amd_2.c
63.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
/* ========================================================================= */
/* === AMD_2 =============================================================== */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
/* AMD, Copyright (c) Timothy A. Davis, */
/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */
/* web: http://www.cise.ufl.edu/research/sparse/amd */
/* ------------------------------------------------------------------------- */
/* AMD_2: performs the AMD ordering on a symmetric sparse matrix A, followed
* by a postordering (via depth-first search) of the assembly tree using the
* AMD_postorder routine.
*/
#include "amd_internal.h"
/* ========================================================================= */
/* === clear_flag ========================================================== */
/* ========================================================================= */
static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n)
{
Int x ;
if (wflg < 2 || wflg >= wbig)
{
for (x = 0 ; x < n ; x++)
{
if (W [x] != 0) W [x] = 1 ;
}
wflg = 2 ;
}
/* at this point, W [0..n-1] < wflg holds */
return (wflg) ;
}
/* ========================================================================= */
/* === AMD_2 =============================================================== */
/* ========================================================================= */
GLOBAL void AMD_2
(
Int n, /* A is n-by-n, where n > 0 */
Int Pe [ ], /* Pe [0..n-1]: index in Iw of row i on input */
Int Iw [ ], /* workspace of size iwlen. Iw [0..pfree-1]
* holds the matrix on input */
Int Len [ ], /* Len [0..n-1]: length for row/column i on input */
Int iwlen, /* length of Iw. iwlen >= pfree + n */
Int pfree, /* Iw [pfree ... iwlen-1] is empty on input */
/* 7 size-n workspaces, not defined on input: */
Int Nv [ ], /* the size of each supernode on output */
Int Next [ ], /* the output inverse permutation */
Int Last [ ], /* the output permutation */
Int Head [ ],
Int Elen [ ], /* the size columns of L for each supernode */
Int Degree [ ],
Int W [ ],
/* control parameters and output statistics */
double Control [ ], /* array of size AMD_CONTROL */
double Info [ ] /* array of size AMD_INFO */
)
{
/*
* Given a representation of the nonzero pattern of a symmetric matrix, A,
* (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style)
* degree ordering to compute a pivot order such that the introduction of
* nonzeros (fill-in) in the Cholesky factors A = LL' is kept low. At each
* step, the pivot selected is the one with the minimum UMFAPACK/MA38-style
* upper-bound on the external degree. This routine can optionally perform
* aggresive absorption (as done by MC47B in the Harwell Subroutine
* Library).
*
* The approximate degree algorithm implemented here is the symmetric analog of
* the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern
* MultiFrontal PACKage, both by Davis and Duff). The routine is based on the
* MA27 minimum degree ordering algorithm by Iain Duff and John Reid.
*
* This routine is a translation of the original AMDBAR and MC47B routines,
* in Fortran, with the following modifications:
*
* (1) dense rows/columns are removed prior to ordering the matrix, and placed
* last in the output order. The presence of a dense row/column can
* increase the ordering time by up to O(n^2), unless they are removed
* prior to ordering.
*
* (2) the minimum degree ordering is followed by a postordering (depth-first
* search) of the assembly tree. Note that mass elimination (discussed
* below) combined with the approximate degree update can lead to the mass
* elimination of nodes with lower exact degree than the current pivot
* element. No additional fill-in is caused in the representation of the
* Schur complement. The mass-eliminated nodes merge with the current
* pivot element. They are ordered prior to the current pivot element.
* Because they can have lower exact degree than the current element, the
* merger of two or more of these nodes in the current pivot element can
* lead to a single element that is not a "fundamental supernode". The
* diagonal block can have zeros in it. Thus, the assembly tree used here
* is not guaranteed to be the precise supernodal elemination tree (with
* "funadmental" supernodes), and the postordering performed by this
* routine is not guaranteed to be a precise postordering of the
* elimination tree.
*
* (3) input parameters are added, to control aggressive absorption and the
* detection of "dense" rows/columns of A.
*
* (4) additional statistical information is returned, such as the number of
* nonzeros in L, and the flop counts for subsequent LDL' and LU
* factorizations. These are slight upper bounds, because of the mass
* elimination issue discussed above.
*
* (5) additional routines are added to interface this routine to MATLAB
* to provide a simple C-callable user-interface, to check inputs for
* errors, compute the symmetry of the pattern of A and the number of
* nonzeros in each row/column of A+A', to compute the pattern of A+A',
* to perform the assembly tree postordering, and to provide debugging
* ouput. Many of these functions are also provided by the Fortran
* Harwell Subroutine Library routine MC47A.
*
* (6) both int and UF_long versions are provided. In the descriptions below
* and integer is and int or UF_long depending on which version is
* being used.
**********************************************************************
***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ******
**********************************************************************
** If you want error checking, a more versatile input format, and a **
** simpler user interface, use amd_order or amd_l_order instead. **
** This routine is not meant to be user-callable. **
**********************************************************************
* ----------------------------------------------------------------------------
* References:
* ----------------------------------------------------------------------------
*
* [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal
* method for sparse LU factorization", SIAM J. Matrix Analysis and
* Applications, vol. 18, no. 1, pp. 140-158. Discusses UMFPACK / MA38,
* which first introduced the approximate minimum degree used by this
* routine.
*
* [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate
* minimum degree ordering algorithm," SIAM J. Matrix Analysis and
* Applications, vol. 17, no. 4, pp. 886-905, 1996. Discusses AMDBAR and
* MC47B, which are the Fortran versions of this routine.
*
* [3] Alan George and Joseph Liu, "The evolution of the minimum degree
* ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989.
* We list below the features mentioned in that paper that this code
* includes:
*
* mass elimination:
* Yes. MA27 relied on supervariable detection for mass elimination.
*
* indistinguishable nodes:
* Yes (we call these "supervariables"). This was also in the MA27
* code - although we modified the method of detecting them (the
* previous hash was the true degree, which we no longer keep track
* of). A supervariable is a set of rows with identical nonzero
* pattern. All variables in a supervariable are eliminated together.
* Each supervariable has as its numerical name that of one of its
* variables (its principal variable).
*
* quotient graph representation:
* Yes. We use the term "element" for the cliques formed during
* elimination. This was also in the MA27 code. The algorithm can
* operate in place, but it will work more efficiently if given some
* "elbow room."
*
* element absorption:
* Yes. This was also in the MA27 code.
*
* external degree:
* Yes. The MA27 code was based on the true degree.
*
* incomplete degree update and multiple elimination:
* No. This was not in MA27, either. Our method of degree update
* within MC47B is element-based, not variable-based. It is thus
* not well-suited for use with incomplete degree update or multiple
* elimination.
*
* Authors, and Copyright (C) 2004 by:
* Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid.
*
* Acknowledgements: This work (and the UMFPACK package) was supported by the
* National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270).
* The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog
* which forms the basis of AMD, was developed while Tim Davis was supported by
* CERFACS (Toulouse, France) in a post-doctoral position. This C version, and
* the etree postorder, were written while Tim Davis was on sabbatical at
* Stanford University and Lawrence Berkeley National Laboratory.
* ----------------------------------------------------------------------------
* INPUT ARGUMENTS (unaltered):
* ----------------------------------------------------------------------------
* n: The matrix order. Restriction: n >= 1.
