviour as the imsl routine dqdag | 1600 | 1733 | ! behaviour as the imsl routine dqdag | |
! | 1601 | 1734 | ! | |
! res(out) : estimated integral value | 1602 | 1735 | ! res(out) : estimated integral value | |
! abserr(out) : estimated absolute error | 1603 | 1736 | ! abserr(out) : estimated absolute error | |
! ier(out) : error flag from quadpack routines | 1604 | 1737 | ! ier(out) : error flag from quadpack routines | |
! 0 : no error | 1605 | 1738 | ! 0 : no error | |
! 1 : maximum number of subdivisions allowed | 1606 | 1739 | ! 1 : maximum number of subdivisions allowed | |
! has been achieved. one can allow more | 1607 | 1740 | ! has been achieved. one can allow more | |
! subdivisions by increasing the value of | 1608 | 1741 | ! subdivisions by increasing the value of | |
! limit (and taking the according dimension | 1609 | 1742 | ! limit (and taking the according dimension | |
! adjustments into account). however, if | 1610 | 1743 | ! adjustments into account). however, if | |
! this yield no improvement it is advised | 1611 | 1744 | ! this yield no improvement it is advised | |
! to analyze the integrand in order to | 1612 | 1745 | ! to analyze the integrand in order to | |
! determine the integration difficulaties. | 1613 | 1746 | ! determine the integration difficulaties. | |
! if the position of a local difficulty can | 1614 | 1747 | ! if the position of a local difficulty can | |
! be determined (i.e.singularity, | 1615 | 1748 | ! be determined (i.e.singularity, | |
! discontinuity within the interval) one | 1616 | 1749 | ! discontinuity within the interval) one | |
! will probably gain from splitting up the | 1617 | 1750 | ! will probably gain from splitting up the | |
! interval at this point and calling the | 1618 | 1751 | ! interval at this point and calling the | |
! integrator on the subranges. if possible, | 1619 | 1752 | ! integrator on the subranges. if possible, | |
! an appropriate special-purpose integrator | 1620 | 1753 | ! an appropriate special-purpose integrator | |
! should be used which is designed for | 1621 | 1754 | ! should be used which is designed for | |
! handling the type of difficulty involved. | 1622 | 1755 | ! handling the type of difficulty involved. | |
! 2 : the occurrence of roundoff error is | 1623 | 1756 | ! 2 : the occurrence of roundoff error is | |
! detected, which prevents the requested | 1624 | 1757 | ! detected, which prevents the requested | |
! tolerance from being achieved. | 1625 | 1758 | ! tolerance from being achieved. | |
! 3 : extremely bad integrand behaviour occurs | 1626 | 1759 | ! 3 : extremely bad integrand behaviour occurs | |
! at some points of the integration | 1627 | 1760 | ! at some points of the integration | |
! interval. | 1628 | 1761 | ! interval. | |
! 6 : the input is invalid, because | 1629 | 1762 | ! 6 : the input is invalid, because | |
! (epsabs.le.0 and | 1630 | 1763 | ! (epsabs.le.0 and | |
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | 1631 | 1764 | ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
! or limit.lt.1 or lenw.lt.limit*4. | 1632 | 1765 | ! or limit.lt.1 or lenw.lt.limit*4. | |
! result, abserr, neval, last are set | 1633 | 1766 | ! result, abserr, neval, last are set | |
! to zero. | 1634 | 1767 | ! to zero. | |
! except when lenw is invalid, iwork(1), | 1635 | 1768 | ! except when lenw is invalid, iwork(1), | |
! work(limit*2+1) and work(limit*3+1) are | 1636 | 1769 | ! work(limit*2+1) and work(limit*3+1) are | |
! set to zero, work(1) is set to a and | 1637 | 1770 | ! set to zero, work(1) is set to a and | |
! work(limit+1) to b. | 1638 | 1771 | ! work(limit+1) to b. | |
1639 | 1772 | |||
implicit none | 1640 | 1773 | implicit none | |
double precision, external:: f,g,h | 1641 | 1774 | double precision, external:: f,g,h | |
double precision, intent(in) :: a,b,epsabs,epsrel | 1642 | 1775 | double precision, intent(in) :: a,b,epsabs,epsrel | |
integer, intent(in) :: key,limit | 1643 | 1776 | integer, intent(in) :: key,limit | |
integer, intent(out) :: ier | 1644 | 1777 | integer, intent(out) :: ier | |
