amd_l_demo.c 5.55 KB
/* ========================================================================= */
/* === AMD demo main program (UF_long integer version) ===================== */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
/* AMD Copyright (c) by Timothy A. Davis, */
/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */
/* web: http://www.cise.ufl.edu/research/sparse/amd */
/* ------------------------------------------------------------------------- */
/* A simple C main program that illustrates the use of the ANSI C interface
* to AMD.
*/
#include "amd.h"
#include <stdio.h>
#include <stdlib.h>
#include "UFconfig.h"
int main (void)
{
/* The symmetric can_24 Harwell/Boeing matrix, including upper and lower
* triangular parts, and the diagonal entries. Note that this matrix is
* 0-based, with row and column indices in the range 0 to n-1. */
UF_long n = 24, nz,
Ap [ ] = { 0, 9, 15, 21, 27, 33, 39, 48, 57, 61, 70, 76, 82, 88, 94, 100,
106, 110, 119, 128, 137, 143, 152, 156, 160 },
Ai [ ] = {
/* column 0: */ 0, 5, 6, 12, 13, 17, 18, 19, 21,
/* column 1: */ 1, 8, 9, 13, 14, 17,
/* column 2: */ 2, 6, 11, 20, 21, 22,
/* column 3: */ 3, 7, 10, 15, 18, 19,
/* column 4: */ 4, 7, 9, 14, 15, 16,
/* column 5: */ 0, 5, 6, 12, 13, 17,
/* column 6: */ 0, 2, 5, 6, 11, 12, 19, 21, 23,
/* column 7: */ 3, 4, 7, 9, 14, 15, 16, 17, 18,
/* column 8: */ 1, 8, 9, 14,
/* column 9: */ 1, 4, 7, 8, 9, 13, 14, 17, 18,
/* column 10: */ 3, 10, 18, 19, 20, 21,
/* column 11: */ 2, 6, 11, 12, 21, 23,
/* column 12: */ 0, 5, 6, 11, 12, 23,
/* column 13: */ 0, 1, 5, 9, 13, 17,
/* column 14: */ 1, 4, 7, 8, 9, 14,
/* column 15: */ 3, 4, 7, 15, 16, 18,
/* column 16: */ 4, 7, 15, 16,
/* column 17: */ 0, 1, 5, 7, 9, 13, 17, 18, 19,
/* column 18: */ 0, 3, 7, 9, 10, 15, 17, 18, 19,
/* column 19: */ 0, 3, 6, 10, 17, 18, 19, 20, 21,
/* column 20: */ 2, 10, 19, 20, 21, 22,
/* column 21: */ 0, 2, 6, 10, 11, 19, 20, 21, 22,
/* column 22: */ 2, 20, 21, 22,
/* column 23: */ 6, 11, 12, 23 } ;
UF_long P [24], Pinv [24], i, j, k, jnew, p, inew, result ;
double Control [AMD_CONTROL], Info [AMD_INFO] ;
char A [24][24] ;
/* here is an example of how to use AMD_VERSION. This code will work in
* any version of AMD. */
#if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE(1,2))
printf ("AMD version %d.%d, date: %s\n", AMD_MAIN_VERSION, AMD_SUB_VERSION,
AMD_DATE) ;
#else
printf ("AMD version: 1.1 or earlier\n") ;
#endif
printf ("AMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24:\n") ;
/* get the default parameters, and print them */
amd_l_defaults (Control) ;
amd_l_control (Control) ;
/* print the input matrix */
nz = Ap [n] ;
printf ("\nInput matrix: %ld-by-%ld, with %ld entries.\n"
" Note that for a symmetric matrix such as this one, only the\n"
" strictly lower or upper triangular parts would need to be\n"
" passed to AMD, since AMD computes the ordering of A+A'. The\n"
" diagonal entries are also not needed, since AMD ignores them.\n"
, n, n, nz) ;
for (j = 0 ; j < n ; j++)
{
printf ("\nColumn: %ld, number of entries: %ld, with row indices in"
" Ai [%ld ... %ld]:\n row indices:",
j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ;
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{
i = Ai [p] ;
printf (" %ld", i) ;
}
printf ("\n") ;
}
/* print a character plot of the input matrix. This is only reasonable
* because the matrix is small. */
printf ("\nPlot of input matrix pattern:\n") ;
for (j = 0 ; j < n ; j++)
{
for (i = 0 ; i < n ; i++) A [i][j] = '.' ;
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{
i = Ai [p] ;
A [i][j] = 'X' ;
}
}
printf (" ") ;
for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ;
printf ("\n") ;
for (i = 0 ; i < n ; i++)
{
printf ("%2ld: ", i) ;
for (j = 0 ; j < n ; j++)
{
printf (" %c", A [i][j]) ;
}
printf ("\n") ;
}
/* order the matrix */
result = amd_l_order (n, Ap, Ai, P, Control, Info) ;
printf ("return value from amd_l_order: %ld (should be %d)\n",
result, AMD_OK) ;
/* print the statistics */
amd_l_info (Info) ;
if (result != AMD_OK)
{
printf ("AMD failed\n") ;
exit (1) ;
}
/* print the permutation vector, P, and compute the inverse permutation */
printf ("Permutation vector:\n") ;
for (k = 0 ; k < n ; k++)
{
/* row/column j is the kth row/column in the permuted matrix */
j = P [k] ;
Pinv [j] = k ;
printf (" %2ld", j) ;
}
printf ("\n\n") ;
printf ("Inverse permutation vector:\n") ;
for (j = 0 ; j < n ; j++)
{
k = Pinv [j] ;
printf (" %2ld", k) ;
}
printf ("\n\n") ;
/* print a character plot of the permuted matrix. */
printf ("\nPlot of permuted matrix pattern:\n") ;
for (jnew = 0 ; jnew < n ; jnew++)
{
j = P [jnew] ;
for (inew = 0 ; inew < n ; inew++) A [inew][jnew] = '.' ;
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{
inew = Pinv [Ai [p]] ;
A [inew][jnew] = 'X' ;
}
}
printf (" ") ;
for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ;
printf ("\n") ;
for (i = 0 ; i < n ; i++)
{
printf ("%2ld: ", i) ;
for (j = 0 ; j < n ; j++)
{
printf (" %c", A [i][j]) ;
}
printf ("\n") ;
}
return (0) ;
}