Commit 8a085e03510a4dc6ba9606d81bb929d53a680dfc

Authored by daniau
1 parent f61865f463

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@15 b657c933-2333-4658-acf2-d3c7c2708721

Showing 1 changed file with 140 additions and 7 deletions Inline Diff

1 1
module fvn 2 2 module fvn
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 4 4 !
! fvn : a f95 module replacement for some imsl routines 5 5 ! fvn : a f95 module replacement for some imsl routines
! it uses lapack for linear algebra 6 6 ! it uses lapack for linear algebra
! it uses modified quadpack for integration 7 7 ! it uses modified quadpack for integration
! 8 8 !
! William Daniau 2007 9 9 ! William Daniau 2007
! william.daniau@femto-st.fr 10 10 ! william.daniau@femto-st.fr
! 11 11 !
! Routines naming scheme : 12 12 ! Routines naming scheme :
! 13 13 !
! fvn_x_name 14 14 ! fvn_x_name
! where x can be s : real 15 15 ! where x can be s : real
! d : real double precision 16 16 ! d : real double precision
! c : complex 17 17 ! c : complex
! z : double complex 18 18 ! z : double complex
! 19 19 !
! 20 20 !
! This piece of code is totally free! Do whatever you want with it. However 21 21 ! This piece of code is totally free! Do whatever you want with it. However
! if you find it usefull it would be kind to give credits ;-) Nevertheless, you 22 22 ! if you find it usefull it would be kind to give credits ;-) Nevertheless, you
! may give credits to quadpack authors. 23 23 ! may give credits to quadpack authors.
! 24 24 !
! svn version 25 25 ! svn version
! June 2007 : added some complex trigonometric functions 26 26 ! June 2007 : added some complex trigonometric functions
! 27 27 !
! TO DO LIST : 28 28 ! TO DO LIST :
! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm 29 29 ! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm
! eigenvalues are given with no particular order. 30 30 ! eigenvalues are given with no particular order.
! + Generic interface for fvn_x_name family -> fvn_name 31 31 ! + Generic interface for fvn_x_name family -> fvn_name
! + Make some parameters optional, status for example 32 32 ! + Make some parameters optional, status for example
! + use f95 kinds "double complex" -> complex(kind=8) 33 33 ! + use f95 kinds "double complex" -> complex(kind=8)
! + unify quadpack routines 34 34 ! + unify quadpack routines
! + ... 35 35 ! + ...
! 36 36 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 37 37 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 38
implicit none 39 39 implicit none
! We define pi and i for the module 40 40 ! We define pi and i for the module
real(kind=8),parameter :: fvn_pi = 3.141592653589793_8 41 41 real(kind=8),parameter :: fvn_pi = 3.141592653589793_8
complex(kind=8),parameter :: fvn_i = (0._8,1._8) 42 42 complex(kind=8),parameter :: fvn_i = (0._8,1._8)
43 43
44 44
! All quadpack routines are private to the module 45 45 ! All quadpack routines are private to the module
private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & 46 46 private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, &
dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & 47 47 dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, &
dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, & 48 48 dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, &
dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt 49 49 dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt
50 50
51 51
contains 52 52 contains
53 53
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 54 54 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 55 55 !
! Matrix inversion subroutines 56 56 ! Matrix inversion subroutines
! 57 57 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 58 58 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fvn_s_matinv(d,a,inva,status) 59 59 subroutine fvn_s_matinv(d,a,inva,status)
! 60 60 !
! Matrix inversion of a real matrix using BLAS and LAPACK 61 61 ! Matrix inversion of a real matrix using BLAS and LAPACK
! 62 62 !
! d (in) : matrix rank 63 63 ! d (in) : matrix rank
! a (in) : input matrix 64 64 ! a (in) : input matrix
! inva (out) : inversed matrix 65 65 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 66 66 ! status (ou) : =0 if something failed
! 67 67 !
68 implicit none
integer, intent(in) :: d 68 69 integer, intent(in) :: d
real, intent(in) :: a(d,d) 69 70 real, intent(in) :: a(d,d)
real, intent(out) :: inva(d,d) 70 71 real, intent(out) :: inva(d,d)
integer, intent(out) :: status 71 72 integer, intent(out) :: status
72 73
integer, allocatable :: ipiv(:) 73 74 integer, allocatable :: ipiv(:)
real, allocatable :: work(:) 74 75 real, allocatable :: work(:)
real twork(1) 75 76 real twork(1)
integer :: info 76 77 integer :: info
integer :: lwork 77 78 integer :: lwork
78 79
status=1 79 80 status=1
80 81
allocate(ipiv(d)) 81 82 allocate(ipiv(d))
! copy a into inva using BLAS 82 83 ! copy a into inva using BLAS
!call scopy(d*d,a,1,inva,1) 83 84 !call scopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 84 85 inva(:,:)=a(:,:)
! LU factorization using LAPACK 85 86 ! LU factorization using LAPACK
call sgetrf(d,d,inva,d,ipiv,info) 86 87 call sgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 87 88 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 88 89 if (info /= 0) then
status=0 89 90 status=0
deallocate(ipiv) 90 91 deallocate(ipiv)
return 91 92 return
end if 92 93 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 93 94 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call sgetri(d,inva,d,ipiv,twork,-1,info) 94 95 call sgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 95 96 lwork=int(twork(1))
allocate(work(lwork)) 96 97 allocate(work(lwork))
! Matrix inversion using LAPACK 97 98 ! Matrix inversion using LAPACK
call sgetri(d,inva,d,ipiv,work,lwork,info) 98 99 call sgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 99 100 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 100 101 if (info /= 0) then
status=0 101 102 status=0
end if 102 103 end if
deallocate(work) 103 104 deallocate(work)
deallocate(ipiv) 104 105 deallocate(ipiv)
end subroutine 105 106 end subroutine
106 107
subroutine fvn_d_matinv(d,a,inva,status) 107 108 subroutine fvn_d_matinv(d,a,inva,status)
! 108 109 !
! Matrix inversion of a double precision matrix using BLAS and LAPACK 109 110 ! Matrix inversion of a double precision matrix using BLAS and LAPACK
! 110 111 !
! d (in) : matrix rank 111 112 ! d (in) : matrix rank
! a (in) : input matrix 112 113 ! a (in) : input matrix
! inva (out) : inversed matrix 113 114 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 114 115 ! status (ou) : =0 if something failed
! 115 116 !
117 implicit none
integer, intent(in) :: d 116 118 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 117 119 double precision, intent(in) :: a(d,d)
double precision, intent(out) :: inva(d,d) 118 120 double precision, intent(out) :: inva(d,d)
integer, intent(out) :: status 119 121 integer, intent(out) :: status
120 122
integer, allocatable :: ipiv(:) 121 123 integer, allocatable :: ipiv(:)
double precision, allocatable :: work(:) 122 124 double precision, allocatable :: work(:)
double precision :: twork(1) 123 125 double precision :: twork(1)
integer :: info 124 126 integer :: info
integer :: lwork 125 127 integer :: lwork
126 128
status=1 127 129 status=1
128 130
allocate(ipiv(d)) 129 131 allocate(ipiv(d))
! copy a into inva using BLAS 130 132 ! copy a into inva using BLAS
!call dcopy(d*d,a,1,inva,1) 131 133 !call dcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 132 134 inva(:,:)=a(:,:)
! LU factorization using LAPACK 133 135 ! LU factorization using LAPACK
call dgetrf(d,d,inva,d,ipiv,info) 134 136 call dgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 135 137 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 136 138 if (info /= 0) then
status=0 137 139 status=0
deallocate(ipiv) 138 140 deallocate(ipiv)
return 139 141 return
end if 140 142 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 141 143 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call dgetri(d,inva,d,ipiv,twork,-1,info) 142 144 call dgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 143 145 lwork=int(twork(1))
allocate(work(lwork)) 144 146 allocate(work(lwork))
! Matrix inversion using LAPACK 145 147 ! Matrix inversion using LAPACK
call dgetri(d,inva,d,ipiv,work,lwork,info) 146 148 call dgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 147 149 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 148 150 if (info /= 0) then
status=0 149 151 status=0
end if 150 152 end if
deallocate(work) 151 153 deallocate(work)
deallocate(ipiv) 152 154 deallocate(ipiv)
end subroutine 153 155 end subroutine
154 156
subroutine fvn_c_matinv(d,a,inva,status) 155 157 subroutine fvn_c_matinv(d,a,inva,status)
! 156 158 !
! Matrix inversion of a complex matrix using BLAS and LAPACK 157 159 ! Matrix inversion of a complex matrix using BLAS and LAPACK
! 158 160 !
! d (in) : matrix rank 159 161 ! d (in) : matrix rank
! a (in) : input matrix 160 162 ! a (in) : input matrix
! inva (out) : inversed matrix 161 163 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 162 164 ! status (ou) : =0 if something failed
! 163 165 !
166 implicit none
integer, intent(in) :: d 164 167 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 165 168 complex, intent(in) :: a(d,d)
complex, intent(out) :: inva(d,d) 166 169 complex, intent(out) :: inva(d,d)
integer, intent(out) :: status 167 170 integer, intent(out) :: status
168 171
integer, allocatable :: ipiv(:) 169 172 integer, allocatable :: ipiv(:)
complex, allocatable :: work(:) 170 173 complex, allocatable :: work(:)
complex :: twork(1) 171 174 complex :: twork(1)
integer :: info 172 175 integer :: info
integer :: lwork 173 176 integer :: lwork
174 177
status=1 175 178 status=1
176 179
allocate(ipiv(d)) 177 180 allocate(ipiv(d))
! copy a into inva using BLAS 178 181 ! copy a into inva using BLAS
!call ccopy(d*d,a,1,inva,1) 179 182 !call ccopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 180 183 inva(:,:)=a(:,:)
181 184
! LU factorization using LAPACK 182 185 ! LU factorization using LAPACK
call cgetrf(d,d,inva,d,ipiv,info) 183 186 call cgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 184 187 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 185 188 if (info /= 0) then
status=0 186 189 status=0
deallocate(ipiv) 187 190 deallocate(ipiv)
return 188 191 return
end if 189 192 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 190 193 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call cgetri(d,inva,d,ipiv,twork,-1,info) 191 194 call cgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 192 195 lwork=int(twork(1))
allocate(work(lwork)) 193 196 allocate(work(lwork))
! Matrix inversion using LAPACK 194 197 ! Matrix inversion using LAPACK
call cgetri(d,inva,d,ipiv,work,lwork,info) 195 198 call cgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 196 199 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 197 200 if (info /= 0) then
status=0 198 201 status=0
end if 199 202 end if
deallocate(work) 200 203 deallocate(work)
deallocate(ipiv) 201 204 deallocate(ipiv)
end subroutine 202 205 end subroutine
203 206
subroutine fvn_z_matinv(d,a,inva,status) 204 207 subroutine fvn_z_matinv(d,a,inva,status)
! 205 208 !
! Matrix inversion of a double complex matrix using BLAS and LAPACK 206 209 ! Matrix inversion of a double complex matrix using BLAS and LAPACK
! 207 210 !
! d (in) : matrix rank 208 211 ! d (in) : matrix rank
! a (in) : input matrix 209 212 ! a (in) : input matrix
! inva (out) : inversed matrix 210 213 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 211 214 ! status (ou) : =0 if something failed
! 212 215 !