double precision, intent(out) :: res,abserr | 1645 | 1778 | double precision, intent(out) :: res,abserr | |
1646 | 1779 | |||
1647 | 1780 | |||
double precision, allocatable :: work(:) | 1648 | 1781 | double precision, allocatable :: work(:) | |
integer, allocatable :: iwork(:) | 1649 | 1782 | integer, allocatable :: iwork(:) | |
integer :: lenw,neval,last | 1650 | 1783 | integer :: lenw,neval,last | |
1651 | 1784 | |||
! imsl value for limit is 500 | 1652 | 1785 | ! imsl value for limit is 500 | |
lenw=limit*4 | 1653 | 1786 | lenw=limit*4 | |
allocate(work(lenw)) | 1654 | 1787 | allocate(work(lenw)) | |
allocate(iwork(limit)) | 1655 | 1788 | allocate(iwork(limit)) | |
1656 | 1789 | |||
call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | 1657 | 1790 | call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1658 | 1791 | |||
deallocate(iwork) | 1659 | 1792 | deallocate(iwork) | |
deallocate(work) | 1660 | 1793 | deallocate(work) | |
end subroutine | 1661 | 1794 | end subroutine | |
1662 | 1795 | |||
1663 | 1796 | |||
1664 | 1797 | |||
subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | 1665 | 1798 | subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | |
! | 1666 | 1799 | ! | |
! Evaluate the single integral of function f(x,y) for y between a and b with a | 1667 | 1800 | ! Evaluate the single integral of function f(x,y) for y between a and b with a | |
! given x value | 1668 | 1801 | ! given x value | |
! | 1669 | 1802 | ! | |
! This function is used for the evaluation of the double integral fvn_d_integ_2_gk | 1670 | 1803 | ! This function is used for the evaluation of the double integral fvn_d_integ_2_gk | |
! | 1671 | 1804 | ! | |
! f(in) : the function | 1672 | 1805 | ! f(in) : the function | |
! x(in) : x | 1673 | 1806 | ! x(in) : x | |
! a(in) : lower bound | 1674 | 1807 | ! a(in) : lower bound | |
! b(in) : higher bound | 1675 | 1808 | ! b(in) : higher bound | |
! epsabs(in) : desired absolute error | 1676 | 1809 | ! epsabs(in) : desired absolute error | |
! epsrel(in) : desired relative error | 1677 | 1810 | ! epsrel(in) : desired relative error | |
! key(in) : gauss kronrod rule | 1678 | 1811 | ! key(in) : gauss kronrod rule | |
! 1: 7 - 15 points | 1679 | 1812 | ! 1: 7 - 15 points | |
! 2: 10 - 21 points | 1680 | 1813 | ! 2: 10 - 21 points | |
! 3: 15 - 31 points | 1681 | 1814 | ! 3: 15 - 31 points | |
! 4: 20 - 41 points | 1682 | 1815 | ! 4: 20 - 41 points | |
! 5: 25 - 51 points | 1683 | 1816 | ! 5: 25 - 51 points | |
! 6: 30 - 61 points | 1684 | 1817 | ! 6: 30 - 61 points | |
! | 1685 | 1818 | ! | |
! limit(in) : maximum number of subintervals in the partition of the | 1686 | 1819 | ! limit(in) : maximum number of subintervals in the partition of the | |
! given integration interval (a,b). A value of 500 will give the same | 1687 | 1820 | ! given integration interval (a,b). A value of 500 will give the same | |
! behaviour as the imsl routine dqdag | 1688 | 1821 | ! behaviour as the imsl routine dqdag | |
! | 1689 | 1822 | ! | |
! res(out) : estimated integral value | 1690 | 1823 | ! res(out) : estimated integral value | |
! abserr(out) : estimated absolute error | 1691 | 1824 | ! abserr(out) : estimated absolute error | |
! ier(out) : error flag from quadpack routines | 1692 | 1825 | ! ier(out) : error flag from quadpack routines | |
! 0 : no error | 1693 | 1826 | ! 0 : no error | |
! 1 : maximum number of subdivisions allowed | 1694 | 1827 | ! 1 : maximum number of subdivisions allowed | |
! has been achieved. one can allow more | 1695 | 1828 | ! has been achieved. one can allow more | |
! subdivisions by increasing the value of | 1696 | 1829 | ! subdivisions by increasing the value of | |
! limit (and taking the according dimension | 1697 | 1830 | ! limit (and taking the according dimension | |
! adjustments into account). however, if | 1698 | 1831 | ! adjustments into account). however, if | |
! this yield no improvement it is advised | 1699 | 1832 | ! this yield no improvement it is advised | |
! to analyze the integrand in order to | 1700 | 1833 | ! to analyze the integrand in order to | |
