umf4.out 88.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
./readhb_nozeros < HB/can_24.psa > tmp/A
./readhb_size    < HB/can_24.psa > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 24 nrow 24 ncol 24 nz 160
triplet-form matrix, n_row = 24, n_col = 24 nz = 160. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 24 n_col 24, nz = 160. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       24
    number of columns in matrix A:    24
    entries in matrix A:              160
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               0
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    24
        symmetry of nonzero pattern:               1.000000
        nz in S+S' (excl. diagonal):               136
        nz on diagonal of matrix S:                24
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.00300e+03
        est. nz in L+U (incl. diagonal):           218
        est. largest front (# entries):            64
        est. max nz in any column of L:            8
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 725
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         131
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                     763                    -      -
        peak size (Units)                       3244                    -      -
        final size (Units)                       393                    -      -
    Numeric final size (Units)                   598                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                   3840                    -      -
    peak memory usage (MBytes)                   0.0                    -      -
    numeric factorization flops          2.37900e+03                    -      -
    nz in L (incl diagonal)                      149                    -      -
    nz in U (incl diagonal)                      208                    -      -
    nz in L+U (incl diagonal)                    333                    -      -
    largest front (# entries)                    182                    -      -
    largest # rows in front                       13                    -      -
    largest # columns in front                    14                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       24
    number of columns in matrix A:    24
    entries in matrix A:              160
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               0
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    24
        symmetry of nonzero pattern:               1.000000
        nz in S+S' (excl. diagonal):               136
        nz on diagonal of matrix S:                24
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.00300e+03
        est. nz in L+U (incl. diagonal):           218
        est. largest front (# entries):            64
        est. max nz in any column of L:            8
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 725
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         131
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              4.00000e+00
    maximum sum (abs (rows of A)):              9.00000e+00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                     763                  711    93%
        peak size (Units)                       3244                 2709    84%
        final size (Units)                       393                  133    34%
    Numeric final size (Units)                   598                  326    55%
    Numeric final size (MBytes)                  0.0                  0.0    55%
    peak memory usage (Units)                   3840                 3305    86%
    peak memory usage (MBytes)                   0.0                  0.0    86%
    numeric factorization flops          2.37900e+03          1.57000e+02     7%
    nz in L (incl diagonal)                      149                   53    36%
    nz in U (incl diagonal)                      208                   73    35%
    nz in L+U (incl diagonal)                    333                  102    31%
    largest front (# entries)                    182                   78    43%
    largest # rows in front                       13                    7    54%
    largest # columns in front                    14                   13    93%

    initial allocation ratio used:                 1.2
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 10
    nz in L (incl diagonal), if none dropped       53
    nz in U (incl diagonal), if none dropped       73
    number of small entries dropped                0
    nonzeros on diagonal of U:                     24
    min abs. value on diagonal of U:               1.11e-01
    max abs. value on diagonal of U:               2.50e-01
    estimate of reciprocal of condition number:    4.44e-01
    indices in compressed pattern:                 76
    numerical values stored in Numeric object:     102
    numeric factorization defragmentations:        0
    numeric factorization reallocations:           0
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   1.06000e+03
    iterative refinement steps taken:              0
    iterative refinement steps attempted:          0
    sparse backward error omega1:                  7.86e-17
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        1.21700e+03


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 24. OK

relative maxnorm of residual, ||Ax-b||/||b||: 2.58379e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92754e-15

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  24
    nz, number of nonzeros in A:                        160
    symmetry of A:                                      1.0000
    number of nonzeros on diagonal:                     24
    nonzeros in pattern of A+A' (excl. diagonal):       136
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              1516
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 97
    nonzeros in L (including diagonal):                 121
    # divide operations for LDL' or LU:                 97
    # multiply-subtract operations for LDL':            275
    # multiply-subtract operations for LU:              453
    max nz. in any column of L (incl. diagonal):        8

    chol flop count for real A, sqrt counted as 1 flop: 671
    LDL' flop count for real A:                         647
    LDL' flop count for complex A:                      3073
    LU flop count for real A (with no pivoting):        1003
    LU flop count for complex A (with no pivoting):     4497