*
* iwlen: The size of the Iw array. On input, the matrix is stored in
* Iw [0..pfree-1]. However, Iw [0..iwlen-1] should be slightly larger
* than what is required to hold the matrix, at least iwlen >= pfree + n.
* Otherwise, excessive compressions will take place. The recommended
* value of iwlen is 1.2 * pfree + n, which is the value used in the
* user-callable interface to this routine (amd_order.c). The algorithm
* will not run at all if iwlen < pfree. Restriction: iwlen >= pfree + n.
* Note that this is slightly more restrictive than the actual minimum
* (iwlen >= pfree), but AMD_2 will be very slow with no elbow room.
* Thus, this routine enforces a bare minimum elbow room of size n.
*
* pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty,
* and the matrix is stored in Iw [0..pfree-1]. During execution,
* additional data is placed in Iw, and pfree is modified so that
* Iw [pfree..iwlen-1] is always the unused part of Iw.
*
* Control: A double array of size AMD_CONTROL containing input parameters
* that affect how the ordering is computed. If NULL, then default
* settings are used.
*
* Control [AMD_DENSE] is used to determine whether or not a given input
* row is "dense". A row is "dense" if the number of entries in the row
* exceeds Control [AMD_DENSE] times sqrt (n), except that rows with 16 or
* fewer entries are never considered "dense". To turn off the detection
* of dense rows, set Control [AMD_DENSE] to a negative number, or to a
* number larger than sqrt (n). The default value of Control [AMD_DENSE]
* is AMD_DEFAULT_DENSE, which is defined in amd.h as 10.
*
* Control [AMD_AGGRESSIVE] is used to determine whether or not aggressive
* absorption is to be performed. If nonzero, then aggressive absorption
* is performed (this is the default).
* ----------------------------------------------------------------------------
* INPUT/OUPUT ARGUMENTS:
* ----------------------------------------------------------------------------
*
* Pe: An integer array of size n. On input, Pe [i] is the index in Iw of
* the start of row i. Pe [i] is ignored if row i has no off-diagonal
* entries. Thus Pe [i] must be in the range 0 to pfree-1 for non-empty
* rows.
*
* During execution, it is used for both supervariables and elements:
*
* Principal supervariable i: index into Iw of the description of
* supervariable i. A supervariable represents one or more rows of
* the matrix with identical nonzero pattern. In this case,
* Pe [i] >= 0.
*
* Non-principal supervariable i: if i has been absorbed into another
* supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined
* as (-(j)-2). Row j has the same pattern as row i. Note that j
* might later be absorbed into another supervariable j2, in which
* case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is
* < EMPTY, where EMPTY is defined as (-1) in amd_internal.h.
*
* Unabsorbed element e: the index into Iw of the description of element
* e, if e has not yet been absorbed by a subsequent element. Element
* e is created when the supervariable of the same name is selected as
* the pivot. In this case, Pe [i] >= 0.
*
* Absorbed element e: if element e is absorbed into element e2, then
* Pe [e] = FLIP (e2). This occurs when the pattern of e (which we
* refer to as Le) is found to be a subset of the pattern of e2 (that
* is, Le2). In this case, Pe [i] < EMPTY. If element e is "null"
* (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY,
* and e is the root of an assembly subtree (or the whole tree if
* there is just one such root).
*
* Dense variable i: if i is "dense", then Pe [i] = EMPTY.
*
* On output, Pe holds the assembly tree/forest, which implicitly
* represents a pivot order with identical fill-in as the actual order
* (via a depth-first search of the tree), as follows. If Nv [i] > 0,
* then i represents a node in the assembly tree, and the parent of i is
* Pe [i], or EMPTY if i is a root. If Nv [i] = 0, then (i, Pe [i])
* represents an edge in a subtree, the root of which is a node in the
* assembly tree. Note that i refers to a row/column in the original
* matrix, not the permuted matrix.
*
* Info: A double array of size AMD_INFO. If present, (that is, not NULL),
* then statistics about the ordering are returned in the Info array.
* See amd.h for a description.
* ----------------------------------------------------------------------------
* INPUT/MODIFIED (undefined on output):
* ----------------------------------------------------------------------------
*
* Len: An integer array of size n. On input, Len [i] holds the number of
* entries in row i of the matrix, excluding the diagonal. The contents
* of Len are undefined on output.
*
* Iw: An integer array of size iwlen. On input, Iw [0..pfree-1] holds the
* description of each row i in the matrix. The matrix must be symmetric,
* and both upper and lower triangular parts must be present. The
* diagonal must not be present. Row i is held as follows:
*
* Len [i]: the length of the row i data structure in the Iw array.
* Iw [Pe [i] ... Pe [i] + Len [i] - 1]:
* the list of column indices for nonzeros in row i (simple
* supervariables), excluding the diagonal. All supervariables
* start with one row/column each (supervariable i is just row i).
* If Len [i] is zero on input, then Pe [i] is ignored on input.
*
* Note that the rows need not be in any particular order, and there
* may be empty space between the rows.
*
* During execution, the supervariable i experiences fill-in. This is
* represented by placing in i a list of the elements that cause fill-in
* in supervariable i:
*
* Len [i]: the length of supervariable i in the Iw array.
* Iw [Pe [i] ... Pe [i] + Elen [i] - 1]:
* the list of elements that contain i. This list is kept short
* by removing absorbed elements.
* Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]:
* the list of supervariables in i. This list is kept short by
* removing nonprincipal variables, and any entry j that is also
* contained in at least one of the elements (j in Le) in the list
* for i (e in row i).
*
* When supervariable i is selected as pivot, we create an element e of
* the same name (e=i):
*
* Len [e]: the length of element e in the Iw array.
* Iw [Pe [e] ... Pe [e] + Len [e] - 1]:
* the list of supervariables in element e.
*
* An element represents the fill-in that occurs when supervariable i is
* selected as pivot (which represents the selection of row i and all
* non-principal variables whose principal variable is i). We use the
* term Le to denote the set of all supervariables in element e. Absorbed
* supervariables and elements are pruned from these lists when
* computationally convenient.
*
* CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION.
* The contents of Iw are undefined on output.
* ----------------------------------------------------------------------------
* OUTPUT (need not be set on input):
* ----------------------------------------------------------------------------
*
* Nv: An integer array of size n. During execution, ABS (Nv [i]) is equal to
* the number of rows that are represented by the principal supervariable
* i. If i is a nonprincipal or dense variable, then Nv [i] = 0.
* Initially, Nv [i] = 1 for all i. Nv [i] < 0 signifies that i is a
* principal variable in the pattern Lme of the current pivot element me.
* After element me is constructed, Nv [i] is set back to a positive
* value.
*
* On output, Nv [i] holds the number of pivots represented by super
* row/column i of the original matrix, or Nv [i] = 0 for non-principal
* rows/columns. Note that i refers to a row/column in the original
* matrix, not the permuted matrix.
*
* Elen: An integer array of size n. See the description of Iw above. At the
* start of execution, Elen [i] is set to zero for all rows i. During
* execution, Elen [i] is the number of elements in the list for
* supervariable i. When e becomes an element, Elen [e] = FLIP (esize) is
* set, where esize is the size of the element (the number of pivots, plus
* the number of nonpivotal entries). Thus Elen [e] < EMPTY.
* Elen (i) = EMPTY set when variable i becomes nonprincipal.