216 implicit none
integer, intent(in) :: d 213 217 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 214 218 double complex, intent(in) :: a(d,d)
double complex, intent(out) :: inva(d,d) 215 219 double complex, intent(out) :: inva(d,d)
integer, intent(out) :: status 216 220 integer, intent(out) :: status
217 221
integer, allocatable :: ipiv(:) 218 222 integer, allocatable :: ipiv(:)
double complex, allocatable :: work(:) 219 223 double complex, allocatable :: work(:)
double complex :: twork(1) 220 224 double complex :: twork(1)
integer :: info 221 225 integer :: info
integer :: lwork 222 226 integer :: lwork
223 227
status=1 224 228 status=1
225 229
allocate(ipiv(d)) 226 230 allocate(ipiv(d))
! copy a into inva using BLAS 227 231 ! copy a into inva using BLAS
!call zcopy(d*d,a,1,inva,1) 228 232 !call zcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 229 233 inva(:,:)=a(:,:)
230 234
! LU factorization using LAPACK 231 235 ! LU factorization using LAPACK
call zgetrf(d,d,inva,d,ipiv,info) 232 236 call zgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 233 237 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 234 238 if (info /= 0) then
status=0 235 239 status=0
deallocate(ipiv) 236 240 deallocate(ipiv)
return 237 241 return
end if 238 242 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 239 243 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call zgetri(d,inva,d,ipiv,twork,-1,info) 240 244 call zgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 241 245 lwork=int(twork(1))
allocate(work(lwork)) 242 246 allocate(work(lwork))
! Matrix inversion using LAPACK 243 247 ! Matrix inversion using LAPACK
call zgetri(d,inva,d,ipiv,work,lwork,info) 244 248 call zgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 245 249 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 246 250 if (info /= 0) then
status=0 247 251 status=0
end if 248 252 end if
deallocate(work) 249 253 deallocate(work)
deallocate(ipiv) 250 254 deallocate(ipiv)
end subroutine 251 255 end subroutine
252 256
253 257
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 254 258 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 255 259 !
! Determinants 256 260 ! Determinants
! 257 261 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 258 262 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function fvn_s_det(d,a,status) 259 263 function fvn_s_det(d,a,status)
! 260 264 !
! Evaluate the determinant of a square matrix using lapack LU factorization 261 265 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 262 266 !
! d (in) : matrix rank 263 267 ! d (in) : matrix rank
! a (in) : The Matrix 264 268 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 265 269 ! status (out) : =0 if LU factorization failed
! 266 270 !
271 implicit none
integer, intent(in) :: d 267 272 integer, intent(in) :: d
real, intent(in) :: a(d,d) 268 273 real, intent(in) :: a(d,d)
integer, intent(out) :: status 269 274 integer, intent(out) :: status
real :: fvn_s_det 270 275 real :: fvn_s_det
271 276
real, allocatable :: wc_a(:,:) 272 277 real, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 273 278 integer, allocatable :: ipiv(:)
integer :: info,i 274 279 integer :: info,i
275 280
status=1 276 281 status=1
allocate(wc_a(d,d)) 277 282 allocate(wc_a(d,d))
allocate(ipiv(d)) 278 283 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 279 284 wc_a(:,:)=a(:,:)
call sgetrf(d,d,wc_a,d,ipiv,info) 280 285 call sgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 281 286 if (info/= 0) then
status=0 282 287 status=0
fvn_s_det=0.e0 283 288 fvn_s_det=0.e0
deallocate(ipiv) 284 289 deallocate(ipiv)
deallocate(wc_a) 285 290 deallocate(wc_a)
return 286 291 return
end if 287 292 end if
fvn_s_det=1.e0 288 293 fvn_s_det=1.e0
do i=1,d 289 294 do i=1,d
if (ipiv(i)==i) then 290 295 if (ipiv(i)==i) then
fvn_s_det=fvn_s_det*wc_a(i,i) 291 296 fvn_s_det=fvn_s_det*wc_a(i,i)
else 292 297 else
fvn_s_det=-fvn_s_det*wc_a(i,i) 293 298 fvn_s_det=-fvn_s_det*wc_a(i,i)
end if 294 299 end if
end do 295 300 end do
deallocate(ipiv) 296 301 deallocate(ipiv)
deallocate(wc_a) 297 302 deallocate(wc_a)
298 303
end function 299 304 end function
300 305
function fvn_d_det(d,a,status) 301 306 function fvn_d_det(d,a,status)
! 302 307 !
! Evaluate the determinant of a square matrix using lapack LU factorization 303 308 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 304 309 !
! d (in) : matrix rank 305 310 ! d (in) : matrix rank
! a (in) : The Matrix 306 311 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 307 312 ! status (out) : =0 if LU factorization failed
! 308 313 !
314 implicit none
integer, intent(in) :: d 309 315 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 310 316 double precision, intent(in) :: a(d,d)
integer, intent(out) :: status 311 317 integer, intent(out) :: status
double precision :: fvn_d_det 312 318 double precision :: fvn_d_det
313 319
double precision, allocatable :: wc_a(:,:) 314 320 double precision, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 315 321 integer, allocatable :: ipiv(:)
integer :: info,i 316 322 integer :: info,i
317 323
status=1 318 324 status=1
allocate(wc_a(d,d)) 319 325 allocate(wc_a(d,d))
allocate(ipiv(d)) 320 326 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 321 327 wc_a(:,:)=a(:,:)
call dgetrf(d,d,wc_a,d,ipiv,info) 322 328 call dgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 323 329 if (info/= 0) then
status=0 324 330 status=0
fvn_d_det=0.d0 325 331 fvn_d_det=0.d0
deallocate(ipiv) 326 332 deallocate(ipiv)
deallocate(wc_a) 327 333 deallocate(wc_a)
return 328 334 return
end if 329 335 end if
fvn_d_det=1.d0 330 336 fvn_d_det=1.d0
do i=1,d 331 337 do i=1,d
if (ipiv(i)==i) then 332 338 if (ipiv(i)==i) then
fvn_d_det=fvn_d_det*wc_a(i,i) 333 339 fvn_d_det=fvn_d_det*wc_a(i,i)
else 334 340 else
fvn_d_det=-fvn_d_det*wc_a(i,i) 335 341 fvn_d_det=-fvn_d_det*wc_a(i,i)
end if 336 342 end if
end do 337 343 end do
deallocate(ipiv) 338 344 deallocate(ipiv)
deallocate(wc_a) 339 345 deallocate(wc_a)
340 346
end function 341 347 end function
342 348
function fvn_c_det(d,a,status) ! 343 349 function fvn_c_det(d,a,status) !
! Evaluate the determinant of a square matrix using lapack LU factorization 344 350 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 345 351 !
! d (in) : matrix rank 346 352 ! d (in) : matrix rank
! a (in) : The Matrix 347 353 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 348 354 ! status (out) : =0 if LU factorization failed
! 349 355 !
356 implicit none
integer, intent(in) :: d 350 357 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 351 358 complex, intent(in) :: a(d,d)
integer, intent(out) :: status 352 359 integer, intent(out) :: status
complex :: fvn_c_det 353 360 complex :: fvn_c_det
354 361
complex, allocatable :: wc_a(:,:) 355 362 complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 356 363 integer, allocatable :: ipiv(:)
integer :: info,i 357 364 integer :: info,i
358 365
status=1 359 366 status=1
allocate(wc_a(d,d)) 360 367 allocate(wc_a(d,d))
allocate(ipiv(d)) 361 368 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 362 369 wc_a(:,:)=a(:,:)
call cgetrf(d,d,wc_a,d,ipiv,info) 363 370 call cgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 364 371 if (info/= 0) then
status=0 365 372 status=0
fvn_c_det=(0.e0,0.e0) 366 373 fvn_c_det=(0.e0,0.e0)
deallocate(ipiv) 367 374 deallocate(ipiv)
deallocate(wc_a) 368 375 deallocate(wc_a)
return 369 376 return
end if 370 377 end if
fvn_c_det=(1.e0,0.e0) 371 378 fvn_c_det=(1.e0,0.e0)
do i=1,d 372 379 do i=1,d
if (ipiv(i)==i) then 373 380 if (ipiv(i)==i) then
fvn_c_det=fvn_c_det*wc_a(i,i) 374 381 fvn_c_det=fvn_c_det*wc_a(i,i)
else 375 382 else
fvn_c_det=-fvn_c_det*wc_a(i,i) 376 383 fvn_c_det=-fvn_c_det*wc_a(i,i)
end if 377 384 end if
end do 378 385 end do
deallocate(ipiv) 379 386 deallocate(ipiv)
deallocate(wc_a) 380 387 deallocate(wc_a)
381 388
end function 382 389 end function
383 390
function fvn_z_det(d,a,status) 384 391 function fvn_z_det(d,a,status)
! 385 392 !
! Evaluate the determinant of a square matrix using lapack LU factorization 386 393 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 387 394 !
! d (in) : matrix rank 388 395 ! d (in) : matrix rank
! a (in) : The Matrix 389 396 ! a (in) : The Matrix
! det (out) : determinant 390 397 ! det (out) : determinant
! status (out) : =0 if LU factorization failed 391 398 ! status (out) : =0 if LU factorization failed
! 392 399 !
400 implicit none
integer, intent(in) :: d 393 401 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 394 402 double complex, intent(in) :: a(d,d)
integer, intent(out) :: status 395 403 integer, intent(out) :: status
double complex :: fvn_z_det 396 404 double complex :: fvn_z_det
397 405
double complex, allocatable :: wc_a(:,:) 398 406 double complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 399 407 integer, allocatable :: ipiv(:)
integer :: info,i 400 408 integer :: info,i
401 409
status=1 402 410 status=1
allocate(wc_a(d,d)) 403 411 allocate(wc_a(d,d))
allocate(ipiv(d)) 404 412 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 405 413 wc_a(:,:)=a(:,:)
call zgetrf(d,d,wc_a,d,ipiv,info) 406 414 call zgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 407 415 if (info/= 0) then
status=0 408 416 status=0
fvn_z_det=(0.d0,0.d0) 409 417 fvn_z_det=(0.d0,0.d0)
deallocate(ipiv) 410 418 deallocate(ipiv)
deallocate(wc_a) 411 419 deallocate(wc_a)
return 412 420 return
end if 413 421 end if
fvn_z_det=(1.d0,0.d0) 414 422 fvn_z_det=(1.d0,0.d0)
do i=1,d 415 423 do i=1,d
if (ipiv(i)==i) then 416 424 if (ipiv(i)==i) then
fvn_z_det=fvn_z_det*wc_a(i,i) 417 425 fvn_z_det=fvn_z_det*wc_a(i,i)
else 418 426 else
fvn_z_det=-fvn_z_det*wc_a(i,i) 419 427 fvn_z_det=-fvn_z_det*wc_a(i,i)
end if 420 428 end if
end do 421 429 end do
deallocate(ipiv) 422 430 deallocate(ipiv)
deallocate(wc_a) 423 431 deallocate(wc_a)
424 432
end function 425 433 end function
426 434
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 427 435 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 428 436 !
! Condition test 429 437 ! Condition test
! 430 438 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 431 439 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1-norm 432 440 ! 1-norm
! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm 433 441 ! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm
! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond 434 442 ! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond
! 435 443 !
subroutine fvn_s_matcon(d,a,rcond,status) 436 444 subroutine fvn_s_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 437 445 ! Matrix condition (reciprocal of condition number)
! 438 446 !
! d (in) : matrix rank 439 447 ! d (in) : matrix rank
! a (in) : The Matrix 440 448 ! a (in) : The Matrix
! rcond (out) : guess what 441 449 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 442 450 ! status (out) : =0 if something went wrong
! 443 451 !