AMD test done
./readhb_nozeros < HB/west0067.rua > tmp/A
./readhb_size    < HB/west0067.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 67 nrow 67 ncol 67 nz 294
triplet-form matrix, n_row = 67, n_col = 67 nz = 294. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 67 n_col 67, nz = 294. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       67
    number of columns in matrix A:    67
    entries in matrix A:              294
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    unsymmetric
    ordering used:                    colamd on A
    modify Q during factorization:    yes
    prefer diagonal pivoting:         no
    pivots with zero Markowitz cost:               1
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S not square or diagonal not preserved
    symbolic factorization defragmentations:       1
    symbolic memory usage (Units):                 1639
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         252
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    1711                    -      -
        peak size (Units)                       6115                    -      -
        final size (Units)                      1628                    -      -
    Numeric final size (Units)                  2108                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                   7476                    -      -
    peak memory usage (MBytes)                   0.1                    -      -
    numeric factorization flops          1.41920e+04                    -      -
    nz in L (incl diagonal)                      542                    -      -
    nz in U (incl diagonal)                      902                    -      -
    nz in L+U (incl diagonal)                   1377                    -      -
    largest front (# entries)                    483                    -      -
    largest # rows in front                       21                    -      -
    largest # columns in front                    23                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       67
    number of columns in matrix A:    67
    entries in matrix A:              294
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    unsymmetric
    ordering used:                    colamd on A
    modify Q during factorization:    yes
    prefer diagonal pivoting:         no
    pivots with zero Markowitz cost:               1
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S not square or diagonal not preserved
    symbolic factorization defragmentations:       1
    symbolic memory usage (Units):                 1639
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         252
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              1.00000e+00
    maximum sum (abs (rows of A)):              6.59006e+00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    1711                 1577    92%
        peak size (Units)                       6115                 3581    59%
        final size (Units)                      1628                  682    42%
    Numeric final size (Units)                  2108                 1129    54%
    Numeric final size (MBytes)                  0.0                  0.0    54%
    peak memory usage (Units)                   7476                 4942    66%
    peak memory usage (MBytes)                   0.1                  0.0    66%
    numeric factorization flops          1.41920e+04          2.50100e+03    18%
    nz in L (incl diagonal)                      542                  323    60%
    nz in U (incl diagonal)                      902                  339    38%
    nz in L+U (incl diagonal)                   1377                  595    43%
    largest front (# entries)                    483                   80    17%
    largest # rows in front                       21                   10    48%
    largest # columns in front                    23                   11    48%

    initial allocation ratio used:                 0.7
    # of forced updates due to frontal growth:     0
    nz in L (incl diagonal), if none dropped       323
    nz in U (incl diagonal), if none dropped       339
    number of small entries dropped                0
    nonzeros on diagonal of U:                     67
    min abs. value on diagonal of U:               2.74e-02
    max abs. value on diagonal of U:               2.28e+00
    estimate of reciprocal of condition number:    1.20e-02
    indices in compressed pattern:                 263
    numerical values stored in Numeric object:     599
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   6.16500e+03
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          1
    sparse backward error omega1:                  1.32e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        8.66600e+03


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 67. OK

relative maxnorm of residual, ||Ax-b||/||b||: 9.15507e-17
relative maxnorm of error, ||x-xtrue||/||xtrue||: 2.349e-15

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  67
    nz, number of nonzeros in A:                        294
    symmetry of A:                                      0.0342
    number of nonzeros on diagonal:                     2
    nonzeros in pattern of A+A' (excl. diagonal):       574
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              5164
    # of memory compactions:                            1