*
* For variables, Elen (i) >= EMPTY holds until just before the
* postordering and permutation vectors are computed. For elements,
* Elen [e] < EMPTY holds.
*
* On output, Elen [i] is the degree of the row/column in the Cholesky
* factorization of the permuted matrix, corresponding to the original row
* i, if i is a super row/column. It is equal to EMPTY if i is
* non-principal. Note that i refers to a row/column in the original
* matrix, not the permuted matrix.
*
* Note that the contents of Elen on output differ from the Fortran
* version (Elen holds the inverse permutation in the Fortran version,
* which is instead returned in the Next array in this C version,
* described below).
*
* Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY
* if i is the head of the list. In a hash bucket, Last [i] is the hash
* key for i.
*
* Last [Head [hash]] is also used as the head of a hash bucket if
* Head [hash] contains a degree list (see the description of Head,
* below).
*
* On output, Last [0..n-1] holds the permutation. That is, if
* i = Last [k], then row i is the kth pivot row (where k ranges from 0 to
* n-1). Row Last [k] of A is the kth row in the permuted matrix, PAP'.
*
* Next: Next [i] is the supervariable following i in a link list, or EMPTY if
* i is the last in the list. Used for two kinds of lists: degree lists
* and hash buckets (a supervariable can be in only one kind of list at a
* time).
*
* On output Next [0..n-1] holds the inverse permutation. That is, if
* k = Next [i], then row i is the kth pivot row. Row i of A appears as
* the (Next[i])-th row in the permuted matrix, PAP'.
*
* Note that the contents of Next on output differ from the Fortran
* version (Next is undefined on output in the Fortran version).
* ----------------------------------------------------------------------------
* LOCAL WORKSPACE (not input or output - used only during execution):
* ----------------------------------------------------------------------------
*
* Degree: An integer array of size n. If i is a supervariable, then
* Degree [i] holds the current approximation of the external degree of
* row i (an upper bound). The external degree is the number of nonzeros
* in row i, minus ABS (Nv [i]), the diagonal part. The bound is equal to
* the exact external degree if Elen [i] is less than or equal to two.
*
* We also use the term "external degree" for elements e to refer to
* |Le \ Lme|. If e is an element, then Degree [e] is |Le|, which is the
* degree of the off-diagonal part of the element e (not including the
* diagonal part).
*
* Head: An integer array of size n. Head is used for degree lists.
* Head [deg] is the first supervariable in a degree list. All
* supervariables i in a degree list Head [deg] have the same approximate
* degree, namely, deg = Degree [i]. If the list Head [deg] is empty then
* Head [deg] = EMPTY.
*
* During supervariable detection Head [hash] also serves as a pointer to
* a hash bucket. If Head [hash] >= 0, there is a degree list of degree
* hash. The hash bucket head pointer is Last [Head [hash]]. If
* Head [hash] = EMPTY, then the degree list and hash bucket are both
* empty. If Head [hash] < EMPTY, then the degree list is empty, and
* FLIP (Head [hash]) is the head of the hash bucket. After supervariable
* detection is complete, all hash buckets are empty, and the
* (Last [Head [hash]] = EMPTY) condition is restored for the non-empty
* degree lists.
*
* W: An integer array of size n. The flag array W determines the status of
* elements and variables, and the external degree of elements.
*
* for elements:
* if W [e] = 0, then the element e is absorbed.
* if W [e] >= wflg, then W [e] - wflg is the size of the set
* |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for
* each principal variable i that is both in the pattern of
* element e and NOT in the pattern of the current pivot element,
* me).
* if wflg > W [e] > 0, then e is not absorbed and has not yet been
* seen in the scan of the element lists in the computation of
* |Le\Lme| in Scan 1 below.
*
* for variables:
* during supervariable detection, if W [j] != wflg then j is
* not in the pattern of variable i.
*
* The W array is initialized by setting W [i] = 1 for all i, and by
* setting wflg = 2. It is reinitialized if wflg becomes too large (to
* ensure that wflg+n does not cause integer overflow).
* ----------------------------------------------------------------------------
* LOCAL INTEGERS:
* ----------------------------------------------------------------------------
*/
Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j,
jlast, jnext, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft,
nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa,
dense, aggressive ;
unsigned Int hash ; /* unsigned, so that hash % n is well defined.*/
/*
* deg: the degree of a variable or element
* degme: size, |Lme|, of the current element, me (= Degree [me])
* dext: external degree, |Le \ Lme|, of some element e
* lemax: largest |Le| seen so far (called dmax in Fortran version)
* e: an element
* elenme: the length, Elen [me], of element list of pivotal variable
* eln: the length, Elen [...], of an element list
* hash: the computed value of the hash function
* i: a supervariable
* ilast: the entry in a link list preceding i
* inext: the entry in a link list following i
* j: a supervariable
* jlast: the entry in a link list preceding j
* jnext: the entry in a link list, or path, following j
* k: the pivot order of an element or variable
* knt1: loop counter used during element construction
* knt2: loop counter used during element construction
* knt3: loop counter used during compression
* lenj: Len [j]
* ln: length of a supervariable list
* me: current supervariable being eliminated, and the current
* element created by eliminating that supervariable
* mindeg: current minimum degree
* nel: number of pivots selected so far
* nleft: n - nel, the number of nonpivotal rows/columns remaining
* nvi: the number of variables in a supervariable i (= Nv [i])
* nvj: the number of variables in a supervariable j (= Nv [j])
* nvpiv: number of pivots in current element
* slenme: number of variables in variable list of pivotal variable
* wbig: = INT_MAX - n for the int version, UF_long_max - n for the
* UF_long version. wflg is not allowed to be >= wbig.
* we: W [e]
* wflg: used for flagging the W array. See description of Iw.
* wnvi: wflg - Nv [i]
* x: either a supervariable or an element
*
* ok: true if supervariable j can be absorbed into i
* ndense: number of "dense" rows/columns
* dense: rows/columns with initial degree > dense are considered "dense"
* aggressive: true if aggressive absorption is being performed
* ncmpa: number of garbage collections
* ----------------------------------------------------------------------------
* LOCAL DOUBLES, used for statistical output only (except for alpha):
* ----------------------------------------------------------------------------
*/
double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ;
/*
* f: nvpiv
* r: degme + nvpiv
* ndiv: number of divisions for LU or LDL' factorizations
* s: number of multiply-subtract pairs for LU factorization, for the
* current element me
* nms_lu number of multiply-subtract pairs for LU factorization
* nms_ldl number of multiply-subtract pairs for LDL' factorization
* dmax: the largest number of entries in any column of L, including the
* diagonal
* alpha: "dense" degree ratio
* lnz: the number of nonzeros in L (excluding the diagonal)
* lnzme: the number of nonzeros in L (excl. the diagonal) for the
* current element me
* ----------------------------------------------------------------------------
* LOCAL "POINTERS" (indices into the Iw array)
* ----------------------------------------------------------------------------
*/
Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ;
/*
* Any parameter (Pe [...] or pfree) or local variable starting with "p" (for
* Pointer) is an index into Iw, and all indices into Iw use variables starting
* with "p." The only exception to this rule is the iwlen input argument.