452 implicit none
integer, intent(in) :: d 444 453 integer, intent(in) :: d
real, intent(in) :: a(d,d) 445 454 real, intent(in) :: a(d,d)
real, intent(out) :: rcond 446 455 real, intent(out) :: rcond
integer, intent(out) :: status 447 456 integer, intent(out) :: status
448 457
real, allocatable :: work(:) 449 458 real, allocatable :: work(:)
integer, allocatable :: iwork(:) 450 459 integer, allocatable :: iwork(:)
real :: anorm 451 460 real :: anorm
real, allocatable :: wc_a(:,:) ! working copy of a 452 461 real, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 453 462 integer :: info
integer, allocatable :: ipiv(:) 454 463 integer, allocatable :: ipiv(:)
455 464
real, external :: slange 456 465 real, external :: slange
457 466
458 467
status=1 459 468 status=1
460 469
anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm 461 470 anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
462 471
allocate(wc_a(d,d)) 463 472 allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1) 464 473 !call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 465 474 wc_a(:,:)=a(:,:)
466 475
allocate(ipiv(d)) 467 476 allocate(ipiv(d))
call sgetrf(d,d,wc_a,d,ipiv,info) 468 477 call sgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 469 478 if (info /= 0) then
status=0 470 479 status=0
deallocate(ipiv) 471 480 deallocate(ipiv)
deallocate(wc_a) 472 481 deallocate(wc_a)
return 473 482 return
end if 474 483 end if
allocate(work(4*d)) 475 484 allocate(work(4*d))
allocate(iwork(d)) 476 485 allocate(iwork(d))
call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) 477 486 call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then 478 487 if (info /= 0) then
status=0 479 488 status=0
end if 480 489 end if
deallocate(iwork) 481 490 deallocate(iwork)
deallocate(work) 482 491 deallocate(work)
deallocate(ipiv) 483 492 deallocate(ipiv)
deallocate(wc_a) 484 493 deallocate(wc_a)
485 494
end subroutine 486 495 end subroutine
487 496
subroutine fvn_d_matcon(d,a,rcond,status) 488 497 subroutine fvn_d_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 489 498 ! Matrix condition (reciprocal of condition number)
! 490 499 !
! d (in) : matrix rank 491 500 ! d (in) : matrix rank
! a (in) : The Matrix 492 501 ! a (in) : The Matrix
! rcond (out) : guess what 493 502 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 494 503 ! status (out) : =0 if something went wrong
! 495 504 !
505 implicit none
integer, intent(in) :: d 496 506 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 497 507 double precision, intent(in) :: a(d,d)
double precision, intent(out) :: rcond 498 508 double precision, intent(out) :: rcond
integer, intent(out) :: status 499 509 integer, intent(out) :: status
500 510
double precision, allocatable :: work(:) 501 511 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 502 512 integer, allocatable :: iwork(:)
double precision :: anorm 503 513 double precision :: anorm
double precision, allocatable :: wc_a(:,:) ! working copy of a 504 514 double precision, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 505 515 integer :: info
integer, allocatable :: ipiv(:) 506 516 integer, allocatable :: ipiv(:)
507 517
double precision, external :: dlange 508 518 double precision, external :: dlange
509 519
510 520
status=1 511 521 status=1
512 522
anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm 513 523 anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
514 524
allocate(wc_a(d,d)) 515 525 allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1) 516 526 !call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 517 527 wc_a(:,:)=a(:,:)
518 528
allocate(ipiv(d)) 519 529 allocate(ipiv(d))
call dgetrf(d,d,wc_a,d,ipiv,info) 520 530 call dgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 521 531 if (info /= 0) then
status=0 522 532 status=0
deallocate(ipiv) 523 533 deallocate(ipiv)
deallocate(wc_a) 524 534 deallocate(wc_a)
return 525 535 return
end if 526 536 end if
527 537
allocate(work(4*d)) 528 538 allocate(work(4*d))
allocate(iwork(d)) 529 539 allocate(iwork(d))
call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) 530 540 call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then 531 541 if (info /= 0) then
status=0 532 542 status=0
end if 533 543 end if
deallocate(iwork) 534 544 deallocate(iwork)
deallocate(work) 535 545 deallocate(work)
deallocate(ipiv) 536 546 deallocate(ipiv)
deallocate(wc_a) 537 547 deallocate(wc_a)
538 548
end subroutine 539 549 end subroutine
540 550
subroutine fvn_c_matcon(d,a,rcond,status) 541 551 subroutine fvn_c_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 542 552 ! Matrix condition (reciprocal of condition number)
! 543 553 !
! d (in) : matrix rank 544 554 ! d (in) : matrix rank
! a (in) : The Matrix 545 555 ! a (in) : The Matrix
! rcond (out) : guess what 546 556 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 547 557 ! status (out) : =0 if something went wrong
! 548 558 !
559 implicit none
integer, intent(in) :: d 549 560 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 550 561 complex, intent(in) :: a(d,d)
real, intent(out) :: rcond 551 562 real, intent(out) :: rcond
integer, intent(out) :: status 552 563 integer, intent(out) :: status
553 564
real, allocatable :: rwork(:) 554 565 real, allocatable :: rwork(:)
complex, allocatable :: work(:) 555 566 complex, allocatable :: work(:)
integer, allocatable :: iwork(:) 556 567 integer, allocatable :: iwork(:)
real :: anorm 557 568 real :: anorm
complex, allocatable :: wc_a(:,:) ! working copy of a 558 569 complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 559 570 integer :: info
integer, allocatable :: ipiv(:) 560 571 integer, allocatable :: ipiv(:)
561 572
real, external :: clange 562 573 real, external :: clange
563 574
564 575
status=1 565 576 status=1
566 577
anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm 567 578 anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
568 579
allocate(wc_a(d,d)) 569 580 allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1) 570 581 !call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 571 582 wc_a(:,:)=a(:,:)
572 583
allocate(ipiv(d)) 573 584 allocate(ipiv(d))
call cgetrf(d,d,wc_a,d,ipiv,info) 574 585 call cgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 575 586 if (info /= 0) then
status=0 576 587 status=0
deallocate(ipiv) 577 588 deallocate(ipiv)
deallocate(wc_a) 578 589 deallocate(wc_a)
return 579 590 return
end if 580 591 end if
allocate(work(2*d)) 581 592 allocate(work(2*d))
allocate(rwork(2*d)) 582 593 allocate(rwork(2*d))
call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) 583 594 call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then 584 595 if (info /= 0) then
status=0 585 596 status=0
end if 586 597 end if
deallocate(rwork) 587 598 deallocate(rwork)
deallocate(work) 588 599 deallocate(work)
deallocate(ipiv) 589 600 deallocate(ipiv)
deallocate(wc_a) 590 601 deallocate(wc_a)
end subroutine 591 602 end subroutine
592 603
subroutine fvn_z_matcon(d,a,rcond,status) 593 604 subroutine fvn_z_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 594 605 ! Matrix condition (reciprocal of condition number)
! 595 606 !
! d (in) : matrix rank 596 607 ! d (in) : matrix rank
! a (in) : The Matrix 597 608 ! a (in) : The Matrix
! rcond (out) : guess what 598 609 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 599 610 ! status (out) : =0 if something went wrong
! 600 611 !
612 implicit none
integer, intent(in) :: d 601 613 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 602 614 double complex, intent(in) :: a(d,d)
double precision, intent(out) :: rcond 603 615 double precision, intent(out) :: rcond
integer, intent(out) :: status 604 616 integer, intent(out) :: status
605 617
double complex, allocatable :: work(:) 606 618 double complex, allocatable :: work(:)
double precision, allocatable :: rwork(:) 607 619 double precision, allocatable :: rwork(:)
double precision :: anorm 608 620 double precision :: anorm
double complex, allocatable :: wc_a(:,:) ! working copy of a 609 621 double complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 610 622 integer :: info
integer, allocatable :: ipiv(:) 611 623 integer, allocatable :: ipiv(:)
612 624
double precision, external :: zlange 613 625 double precision, external :: zlange
614 626
615 627
status=1 616 628 status=1
617 629
anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm 618 630 anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
619 631
allocate(wc_a(d,d)) 620 632 allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1) 621 633 !call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 622 634 wc_a(:,:)=a(:,:)
623 635
allocate(ipiv(d)) 624 636 allocate(ipiv(d))
call zgetrf(d,d,wc_a,d,ipiv,info) 625 637 call zgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 626 638 if (info /= 0) then
status=0 627 639 status=0
deallocate(ipiv) 628 640 deallocate(ipiv)
deallocate(wc_a) 629 641 deallocate(wc_a)
return 630 642 return
end if 631 643 end if
632 644
allocate(work(2*d)) 633 645 allocate(work(2*d))
allocate(rwork(2*d)) 634 646 allocate(rwork(2*d))
call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) 635 647 call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then 636 648 if (info /= 0) then
status=0 637 649 status=0
end if 638 650 end if
deallocate(rwork) 639 651 deallocate(rwork)
deallocate(work) 640 652 deallocate(work)
deallocate(ipiv) 641 653 deallocate(ipiv)
deallocate(wc_a) 642 654 deallocate(wc_a)
end subroutine 643 655 end subroutine
644 656
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 645 657 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 646 658 !
! Valeurs propres/ Vecteurs propre 647 659 ! Valeurs propres/ Vecteurs propre
! 648 660 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 649 661 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
650 662
subroutine fvn_s_matev(d,a,evala,eveca,status) 651 663 subroutine fvn_s_matev(d,a,evala,eveca,status)
! 652 664 !
! integer d (in) : matrice rank 653 665 ! integer d (in) : matrice rank
! real a(d,d) (in) : The Matrix 654 666 ! real a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues 655 667 ! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 656 668 ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 657 669 ! integer (out) : status =0 if something went wrong
! 658 670 !
! interfacing Lapack routine SGEEV 659 671 ! interfacing Lapack routine SGEEV
660 672 implicit none
integer, intent(in) :: d 661 673 integer, intent(in) :: d
real, intent(in) :: a(d,d) 662 674 real, intent(in) :: a(d,d)
complex, intent(out) :: evala(d) 663 675 complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d) 664 676 complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 665 677 integer, intent(out) :: status
666 678
real, allocatable :: wc_a(:,:) ! a working copy of a 667 679 real, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 668 680 integer :: info
integer :: lwork 669 681 integer :: lwork
real, allocatable :: wr(:),wi(:) 670 682 real, allocatable :: wr(:),wi(:)
real :: vl ! unused but necessary for the call 671 683 real :: vl ! unused but necessary for the call
real, allocatable :: vr(:,:) 672 684 real, allocatable :: vr(:,:)
real, allocatable :: work(:) 673 685 real, allocatable :: work(:)
real :: twork(1) 674 686 real :: twork(1)
integer i 675 687 integer i
integer j 676 688 integer j
677 689
! making a working copy of a 678 690 ! making a working copy of a
allocate(wc_a(d,d)) 679 691 allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1) 680 692 !call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 681 693 wc_a(:,:)=a(:,:)
682 694
allocate(wr(d)) 683 695 allocate(wr(d))
allocate(wi(d)) 684 696 allocate(wi(d))
allocate(vr(d,d)) 685 697 allocate(vr(d,d))
! query optimal work size 686 698 ! query optimal work size
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) 687 699 call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1)) 688 700 lwork=int(twork(1))
allocate(work(lwork)) 689 701 allocate(work(lwork))
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) 690 702 call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
691 703
if (info /= 0) then 692 704 if (info /= 0) then
status=0 693 705 status=0
deallocate(work) 694 706 deallocate(work)
deallocate(vr) 695 707 deallocate(vr)
deallocate(wi) 696 708 deallocate(wi)
deallocate(wr) 697 709 deallocate(wr)
deallocate(wc_a) 698 710 deallocate(wc_a)
return 699 711 return
end if 700 712 end if
701 713
! now fill in the results 702 714 ! now fill in the results
i=1 703 715 i=1
do while(i<=d) 704 716 do while(i<=d)
evala(i)=cmplx(wr(i),wi(i)) 705 717 evala(i)=cmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real 706 718 if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=cmplx(vr(:,i),0.) 707 719 eveca(:,i)=cmplx(vr(:,i),0.)
else ! eigenvalue is complex 708 720 else ! eigenvalue is complex
evala(i+1)=cmplx(wr(i+1),wi(i+1)) 709 721 evala(i+1)=cmplx(wr(i+1),wi(i+1))
eveca(:,i)=cmplx(vr(:,i),vr(:,i+1)) 710 722 eveca(:,i)=cmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1)) 711 723 eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1))
i=i+1 712 724 i=i+1
end if 713 725 end if
i=i+1 714 726 i=i+1
enddo 715 727 enddo
deallocate(work) 716 728 deallocate(work)
deallocate(vr) 717 729 deallocate(vr)
deallocate(wi) 718 730 deallocate(wi)
deallocate(wr) 719 731 deallocate(wr)
deallocate(wc_a) 720 732 deallocate(wc_a)
721 733
end subroutine 722 734 end subroutine
723 735
subroutine fvn_d_matev(d,a,evala,eveca,status) 724 736 subroutine fvn_d_matev(d,a,evala,eveca,status)
! 725 737 !
