umfpack_transpose.h
7.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* ========================================================================== */
/* === umfpack_transpose ==================================================== */
/* ========================================================================== */
/* -------------------------------------------------------------------------- */
/* UMFPACK Copyright (c) Timothy A. Davis, CISE, */
/* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack */
/* -------------------------------------------------------------------------- */
int umfpack_di_transpose
(
int n_row,
int n_col,
const int Ap [ ],
const int Ai [ ],
const double Ax [ ],
const int P [ ],
const int Q [ ],
int Rp [ ],
int Ri [ ],
double Rx [ ]
) ;
UF_long umfpack_dl_transpose
(
UF_long n_row,
UF_long n_col,
const UF_long Ap [ ],
const UF_long Ai [ ],
const double Ax [ ],
const UF_long P [ ],
const UF_long Q [ ],
UF_long Rp [ ],
UF_long Ri [ ],
double Rx [ ]
) ;
int umfpack_zi_transpose
(
int n_row,
int n_col,
const int Ap [ ],
const int Ai [ ],
const double Ax [ ], const double Az [ ],
const int P [ ],
const int Q [ ],
int Rp [ ],
int Ri [ ],
double Rx [ ], double Rz [ ],
int do_conjugate
) ;
UF_long umfpack_zl_transpose
(
UF_long n_row,
UF_long n_col,
const UF_long Ap [ ],
const UF_long Ai [ ],
const double Ax [ ], const double Az [ ],
const UF_long P [ ],
const UF_long Q [ ],
UF_long Rp [ ],
UF_long Ri [ ],
double Rx [ ], double Rz [ ],
UF_long do_conjugate
) ;
/*
double int Syntax:
#include "umfpack.h"
int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ;
double *Ax, *Rx ;
status = umfpack_di_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;
double UF_long Syntax:
#include "umfpack.h"
UF_long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ;
double *Ax, *Rx ;
status = umfpack_dl_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;
complex int Syntax:
#include "umfpack.h"
int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ;
double *Ax, *Az, *Rx, *Rz ;
status = umfpack_zi_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,
Rp, Ri, Rx, Rz, do_conjugate) ;
complex UF_long Syntax:
#include "umfpack.h"
UF_long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ;
double *Ax, *Az, *Rx, *Rz ;
status = umfpack_zl_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,
Rp, Ri, Rx, Rz, do_conjugate) ;
packed complex Syntax:
Same as above, except Az are Rz are NULL.
Purpose:
Transposes and optionally permutes a sparse matrix in row or column-form,
R = (PAQ)'. In MATLAB notation, R = (A (P,Q))' or R = (A (P,Q)).' doing
either the linear algebraic transpose or the array transpose. Alternatively,
this routine can be viewed as converting A (P,Q) from column-form to
row-form, or visa versa (for the array transpose). Empty rows and columns
may exist. The matrix A may be singular and/or rectangular.
umfpack_*_transpose is useful if you want to factorize A' or A.' instead of
A. Factorizing A' or A.' instead of A can be much better, particularly if
AA' is much sparser than A'A. You can still solve Ax=b if you factorize
A' or A.', by solving with the sys argument UMFPACK_At or UMFPACK_Aat,
respectively, in umfpack_*_*solve.
Returns:
UMFPACK_OK if successful.
UMFPACK_ERROR_out_of_memory if umfpack_*_transpose fails to allocate a
size-max (n_row,n_col) workspace.
UMFPACK_ERROR_argument_missing if Ai, Ap, Ri, and/or Rp are missing.
UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0
UMFPACK_ERROR_invalid_permutation if P and/or Q are invalid.
UMFPACK_ERROR_invalid_matrix if Ap [n_col] < 0, if Ap [0] != 0,
if Ap [j] > Ap [j+1] for any j in the range 0 to n_col-1,
if any row index i is < 0 or >= n_row, or if the row indices
in any column are not in ascending order.
Arguments:
Int n_row ; Input argument, not modified.
Int n_col ; Input argument, not modified.
A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.
Int Ap [n_col+1] ; Input argument, not modified.
The column pointers of the column-oriented form of the matrix A. See
umfpack_*_symbolic for a description. The number of entries in
the matrix is nz = Ap [n_col]. Ap [0] must be zero, Ap [n_col] must be
=> 0, and Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n_col] must be true for
all j in the range 0 to n_col-1. Empty columns are OK (that is, Ap [j]
may equal Ap [j+1] for any j in the range 0 to n_col-1).
Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].
The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j
must be in ascending order, and no duplicate row indices may be present.
Row indices must be in the range 0 to n_row-1 (the matrix is 0-based).
double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col].
Size 2*nz if Az or Rz are NULL.
double Az [nz] ; Input argument, not modified, for complex versions.
If present, these are the numerical values of the sparse matrix A.
The nonzero pattern (row indices) for column j is stored in
Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding real numerical
values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary
values are stored in Az [(Ap [j]) ... (Ap [j+1]-1)]. The values are
transposed only if Ax and Rx are present.
This is not an error conditions; you are able to transpose
and permute just the pattern of a matrix.
If Az or Rz are NULL, then both real
and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]
and Ax[2*k+1] being the real and imaginary part of the kth entry.
Int P [n_row] ; Input argument, not modified.
The permutation vector P is defined as P [k] = i, where the original
row i of A is the kth row of PAQ. If you want to use the identity
permutation for P, simply pass (Int *) NULL for P. This is not an error
condition. P is a complete permutation of all the rows of A; this
routine does not support the creation of a transposed submatrix of A
(R = A (1:3,:)' where A has more than 3 rows, for example, cannot be
done; a future version might support this operation).
Int Q [n_col] ; Input argument, not modified.
The permutation vector Q is defined as Q [k] = j, where the original
column j of A is the kth column of PAQ. If you want to use the identity
permutation for Q, simply pass (Int *) NULL for Q. This is not an error
condition. Q is a complete permutation of all the columns of A; this
routine does not support the creation of a transposed submatrix of A.
Int Rp [n_row+1] ; Output argument.
The column pointers of the matrix R = (A (P,Q))' or (A (P,Q)).', in the
same form as the column pointers Ap for the matrix A.
Int Ri [nz] ; Output argument.
The row indices of the matrix R = (A (P,Q))' or (A (P,Q)).' , in the
same form as the row indices Ai for the matrix A.
double Rx [nz] ; Output argument.
Size 2*nz if Az or Rz are NULL.
double Rz [nz] ; Output argument, imaginary part for complex versions.
If present, these are the numerical values of the sparse matrix R,
in the same form as the values Ax and Az of the matrix A.
If Az or Rz are NULL, then both real
and imaginary parts are contained in Rx[0..2*nz-1], with Rx[2*k]
and Rx[2*k+1] being the real and imaginary part of the kth entry.
Int do_conjugate ; Input argument for complex versions only.
If true, and if Ax and Rx are present, then the linear
algebraic transpose is computed (complex conjugate). If false, the
array transpose is computed instead.
*/