*
* p: pointer into lots of things
* p1: Pe [i] for some variable i (start of element list)
* p2: Pe [i] + Elen [i] - 1 for some variable i
* p3: index of first supervariable in clean list
* p4:
* pdst: destination pointer, for compression
* pend: end of memory to compress
* pj: pointer into an element or variable
* pme: pointer into the current element (pme1...pme2)
* pme1: the current element, me, is stored in Iw [pme1...pme2]
* pme2: the end of the current element
* pn: pointer into a "clean" variable, also used to compress
* psrc: source pointer, for compression
*/
/* ========================================================================= */
/* INITIALIZATIONS */
/* ========================================================================= */
/* Note that this restriction on iwlen is slightly more restrictive than
* what is actually required in AMD_2. AMD_2 can operate with no elbow
* room at all, but it will be slow. For better performance, at least
* size-n elbow room is enforced. */
ASSERT (iwlen >= pfree + n) ;
ASSERT (n > 0) ;
/* initialize output statistics */
lnz = 0 ;
ndiv = 0 ;
nms_lu = 0 ;
nms_ldl = 0 ;
dmax = 1 ;
me = EMPTY ;
mindeg = 0 ;
ncmpa = 0 ;
nel = 0 ;
lemax = 0 ;
/* get control parameters */
if (Control != (double *) NULL)
{
alpha = Control [AMD_DENSE] ;
aggressive = (Control [AMD_AGGRESSIVE] != 0) ;
}
else
{
alpha = AMD_DEFAULT_DENSE ;
aggressive = AMD_DEFAULT_AGGRESSIVE ;
}
/* Note: if alpha is NaN, this is undefined: */
if (alpha < 0)
{
/* only remove completely dense rows/columns */
dense = n-2 ;
}
else
{
dense = alpha * sqrt ((double) n) ;
}
dense = MAX (16, dense) ;
dense = MIN (n, dense) ;
AMD_DEBUG1 (("\n\nAMD (debug), alpha %g, aggr. "ID"\n",
alpha, aggressive)) ;
for (i = 0 ; i < n ; i++)
{
Last [i] = EMPTY ;
Head [i] = EMPTY ;
Next [i] = EMPTY ;
/* if separate Hhead array is used for hash buckets: *
Hhead [i] = EMPTY ;
*/
Nv [i] = 1 ;
W [i] = 1 ;
Elen [i] = 0 ;
Degree [i] = Len [i] ;
}
#ifndef NDEBUG
AMD_DEBUG1 (("\n======Nel "ID" initial\n", nel)) ;
AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last,
Head, Elen, Degree, W, -1) ;
#endif
/* initialize wflg */
wbig = Int_MAX - n ;
wflg = clear_flag (0, wbig, W, n) ;
/* --------------------------------------------------------------------- */
/* initialize degree lists and eliminate dense and empty rows */
/* --------------------------------------------------------------------- */
ndense = 0 ;
for (i = 0 ; i < n ; i++)
{
deg = Degree [i] ;
ASSERT (deg >= 0 && deg < n) ;
if (deg == 0)
{
/* -------------------------------------------------------------
* we have a variable that can be eliminated at once because
* there is no off-diagonal non-zero in its row. Note that
* Nv [i] = 1 for an empty variable i. It is treated just
* the same as an eliminated element i.
* ------------------------------------------------------------- */
Elen [i] = FLIP (1) ;
nel++ ;
Pe [i] = EMPTY ;
W [i] = 0 ;
}
else if (deg > dense)
{
/* -------------------------------------------------------------
* Dense variables are not treated as elements, but as unordered,
* non-principal variables that have no parent. They do not take
* part in the postorder, since Nv [i] = 0. Note that the Fortran
* version does not have this option.
* ------------------------------------------------------------- */
AMD_DEBUG1 (("Dense node "ID" degree "ID"\n", i, deg)) ;
ndense++ ;
Nv [i] = 0 ; /* do not postorder this node */
Elen [i] = EMPTY ;
nel++ ;
Pe [i] = EMPTY ;
}
else
{
/* -------------------------------------------------------------
* place i in the degree list corresponding to its degree
* ------------------------------------------------------------- */
inext = Head [deg] ;
ASSERT (inext >= EMPTY && inext < n) ;
if (inext != EMPTY) Last [inext] = i ;
Next [i] = inext ;
Head [deg] = i ;
}
}
/* ========================================================================= */
/* WHILE (selecting pivots) DO */
/* ========================================================================= */
while (nel < n)
{
#ifndef NDEBUG
AMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ;
if (AMD_debug >= 2)
{
AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next,
Last, Head, Elen, Degree, W, nel) ;
}
#endif
/* ========================================================================= */
/* GET PIVOT OF MINIMUM DEGREE */
/* ========================================================================= */
/* ----------------------------------------------------------------- */
/* find next supervariable for elimination */
/* ----------------------------------------------------------------- */
ASSERT (mindeg >= 0 && mindeg < n) ;
for (deg = mindeg ; deg < n ; deg++)
{
me = Head [deg] ;
if (me != EMPTY) break ;
}
mindeg = deg ;
ASSERT (me >= 0 && me < n) ;
AMD_DEBUG1 (("=================me: "ID"\n", me)) ;
/* ----------------------------------------------------------------- */
/* remove chosen variable from link list */
/* ----------------------------------------------------------------- */
inext = Next [me] ;
ASSERT (inext >= EMPTY && inext < n) ;
if (inext != EMPTY) Last [inext] = EMPTY ;
Head [deg] = inext ;
/* ----------------------------------------------------------------- */
/* me represents the elimination of pivots nel to nel+Nv[me]-1. */
/* place me itself as the first in this set. */
/* ----------------------------------------------------------------- */
elenme = Elen [me] ;
nvpiv = Nv [me] ;
ASSERT (nvpiv > 0) ;
nel += nvpiv ;
/* ========================================================================= */
/* CONSTRUCT NEW ELEMENT */
/* ========================================================================= */
/* -----------------------------------------------------------------
* At this point, me is the pivotal supervariable. It will be
* converted into the current element. Scan list of the pivotal
* supervariable, me, setting tree pointers and constructing new list
* of supervariables for the new element, me. p is a pointer to the
* current position in the old list.
* ----------------------------------------------------------------- */
/* flag the variable "me" as being in Lme by negating Nv [me] */
Nv [me] = -nvpiv ;
degme = 0 ;
ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
if (elenme == 0)
{
/* ------------------------------------------------------------- */
/* construct the new element in place */
/* ------------------------------------------------------------- */
pme1 = Pe [me] ;
pme2 = pme1 - 1 ;
for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++)
{
i = Iw [p] ;
ASSERT (i >= 0 && i < n && Nv [i] >= 0) ;
nvi = Nv [i] ;
if (nvi > 0)
{
/* ----------------------------------------------------- */
/* i is a principal variable not yet placed in Lme. */
/* store i in new list */
/* ----------------------------------------------------- */
/* flag i as being in Lme by negating Nv [i] */
degme += nvi ;
Nv [i] = -nvi ;
Iw [++pme2] = i ;
/* ----------------------------------------------------- */
/* remove variable i from degree list. */
/* ----------------------------------------------------- */
ilast = Last [i] ;
inext = Next [i] ;
ASSERT (ilast >= EMPTY && ilast < n) ;
ASSERT (inext >= EMPTY && inext < n) ;
if (inext != EMPTY) Last [inext] = ilast ;
if (ilast != EMPTY)
{
Next [ilast] = inext ;
}
else
{
/* i is at the head of the degree list */
ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
Head [Degree [i]] = inext ;
}
}
}
}
else
{
/* ------------------------------------------------------------- */
/* construct the new element in empty space, Iw [pfree ...] */
/* ------------------------------------------------------------- */
p = Pe [me] ;
pme1 = pfree ;
slenme = Len [me] - elenme ;
for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++)
{
if (knt1 > elenme)
{
/* search the supervariables in me. */
e = me ;
pj = p ;
ln = slenme ;
AMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ;
}
else
{
/* search the elements in me. */
e = Iw [p++] ;
ASSERT (e >= 0 && e < n) ;
pj = Pe [e] ;
ln = Len [e] ;
AMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ;
ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ;
}
ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ;
/* ---------------------------------------------------------
* search for different supervariables and add them to the
* new list, compressing when necessary. this loop is
* executed once for each element in the list and once for
* all the supervariables in the list.