! integer d (in) : matrice rank 726 738 ! integer d (in) : matrice rank
! double precision a(d,d) (in) : The Matrix 727 739 ! double precision a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues 728 740 ! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 729 741 ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 730 742 ! integer (out) : status =0 if something went wrong
! 731 743 !
! interfacing Lapack routine DGEEV 732 744 ! interfacing Lapack routine DGEEV
745 implicit none
integer, intent(in) :: d 733 746 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 734 747 double precision, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d) 735 748 double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d) 736 749 double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 737 750 integer, intent(out) :: status
738 751
double precision, allocatable :: wc_a(:,:) ! a working copy of a 739 752 double precision, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 740 753 integer :: info
integer :: lwork 741 754 integer :: lwork
double precision, allocatable :: wr(:),wi(:) 742 755 double precision, allocatable :: wr(:),wi(:)
double precision :: vl ! unused but necessary for the call 743 756 double precision :: vl ! unused but necessary for the call
double precision, allocatable :: vr(:,:) 744 757 double precision, allocatable :: vr(:,:)
double precision, allocatable :: work(:) 745 758 double precision, allocatable :: work(:)
double precision :: twork(1) 746 759 double precision :: twork(1)
integer i 747 760 integer i
integer j 748 761 integer j
749 762
! making a working copy of a 750 763 ! making a working copy of a
allocate(wc_a(d,d)) 751 764 allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1) 752 765 !call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 753 766 wc_a(:,:)=a(:,:)
754 767
allocate(wr(d)) 755 768 allocate(wr(d))
allocate(wi(d)) 756 769 allocate(wi(d))
allocate(vr(d,d)) 757 770 allocate(vr(d,d))
! query optimal work size 758 771 ! query optimal work size
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) 759 772 call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1)) 760 773 lwork=int(twork(1))
allocate(work(lwork)) 761 774 allocate(work(lwork))
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) 762 775 call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
763 776
if (info /= 0) then 764 777 if (info /= 0) then
status=0 765 778 status=0
deallocate(work) 766 779 deallocate(work)
deallocate(vr) 767 780 deallocate(vr)
deallocate(wi) 768 781 deallocate(wi)
deallocate(wr) 769 782 deallocate(wr)
deallocate(wc_a) 770 783 deallocate(wc_a)
return 771 784 return
end if 772 785 end if
773 786
! now fill in the results 774 787 ! now fill in the results
i=1 775 788 i=1
do while(i<=d) 776 789 do while(i<=d)
evala(i)=dcmplx(wr(i),wi(i)) 777 790 evala(i)=dcmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real 778 791 if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=dcmplx(vr(:,i),0.) 779 792 eveca(:,i)=dcmplx(vr(:,i),0.)
else ! eigenvalue is complex 780 793 else ! eigenvalue is complex
evala(i+1)=dcmplx(wr(i+1),wi(i+1)) 781 794 evala(i+1)=dcmplx(wr(i+1),wi(i+1))
eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1)) 782 795 eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1)) 783 796 eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1))
i=i+1 784 797 i=i+1
end if 785 798 end if
i=i+1 786 799 i=i+1
enddo 787 800 enddo
788 801
deallocate(work) 789 802 deallocate(work)
deallocate(vr) 790 803 deallocate(vr)
deallocate(wi) 791 804 deallocate(wi)
deallocate(wr) 792 805 deallocate(wr)
deallocate(wc_a) 793 806 deallocate(wc_a)
794 807
end subroutine 795 808 end subroutine
796 809
subroutine fvn_c_matev(d,a,evala,eveca,status) 797 810 subroutine fvn_c_matev(d,a,evala,eveca,status)
! 798 811 !
! integer d (in) : matrice rank 799 812 ! integer d (in) : matrice rank
! complex a(d,d) (in) : The Matrix 800 813 ! complex a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues 801 814 ! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 802 815 ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 803 816 ! integer (out) : status =0 if something went wrong
! 804 817 !
! interfacing Lapack routine CGEEV 805 818 ! interfacing Lapack routine CGEEV
806 819 implicit none
integer, intent(in) :: d 807 820 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 808 821 complex, intent(in) :: a(d,d)
complex, intent(out) :: evala(d) 809 822 complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d) 810 823 complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 811 824 integer, intent(out) :: status
812 825
complex, allocatable :: wc_a(:,:) ! a working copy of a 813 826 complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 814 827 integer :: info
integer :: lwork 815 828 integer :: lwork
complex, allocatable :: work(:) 816 829 complex, allocatable :: work(:)
complex :: twork(1) 817 830 complex :: twork(1)
real, allocatable :: rwork(:) 818 831 real, allocatable :: rwork(:)
complex :: vl ! unused but necessary for the call 819 832 complex :: vl ! unused but necessary for the call
820 833
status=1 821 834 status=1
822 835
! making a working copy of a 823 836 ! making a working copy of a
allocate(wc_a(d,d)) 824 837 allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1) 825 838 !call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 826 839 wc_a(:,:)=a(:,:)
827 840
828 841
! query optimal work size 829 842 ! query optimal work size
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) 830 843 call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1)) 831 844 lwork=int(twork(1))
allocate(work(lwork)) 832 845 allocate(work(lwork))
allocate(rwork(2*d)) 833 846 allocate(rwork(2*d))
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) 834 847 call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
835 848
if (info /= 0) then 836 849 if (info /= 0) then
status=0 837 850 status=0
end if 838 851 end if
deallocate(rwork) 839 852 deallocate(rwork)
deallocate(work) 840 853 deallocate(work)
deallocate(wc_a) 841 854 deallocate(wc_a)
842 855
end subroutine 843 856 end subroutine
844 857
subroutine fvn_z_matev(d,a,evala,eveca,status) 845 858 subroutine fvn_z_matev(d,a,evala,eveca,status)
! 846 859 !
! integer d (in) : matrice rank 847 860 ! integer d (in) : matrice rank
! double complex a(d,d) (in) : The Matrix 848 861 ! double complex a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues 849 862 ! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 850 863 ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 851 864 ! integer (out) : status =0 if something went wrong
! 852 865 !
! interfacing Lapack routine ZGEEV 853 866 ! interfacing Lapack routine ZGEEV
854 867 implicit none
integer, intent(in) :: d 855 868 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 856 869 double complex, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d) 857 870 double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d) 858 871 double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 859 872 integer, intent(out) :: status
860 873
double complex, allocatable :: wc_a(:,:) ! a working copy of a 861 874 double complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 862 875 integer :: info
integer :: lwork 863 876 integer :: lwork
double complex, allocatable :: work(:) 864 877 double complex, allocatable :: work(:)
double complex :: twork(1) 865 878 double complex :: twork(1)
double precision, allocatable :: rwork(:) 866 879 double precision, allocatable :: rwork(:)
double complex :: vl ! unused but necessary for the call 867 880 double complex :: vl ! unused but necessary for the call
868 881
status=1 869 882 status=1
870 883
! making a working copy of a 871 884 ! making a working copy of a
allocate(wc_a(d,d)) 872 885 allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1) 873 886 !call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 874 887 wc_a(:,:)=a(:,:)
875 888
! query optimal work size 876 889 ! query optimal work size
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) 877 890 call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1)) 878 891 lwork=int(twork(1))
allocate(work(lwork)) 879 892 allocate(work(lwork))
allocate(rwork(2*d)) 880 893 allocate(rwork(2*d))
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) 881 894 call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
882 895
if (info /= 0) then 883 896 if (info /= 0) then
status=0 884 897 status=0
end if 885 898 end if
deallocate(rwork) 886 899 deallocate(rwork)
deallocate(work) 887 900 deallocate(work)
deallocate(wc_a) 888 901 deallocate(wc_a)
889 902
end subroutine 890 903 end subroutine
891 904
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 892 905 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 893 906 !
! Akima spline interpolation and spline evaluation 894 907 ! Akima spline interpolation and spline evaluation
! 895 908 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 896 909 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
897 910
! Single precision 898 911 ! Single precision
subroutine fvn_s_akima(n,x,y,br,co) 899 912 subroutine fvn_s_akima(n,x,y,br,co)
implicit none 900 913 implicit none
integer, intent(in) :: n 901 914 integer, intent(in) :: n
real, intent(in) :: x(n) 902 915 real, intent(in) :: x(n)
real, intent(in) :: y(n) 903 916 real, intent(in) :: y(n)
real, intent(out) :: br(n) 904 917 real, intent(out) :: br(n)
real, intent(out) :: co(4,n) 905 918 real, intent(out) :: co(4,n)
906 919
real, allocatable :: var(:),z(:) 907 920 real, allocatable :: var(:),z(:)
real :: wi_1,wi 908 921 real :: wi_1,wi
integer :: i 909 922 integer :: i
real :: dx,a,b 910 923 real :: dx,a,b
911 924
! br is just a copy of x 912 925 ! br is just a copy of x
br(:)=x(:) 913 926 br(:)=x(:)
914 927
allocate(var(n)) 915 928 allocate(var(n))
allocate(z(n)) 916 929 allocate(z(n))
! evaluate the variations 917 930 ! evaluate the variations
do i=1, n-1 918 931 do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) 919 932 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do 920 933 end do
var(n+2)=2.e0*var(n+1)-var(n) 921 934 var(n+2)=2.e0*var(n+1)-var(n)
var(n+3)=2.e0*var(n+2)-var(n+1) 922 935 var(n+3)=2.e0*var(n+2)-var(n+1)
var(2)=2.e0*var(3)-var(4) 923 936 var(2)=2.e0*var(3)-var(4)
var(1)=2.e0*var(2)-var(3) 924 937 var(1)=2.e0*var(2)-var(3)
925 938
do i = 1, n 926 939 do i = 1, n
wi_1=abs(var(i+3)-var(i+2)) 927 940 wi_1=abs(var(i+3)-var(i+2))
wi=abs(var(i+1)-var(i)) 928 941 wi=abs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.e0) then 929 942 if ((wi_1+wi).eq.0.e0) then
z(i)=(var(i+2)+var(i+1))/2.e0 930 943 z(i)=(var(i+2)+var(i+1))/2.e0
else 931 944 else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) 932 945 z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if 933 946 end if
end do 934 947 end do
935 948
do i=1, n-1 936 949 do i=1, n-1
dx=x(i+1)-x(i) 937 950 dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd 938 951 a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd 939 952 b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i) 940 953 co(1,i)=y(i)
co(2,i)=z(i) 941 954 co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd 942 955 !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd
!co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd 943 956 !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd
co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau 944 957 co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! 945 958 co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 !
! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 946 959 ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ... 947 960 ! etrangement la fonction csval corrige et donne la bonne valeur ...
end do 948 961 end do
co(1,n)=y(n) 949 962 co(1,n)=y(n)
co(2,n)=z(n) 950 963 co(2,n)=z(n)
co(3,n)=0.e0 951 964 co(3,n)=0.e0
co(4,n)=0.e0 952 965 co(4,n)=0.e0
953 966
deallocate(z) 954 967 deallocate(z)
deallocate(var) 955 968 deallocate(var)
956 969
end subroutine 957 970 end subroutine
958 971
! Double precision 959 972 ! Double precision
subroutine fvn_d_akima(n,x,y,br,co) 960 973 subroutine fvn_d_akima(n,x,y,br,co)
961 974
implicit none 962 975 implicit none
integer, intent(in) :: n 963 976 integer, intent(in) :: n
double precision, intent(in) :: x(n) 964 977 double precision, intent(in) :: x(n)
double precision, intent(in) :: y(n) 965 978 double precision, intent(in) :: y(n)
double precision, intent(out) :: br(n) 966 979 double precision, intent(out) :: br(n)
double precision, intent(out) :: co(4,n) 967 980 double precision, intent(out) :: co(4,n)
968 981
double precision, allocatable :: var(:),z(:) 969 982 double precision, allocatable :: var(:),z(:)
double precision :: wi_1,wi 970 983 double precision :: wi_1,wi
integer :: i 971 984 integer :: i
double precision :: dx,a,b 972 985 double precision :: dx,a,b
973 986
! br is just a copy of x 974 987 ! br is just a copy of x
br(:)=x(:) 975 988 br(:)=x(:)
976 989
allocate(var(n)) 977 990 allocate(var(n))
allocate(z(n)) 978 991 allocate(z(n))
! evaluate the variations 979 992 ! evaluate the variations
do i=1, n-1 980 993 do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) 981 994 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do 982 995 end do
var(n+2)=2.d0*var(n+1)-var(n) 983 996 var(n+2)=2.d0*var(n+1)-var(n)
var(n+3)=2.d0*var(n+2)-var(n+1) 984 997 var(n+3)=2.d0*var(n+2)-var(n+1)
var(2)=2.d0*var(3)-var(4) 985 998 var(2)=2.d0*var(3)-var(4)
var(1)=2.d0*var(2)-var(3) 986 999 var(1)=2.d0*var(2)-var(3)
987 1000
do i = 1, n 988 1001 do i = 1, n
wi_1=dabs(var(i+3)-var(i+2)) 989 1002 wi_1=dabs(var(i+3)-var(i+2))
wi=dabs(var(i+1)-var(i)) 990 1003 wi=dabs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.d0) then 991 1004 if ((wi_1+wi).eq.0.d0) then
z(i)=(var(i+2)+var(i+1))/2.d0 992 1005 z(i)=(var(i+2)+var(i+1))/2.d0
else 993 1006 else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) 994 1007 z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if 995 1008 end if
end do 996 1009 end do
997 1010
do i=1, n-1 998 1011 do i=1, n-1
dx=x(i+1)-x(i) 999 1012 dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd 1000 1013 a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd 1001 1014 b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i) 1002 1015 co(1,i)=y(i)
co(2,i)=z(i) 1003 1016 co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd 1004 1017 !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd
!co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd 1005 1018 !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd
co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau 1006 1019 co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! 1007 1020 co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 !
! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 1008 1021 ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ... 1009 1022 ! etrangement la fonction csval corrige et donne la bonne valeur ...
end do 1010 1023 end do
co(1,n)=y(n) 1011 1024 co(1,n)=y(n)
co(2,n)=z(n) 1012 1025 co(2,n)=z(n)
co(3,n)=0.d0 1013 1026 co(3,n)=0.d0
co(4,n)=0.d0 1014 1027 co(4,n)=0.d0
1015 1028
deallocate(z) 1016 1029 deallocate(z)
deallocate(var) 1017 1030 deallocate(var)
1018 1031
end subroutine 1019 1032 end subroutine
1020 1033
! 1021 1034 !
! Single precision spline evaluation 1022 1035 ! Single precision spline evaluation
! 1023 1036 !
function fvn_s_spline_eval(x,n,br,co) 1024 1037 function fvn_s_spline_eval(x,n,br,co)
implicit none 1025 1038 implicit none
real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated 1026 1039 real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals 1027 1040 integer, intent(in) :: n ! number of intervals
real, intent(in) :: br(n+1) ! breakpoints 1028 1041 real, intent(in) :: br(n+1) ! breakpoints
real, intent(in) :: co(4,n+1) ! spline coeeficients 1029 1042 real, intent(in) :: co(4,n+1) ! spline coeeficients
real :: fvn_s_spline_eval 1030 1043 real :: fvn_s_spline_eval
1031 1044
integer :: i 1032 1045 integer :: i
real :: dx 1033 1046 real :: dx
1034 1047
if (x<=br(1)) then 1035 1048 if (x<=br(1)) then
i=1 1036 1049 i=1
else if (x>=br(n+1)) then 1037 1050 else if (x>=br(n+1)) then
i=n 1038 1051 i=n
else 1039 1052 else
i=1 1040 1053 i=1
do while(x>=br(i)) 1041 1054 do while(x>=br(i))
i=i+1 1042 1055 i=i+1
end do 1043 1056 end do
i=i-1 1044 1057 i=i-1
end if 1045 1058 end if
dx=x-br(i) 1046 1059 dx=x-br(i)
fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 1047 1060 fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
1048 1061
end function 1049 1062 end function
1050 1063
! Double precision spline evaluation 1051 1064 ! Double precision spline evaluation
function fvn_d_spline_eval(x,n,br,co) 1052 1065 function fvn_d_spline_eval(x,n,br,co)
implicit none 1053 1066 implicit none
double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated 1054 1067 double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals 1055 1068 integer, intent(in) :: n ! number of intervals
double precision, intent(in) :: br(n+1) ! breakpoints 1056 1069 double precision, intent(in) :: br(n+1) ! breakpoints
double precision, intent(in) :: co(4,n+1) ! spline coeeficients 1057 1070 double precision, intent(in) :: co(4,n+1) ! spline coeeficients
double precision :: fvn_d_spline_eval 1058 1071 double precision :: fvn_d_spline_eval
1059 1072
integer :: i 1060 1073 integer :: i
double precision :: dx 1061 1074 double precision :: dx
1062 1075
1063 1076
if (x<=br(1)) then 1064 1077 if (x<=br(1)) then
i=1 1065 1078 i=1
else if (x>=br(n+1)) then 1066 1079 else if (x>=br(n+1)) then
i=n 1067 1080 i=n
else 1068 1081 else
i=1 1069 1082 i=1
do while(x>=br(i)) 1070 1083 do while(x>=br(i))
i=i+1 1071 1084 i=i+1
end do 1072 1085 end do
i=i-1 1073 1086 i=i-1
end if 1074 1087 end if
1075 1088
dx=x-br(i) 1076 1089 dx=x-br(i)
fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 1077 1090 fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
1078 1091
end function 1079 1092 end function
1080 1093
1081 1094
1095 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1096 !
1097 ! Least square problem
! 1082 1098 !
1099 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1100 !
1101 !
1102 subroutine fvn_d_lspoly(np,x,y,deg,coeff,status)
1103 !
1104 ! Least square polynomial fitting
1105 !
1106 ! Find the coefficients of the least square polynomial of a given degree
1107 ! for a set of coordinates.
1108 !
1109 ! The degree must be lower than the number of points
1110 !
1111 ! np (in) : number of points
1112 ! x(np) (in) : x data
1113 ! y(np) (in) : y data
1114 ! deg (in) : polynomial's degree
1115 ! coeff(deg+1) (out) : polynomial coefficients
1116 ! status (out) : =0 if a problem occurs
1117 !
1118 implicit none
1119
1120 integer, intent(in) :: np,deg
1121 real(kind=8), intent(in), dimension(np) :: x,y
1122 real(kind=8), intent(out), dimension(deg+1) :: coeff
1123 integer, intent(out) :: status
1124
1125 real(kind=8), allocatable, dimension(:,:) :: mat,bmat
1126 real(kind=8),dimension(:),allocatable :: work,singval
1127 real(kind=8),dimension(1) :: twork
1128 integer :: lwork,info,rank
1129
1130 integer :: i,j
1131
1132 status=1
1133 allocate(mat(np,deg+1),bmat(np,1),singval(deg+1))
1134
1135 ! Design matrix valorisation
1136 mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) )
1137
1138 ! second member valorisation
1139 bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /))
1140
1141 ! query workspace size
1142 call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info)
1143 lwork=twork(1)
1144 allocate(work(int(lwork)))
1145 ! real call
1146 call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info)
1147
1148 if (info /= 0) then
1149 status=0
1150 end if
1151
1152 coeff = (/ (bmat(i,1),i=1,deg+1) /)
1153
1154 deallocate(work)
1155 deallocate(mat,bmat,singval)
1156 end subroutine
1157
1158 subroutine fvn_s_lspoly(np,x,y,deg,coeff,status)
1159 !
1160 ! Least square polynomial fitting
1161 !
1162 ! Find the coefficients of the least square polynomial of a given degree
1163 ! for a set of coordinates.
1164 !
1165 ! The degree must be lower than the number of points
1166 !
1167 ! np (in) : number of points
1168 ! x(np) (in) : x data
1169 ! y(np) (in) : y data
1170 ! deg (in) : polynomial's degree
1171 ! coeff(deg+1) (out) : polynomial coefficients
1172 ! status (out) : =0 if a problem occurs
1173 !
1174 implicit none
1175
1176 integer, intent(in) :: np,deg
1177 real(kind=4), intent(in), dimension(np) :: x,y
1178 real(kind=4), intent(out), dimension(deg+1) :: coeff
1179 integer, intent(out) :: status
1180
1181 real(kind=4), allocatable, dimension(:,:) :: mat,bmat
1182 real(kind=4),dimension(:),allocatable :: work,singval
1183 real(kind=4),dimension(1) :: twork
1184 integer :: lwork,info,rank
1185
1186 integer :: i,j
1187
1188 status=1
1189 allocate(mat(np,deg+1),bmat(np,1),singval(deg+1))
1190
1191 ! Design matrix valorisation
1192 mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) )
1193
1194 ! second member valorisation
1195 bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /))
1196
1197 ! query workspace size
1198 call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info)
1199 lwork=twork(1)
1200 allocate(work(int(lwork)))
1201 ! real call
1202 call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info)
1203
1204 if (info /= 0) then
1205 status=0
1206 end if
1207
1208 coeff = (/ (bmat(i,1),i=1,deg+1) /)
1209
1210 deallocate(work)
1211 deallocate(mat,bmat,singval)
1212 end subroutine
1213
1214
1215 !
! Muller 1083 1216 ! Muller
! 1084 1217 !
! 1085 1218 !
! 1086 1219 !
! William Daniau 2007 1087 1220 ! William Daniau 2007
! 1088 1221 !
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f 1089 1222 ! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f
! http://plato.asu.edu/ftp/other_software/muller.f 1090 1223 ! http://plato.asu.edu/ftp/other_software/muller.f
! 1091 1224 !
! it can be used as a replacement for imsl routine dzanly with minor changes 1092 1225 ! it can be used as a replacement for imsl routine dzanly with minor changes
! 1093 1226 !
!----------------------------------------------------------------------- 1094 1227 !-----------------------------------------------------------------------
! 1095 1228 !
! purpose - zeros of an analytic complex function 1096 1229 ! purpose - zeros of an analytic complex function
! using the muller method with deflation 1097 1230 ! using the muller method with deflation
! 1098 1231 !
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, 1099 1232 ! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax,
! infer,ier) 1100 1233 ! infer,ier)
! 1101 1234 !
! arguments f - a complex function subprogram, f(z), written 1102 1235 ! arguments f - a complex function subprogram, f(z), written
! by the user specifying the equation whose 1103 1236 ! by the user specifying the equation whose
! roots are to be found. f must appear in 1104 1237 ! roots are to be found. f must appear in
! an external statement in the calling pro- 1105 1238 ! an external statement in the calling pro-
! gram. 1106 1239 ! gram.
! eps - 1st stopping criterion. let fp(z)=f(z)/p 1107 1240 ! eps - 1st stopping criterion. let fp(z)=f(z)/p
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) 1108 1241 ! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1))
! and z(1),...,z(k-1) are previously found 1109 1242 ! and z(1),...,z(k-1) are previously found
! roots. if ((cdabs(f(z)).le.eps) .and. 1110 1243 ! roots. if ((cdabs(f(z)).le.eps) .and.
! (cdabs(fp(z)).le.eps)), then z is accepted 1111 1244 ! (cdabs(fp(z)).le.eps)), then z is accepted
! as a root. (input) 1112 1245 ! as a root. (input)
! eps1 - 2nd stopping criterion. a root is accepted 1113 1246 ! eps1 - 2nd stopping criterion. a root is accepted
! if two successive approximations to a given 1114 1247 ! if two successive approximations to a given
! root agree within eps1. (input) 1115 1248 ! root agree within eps1. (input)
! note. if either or both of the stopping 1116 1249 ! note. if either or both of the stopping
! criteria are fulfilled, the root is 1117 1250 ! criteria are fulfilled, the root is
! accepted. 1118 1251 ! accepted.