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 930
    nonzeros in L (including diagonal):                 997
    # divide operations for LDL' or LU:                 930
    # multiply-subtract operations for LDL':            9170
    # multiply-subtract operations for LU:              17410
    max nz. in any column of L (incl. diagonal):        33

    chol flop count for real A, sqrt counted as 1 flop: 19337
    LDL' flop count for real A:                         19270
    LDL' flop count for complex A:                      81730
    LU flop count for real A (with no pivoting):        35750
    LU flop count for complex A (with no pivoting):     147650

AMD test done
./readhb_nozeros < HB/fs_183_6.rua > tmp/A
./readhb_size    < HB/fs_183_6.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 183 nrow 183 ncol 183 nz 1000
triplet-form matrix, n_row = 183, n_col = 183 nz = 1000. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 183 n_col 183, nz = 1000. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1000
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               36
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    147
        symmetry of nonzero pattern:               0.490515
        nz in S+S' (excl. diagonal):               1114
        nz on diagonal of matrix S:                147
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.490515
        nz in P2*S+(P2*S)' (excl. diag.):          1114
        nz on diagonal of P2*S:                    147
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.02930e+04
        est. nz in L+U (incl. diagonal):           1625
        est. largest front (# entries):            196
        est. max nz in any column of L:            14
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4846
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         763
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4458                    -      -
        peak size (Units)                      26277                    -      -
        final size (Units)                     15717                    -      -
    Numeric final size (Units)                 16951                    -      -
    Numeric final size (MBytes)                  0.1                    -      -
    peak memory usage (Units)                  29687                    -      -
    peak memory usage (MBytes)                   0.2                    -      -
    numeric factorization flops          2.67903e+05                    -      -
    nz in L (incl diagonal)                     2122                    -      -
    nz in U (incl diagonal)                     9931                    -      -
    nz in L+U (incl diagonal)                  11870                    -      -
    largest front (# entries)                   2337                    -      -
    largest # rows in front                       21                    -      -
    largest # columns in front                   136                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1000
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               36
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    147
        symmetry of nonzero pattern:               0.490515
        nz in S+S' (excl. diagonal):               1114
        nz on diagonal of matrix S:                147
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.490515
        nz in P2*S+(P2*S)' (excl. diag.):          1114
        nz on diagonal of P2*S:                    147
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.02930e+04
        est. nz in L+U (incl. diagonal):           1625
        est. largest front (# entries):            196
        est. max nz in any column of L:            14
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4846
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         763
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              1.84689e-01
    maximum sum (abs (rows of A)):              8.73139e+08

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4458                 4090    92%
        peak size (Units)                      26277                 8488    32%
        final size (Units)                     15717                 1658    11%
    Numeric final size (Units)                 16951                 2801    17%
    Numeric final size (MBytes)                  0.1                  0.0    17%
    peak memory usage (Units)                  29687                11898    40%
    peak memory usage (MBytes)                   0.2                  0.1    40%
    numeric factorization flops          2.67903e+05          7.82700e+03     3%
    nz in L (incl diagonal)                     2122                  838    39%
    nz in U (incl diagonal)                     9931                  804     8%
    nz in L+U (incl diagonal)                  11870                 1459    12%
    largest front (# entries)                   2337                  420    18%
    largest # rows in front                       21                   14    67%
    largest # columns in front                   136                   36    26%

    initial allocation ratio used:                 0.265
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 3
    nz in L (incl diagonal), if none dropped       838
    nz in U (incl diagonal), if none dropped       804
    number of small entries dropped                0
    nonzeros on diagonal of U:                     183
    min abs. value on diagonal of U:               2.30e-09
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    2.30e-09
    indices in compressed pattern:                 550
    numerical values stored in Numeric object:     1396
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   2.73290e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          2
    sparse backward error omega1:                  2.78e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        3.51560e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 183. OK

relative maxnorm of residual, ||Ax-b||/||b||: 1.55669e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 9.12839e-07