* --------------------------------------------------------- */
for (knt2 = 1 ; knt2 <= ln ; knt2++)
{
i = Iw [pj++] ;
ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY));
nvi = Nv [i] ;
AMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n",
i, Elen [i], Nv [i], wflg)) ;
if (nvi > 0)
{
/* ------------------------------------------------- */
/* compress Iw, if necessary */
/* ------------------------------------------------- */
if (pfree >= iwlen)
{
AMD_DEBUG1 (("GARBAGE COLLECTION\n")) ;
/* prepare for compressing Iw by adjusting pointers
* and lengths so that the lists being searched in
* the inner and outer loops contain only the
* remaining entries. */
Pe [me] = p ;
Len [me] -= knt1 ;
/* check if nothing left of supervariable me */
if (Len [me] == 0) Pe [me] = EMPTY ;
Pe [e] = pj ;
Len [e] = ln - knt2 ;
/* nothing left of element e */
if (Len [e] == 0) Pe [e] = EMPTY ;
ncmpa++ ; /* one more garbage collection */
/* store first entry of each object in Pe */
/* FLIP the first entry in each object */
for (j = 0 ; j < n ; j++)
{
pn = Pe [j] ;
if (pn >= 0)
{
ASSERT (pn >= 0 && pn < iwlen) ;
Pe [j] = Iw [pn] ;
Iw [pn] = FLIP (j) ;
}
}
/* psrc/pdst point to source/destination */
psrc = 0 ;
pdst = 0 ;
pend = pme1 - 1 ;
while (psrc <= pend)
{
/* search for next FLIP'd entry */
j = FLIP (Iw [psrc++]) ;
if (j >= 0)
{
AMD_DEBUG2 (("Got object j: "ID"\n", j)) ;
Iw [pdst] = Pe [j] ;
Pe [j] = pdst++ ;
lenj = Len [j] ;
/* copy from source to destination */
for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++)
{
Iw [pdst++] = Iw [psrc++] ;
}
}
}
/* move the new partially-constructed element */
p1 = pdst ;
for (psrc = pme1 ; psrc <= pfree-1 ; psrc++)
{
Iw [pdst++] = Iw [psrc] ;
}
pme1 = p1 ;
pfree = pdst ;
pj = Pe [e] ;
p = Pe [me] ;
}
/* ------------------------------------------------- */
/* i is a principal variable not yet placed in Lme */
/* store i in new list */
/* ------------------------------------------------- */
/* flag i as being in Lme by negating Nv [i] */
degme += nvi ;
Nv [i] = -nvi ;
Iw [pfree++] = i ;
AMD_DEBUG2 ((" s: "ID" nv "ID"\n", i, Nv [i]));
/* ------------------------------------------------- */
/* remove variable i from degree link list */
/* ------------------------------------------------- */
ilast = Last [i] ;
inext = Next [i] ;
ASSERT (ilast >= EMPTY && ilast < n) ;
ASSERT (inext >= EMPTY && inext < n) ;
if (inext != EMPTY) Last [inext] = ilast ;
if (ilast != EMPTY)
{
Next [ilast] = inext ;
}
else
{
/* i is at the head of the degree list */
ASSERT (Degree [i] >= 0 && Degree [i] < n) ;
Head [Degree [i]] = inext ;
}
}
}
if (e != me)
{
/* set tree pointer and flag to indicate element e is
* absorbed into new element me (the parent of e is me) */
AMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ;
Pe [e] = FLIP (me) ;
W [e] = 0 ;
}
}
pme2 = pfree - 1 ;
}
/* ----------------------------------------------------------------- */
/* me has now been converted into an element in Iw [pme1..pme2] */
/* ----------------------------------------------------------------- */
/* degme holds the external degree of new element */
Degree [me] = degme ;
Pe [me] = pme1 ;
Len [me] = pme2 - pme1 + 1 ;
ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ;
Elen [me] = FLIP (nvpiv + degme) ;
/* FLIP (Elen (me)) is now the degree of pivot (including
* diagonal part). */
#ifndef NDEBUG
AMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ;
for (pme = pme1 ; pme <= pme2 ; pme++) AMD_DEBUG3 ((" "ID"", Iw[pme]));
AMD_DEBUG3 (("\n")) ;
#endif
/* ----------------------------------------------------------------- */
/* make sure that wflg is not too large. */
/* ----------------------------------------------------------------- */
/* With the current value of wflg, wflg+n must not cause integer
* overflow */
wflg = clear_flag (wflg, wbig, W, n) ;
/* ========================================================================= */
/* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */
/* ========================================================================= */
/* -----------------------------------------------------------------
* Scan 1: compute the external degrees of previous elements with
* respect to the current element. That is:
* (W [e] - wflg) = |Le \ Lme|
* for each element e that appears in any supervariable in Lme. The
* notation Le refers to the pattern (list of supervariables) of a
* previous element e, where e is not yet absorbed, stored in
* Iw [Pe [e] + 1 ... Pe [e] + Len [e]]. The notation Lme
* refers to the pattern of the current element (stored in
* Iw [pme1..pme2]). If aggressive absorption is enabled, and
* (W [e] - wflg) becomes zero, then the element e will be absorbed
* in Scan 2.
* ----------------------------------------------------------------- */
AMD_DEBUG2 (("me: ")) ;
for (pme = pme1 ; pme <= pme2 ; pme++)
{
i = Iw [pme] ;
ASSERT (i >= 0 && i < n) ;
eln = Elen [i] ;
AMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ;
if (eln > 0)
{
/* note that Nv [i] has been negated to denote i in Lme: */
nvi = -Nv [i] ;
ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ;
wnvi = wflg - nvi ;
for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++)
{
e = Iw [p] ;
ASSERT (e >= 0 && e < n) ;
we = W [e] ;
AMD_DEBUG4 ((" e "ID" we "ID" ", e, we)) ;
if (we >= wflg)
{
/* unabsorbed element e has been seen in this loop */
AMD_DEBUG4 ((" unabsorbed, first time seen")) ;
we -= nvi ;
}
else if (we != 0)
{
/* e is an unabsorbed element */
/* this is the first we have seen e in all of Scan 1 */
AMD_DEBUG4 ((" unabsorbed")) ;
we = Degree [e] + wnvi ;
}
AMD_DEBUG4 (("\n")) ;
W [e] = we ;
}
}
}
AMD_DEBUG2 (("\n")) ;
/* ========================================================================= */
/* DEGREE UPDATE AND ELEMENT ABSORPTION */
/* ========================================================================= */
/* -----------------------------------------------------------------
* Scan 2: for each i in Lme, sum up the degree of Lme (which is
* degme), plus the sum of the external degrees of each Le for the
* elements e appearing within i, plus the supervariables in i.