! kn - the number of known roots which must be stored 1119 1252 ! kn - the number of known roots which must be stored
! in x(1),...,x(kn), prior to entry to muller 1120 1253 ! in x(1),...,x(kn), prior to entry to muller
! nguess - the number of initial guesses provided. these 1121 1254 ! nguess - the number of initial guesses provided. these
! guesses must be stored in x(kn+1),..., 1122 1255 ! guesses must be stored in x(kn+1),...,
! x(kn+nguess). nguess must be set equal 1123 1256 ! x(kn+nguess). nguess must be set equal
! to zero if no guesses are provided. (input) 1124 1257 ! to zero if no guesses are provided. (input)
! n - the number of new roots to be found by 1125 1258 ! n - the number of new roots to be found by
! muller (input) 1126 1259 ! muller (input)
! x - a complex vector of length kn+n. x(1),..., 1127 1260 ! x - a complex vector of length kn+n. x(1),...,
! x(kn) on input must contain any known 1128 1261 ! x(kn) on input must contain any known
! roots. x(kn+1),..., x(kn+n) on input may, 1129 1262 ! roots. x(kn+1),..., x(kn+n) on input may,
! on user option, contain initial guesses for 1130 1263 ! on user option, contain initial guesses for
! the n new roots which are to be computed. 1131 1264 ! the n new roots which are to be computed.
! if the user does not provide an initial 1132 1265 ! if the user does not provide an initial
! guess, zero is used. 1133 1266 ! guess, zero is used.
! on output, x(kn+1),...,x(kn+n) contain the 1134 1267 ! on output, x(kn+1),...,x(kn+n) contain the
! approximate roots found by muller. 1135 1268 ! approximate roots found by muller.
! itmax - the maximum allowable number of iterations 1136 1269 ! itmax - the maximum allowable number of iterations
! per root (input) 1137 1270 ! per root (input)
! infer - an integer vector of length kn+n. on 1138 1271 ! infer - an integer vector of length kn+n. on
! output infer(j) contains the number of 1139 1272 ! output infer(j) contains the number of
! iterations used in finding the j-th root 1140 1273 ! iterations used in finding the j-th root
! when convergence was achieved. if 1141 1274 ! when convergence was achieved. if
! convergence was not obtained in itmax 1142 1275 ! convergence was not obtained in itmax
! iterations, infer(j) will be greater than 1143 1276 ! iterations, infer(j) will be greater than
! itmax (output). 1144 1277 ! itmax (output).
! ier - error parameter (output) 1145 1278 ! ier - error parameter (output)
! warning error 1146 1279 ! warning error
! ier = 33 indicates failure to converge with- 1147 1280 ! ier = 33 indicates failure to converge with-
! in itmax iterations for at least one of 1148 1281 ! in itmax iterations for at least one of
! the (n) new roots. 1149 1282 ! the (n) new roots.
! 1150 1283 !
! 1151 1284 !
! remarks muller always returns the last approximation for root j 1152 1285 ! remarks muller always returns the last approximation for root j
! in x(j). if the convergence criterion is satisfied, 1153 1286 ! in x(j). if the convergence criterion is satisfied,
! then infer(j) is less than or equal to itmax. if the 1154 1287 ! then infer(j) is less than or equal to itmax. if the
! convergence criterion is not satisified, then infer(j) 1155 1288 ! convergence criterion is not satisified, then infer(j)
! is set to either itmax+1 or itmax+k, with k greater 1156 1289 ! is set to either itmax+1 or itmax+k, with k greater
! than 1. infer(j) = itmax+1 indicates that muller did 1157 1290 ! than 1. infer(j) = itmax+1 indicates that muller did
! not obtain convergence in the allowed number of iter- 1158 1291 ! not obtain convergence in the allowed number of iter-
! ations. in this case, the user may wish to set itmax 1159 1292 ! ations. in this case, the user may wish to set itmax
! to a larger value. infer(j) = itmax+k means that con- 1160 1293 ! to a larger value. infer(j) = itmax+k means that con-
! vergence was obtained (on iteration k) for the defla- 1161 1294 ! vergence was obtained (on iteration k) for the defla-
! ted function 1162 1295 ! ted function
! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) 1163 1296 ! fp(z) = f(z)/((z-z(1)...(z-z(j-1)))
! 1164 1297 !
! but failed for f(z). in this case, better initial 1165 1298 ! but failed for f(z). in this case, better initial
! guesses might help or, it might be necessary to relax 1166 1299 ! guesses might help or, it might be necessary to relax
! the convergence criterion. 1167 1300 ! the convergence criterion.
! 1168 1301 !
!----------------------------------------------------------------------- 1169 1302 !-----------------------------------------------------------------------
! 1170 1303 !
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) 1171 1304 subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
implicit none 1172 1305 implicit none
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq 1173 1306 double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & 1174 1307 double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, &
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & 1175 1308 tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, &
zero,p1,one,four,p5 1176 1309 zero,p1,one,four,p5
1177 1310
double complex, external :: f 1178 1311 double complex, external :: f
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & 1179 1312 integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, &
knpng,jk,ick,nn,lm1,errcode 1180 1313 knpng,jk,ick,nn,lm1,errcode
double complex :: x(kn+n) 1181 1314 double complex :: x(kn+n)
integer :: infer(kn+n) 1182 1315 integer :: infer(kn+n)
1183 1316
1184 1317
data zero/(0.0,0.0)/,p1/(0.1,0.0)/, & 1185 1318 data zero/(0.0,0.0)/,p1/(0.1,0.0)/, &
one/(1.0,0.0)/,four/(4.0,0.0)/, & 1186 1319 one/(1.0,0.0)/,four/(4.0,0.0)/, &
p5/(0.5,0.0)/, & 1187 1320 p5/(0.5,0.0)/, &
rzero/0.0/,rten/10.0/,rhun/100.0/, & 1188 1321 rzero/0.0/,rten/10.0/,rhun/100.0/, &
ax/0.1/,ickmax/3/,rp01/0.01/ 1189 1322 ax/0.1/,ickmax/3/,rp01/0.01/
1190 1323
ier = 0 1191 1324 ier = 0
if (n .lt. 1) then ! What the hell are doing here then ... 1192 1325 if (n .lt. 1) then ! What the hell are doing here then ...
return 1193 1326 return
end if 1194 1327 end if
!eps1 = rten **(-nsig) 1195 1328 !eps1 = rten **(-nsig)
eps1 = min(eps1,rp01) 1196 1329 eps1 = min(eps1,rp01)
1197 1330
knp1 = kn+1 1198 1331 knp1 = kn+1
knpn = kn+n 1199 1332 knpn = kn+n
knpng = kn+nguess 1200 1333 knpng = kn+nguess
do i=1,knpn 1201 1334 do i=1,knpn
infer(i) = 0 1202 1335 infer(i) = 0
if (i .gt. knpng) x(i) = zero 1203 1336 if (i .gt. knpng) x(i) = zero
end do 1204 1337 end do
l= knp1 1205 1338 l= knp1
1206 1339
ic=0 1207 1340 ic=0
rloop: do while (l<=knpn) ! Main loop over new roots 1208 1341 rloop: do while (l<=knpn) ! Main loop over new roots
jk = 0 1209 1342 jk = 0
ick = 0 1210 1343 ick = 0
xl = x(l) 1211 1344 xl = x(l)
icloop: do 1212 1345 icloop: do
ic = 0 1213 1346 ic = 0
h = ax 1214 1347 h = ax
h = p1*h 1215 1348 h = p1*h
if (cdabs(xl) .gt. ax) h = p1*xl 1216 1349 if (cdabs(xl) .gt. ax) h = p1*xl
! first three points are 1217 1350 ! first three points are
! xl+h, xl-h, xl 1218 1351 ! xl+h, xl-h, xl
rt = xl+h 1219 1352 rt = xl+h
call deflated_work(errcode) 1220 1353 call deflated_work(errcode)
if (errcode == 1) then 1221 1354 if (errcode == 1) then
exit icloop 1222 1355 exit icloop
end if 1223 1356 end if
1224 1357
z0 = fprt 1225 1358 z0 = fprt
y0 = frt 1226 1359 y0 = frt
x0 = rt 1227 1360 x0 = rt
rt = xl-h 1228 1361 rt = xl-h
call deflated_work(errcode) 1229 1362 call deflated_work(errcode)
if (errcode == 1) then 1230 1363 if (errcode == 1) then
exit icloop 1231 1364 exit icloop
end if 1232 1365 end if
1233 1366
z1 = fprt 1234 1367 z1 = fprt
y1 = frt 1235 1368 y1 = frt
h = xl-rt 1236 1369 h = xl-rt
d = h/(rt-x0) 1237 1370 d = h/(rt-x0)
rt = xl 1238 1371 rt = xl
1239 1372
call deflated_work(errcode) 1240 1373 call deflated_work(errcode)
if (errcode == 1) then 1241 1374 if (errcode == 1) then
exit icloop 1242 1375 exit icloop
end if 1243 1376 end if
1244 1377
1245 1378
z2 = fprt 1246 1379 z2 = fprt
y2 = frt 1247 1380 y2 = frt
! begin main algorithm 1248 1381 ! begin main algorithm
iloop: do 1249 1382 iloop: do
dd = one + d 1250 1383 dd = one + d
t1 = z0*d*d 1251 1384 t1 = z0*d*d
t2 = z1*dd*dd 1252 1385 t2 = z1*dd*dd
xx = z2*dd 1253 1386 xx = z2*dd
t3 = z2*d 1254 1387 t3 = z2*d
bi = t1-t2+xx+t3 1255 1388 bi = t1-t2+xx+t3
den = bi*bi-four*(xx*t1-t3*(t2-xx)) 1256 1389 den = bi*bi-four*(xx*t1-t3*(t2-xx))
! use denominator of maximum amplitude 1257 1390 ! use denominator of maximum amplitude
t1 = cdsqrt(den) 1258 1391 t1 = cdsqrt(den)
qz = rhun*max(cdabs(bi),cdabs(t1)) 1259 1392 qz = rhun*max(cdabs(bi),cdabs(t1))
t2 = bi + t1 1260 1393 t2 = bi + t1
tpq = cdabs(t2)+qz 1261 1394 tpq = cdabs(t2)+qz
if (tpq .eq. qz) t2 = zero 1262 1395 if (tpq .eq. qz) t2 = zero
t3 = bi - t1 1263 1396 t3 = bi - t1
tpq = cdabs(t3) + qz 1264 1397 tpq = cdabs(t3) + qz
if (tpq .eq. qz) t3 = zero 1265 1398 if (tpq .eq. qz) t3 = zero
den = t2 1266 1399 den = t2
qz = cdabs(t3)-cdabs(t2) 1267 1400 qz = cdabs(t3)-cdabs(t2)
if (qz .gt. rzero) den = t3 1268 1401 if (qz .gt. rzero) den = t3
! test for zero denominator 1269 1402 ! test for zero denominator
if (cdabs(den) .eq. rzero) then 1270 1403 if (cdabs(den) .eq. rzero) then
call trans_rt() 1271 1404 call trans_rt()
call deflated_work(errcode) 1272 1405 call deflated_work(errcode)
if (errcode == 1) then 1273 1406 if (errcode == 1) then
exit icloop 1274 1407 exit icloop
end if 1275 1408 end if
z2 = fprt 1276 1409 z2 = fprt
y2 = frt 1277 1410 y2 = frt
cycle iloop 1278 1411 cycle iloop
end if 1279 1412 end if
1280 1413
1281 1414
d = -xx/den 1282 1415 d = -xx/den
d = d+d 1283 1416 d = d+d
h = d*h 1284 1417 h = d*h
rt = rt + h 1285 1418 rt = rt + h
! check convergence of the first kind 1286 1419 ! check convergence of the first kind
if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then 1287 1420 if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then
if (ic .ne. 0) then 1288 1421 if (ic .ne. 0) then
exit icloop 1289 1422 exit icloop
end if 1290 1423 end if
ic = 1 1291 1424 ic = 1
z0 = y1 1292 1425 z0 = y1
z1 = y2 1293 1426 z1 = y2
z2 = f(rt) 1294 1427 z2 = f(rt)
xl = rt 1295 1428 xl = rt
ick = ick+1 1296 1429 ick = ick+1
if (ick .le. ickmax) then 1297 1430 if (ick .le. ickmax) then
cycle iloop 1298 1431 cycle iloop
end if 1299 1432 end if
! warning error, itmax = maximum 1300 1433 ! warning error, itmax = maximum
jk = itmax + jk 1301 1434 jk = itmax + jk
ier = 33 1302 1435 ier = 33
end if 1303 1436 end if
if (ic .ne. 0) then 1304 1437 if (ic .ne. 0) then
cycle icloop 1305 1438 cycle icloop
end if 1306 1439 end if
call deflated_work(errcode) 1307 1440 call deflated_work(errcode)
if (errcode == 1) then 1308 1441 if (errcode == 1) then
exit icloop 1309 1442 exit icloop
end if 1310 1443 end if
1311 1444
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) 1312 1445 do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero)
! take remedial action to induce 1313 1446 ! take remedial action to induce
! convergence 1314 1447 ! convergence
d = d*p5 1315 1448 d = d*p5
h = h*p5 1316 1449 h = h*p5
rt = rt-h 1317 1450 rt = rt-h
call deflated_work(errcode) 1318 1451 call deflated_work(errcode)
if (errcode == 1) then 1319 1452 if (errcode == 1) then
exit icloop 1320 1453 exit icloop
end if 1321 1454 end if
end do 1322 1455 end do
z0 = z1 1323 1456 z0 = z1
z1 = z2 1324 1457 z1 = z2
z2 = fprt 1325 1458 z2 = fprt
y0 = y1 1326 1459 y0 = y1
y1 = y2 1327 1460 y1 = y2
y2 = frt 1328 1461 y2 = frt
end do iloop 1329 1462 end do iloop
end do icloop 1330 1463 end do icloop
x(l) = rt 1331 1464 x(l) = rt
infer(l) = jk 1332 1465 infer(l) = jk
l = l+1 1333 1466 l = l+1
end do rloop 1334 1467 end do rloop
1335 1468
contains 1336 1469 contains
subroutine trans_rt() 1337 1470 subroutine trans_rt()
tem = rten*eps1 1338 1471 tem = rten*eps1
if (cdabs(rt) .gt. ax) tem = tem*rt 1339 1472 if (cdabs(rt) .gt. ax) tem = tem*rt
rt = rt+tem 1340 1473 rt = rt+tem
d = (h+tem)*d/h 1341 1474 d = (h+tem)*d/h
h = h+tem 1342 1475 h = h+tem
end subroutine trans_rt 1343 1476 end subroutine trans_rt
1344 1477
subroutine deflated_work(errcode) 1345 1478 subroutine deflated_work(errcode)
! errcode=0 => no errors 1346 1479 ! errcode=0 => no errors
! errcode=1 => jk>itmax or convergence of second kind achieved 1347 1480 ! errcode=1 => jk>itmax or convergence of second kind achieved
integer :: errcode,flag 1348 1481 integer :: errcode,flag
1349 1482
flag=1 1350 1483 flag=1
loop1: do while(flag==1) 1351 1484 loop1: do while(flag==1)
errcode=0 1352 1485 errcode=0
jk = jk+1 1353 1486 jk = jk+1
if (jk .gt. itmax) then 1354 1487 if (jk .gt. itmax) then
ier=33 1355 1488 ier=33
errcode=1 1356 1489 errcode=1
return 1357 1490 return
end if 1358 1491 end if
frt = f(rt) 1359 1492 frt = f(rt)
fprt = frt 1360 1493 fprt = frt
if (l /= 1) then 1361 1494 if (l /= 1) then
lm1 = l-1 1362 1495 lm1 = l-1
do i=1,lm1 1363 1496 do i=1,lm1
tem = rt - x(i) 1364 1497 tem = rt - x(i)
if (cdabs(tem) .eq. rzero) then 1365 1498 if (cdabs(tem) .eq. rzero) then
!if (ic .ne. 0) go to 15 !! ?? possible? 1366 1499 !if (ic .ne. 0) go to 15 !! ?? possible?
call trans_rt() 1367 1500 call trans_rt()
cycle loop1 1368 1501 cycle loop1
end if 1369 1502 end if
fprt = fprt/tem 1370 1503 fprt = fprt/tem
end do 1371 1504 end do
end if 1372 1505 end if
flag=0 1373 1506 flag=0
end do loop1 1374 1507 end do loop1
1375 1508
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then 1376 1509 if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then
errcode=1 1377 1510 errcode=1
return 1378 1511 return
end if 1379 1512 end if
1380 1513
end subroutine deflated_work 1381 1514 end subroutine deflated_work
1382 1515
end subroutine 1383 1516 end subroutine
1384 1517
1385 1518
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1386 1519 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1387 1520 !
! Integration 1388 1521 ! Integration
! 1389 1522 !
! Only double precision coded atm 1390 1523 ! Only double precision coded atm
! 1391 1524 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1392 1525 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1393 1526
1394 1527
subroutine fvn_d_gauss_legendre(n,qx,qw) 1395 1528 subroutine fvn_d_gauss_legendre(n,qx,qw)
! 1396 1529 !
! This routine compute the n Gauss Legendre abscissas and weights 1397 1530 ! This routine compute the n Gauss Legendre abscissas and weights
! Adapted from Numerical Recipes routine gauleg 1398 1531 ! Adapted from Numerical Recipes routine gauleg
! 1399 1532 !
! n (in) : number of points 1400 1533 ! n (in) : number of points
! qx(out) : abscissas 1401 1534 ! qx(out) : abscissas
! qw(out) : weights 1402 1535 ! qw(out) : weights
! 1403 1536 !
implicit none 1404 1537 implicit none
double precision,parameter :: pi=3.141592653589793d0 1405 1538 double precision,parameter :: pi=3.141592653589793d0
integer, intent(in) :: n 1406 1539 integer, intent(in) :: n
double precision, intent(out) :: qx(n),qw(n) 1407 1540 double precision, intent(out) :: qx(n),qw(n)
1408 1541
integer :: m,i,j 1409 1542 integer :: m,i,j
double precision :: z,z1,p1,p2,p3,pp 1410 1543 double precision :: z,z1,p1,p2,p3,pp
m=(n+1)/2 1411 1544 m=(n+1)/2
do i=1,m 1412 1545 do i=1,m
z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0)) 1413 1546 z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0))
iloop: do 1414 1547 iloop: do
p1=1.d0 1415 1548 p1=1.d0
p2=0.d0 1416 1549 p2=0.d0
do j=1,n 1417 1550 do j=1,n
p3=p2 1418 1551 p3=p2
p2=p1 1419 1552 p2=p1
p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j) 1420 1553 p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j)
end do 1421 1554 end do
pp=dble(n)*(z*p1-p2)/(z*z-1.d0) 1422 1555 pp=dble(n)*(z*p1-p2)/(z*z-1.d0)
z1=z 1423 1556 z1=z
z=z1-p1/pp 1424 1557 z=z1-p1/pp
if (dabs(z-z1)<=epsilon(z)) then 1425 1558 if (dabs(z-z1)<=epsilon(z)) then
exit iloop 1426 1559 exit iloop
end if 1427 1560 end if
end do iloop 1428 1561 end do iloop
qx(i)=-z 1429 1562 qx(i)=-z
qx(n+1-i)=z 1430 1563 qx(n+1-i)=z
qw(i)=2.d0/((1.d0-z*z)*pp*pp) 1431 1564 qw(i)=2.d0/((1.d0-z*z)*pp*pp)
qw(n+1-i)=qw(i) 1432 1565 qw(n+1-i)=qw(i)
end do 1433 1566 end do
end subroutine 1434 1567 end subroutine
1435 1568
1436 1569
1437 1570
subroutine fvn_d_gl_integ(f,a,b,n,res) 1438 1571 subroutine fvn_d_gl_integ(f,a,b,n,res)
! 1439 1572 !
! This is a simple non adaptative integration routine 1440 1573 ! This is a simple non adaptative integration routine
! using n gauss legendre abscissas and weights 1441 1574 ! using n gauss legendre abscissas and weights
! 1442 1575 !
! f(in) : the function to integrate 1443 1576 ! f(in) : the function to integrate
! a(in) : lower bound 1444 1577 ! a(in) : lower bound
! b(in) : higher bound 1445 1578 ! b(in) : higher bound
! n(in) : number of gauss legendre pairs 1446 1579 ! n(in) : number of gauss legendre pairs
! res(out): the evaluation of the integral 1447 1580 ! res(out): the evaluation of the integral
! 1448 1581 !
double precision,external :: f 1449 1582 double precision,external :: f
double precision, intent(in) :: a,b 1450 1583 double precision, intent(in) :: a,b
integer, intent(in):: n 1451 1584 integer, intent(in):: n
double precision, intent(out) :: res 1452 1585 double precision, intent(out) :: res
1453 1586
double precision, allocatable :: qx(:),qw(:) 1454 1587 double precision, allocatable :: qx(:),qw(:)
double precision :: xm,xr 1455 1588 double precision :: xm,xr
integer :: i 1456 1589 integer :: i
1457 1590
! First compute n gauss legendre abs and weight 1458 1591 ! First compute n gauss legendre abs and weight
allocate(qx(n)) 1459 1592 allocate(qx(n))
allocate(qw(n)) 1460 1593 allocate(qw(n))
call fvn_d_gauss_legendre(n,qx,qw) 1461 1594 call fvn_d_gauss_legendre(n,qx,qw)
1462 1595
xm=0.5d0*(b+a) 1463 1596 xm=0.5d0*(b+a)
xr=0.5d0*(b-a) 1464 1597 xr=0.5d0*(b-a)
1465 1598
res=0.d0 1466 1599 res=0.d0
1467 1600
do i=1,n 1468 1601 do i=1,n
res=res+qw(i)*f(xm+xr*qx(i)) 1469 1602 res=res+qw(i)*f(xm+xr*qx(i))
end do 1470 1603 end do
1471 1604
res=xr*res 1472 1605 res=xr*res
1473 1606
deallocate(qw) 1474 1607 deallocate(qw)
deallocate(qx) 1475 1608 deallocate(qx)
1476 1609
end subroutine 1477 1610 end subroutine
1478 1611
!!!!!!!!!!!!!!!!!!!!!!!! 1479 1612 !!!!!!!!!!!!!!!!!!!!!!!!
! 1480 1613 !
! Simple and double adaptative Gauss Kronrod integration based on 1481 1614 ! Simple and double adaptative Gauss Kronrod integration based on
! a modified version of quadpack ( http://www.netlib.org/quadpack 1482 1615 ! a modified version of quadpack ( http://www.netlib.org/quadpack
! 1483 1616 !
! Common parameters : 1484 1617 ! Common parameters :
! 1485 1618 !
! key (in) 1486 1619 ! key (in)
! epsabs 1487 1620 ! epsabs
! epsrel 1488 1621 ! epsrel
! 1489 1622 !
! 1490 1623 !
!!!!!!!!!!!!!!!!!!!!!!!! 1491 1624 !!!!!!!!!!!!!!!!!!!!!!!!
1492 1625
subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit) 1493 1626 subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
! 1494 1627 !
! Evaluate the integral of function f(x) between a and b 1495 1628 ! Evaluate the integral of function f(x) between a and b
! 1496 1629 !
! f(in) : the function 1497 1630 ! f(in) : the function
! a(in) : lower bound 1498 1631 ! a(in) : lower bound
! b(in) : higher bound 1499 1632 ! b(in) : higher bound
! epsabs(in) : desired absolute error 1500 1633 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1501 1634 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1502 1635 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1503 1636 ! 1: 7 - 15 points
! 2: 10 - 21 points 1504 1637 ! 2: 10 - 21 points
! 3: 15 - 31 points 1505 1638 ! 3: 15 - 31 points
! 4: 20 - 41 points 1506 1639 ! 4: 20 - 41 points
! 5: 25 - 51 points 1507 1640 ! 5: 25 - 51 points
! 6: 30 - 61 points 1508 1641 ! 6: 30 - 61 points
! 1509 1642 !
! limit(in) : maximum number of subintervals in the partition of the 1510 1643 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1511 1644 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1512 1645 ! behaviour as the imsl routine dqdag
! 1513 1646 !
! res(out) : estimated integral value 1514 1647 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1515 1648 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1516 1649 ! ier(out) : error flag from quadpack routines
! 0 : no error 1517 1650 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1518 1651 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1519 1652 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1520 1653 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1521 1654 ! limit (and taking the according dimension
! adjustments into account). however, if 1522 1655 ! adjustments into account). however, if
! this yield no improvement it is advised 1523 1656 ! this yield no improvement it is advised
! to analyze the integrand in order to 1524 1657 ! to analyze the integrand in order to
! determine the integration difficulaties. 1525 1658 ! determine the integration difficulaties.
! if the position of a local difficulty can 1526 1659 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1527 1660 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1528 1661 ! discontinuity within the interval) one
! will probably gain from splitting up the 1529 1662 ! will probably gain from splitting up the
! interval at this point and calling the 1530 1663 ! interval at this point and calling the
! integrator on the subranges. if possible, 1531 1664 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1532 1665 ! an appropriate special-purpose integrator
! should be used which is designed for 1533 1666 ! should be used which is designed for
! handling the type of difficulty involved. 1534 1667 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1535 1668 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1536 1669 ! detected, which prevents the requested
! tolerance from being achieved. 1537 1670 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1538 1671 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1539 1672 ! at some points of the integration
! interval. 1540 1673 ! interval.
! 6 : the input is invalid, because 1541 1674 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1542 1675 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1543 1676 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1544 1677 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1545 1678 ! result, abserr, neval, last are set
! to zero. 1546 1679 ! to zero.
! except when lenw is invalid, iwork(1), 1547 1680 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1548 1681 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1549 1682 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1550 1683 ! work(limit+1) to b.
1551 1684
implicit none 1552 1685 implicit none
double precision, external :: f 1553 1686 double precision, external :: f
double precision, intent(in) :: a,b,epsabs,epsrel 1554 1687 double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key 1555 1688 integer, intent(in) :: key
integer, intent(in) :: limit 1556 1689 integer, intent(in) :: limit
double precision, intent(out) :: res,abserr 1557 1690 double precision, intent(out) :: res,abserr
integer, intent(out) :: ier 1558 1691 integer, intent(out) :: ier
1559 1692
double precision, allocatable :: work(:) 1560 1693 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1561 1694 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1562 1695 integer :: lenw,neval,last
1563 1696
! imsl value for limit is 500 1564 1697 ! imsl value for limit is 500
lenw=limit*4 1565 1698 lenw=limit*4
1566 1699
allocate(iwork(limit)) 1567 1700 allocate(iwork(limit))
allocate(work(lenw)) 1568 1701 allocate(work(lenw))
1569 1702
call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1570 1703 call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1571 1704
deallocate(work) 1572 1705 deallocate(work)
deallocate(iwork) 1573 1706 deallocate(iwork)
1574 1707
end subroutine 1575 1708 end subroutine
1576 1709
1577 1710
1578 1711
subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit) 1579 1712 subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
! 1580 1713 !
! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x) 1581 1714 ! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x)
! 1582 1715 !
! f(in) : the function 1583 1716 ! f(in) : the function
! a(in) : lower bound 1584 1717 ! a(in) : lower bound
! b(in) : higher bound 1585 1718 ! b(in) : higher bound
! g(in) : external function describing lower bound for y 1586 1719 ! g(in) : external function describing lower bound for y
! h(in) : external function describing higher bound for y 1587 1720 ! h(in) : external function describing higher bound for y
! epsabs(in) : desired absolute error 1588 1721 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1589 1722 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1590 1723 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1591 1724 ! 1: 7 - 15 points
! 2: 10 - 21 points 1592 1725 ! 2: 10 - 21 points
! 3: 15 - 31 points 1593 1726 ! 3: 15 - 31 points
! 4: 20 - 41 points 1594 1727 ! 4: 20 - 41 points
! 5: 25 - 51 points 1595 1728 ! 5: 25 - 51 points
! 6: 30 - 61 points 1596 1729 ! 6: 30 - 61 points
! 1597 1730 !
! limit(in) : maximum number of subintervals in the partition of the 1598 1731 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1599 1732 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1600 1733 ! behaviour as the imsl routine dqdag
! 1601 1734 !
! res(out) : estimated integral value 1602 1735 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1603 1736 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1604 1737 ! ier(out) : error flag from quadpack routines
! 0 : no error 1605 1738 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1606 1739 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1607 1740 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1608 1741 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1609 1742 ! limit (and taking the according dimension
! adjustments into account). however, if 1610 1743 ! adjustments into account). however, if
! this yield no improvement it is advised 1611 1744 ! this yield no improvement it is advised
! to analyze the integrand in order to 1612 1745 ! to analyze the integrand in order to
! determine the integration difficulaties. 1613 1746 ! determine the integration difficulaties.
! if the position of a local difficulty can 1614 1747 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1615 1748 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1616 1749 ! discontinuity within the interval) one
! will probably gain from splitting up the 1617 1750 ! will probably gain from splitting up the
! interval at this point and calling the 1618 1751 ! interval at this point and calling the
! integrator on the subranges. if possible, 1619 1752 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1620 1753 ! an appropriate special-purpose integrator
! should be used which is designed for 1621 1754 ! should be used which is designed for
! handling the type of difficulty involved. 1622 1755 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1623 1756 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1624 1757 ! detected, which prevents the requested
! tolerance from being achieved. 1625 1758 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1626 1759 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1627 1760 ! at some points of the integration
! interval. 1628 1761 ! interval.
! 6 : the input is invalid, because 1629 1762 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1630 1763 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1631 1764 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1632 1765 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1633 1766 ! result, abserr, neval, last are set
! to zero. 1634 1767 ! to zero.
! except when lenw is invalid, iwork(1), 1635 1768 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1636 1769 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1637 1770 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1638 1771 ! work(limit+1) to b.
1639 1772
implicit none 1640 1773 implicit none
double precision, external:: f,g,h 1641 1774 double precision, external:: f,g,h
double precision, intent(in) :: a,b,epsabs,epsrel 1642 1775 double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key,limit 1643 1776 integer, intent(in) :: key,limit
integer, intent(out) :: ier 1644 1777 integer, intent(out) :: ier
double precision, intent(out) :: res,abserr 1645 1778 double precision, intent(out) :: res,abserr
1646 1779
1647 1780
double precision, allocatable :: work(:) 1648 1781 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1649 1782 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1650 1783 integer :: lenw,neval,last
1651 1784
! imsl value for limit is 500 1652 1785 ! imsl value for limit is 500
lenw=limit*4 1653 1786 lenw=limit*4
allocate(work(lenw)) 1654 1787 allocate(work(lenw))
allocate(iwork(limit)) 1655 1788 allocate(iwork(limit))
1656 1789
call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1657 1790 call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1658 1791
deallocate(iwork) 1659 1792 deallocate(iwork)
deallocate(work) 1660 1793 deallocate(work)
end subroutine 1661 1794 end subroutine
1662 1795
1663 1796
1664 1797
subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit) 1665 1798 subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
! 1666 1799 !
! Evaluate the single integral of function f(x,y) for y between a and b with a 1667 1800 ! Evaluate the single integral of function f(x,y) for y between a and b with a
! given x value 1668 1801 ! given x value
! 1669 1802 !
! This function is used for the evaluation of the double integral fvn_d_integ_2_gk 1670 1803 ! This function is used for the evaluation of the double integral fvn_d_integ_2_gk
! 1671 1804 !
! f(in) : the function 1672 1805 ! f(in) : the function
! x(in) : x 1673 1806 ! x(in) : x
! a(in) : lower bound 1674 1807 ! a(in) : lower bound
! b(in) : higher bound 1675 1808 ! b(in) : higher bound
! epsabs(in) : desired absolute error 1676 1809 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1677 1810 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1678 1811 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1679 1812 ! 1: 7 - 15 points
! 2: 10 - 21 points 1680 1813 ! 2: 10 - 21 points
! 3: 15 - 31 points 1681 1814 ! 3: 15 - 31 points
! 4: 20 - 41 points 1682 1815 ! 4: 20 - 41 points
! 5: 25 - 51 points 1683 1816 ! 5: 25 - 51 points
! 6: 30 - 61 points 1684 1817 ! 6: 30 - 61 points
! 1685 1818 !
! limit(in) : maximum number of subintervals in the partition of the 1686 1819 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1687 1820 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1688 1821 ! behaviour as the imsl routine dqdag
! 1689 1822 !
! res(out) : estimated integral value 1690 1823 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1691 1824 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1692 1825 ! ier(out) : error flag from quadpack routines
! 0 : no error 1693 1826 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1694 1827 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1695 1828 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1696 1829 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1697 1830 ! limit (and taking the according dimension
! adjustments into account). however, if 1698 1831 ! adjustments into account). however, if
! this yield no improvement it is advised 1699 1832 ! this yield no improvement it is advised
! to analyze the integrand in order to 1700 1833 ! to analyze the integrand in order to
! determine the integration difficulaties. 1701 1834 ! determine the integration difficulaties.
! if the position of a local difficulty can 1702 1835 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1703 1836 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1704 1837 ! discontinuity within the interval) one
! will probably gain from splitting up the 1705 1838 ! will probably gain from splitting up the
! interval at this point and calling the 1706 1839 ! interval at this point and calling the
! integrator on the subranges. if possible, 1707 1840 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1708 1841 ! an appropriate special-purpose integrator
! should be used which is designed for 1709 1842 ! should be used which is designed for
! handling the type of difficulty involved. 1710 1843 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1711 1844 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1712 1845 ! detected, which prevents the requested
! tolerance from being achieved. 1713 1846 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1714 1847 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1715 1848 ! at some points of the integration
! interval. 1716 1849 ! interval.
! 6 : the input is invalid, because 1717 1850 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1718 1851 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1719 1852 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1720 1853 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1721 1854 ! result, abserr, neval, last are set
! to zero. 1722 1855 ! to zero.
! except when lenw is invalid, iwork(1), 1723 1856 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1724 1857 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1725 1858 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1726 1859 ! work(limit+1) to b.
1727 1860
implicit none 1728 1861 implicit none
double precision, external:: f 1729 1862 double precision, external:: f
double precision, intent(in) :: x,a,b,epsabs,epsrel 1730 1863 double precision, intent(in) :: x,a,b,epsabs,epsrel
integer, intent(in) :: key,limit 1731 1864 integer, intent(in) :: key,limit
integer, intent(out) :: ier 1732 1865 integer, intent(out) :: ier
double precision, intent(out) :: res,abserr 1733 1866 double precision, intent(out) :: res,abserr
1734 1867
1735 1868
double precision, allocatable :: work(:) 1736 1869 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1737 1870 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1738 1871 integer :: lenw,neval,last
1739 1872
! imsl value for limit is 500 1740 1873 ! imsl value for limit is 500
lenw=limit*4 1741 1874 lenw=limit*4
allocate(work(lenw)) 1742 1875 allocate(work(lenw))
allocate(iwork(limit)) 1743 1876 allocate(iwork(limit))
1744 1877
call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1745 1878 call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1746 1879
deallocate(iwork) 1747 1880 deallocate(iwork)
deallocate(work) 1748 1881 deallocate(work)
end subroutine 1749 1882 end subroutine
1750 1883
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1751 1884 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!