-
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@58 b657c933-2333-4658-acf2-d3c7c2708721
test_ze1.f90
1.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
program test_ze1
use fvn_fnlib
use Kind_Definition
implicit none
complex(kind=dp_kind) :: z,resz
complex(kind=dp_kind), dimension(6) :: abramowitz_x,abramowitz_y
integer(kind=ip_kind) :: i
abramowitz_x(1)=cmplx(5.d0,5.d0,dp_kind)
abramowitz_y(1)=cmplx(0.906058d0,0.070209d0,dp_kind)
abramowitz_x(2)=cmplx(-5.d0,5.d0,dp_kind)
abramowitz_y(2)=cmplx(1.079407d0,0.143879d0,dp_kind)
abramowitz_x(3)=cmplx(11.d0,5.d0,dp_kind)
abramowitz_y(3)=cmplx(0.932672d0,0.026361d0,dp_kind)
abramowitz_x(4)=cmplx(-11.d0,5.d0,dp_kind)
abramowitz_y(4)=cmplx(1.084526d0,0.049336d0,dp_kind)
abramowitz_x(5)=cmplx(15.d0,18.d0,dp_kind)
abramowitz_y(5)=cmplx(0.972359d0,0.029448d0,dp_kind)
abramowitz_x(6)=cmplx(-15.d0,18.d0,dp_kind)
abramowitz_y(6)=cmplx(1.026183d0,0.036552d0,dp_kind)
! Value of z*exp(z)*e1(z) from Abramowitz & Stegun
! to cover the different cases of the algo
!
! Case (5,5) modulus <10 with positive real part
! Case (-5,5) modulus <10 with negative real part
! Case (11,5) modulus between 10 and 20 with positive real part
! Case (-11,5) modulus between 10 and 20 with negative real part
! Case (15,18) modulus > 20 with positive real part
! Case (-15,18) modulus > 20 with negative real part
do i=1,6
z=abramowitz_x(i)
resz=z*exp(z)*e1(z)
write(*,*) "Tabulated : ",abramowitz_y(i)
write(*,*) "Calculated :",resz
write(*,*)
end do
end program