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  183
    nz, number of nonzeros in A:                        1000
    symmetry of A:                                      0.4431
    number of nonzeros on diagonal:                     183
    nonzeros in pattern of A+A' (excl. diagonal):       1272
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              12692
    # of memory compactions:                            1

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 882
    nonzeros in L (including diagonal):                 1065
    # divide operations for LDL' or LU:                 882
    # multiply-subtract operations for LDL':            3378
    # multiply-subtract operations for LU:              5874
    max nz. in any column of L (incl. diagonal):        15

    chol flop count for real A, sqrt counted as 1 flop: 7821
    LDL' flop count for real A:                         7638
    LDL' flop count for complex A:                      34962
    LU flop count for real A (with no pivoting):        12630
    LU flop count for complex A (with no pivoting):     54930

AMD test done
./readhb         < HB/fs_183_6.rua > tmp/A
./readhb_size    < HB/fs_183_6.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 183 nrow 183 ncol 183 nz 1069
triplet-form matrix, n_row = 183, n_col = 183 nz = 1069. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 183 n_col 183, nz = 1069. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1069
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               29
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    154
        symmetry of nonzero pattern:               0.446860
        nz in S+S' (excl. diagonal):               1286
        nz on diagonal of matrix S:                154
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.446860
        nz in P2*S+(P2*S)' (excl. diag.):          1286
        nz on diagonal of P2*S:                    154
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.78450e+04
        est. nz in L+U (incl. diagonal):           2080
        est. largest front (# entries):            400
        est. max nz in any column of L:            20
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4966
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         773
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4742                    -      -
        peak size (Units)                      26357                    -      -
        final size (Units)                     17822                    -      -
    Numeric final size (Units)                 19056                    -      -
    Numeric final size (MBytes)                  0.1                    -      -
    peak memory usage (Units)                  29809                    -      -
    peak memory usage (MBytes)                   0.2                    -      -
    numeric factorization flops          3.51312e+05                    -      -
    nz in L (incl diagonal)                     2633                    -      -
    nz in U (incl diagonal)                    10968                    -      -
    nz in L+U (incl diagonal)                  13418                    -      -
    largest front (# entries)                   3220                    -      -
    largest # rows in front                       25                    -      -
    largest # columns in front                   140                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1069
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               29
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    154
        symmetry of nonzero pattern:               0.446860
        nz in S+S' (excl. diagonal):               1286
        nz on diagonal of matrix S:                154
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.446860
        nz in P2*S+(P2*S)' (excl. diag.):          1286
        nz on diagonal of P2*S:                    154
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.78450e+04
        est. nz in L+U (incl. diagonal):           2080
        est. largest front (# entries):            400
        est. max nz in any column of L:            20
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4966
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         773
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              1.84689e-01
    maximum sum (abs (rows of A)):              8.73139e+08

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4742                 4372    92%
        peak size (Units)                      26357                11189    42%
        final size (Units)                     17822                 2107    12%
    Numeric final size (Units)                 19056                 3250    17%
    Numeric final size (MBytes)                  0.1                  0.0    17%
    peak memory usage (Units)                  29809                14641    49%
    peak memory usage (MBytes)                   0.2                  0.1    49%
    numeric factorization flops          3.51312e+05          1.19670e+04     3%
    nz in L (incl diagonal)                     2633                 1136    43%
    nz in U (incl diagonal)                    10968                  870     8%
    nz in L+U (incl diagonal)                  13418                 1823    14%
    largest front (# entries)                   3220                  728    23%
    largest # rows in front                       25                   20    80%
    largest # columns in front                   140                   58    41%

    initial allocation ratio used:                 0.282
    # of forced updates due to frontal growth:     1
    number of off-diagonal pivots:                 3
    nz in L (incl diagonal), if none dropped       1136
    nz in U (incl diagonal), if none dropped       870
    number of small entries dropped                0
    nonzeros on diagonal of U:                     183
    min abs. value on diagonal of U:               2.30e-09
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    2.30e-09
    indices in compressed pattern:                 741
    numerical values stored in Numeric object:     1781
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    1
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   3.04790e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          2
    sparse backward error omega1:                  3.97e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        4.24460e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 183. OK

relative maxnorm of residual, ||Ax-b||/||b||: 1.55669e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.0186e-06

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  183
    nz, number of nonzeros in A:                        1069
    symmetry of A:                                      0.4176
    number of nonzeros on diagonal:                     183
    nonzeros in pattern of A+A' (excl. diagonal):       1402
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              13316
    # of memory compactions:                            1

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 1072
    nonzeros in L (including diagonal):                 1255
    # divide operations for LDL' or LU:                 1072
    # multiply-subtract operations for LDL':            5320
    # multiply-subtract operations for LU:              9568
    max nz. in any column of L (incl. diagonal):        21

    chol flop count for real A, sqrt counted as 1 flop: 11895
    LDL' flop count for real A:                         11712
    LDL' flop count for complex A:                      52208
    LU flop count for real A (with no pivoting):        20208
    LU flop count for complex A (with no pivoting):     86192

AMD test done
./readhb         < HB/arc130.rua > tmp/A
./readhb_size    < HB/arc130.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 130 nrow 130 ncol 130 nz 1282
triplet-form matrix, n_row = 130, n_col = 130 nz = 1282. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 130 n_col 130, nz = 1282. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1282
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               6
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    7
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    124
        symmetry of nonzero pattern:               0.841193
        nz in S+S' (excl. diagonal):               1204
        nz on diagonal of matrix S:                124
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           8.27000e+03
        est. nz in L+U (incl. diagonal):           1336
        est. largest front (# entries):            324
        est. max nz in any column of L:            18
        number of "dense" rows/columns in S+S':    2
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4766
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         644
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4729                    -      -
        peak size (Units)                      25036                    -      -
        final size (Units)                     12837                    -      -
    Numeric final size (Units)                 13731                    -      -
    Numeric final size (MBytes)                  0.1                    -      -
    peak memory usage (Units)                  27695                    -      -
    peak memory usage (MBytes)                   0.2                    -      -
    numeric factorization flops          9.41610e+04                    -      -
    nz in L (incl diagonal)                     1009                    -      -
    nz in U (incl diagonal)                     7849                    -      -
    nz in L+U (incl diagonal)                   8728                    -      -
    largest front (# entries)                   2337                    -      -
    largest # rows in front                       19                    -      -
    largest # columns in front                   123                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1282
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               6
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    7
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    124
        symmetry of nonzero pattern:               0.841193
        nz in S+S' (excl. diagonal):               1204
        nz on diagonal of matrix S:                124
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           8.27000e+03
        est. nz in L+U (incl. diagonal):           1336
        est. largest front (# entries):            324
        est. max nz in any column of L:            18
        number of "dense" rows/columns in S+S':    2
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4766
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         644
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              7.94859e-01
    maximum sum (abs (rows of A)):              1.08460e+06

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4729                 4451    94%
        peak size (Units)                      25036                 6477    26%
        final size (Units)                     12837                 1054     8%
    Numeric final size (Units)                 13731                 1883    14%
    Numeric final size (MBytes)                  0.1                  0.0    14%
    peak memory usage (Units)                  27695                 9136    33%
    peak memory usage (MBytes)                   0.2                  0.1    33%
    numeric factorization flops          9.41610e+04          4.20900e+03     4%
    nz in L (incl diagonal)                     1009                  417    41%
    nz in U (incl diagonal)                     7849                  787    10%
    nz in L+U (incl diagonal)                   8728                 1074    12%
    largest front (# entries)                   2337                  270    12%
    largest # rows in front                       19                   18    95%
    largest # columns in front                   123                   15    12%

    initial allocation ratio used:                 0.36
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 0
    nz in L (incl diagonal), if none dropped       417
    nz in U (incl diagonal), if none dropped       796
    number of small entries dropped                9
    nonzeros on diagonal of U:                     130
    min abs. value on diagonal of U:               9.22e-07
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    9.22e-07
    indices in compressed pattern:                 79
    numerical values stored in Numeric object:     977
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   1.80440e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          1
    sparse backward error omega1:                  1.06e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        2.22530e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 130. OK

relative maxnorm of residual, ||Ax-b||/||b||: 4.12105e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 2.15116e-10

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  130
    nz, number of nonzeros in A:                        1282
    symmetry of A:                                      0.7587
    number of nonzeros on diagonal:                     130
    nonzeros in pattern of A+A' (excl. diagonal):       1430
    # dense rows/columns of A+A':                       2
    memory used, in bytes:                              11544
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 756
    nonzeros in L (including diagonal):                 886
    # divide operations for LDL' or LU:                 756
    # multiply-subtract operations for LDL':            2959
    # multiply-subtract operations for LU:              5162
    max nz. in any column of L (incl. diagonal):        18

    chol flop count for real A, sqrt counted as 1 flop: 6804
    LDL' flop count for real A:                         6674
    LDL' flop count for complex A:                      30476
    LU flop count for real A (with no pivoting):        11080
    LU flop count for complex A (with no pivoting):     48100

AMD test done
./readhb_nozeros < HB/arc130.rua > tmp/A
./readhb_size    < HB/arc130.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 130 nrow 130 ncol 130 nz 1037
triplet-form matrix, n_row = 130, n_col = 130 nz = 1037. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 130 n_col 130, nz = 1037. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                    -      -
        peak size (Units)                       9801                    -      -
        final size (Units)                      4259                    -      -
    Numeric final size (Units)                  5153                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                  12149                    -      -
    peak memory usage (MBytes)                   0.1                    -      -
    numeric factorization flops          2.47640e+04                    -      -
    nz in L (incl diagonal)                      606                    -      -
    nz in U (incl diagonal)                     2537                    -      -
    nz in L+U (incl diagonal)                   3013                    -      -
    largest front (# entries)                    459                    -      -
    largest # rows in front                       17                    -      -
    largest # columns in front                    48                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              7.94859e-01
    maximum sum (abs (rows of A)):              1.08460e+06

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                 3062    92%
        peak size (Units)                       9801                 6376    65%
        final size (Units)                      4259                 1141    27%
    Numeric final size (Units)                  5153                 1970    38%
    Numeric final size (MBytes)                  0.0                  0.0    38%
    peak memory usage (Units)                  12149                 8724    72%
    peak memory usage (MBytes)                   0.1                  0.1    72%
    numeric factorization flops          2.47640e+04          4.10700e+03    17%
    nz in L (incl diagonal)                      606                  409    67%
    nz in U (incl diagonal)                     2537                  792    31%
    nz in L+U (incl diagonal)                   3013                 1071    36%
    largest front (# entries)                    459                  240    52%
    largest # rows in front                       17                   16    94%
    largest # columns in front                    48                   15    31%

    initial allocation ratio used:                 0.755
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 0
    nz in L (incl diagonal), if none dropped       409
    nz in U (incl diagonal), if none dropped       792
    number of small entries dropped                0
    nonzeros on diagonal of U:                     130
    min abs. value on diagonal of U:               9.22e-07
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    9.22e-07
    indices in compressed pattern:                 70
    numerical values stored in Numeric object:     782
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   1.58270e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          1
    sparse backward error omega1:                  1.06e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        1.99340e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 130. OK

relative maxnorm of residual, ||Ax-b||/||b||: 2.74736e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92322e-10

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  130
    nz, number of nonzeros in A:                        1037
    symmetry of A:                                      0.4939
    number of nonzeros on diagonal:                     130
    nonzeros in pattern of A+A' (excl. diagonal):       1366
    # dense rows/columns of A+A':                       2
    memory used, in bytes:                              11236
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 725
    nonzeros in L (including diagonal):                 855
    # divide operations for LDL' or LU:                 725
    # multiply-subtract operations for LDL':            2742
    # multiply-subtract operations for LU:              4759
    max nz. in any column of L (incl. diagonal):        18

    chol flop count for real A, sqrt counted as 1 flop: 6339
    LDL' flop count for real A:                         6209
    LDL' flop count for complex A:                      28461
    LU flop count for real A (with no pivoting):        10243
    LU flop count for complex A (with no pivoting):     44597

AMD test done
./readhb_nozeros < HB/arc130.rua > tmp/A
./readhb_size    < HB/arc130.rua > tmp/Asize
./umf4 a 1e-6

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
droptol 1e-06
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 1e-06
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 130 nrow 130 ncol 130 nz 1037
triplet-form matrix, n_row = 130, n_col = 130 nz = 1037. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 130 n_col 130, nz = 1037. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                    -      -
        peak size (Units)                       9801                    -      -
        final size (Units)                      4259                    -      -
    Numeric final size (Units)                  5153                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                  12149                    -      -
    peak memory usage (MBytes)                   0.1                    -      -
    numeric factorization flops          2.47640e+04                    -      -
    nz in L (incl diagonal)                      606                    -      -
    nz in U (incl diagonal)                     2537                    -      -
    nz in L+U (incl diagonal)                   3013                    -      -
    largest front (# entries)                    459                    -      -
    largest # rows in front                       17                    -      -
    largest # columns in front                    48                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              7.94859e-01
    maximum sum (abs (rows of A)):              1.08460e+06

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                 2762    83%
        peak size (Units)                       9801                 5323    54%
        final size (Units)                      4259                  457    11%
    Numeric final size (Units)                  5153                 1286    25%
    Numeric final size (MBytes)                  0.0                  0.0    25%
    peak memory usage (Units)                  12149                 7671    63%
    peak memory usage (MBytes)                   0.1                  0.1    63%
    numeric factorization flops          2.47640e+04          4.10700e+03    17%
    nz in L (incl diagonal)                      606                  318    52%
    nz in U (incl diagonal)                     2537                  285    11%
    nz in L+U (incl diagonal)                   3013                  473    16%
    largest front (# entries)                    459                  240    52%
    largest # rows in front                       17                   16    94%
    largest # columns in front                    48                   15    31%

    initial allocation ratio used:                 0.755
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 0
    nz in L (incl diagonal), if none dropped       409
    nz in U (incl diagonal), if none dropped       792
    number of small entries dropped                598
    nonzeros on diagonal of U:                     130
    min abs. value on diagonal of U:               9.22e-07
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    9.22e-07
    indices in compressed pattern:                 82
    numerical values stored in Numeric object:     386
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   2.06060e+04
    iterative refinement steps taken:              2
    iterative refinement steps attempted:          2
    sparse backward error omega1:                  1.47e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        2.47130e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 130. OK

relative maxnorm of residual, ||Ax-b||/||b||: 2.74736e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92269e-10

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  130
    nz, number of nonzeros in A:                        1037
    symmetry of A:                                      0.4939
    number of nonzeros on diagonal:                     130
    nonzeros in pattern of A+A' (excl. diagonal):       1366
    # dense rows/columns of A+A':                       2
    memory used, in bytes:                              11236
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 725
    nonzeros in L (including diagonal):                 855
    # divide operations for LDL' or LU:                 725
    # multiply-subtract operations for LDL':            2742
    # multiply-subtract operations for LU:              4759
    max nz. in any column of L (incl. diagonal):        18

    chol flop count for real A, sqrt counted as 1 flop: 6339
    LDL' flop count for real A:                         6209
    LDL' flop count for complex A:                      28461
    LU flop count for real A (with no pivoting):        10243
    LU flop count for complex A (with no pivoting):     44597

AMD test done