* Place i in hash list.
* ----------------------------------------------------------------- */
for (pme = pme1 ; pme <= pme2 ; pme++)
{
i = Iw [pme] ;
ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ;
AMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i]));
p1 = Pe [i] ;
p2 = p1 + Elen [i] - 1 ;
pn = p1 ;
hash = 0 ;
deg = 0 ;
ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ;
/* ------------------------------------------------------------- */
/* scan the element list associated with supervariable i */
/* ------------------------------------------------------------- */
/* UMFPACK/MA38-style approximate degree: */
if (aggressive)
{
for (p = p1 ; p <= p2 ; p++)
{
e = Iw [p] ;
ASSERT (e >= 0 && e < n) ;
we = W [e] ;
if (we != 0)
{
/* e is an unabsorbed element */
/* dext = | Le \ Lme | */
dext = we - wflg ;
if (dext > 0)
{
deg += dext ;
Iw [pn++] = e ;
hash += e ;
AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ;
}
else
{
/* external degree of e is zero, absorb e into me*/
AMD_DEBUG1 ((" Element "ID" =>"ID" (aggressive)\n",
e, me)) ;
ASSERT (dext == 0) ;
Pe [e] = FLIP (me) ;
W [e] = 0 ;
}
}
}
}
else
{
for (p = p1 ; p <= p2 ; p++)
{
e = Iw [p] ;
ASSERT (e >= 0 && e < n) ;
we = W [e] ;
if (we != 0)
{
/* e is an unabsorbed element */
dext = we - wflg ;
ASSERT (dext >= 0) ;
deg += dext ;
Iw [pn++] = e ;
hash += e ;
AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ;
}
}
}
/* count the number of elements in i (including me): */
Elen [i] = pn - p1 + 1 ;
/* ------------------------------------------------------------- */
/* scan the supervariables in the list associated with i */
/* ------------------------------------------------------------- */
/* The bulk of the AMD run time is typically spent in this loop,
* particularly if the matrix has many dense rows that are not
* removed prior to ordering. */
p3 = pn ;
p4 = p1 + Len [i] ;
for (p = p2 + 1 ; p < p4 ; p++)
{
j = Iw [p] ;
ASSERT (j >= 0 && j < n) ;
nvj = Nv [j] ;
if (nvj > 0)
{
/* j is unabsorbed, and not in Lme. */
/* add to degree and add to new list */
deg += nvj ;
Iw [pn++] = j ;
hash += j ;
AMD_DEBUG4 ((" s: "ID" hash "ID" Nv[j]= "ID"\n",
j, hash, nvj)) ;
}
}
/* ------------------------------------------------------------- */
/* update the degree and check for mass elimination */
/* ------------------------------------------------------------- */
/* with aggressive absorption, deg==0 is identical to the
* Elen [i] == 1 && p3 == pn test, below. */
ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ;
if (Elen [i] == 1 && p3 == pn)
{
/* --------------------------------------------------------- */
/* mass elimination */
/* --------------------------------------------------------- */
/* There is nothing left of this node except for an edge to
* the current pivot element. Elen [i] is 1, and there are
* no variables adjacent to node i. Absorb i into the
* current pivot element, me. Note that if there are two or
* more mass eliminations, fillin due to mass elimination is
* possible within the nvpiv-by-nvpiv pivot block. It is this
* step that causes AMD's analysis to be an upper bound.
*
* The reason is that the selected pivot has a lower
* approximate degree than the true degree of the two mass
* eliminated nodes. There is no edge between the two mass
* eliminated nodes. They are merged with the current pivot
* anyway.
*
* No fillin occurs in the Schur complement, in any case,
* and this effect does not decrease the quality of the
* ordering itself, just the quality of the nonzero and
* flop count analysis. It also means that the post-ordering
* is not an exact elimination tree post-ordering. */
AMD_DEBUG1 ((" MASS i "ID" => parent e "ID"\n", i, me)) ;
Pe [i] = FLIP (me) ;
nvi = -Nv [i] ;
degme -= nvi ;
nvpiv += nvi ;
nel += nvi ;
Nv [i] = 0 ;
Elen [i] = EMPTY ;
}
else
{
/* --------------------------------------------------------- */
/* update the upper-bound degree of i */
/* --------------------------------------------------------- */
/* the following degree does not yet include the size
* of the current element, which is added later: */
Degree [i] = MIN (Degree [i], deg) ;
/* --------------------------------------------------------- */
/* add me to the list for i */
/* --------------------------------------------------------- */
/* move first supervariable to end of list */
Iw [pn] = Iw [p3] ;
/* move first element to end of element part of list */
Iw [p3] = Iw [p1] ;
/* add new element, me, to front of list. */
Iw [p1] = me ;
/* store the new length of the list in Len [i] */
Len [i] = pn - p1 + 1 ;
/* --------------------------------------------------------- */
/* place in hash bucket. Save hash key of i in Last [i]. */
/* --------------------------------------------------------- */
/* NOTE: this can fail if hash is negative, because the ANSI C
* standard does not define a % b when a and/or b are negative.
* That's why hash is defined as an unsigned Int, to avoid this
* problem. */
hash = hash % n ;
ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ;
/* if the Hhead array is not used: */
j = Head [hash] ;
if (j <= EMPTY)
{
/* degree list is empty, hash head is FLIP (j) */
Next [i] = FLIP (j) ;
Head [hash] = FLIP (i) ;
}
else
{
/* degree list is not empty, use Last [Head [hash]] as
* hash head. */
Next [i] = Last [j] ;
Last [j] = i ;
}
/* if a separate Hhead array is used: *
Next [i] = Hhead [hash] ;
Hhead [hash] = i ;
*/
Last [i] = hash ;
}
}
Degree [me] = degme ;
/* ----------------------------------------------------------------- */
/* Clear the counter array, W [...], by incrementing wflg. */
/* ----------------------------------------------------------------- */
/* make sure that wflg+n does not cause integer overflow */
lemax = MAX (lemax, degme) ;
wflg += lemax ;
wflg = clear_flag (wflg, wbig, W, n) ;
/* at this point, W [0..n-1] < wflg holds */
/* ========================================================================= */
/* SUPERVARIABLE DETECTION */
/* ========================================================================= */
AMD_DEBUG1 (("Detecting supervariables:\n")) ;
for (pme = pme1 ; pme <= pme2 ; pme++)
{
i = Iw [pme] ;
ASSERT (i >= 0 && i < n) ;
AMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ;
if (Nv [i] < 0)
{
/* i is a principal variable in Lme */
/* ---------------------------------------------------------
* examine all hash buckets with 2 or more variables. We do
* this by examing all unique hash keys for supervariables in
* the pattern Lme of the current element, me
* --------------------------------------------------------- */
/* let i = head of hash bucket, and empty the hash bucket */
ASSERT (Last [i] >= 0 && Last [i] < n) ;
hash = Last [i] ;
/* if Hhead array is not used: */
j = Head [hash] ;
if (j == EMPTY)
{
/* hash bucket and degree list are both empty */
i = EMPTY ;
}
else if (j < EMPTY)
{
/* degree list is empty */
i = FLIP (j) ;
Head [hash] = EMPTY ;
}
else
{
/* degree list is not empty, restore Last [j] of head j */
i = Last [j] ;
Last [j] = EMPTY ;
}
/* if separate Hhead array is used: *
i = Hhead [hash] ;
Hhead [hash] = EMPTY ;
*/
ASSERT (i >= EMPTY && i < n) ;
AMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ;
while (i != EMPTY && Next [i] != EMPTY)
{
/* -----------------------------------------------------
* this bucket has one or more variables following i.