! determine the integration difficulaties. | 1701 | 1834 | ! determine the integration difficulaties. | |
! if the position of a local difficulty can | 1702 | 1835 | ! if the position of a local difficulty can | |
! be determined (i.e.singularity, | 1703 | 1836 | ! be determined (i.e.singularity, | |
! discontinuity within the interval) one | 1704 | 1837 | ! discontinuity within the interval) one | |
! will probably gain from splitting up the | 1705 | 1838 | ! will probably gain from splitting up the | |
! interval at this point and calling the | 1706 | 1839 | ! interval at this point and calling the | |
! integrator on the subranges. if possible, | 1707 | 1840 | ! integrator on the subranges. if possible, | |
! an appropriate special-purpose integrator | 1708 | 1841 | ! an appropriate special-purpose integrator | |
! should be used which is designed for | 1709 | 1842 | ! should be used which is designed for | |
! handling the type of difficulty involved. | 1710 | 1843 | ! handling the type of difficulty involved. | |
! 2 : the occurrence of roundoff error is | 1711 | 1844 | ! 2 : the occurrence of roundoff error is | |
! detected, which prevents the requested | 1712 | 1845 | ! detected, which prevents the requested | |
! tolerance from being achieved. | 1713 | 1846 | ! tolerance from being achieved. | |
! 3 : extremely bad integrand behaviour occurs | 1714 | 1847 | ! 3 : extremely bad integrand behaviour occurs | |
! at some points of the integration | 1715 | 1848 | ! at some points of the integration | |
! interval. | 1716 | 1849 | ! interval. | |
! 6 : the input is invalid, because | 1717 | 1850 | ! 6 : the input is invalid, because | |
! (epsabs.le.0 and | 1718 | 1851 | ! (epsabs.le.0 and | |
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | 1719 | 1852 | ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
! or limit.lt.1 or lenw.lt.limit*4. | 1720 | 1853 | ! or limit.lt.1 or lenw.lt.limit*4. | |
! result, abserr, neval, last are set | 1721 | 1854 | ! result, abserr, neval, last are set | |
! to zero. | 1722 | 1855 | ! to zero. | |
! except when lenw is invalid, iwork(1), | 1723 | 1856 | ! except when lenw is invalid, iwork(1), | |
! work(limit*2+1) and work(limit*3+1) are | 1724 | 1857 | ! work(limit*2+1) and work(limit*3+1) are | |
! set to zero, work(1) is set to a and | 1725 | 1858 | ! set to zero, work(1) is set to a and | |
! work(limit+1) to b. | 1726 | 1859 | ! work(limit+1) to b. | |
1727 | 1860 | |||
implicit none | 1728 | 1861 | implicit none | |
double precision, external:: f | 1729 | 1862 | double precision, external:: f | |
double precision, intent(in) :: x,a,b,epsabs,epsrel | 1730 | 1863 | double precision, intent(in) :: x,a,b,epsabs,epsrel | |
integer, intent(in) :: key,limit | 1731 | 1864 | integer, intent(in) :: key,limit | |
integer, intent(out) :: ier | 1732 | 1865 | integer, intent(out) :: ier | |
double precision, intent(out) :: res,abserr | 1733 | 1866 | double precision, intent(out) :: res,abserr | |
1734 | 1867 | |||
1735 | 1868 | |||
double precision, allocatable :: work(:) | 1736 | 1869 | double precision, allocatable :: work(:) | |
integer, allocatable :: iwork(:) | 1737 | 1870 | integer, allocatable :: iwork(:) | |
integer :: lenw,neval,last | 1738 | 1871 | integer :: lenw,neval,last | |
1739 | 1872 | |||
! imsl value for limit is 500 | 1740 | 1873 | ! imsl value for limit is 500 | |
lenw=limit*4 | 1741 | 1874 | lenw=limit*4 | |
allocate(work(lenw)) | 1742 | 1875 | allocate(work(lenw)) | |
allocate(iwork(limit)) | 1743 | 1876 | allocate(iwork(limit)) | |
1744 | 1877 | |||
call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | 1745 | 1878 | call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1746 | 1879 | |||
deallocate(iwork) | 1747 | 1880 | deallocate(iwork) | |
deallocate(work) | 1748 | 1881 | deallocate(work) | |
end subroutine | 1749 | 1882 | end subroutine | |
1750 | 1883 | |||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1751 | 1884 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |