umf4hb.f
11.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
c=======================================================================
c== umf4hb =============================================================
c=======================================================================
c-----------------------------------------------------------------------
c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis. CISE
c Dept, Univ. of Florida. All Rights Reserved. See ../Doc/License for
c License. web: http://www.cise.ufl.edu/research/sparse/umfpack
c-----------------------------------------------------------------------
c umf4hb:
c read a sparse matrix in the Harwell/Boeing format, factorizes
c it, and solves Ax=b. Also saves and loads the factors to/from a
c file. Saving to a file is not required, it's just here to
c demonstrate how to use this feature of UMFPACK. This program
c only works on square RUA-type matrices.
c
c This is HIGHLY non-portable. It may not work with your C and
c FORTRAN compilers. See umf4_f77wrapper.c for more details.
c
c usage (for example):
c
c in a Unix shell:
c umf4hb < HB/arc130.rua
integer
$ nzmax, nmax
parameter (nzmax = 5000000, nmax = 160000)
integer
$ Ap (nmax), Ai (nzmax), n, nz, totcrd, ptrcrd, i, j, p,
$ indcrd, valcrd, rhscrd, ncol, nrow, nrhs, nzrhs, nel,
$ numeric, symbolic, status, sys, filenum
character title*72, key*30, type*3, ptrfmt*16,
$ indfmt*16, valfmt*20, rhsfmt*20
double precision Ax (nzmax), x (nmax), b (nmax), aij, xj,
$ r (nmax), control (20), info (90)
character rhstyp*3
c ----------------------------------------------------------------
c read the Harwell/Boeing matrix
c ----------------------------------------------------------------
read (5, 10, err = 998)
$ title, key,
$ totcrd, ptrcrd, indcrd, valcrd, rhscrd,
$ type, nrow, ncol, nz, nel,
$ ptrfmt, indfmt, valfmt, rhsfmt
if (rhscrd .gt. 0) then
c new Harwell/Boeing format:
read (5, 20, err = 998) rhstyp, nrhs, nzrhs
endif
10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20)
20 format (a3, 11x, 2i14)
print *, 'Matrix key: ', key
n = nrow
if (type .ne. 'RUA' .or. nrow .ne. ncol) then
print *, 'Error: can only handle square RUA matrices'
stop
endif
if (n .ge. nmax .or. nz .gt. nzmax) then
print *, ' Matrix too big!'
stop
endif
c read the matrix (1-based)
read (5, ptrfmt, err = 998) (Ap (p), p = 1, ncol+1)
read (5, indfmt, err = 998) (Ai (p), p = 1, nz)
read (5, valfmt, err = 998) (Ax (p), p = 1, nz)
c ----------------------------------------------------------------
c create the right-hand-side, assume x (i) = 1 + i/n
c ----------------------------------------------------------------
do 30 i = 1,n
b (i) = 0
30 continue
c b = A*x
do 50 j = 1,n
xj = j
xj = 1 + xj / n
do 40 p = Ap (j), Ap (j+1)-1
i = Ai (p)
aij = Ax (p)
b (i) = b (i) + aij * xj
40 continue
50 continue
c ----------------------------------------------------------------
c convert from 1-based to 0-based
c ----------------------------------------------------------------
do 60 j = 1, n+1
Ap (j) = Ap (j) - 1
60 continue
do 70 p = 1, nz
Ai (p) = Ai (p) - 1
70 continue
c ----------------------------------------------------------------
c factor the matrix and save to a file
c ----------------------------------------------------------------
c set default parameters
call umf4def (control)
c print control parameters. set control (1) to 1 to print
c error messages only
control (1) = 2
call umf4pcon (control)
c pre-order and symbolic analysis
call umf4sym (n, n, Ap, Ai, Ax, symbolic, control, info)
c print statistics computed so far
c call umf4pinf (control, info) could also be done.
print 80, info (1), info (16),
$ (info (21) * info (4)) / 2**20,
$ (info (22) * info (4)) / 2**20,
$ info (23), info (24), info (25)
80 format ('symbolic analysis:',/,
$ ' status: ', f5.0, /,
$ ' time: ', e10.2, ' (sec)'/,
$ ' estimates (upper bound) for numeric LU:', /,
$ ' size of LU: ', f10.2, ' (MB)', /,
$ ' memory needed: ', f10.2, ' (MB)', /,
$ ' flop count: ', e10.2, /
$ ' nnz (L): ', f10.0, /
$ ' nnz (U): ', f10.0)
c check umf4sym error condition
if (info (1) .lt. 0) then
print *, 'Error occurred in umf4sym: ', info (1)
stop
endif
c numeric factorization
call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info)
c print statistics for the numeric factorization
c call umf4pinf (control, info) could also be done.
print 90, info (1), info (66),
$ (info (41) * info (4)) / 2**20,
$ (info (42) * info (4)) / 2**20,
$ info (43), info (44), info (45)
90 format ('numeric factorization:',/,
$ ' status: ', f5.0, /,
$ ' time: ', e10.2, /,
$ ' actual numeric LU statistics:', /,
$ ' size of LU: ', f10.2, ' (MB)', /,
$ ' memory needed: ', f10.2, ' (MB)', /,
$ ' flop count: ', e10.2, /
$ ' nnz (L): ', f10.0, /
$ ' nnz (U): ', f10.0)
c check umf4num error condition
if (info (1) .lt. 0) then
print *, 'Error occurred in umf4num: ', info (1)
stop
endif
c save the symbolic analysis to the file s0.umf
c note that this is not needed until another matrix is
c factorized, below.
filenum = 0
call umf4ssym (symbolic, filenum, status)
if (status .lt. 0) then
print *, 'Error occurred in umf4ssym: ', status
stop
endif
c save the LU factors to the file n0.umf
call umf4snum (numeric, filenum, status)
if (status .lt. 0) then
print *, 'Error occurred in umf4snum: ', status
stop
endif
c free the symbolic analysis
call umf4fsym (symbolic)
c free the numeric factorization
call umf4fnum (numeric)
c No LU factors (symbolic or numeric) are in memory at this point.
c ----------------------------------------------------------------
c load the LU factors back in, and solve the system
c ----------------------------------------------------------------
c At this point the program could terminate and load the LU
C factors (numeric) from the n0.umf file, and solve the
c system (see below). Note that the symbolic object is not
c required.
c load the numeric factorization back in (filename: n0.umf)
call umf4lnum (numeric, filenum, status)
if (status .lt. 0) then
print *, 'Error occurred in umf4lnum: ', status
stop
endif
c solve Ax=b, without iterative refinement
sys = 0
call umf4sol (sys, x, b, numeric, control, info)
if (info (1) .lt. 0) then
print *, 'Error occurred in umf4sol: ', info (1)
stop
endif
c free the numeric factorization
call umf4fnum (numeric)
c No LU factors (symbolic or numeric) are in memory at this point.
c print final statistics
call umf4pinf (control, info)
c print the residual. x (i) should be 1 + i/n
call resid (n, nz, Ap, Ai, Ax, x, b, r)
c ----------------------------------------------------------------
c load the symbolic analysis back in, and factorize a new matrix
c ----------------------------------------------------------------
c Again, the program could terminate here, recreate the matrix,
c and refactorize. Note that umf4sym is not called.
c load the symbolic factorization back in (filename: s0.umf)
call umf4lsym (symbolic, filenum, status)
if (status .lt. 0) then
print *, 'Error occurred in umf4lsym: ', status
stop
endif
c arbitrarily change the values of the matrix but not the pattern
do 100 p = 1, nz
Ax (p) = Ax (p) + 3.14159 / 100.0
100 continue
c numeric factorization of the modified matrix
call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info)
if (info (1) .lt. 0) then
print *, 'Error occurred in umf4num: ', info (1)
stop
endif
c free the symbolic analysis
call umf4fsym (symbolic)
c create a new right-hand-side, assume x (i) = 7 - i/n
do 110 i = 1,n
b (i) = 0
110 continue
c b = A*x, with the modified matrix A (note that A is now 0-based)
do 130 j = 1,n
xj = j
xj = 7 - xj / n
do 120 p = Ap (j) + 1, Ap (j+1)
i = Ai (p) + 1
aij = Ax (p)
b (i) = b (i) + aij * xj
120 continue
130 continue
c ----------------------------------------------------------------
c solve Ax=b, with iterative refinement
c ----------------------------------------------------------------
sys = 0
call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info)
if (info (1) .lt. 0) then
print *, 'Error occurred in umf4solr: ', info (1)
stop
endif
c print the residual. x (i) should be 7 - i/n
call resid (n, nz, Ap, Ai, Ax, x, b, r)
c ----------------------------------------------------------------
c solve Ax=b, without iterative refinement, broken into steps
c ----------------------------------------------------------------
c the factorization is PAQ=LU, PRAQ=LU, or P(R\A)Q=LU.
c x = R*b (or x=R\b, or x=b, as appropriate)
call umf4scal (x, b, numeric, status)
if (status .lt. 0) then
print *, 'Error occurred in umf4scal: ', status
stop
endif
c solve P'Lr=x for r (using r as workspace)
sys = 3
call umf4sol (sys, r, x, numeric, control, info)
if (info (1) .lt. 0) then
print *, 'Error occurred in umf4sol: ', info (1)
stop
endif
c solve UQ'x=r for x
sys = 9
call umf4sol (sys, x, r, numeric, control, info)
if (info (1) .lt. 0) then
print *, 'Error occurred in umf4sol: ', info (1)
stop
endif
c free the numeric factorization
call umf4fnum (numeric)
c print the residual. x (i) should be 7 - i/n
call resid (n, nz, Ap, Ai, Ax, x, b, r)
stop
998 print *, 'Read error: Harwell/Boeing matrix'
stop
end
c=======================================================================
c== resid ==============================================================
c=======================================================================
c Compute the residual, r = Ax-b, its max-norm, and print the max-norm
C Note that A is zero-based.
subroutine resid (n, nz, Ap, Ai, Ax, x, b, r)
integer
$ n, nz, Ap (n+1), Ai (n), j, i, p
double precision Ax (nz), x (n), b (n), r (n), rmax, aij
do 10 i = 1, n
r (i) = -b (i)
10 continue
do 30 j = 1,n
do 20 p = Ap (j) + 1, Ap (j+1)
i = Ai (p) + 1
aij = Ax (p)
r (i) = r (i) + aij * x (j)
20 continue
30 continue
rmax = 0
do 40 i = 1, n
rmax = max (rmax, r (i))
40 continue
print *, 'norm (A*x-b): ', rmax
return
end