* scan all of them to see if i can absorb any entries
* that follow i in hash bucket. Scatter i into w.
* ----------------------------------------------------- */
ln = Len [i] ;
eln = Elen [i] ;
ASSERT (ln >= 0 && eln >= 0) ;
ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ;
/* do not flag the first element in the list (me) */
for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++)
{
ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
W [Iw [p]] = wflg ;
}
/* ----------------------------------------------------- */
/* scan every other entry j following i in bucket */
/* ----------------------------------------------------- */
jlast = i ;
j = Next [i] ;
ASSERT (j >= EMPTY && j < n) ;
while (j != EMPTY)
{
/* ------------------------------------------------- */
/* check if j and i have identical nonzero pattern */
/* ------------------------------------------------- */
AMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ;
/* check if i and j have the same Len and Elen */
ASSERT (Len [j] >= 0 && Elen [j] >= 0) ;
ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ;
ok = (Len [j] == ln) && (Elen [j] == eln) ;
/* skip the first element in the list (me) */
for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++)
{
ASSERT (Iw [p] >= 0 && Iw [p] < n) ;
if (W [Iw [p]] != wflg) ok = 0 ;
}
if (ok)
{
/* --------------------------------------------- */
/* found it! j can be absorbed into i */
/* --------------------------------------------- */
AMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i));
Pe [j] = FLIP (i) ;
/* both Nv [i] and Nv [j] are negated since they */
/* are in Lme, and the absolute values of each */
/* are the number of variables in i and j: */
Nv [i] += Nv [j] ;
Nv [j] = 0 ;
Elen [j] = EMPTY ;
/* delete j from hash bucket */
ASSERT (j != Next [j]) ;
j = Next [j] ;
Next [jlast] = j ;
}
else
{
/* j cannot be absorbed into i */
jlast = j ;
ASSERT (j != Next [j]) ;
j = Next [j] ;
}
ASSERT (j >= EMPTY && j < n) ;
}
/* -----------------------------------------------------
* no more variables can be absorbed into i
* go to next i in bucket and clear flag array
* ----------------------------------------------------- */
wflg++ ;
i = Next [i] ;
ASSERT (i >= EMPTY && i < n) ;
}
}
}
AMD_DEBUG2 (("detect done\n")) ;
/* ========================================================================= */
/* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */
/* ========================================================================= */
p = pme1 ;
nleft = n - nel ;
for (pme = pme1 ; pme <= pme2 ; pme++)
{
i = Iw [pme] ;
ASSERT (i >= 0 && i < n) ;
nvi = -Nv [i] ;
AMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ;
if (nvi > 0)
{
/* i is a principal variable in Lme */
/* restore Nv [i] to signify that i is principal */
Nv [i] = nvi ;
/* --------------------------------------------------------- */
/* compute the external degree (add size of current element) */
/* --------------------------------------------------------- */
deg = Degree [i] + degme - nvi ;
deg = MIN (deg, nleft - nvi) ;
ASSERT (IMPLIES (aggressive, deg > 0) && deg >= 0 && deg < n) ;
/* --------------------------------------------------------- */
/* place the supervariable at the head of the degree list */
/* --------------------------------------------------------- */
inext = Head [deg] ;
ASSERT (inext >= EMPTY && inext < n) ;
if (inext != EMPTY) Last [inext] = i ;
Next [i] = inext ;
Last [i] = EMPTY ;
Head [deg] = i ;
/* --------------------------------------------------------- */
/* save the new degree, and find the minimum degree */
/* --------------------------------------------------------- */
mindeg = MIN (mindeg, deg) ;
Degree [i] = deg ;
/* --------------------------------------------------------- */
/* place the supervariable in the element pattern */
/* --------------------------------------------------------- */
Iw [p++] = i ;
}
}
AMD_DEBUG2 (("restore done\n")) ;
/* ========================================================================= */
/* FINALIZE THE NEW ELEMENT */
/* ========================================================================= */
AMD_DEBUG2 (("ME = "ID" DONE\n", me)) ;
Nv [me] = nvpiv ;
/* save the length of the list for the new element me */
Len [me] = p - pme1 ;
if (Len [me] == 0)
{
/* there is nothing left of the current pivot element */
/* it is a root of the assembly tree */
Pe [me] = EMPTY ;
W [me] = 0 ;
}
if (elenme != 0)
{
/* element was not constructed in place: deallocate part of */
/* it since newly nonprincipal variables may have been removed */
pfree = p ;
}
/* The new element has nvpiv pivots and the size of the contribution
* block for a multifrontal method is degme-by-degme, not including
* the "dense" rows/columns. If the "dense" rows/columns are included,
* the frontal matrix is no larger than
* (degme+ndense)-by-(degme+ndense).
*/
if (Info != (double *) NULL)
{
f = nvpiv ;
r = degme + ndense ;
dmax = MAX (dmax, f + r) ;
/* number of nonzeros in L (excluding the diagonal) */
lnzme = f*r + (f-1)*f/2 ;
lnz += lnzme ;
/* number of divide operations for LDL' and for LU */
ndiv += lnzme ;
/* number of multiply-subtract pairs for LU */
s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ;
nms_lu += s ;
/* number of multiply-subtract pairs for LDL' */
nms_ldl += (s + lnzme)/2 ;
}
#ifndef NDEBUG
AMD_DEBUG2 (("finalize done nel "ID" n "ID"\n ::::\n", nel, n)) ;
for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++)
{
AMD_DEBUG3 ((" "ID"", Iw [pme])) ;
}
AMD_DEBUG3 (("\n")) ;
#endif
}
/* ========================================================================= */
/* DONE SELECTING PIVOTS */
/* ========================================================================= */
if (Info != (double *) NULL)
{
/* count the work to factorize the ndense-by-ndense submatrix */
f = ndense ;
dmax = MAX (dmax, (double) ndense) ;
/* number of nonzeros in L (excluding the diagonal) */
lnzme = (f-1)*f/2 ;
lnz += lnzme ;
/* number of divide operations for LDL' and for LU */
ndiv += lnzme ;
/* number of multiply-subtract pairs for LU */
s = (f-1)*f*(2*f-1)/6 ;
nms_lu += s ;
/* number of multiply-subtract pairs for LDL' */
nms_ldl += (s + lnzme)/2 ;
/* number of nz's in L (excl. diagonal) */
Info [AMD_LNZ] = lnz ;
/* number of divide ops for LU and LDL' */
Info [AMD_NDIV] = ndiv ;
/* number of multiply-subtract pairs for LDL' */
Info [AMD_NMULTSUBS_LDL] = nms_ldl ;
/* number of multiply-subtract pairs for LU */
Info [AMD_NMULTSUBS_LU] = nms_lu ;
/* number of "dense" rows/columns */
Info [AMD_NDENSE] = ndense ;
/* largest front is dmax-by-dmax */
Info [AMD_DMAX] = dmax ;
/* number of garbage collections in AMD */
Info [AMD_NCMPA] = ncmpa ;
/* successful ordering */
Info [AMD_STATUS] = AMD_OK ;
}
/* ========================================================================= */
/* POST-ORDERING */
/* ========================================================================= */
/* -------------------------------------------------------------------------
* Variables at this point:
*
* Pe: holds the elimination tree. The parent of j is FLIP (Pe [j]),
* or EMPTY if j is a root. The tree holds both elements and
* non-principal (unordered) variables absorbed into them.
* Dense variables are non-principal and unordered.
*
* Elen: holds the size of each element, including the diagonal part.
* FLIP (Elen [e]) > 0 if e is an element. For unordered
* variables i, Elen [i] is EMPTY.
*
* Nv: Nv [e] > 0 is the number of pivots represented by the element e.
* For unordered variables i, Nv [i] is zero.
*
* Contents no longer needed:
* W, Iw, Len, Degree, Head, Next, Last.
*
* The matrix itself has been destroyed.
*
* n: the size of the matrix.
* No other scalars needed (pfree, iwlen, etc.)
* ------------------------------------------------------------------------- */
/* restore Pe */
for (i = 0 ; i < n ; i++)
{
Pe [i] = FLIP (Pe [i]) ;
}
/* restore Elen, for output information, and for postordering */
for (i = 0 ; i < n ; i++)
{
Elen [i] = FLIP (Elen [i]) ;
}
/* Now the parent of j is Pe [j], or EMPTY if j is a root. Elen [e] > 0
* is the size of element e. Elen [i] is EMPTY for unordered variable i. */
#ifndef NDEBUG
AMD_DEBUG2 (("\nTree:\n")) ;
for (i = 0 ; i < n ; i++)
{
AMD_DEBUG2 ((" "ID" parent: "ID" ", i, Pe [i])) ;
ASSERT (Pe [i] >= EMPTY && Pe [i] < n) ;
if (Nv [i] > 0)
{
/* this is an element */
e = i ;
AMD_DEBUG2 ((" element, size is "ID"\n", Elen [i])) ;
ASSERT (Elen [e] > 0) ;
}
AMD_DEBUG2 (("\n")) ;
}
AMD_DEBUG2 (("\nelements:\n")) ;
for (e = 0 ; e < n ; e++)
{
if (Nv [e] > 0)
{
AMD_DEBUG3 (("Element e= "ID" size "ID" nv "ID" \n", e,
Elen [e], Nv [e])) ;
}
}
AMD_DEBUG2 (("\nvariables:\n")) ;
for (i = 0 ; i < n ; i++)
{
Int cnt ;
if (Nv [i] == 0)
{
AMD_DEBUG3 (("i unordered: "ID"\n", i)) ;
j = Pe [i] ;
cnt = 0 ;
AMD_DEBUG3 ((" j: "ID"\n", j)) ;
if (j == EMPTY)
{
AMD_DEBUG3 ((" i is a dense variable\n")) ;
}
else
{
ASSERT (j >= 0 && j < n) ;
while (Nv [j] == 0)
{
AMD_DEBUG3 ((" j : "ID"\n", j)) ;
j = Pe [j] ;
AMD_DEBUG3 ((" j:: "ID"\n", j)) ;
cnt++ ;
if (cnt > n) break ;
}
e = j ;
AMD_DEBUG3 ((" got to e: "ID"\n", e)) ;
}
}
}
#endif
/* ========================================================================= */
/* compress the paths of the variables */
/* ========================================================================= */
for (i = 0 ; i < n ; i++)
{
if (Nv [i] == 0)
{
/* -------------------------------------------------------------
* i is an un-ordered row. Traverse the tree from i until
* reaching an element, e. The element, e, was the principal
* supervariable of i and all nodes in the path from i to when e
* was selected as pivot.
* ------------------------------------------------------------- */
AMD_DEBUG1 (("Path compression, i unordered: "ID"\n", i)) ;
j = Pe [i] ;
ASSERT (j >= EMPTY && j < n) ;
AMD_DEBUG3 ((" j: "ID"\n", j)) ;
if (j == EMPTY)
{
/* Skip a dense variable. It has no parent. */
AMD_DEBUG3 ((" i is a dense variable\n")) ;
continue ;
}
/* while (j is a variable) */
while (Nv [j] == 0)
{
AMD_DEBUG3 ((" j : "ID"\n", j)) ;
j = Pe [j] ;
AMD_DEBUG3 ((" j:: "ID"\n", j)) ;
ASSERT (j >= 0 && j < n) ;
}
/* got to an element e */
e = j ;
AMD_DEBUG3 (("got to e: "ID"\n", e)) ;
/* -------------------------------------------------------------
* traverse the path again from i to e, and compress the path
* (all nodes point to e). Path compression allows this code to
* compute in O(n) time.
* ------------------------------------------------------------- */
j = i ;
/* while (j is a variable) */
while (Nv [j] == 0)
{
jnext = Pe [j] ;
AMD_DEBUG3 (("j "ID" jnext "ID"\n", j, jnext)) ;
Pe [j] = e ;
j = jnext ;
ASSERT (j >= 0 && j < n) ;
}
}
}
/* ========================================================================= */
/* postorder the assembly tree */
/* ========================================================================= */
AMD_postorder (n, Pe, Nv, Elen,
W, /* output order */
Head, Next, Last) ; /* workspace */
/* ========================================================================= */
/* compute output permutation and inverse permutation */
/* ========================================================================= */
/* W [e] = k means that element e is the kth element in the new
* order. e is in the range 0 to n-1, and k is in the range 0 to
* the number of elements. Use Head for inverse order. */
for (k = 0 ; k < n ; k++)
{
Head [k] = EMPTY ;
Next [k] = EMPTY ;
}
for (e = 0 ; e < n ; e++)
{
k = W [e] ;
ASSERT ((k == EMPTY) == (Nv [e] == 0)) ;
if (k != EMPTY)
{
ASSERT (k >= 0 && k < n) ;
Head [k] = e ;
}
}
/* construct output inverse permutation in Next,
* and permutation in Last */
nel = 0 ;
for (k = 0 ; k < n ; k++)
{
e = Head [k] ;
if (e == EMPTY) break ;
ASSERT (e >= 0 && e < n && Nv [e] > 0) ;
Next [e] = nel ;
nel += Nv [e] ;
}
ASSERT (nel == n - ndense) ;
/* order non-principal variables (dense, & those merged into supervar's) */
for (i = 0 ; i < n ; i++)
{
if (Nv [i] == 0)
{
e = Pe [i] ;
ASSERT (e >= EMPTY && e < n) ;
if (e != EMPTY)
{
/* This is an unordered variable that was merged
* into element e via supernode detection or mass
* elimination of i when e became the pivot element.
* Place i in order just before e. */
ASSERT (Next [i] == EMPTY && Nv [e] > 0) ;
Next [i] = Next [e] ;
Next [e]++ ;
}
else
{
/* This is a dense unordered variable, with no parent.
* Place it last in the output order. */
Next [i] = nel++ ;
}
}
}
ASSERT (nel == n) ;
AMD_DEBUG2 (("\n\nPerm:\n")) ;
for (i = 0 ; i < n ; i++)
{
k = Next [i] ;
ASSERT (k >= 0 && k < n) ;
Last [k] = i ;
AMD_DEBUG2 ((" perm ["ID"] = "ID"\n", k, i)) ;
}
}