umfpack_solve.h
10.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* ========================================================================== */
/* === umfpack_solve ======================================================== */
/* ========================================================================== */
/* -------------------------------------------------------------------------- */
/* UMFPACK Copyright (c) Timothy A. Davis, CISE, */
/* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack */
/* -------------------------------------------------------------------------- */
int umfpack_di_solve
(
int sys,
const int Ap [ ],
const int Ai [ ],
const double Ax [ ],
double X [ ],
const double B [ ],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]
) ;
UF_long umfpack_dl_solve
(
UF_long sys,
const UF_long Ap [ ],
const UF_long Ai [ ],
const double Ax [ ],
double X [ ],
const double B [ ],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]
) ;
int umfpack_zi_solve
(
int sys,
const int Ap [ ],
const int Ai [ ],
const double Ax [ ], const double Az [ ],
double Xx [ ], double Xz [ ],
const double Bx [ ], const double Bz [ ],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]
) ;
UF_long umfpack_zl_solve
(
UF_long sys,
const UF_long Ap [ ],
const UF_long Ai [ ],
const double Ax [ ], const double Az [ ],
double Xx [ ], double Xz [ ],
const double Bx [ ], const double Bz [ ],
void *Numeric,
const double Control [UMFPACK_CONTROL],
double Info [UMFPACK_INFO]
) ;
/*
double int Syntax:
#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai, sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;
double UF_long Syntax:
#include "umfpack.h"
void *Numeric ;
UF_long status, *Ap, *Ai, sys ;
double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;
status = umfpack_dl_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;
complex int Syntax:
#include "umfpack.h"
void *Numeric ;
int status, *Ap, *Ai, sys ;
double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],
Control [UMFPACK_CONTROL] ;
status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,
Control, Info) ;
complex UF_long Syntax:
#include "umfpack.h"
void *Numeric ;
UF_long status, *Ap, *Ai, sys ;
double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],
Control [UMFPACK_CONTROL] ;
status = umfpack_zl_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,
Control, Info) ;
packed complex Syntax:
Same as above, Xz, Bz, and Az are NULL.
Purpose:
Given LU factors computed by umfpack_*_numeric (PAQ=LU, PRAQ=LU, or
P(R\A)Q=LU) and the right-hand-side, B, solve a linear system for the
solution X. Iterative refinement is optionally performed. Only square
systems are handled. Singular matrices result in a divide-by-zero for all
systems except those involving just the matrix L. Iterative refinement is
not performed for singular matrices. In the discussion below, n is equal
to n_row and n_col, because only square systems are handled.
Returns:
The status code is returned. See Info [UMFPACK_STATUS], below.
Arguments:
Int sys ; Input argument, not modified.
Defines which system to solve. (') is the linear algebraic transpose
(complex conjugate if A is complex), and (.') is the array transpose.
sys value system solved
UMFPACK_A Ax=b
UMFPACK_At A'x=b
UMFPACK_Aat A.'x=b
UMFPACK_Pt_L P'Lx=b
UMFPACK_L Lx=b
UMFPACK_Lt_P L'Px=b
UMFPACK_Lat_P L.'Px=b
UMFPACK_Lt L'x=b
UMFPACK_U_Qt UQ'x=b
UMFPACK_U Ux=b
UMFPACK_Q_Ut QU'x=b
UMFPACK_Q_Uat QU.'x=b
UMFPACK_Ut U'x=b
UMFPACK_Uat U.'x=b
Iterative refinement can be optionally performed when sys is any of
the following:
UMFPACK_A Ax=b
UMFPACK_At A'x=b
UMFPACK_Aat A.'x=b
For the other values of the sys argument, iterative refinement is not
performed (Control [UMFPACK_IRSTEP], Ap, Ai, Ax, and Az are ignored).
Int Ap [n+1] ; Input argument, not modified.
Int Ai [nz] ; Input argument, not modified.
double Ax [nz] ; Input argument, not modified.
Size 2*nz for packed complex case.
double Az [nz] ; Input argument, not modified, for complex versions.
If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1,
Ax=b, A'x=b, or A.'x=b is being solved, and A is nonsingular), then
these arrays must be identical to the same ones passed to
umfpack_*_numeric. The umfpack_*_solve routine does not check the
contents of these arguments, so the results are undefined if Ap, Ai, Ax,
and/or Az are modified between the calls the umfpack_*_numeric and
umfpack_*_solve. These three arrays do not need to be present (NULL
pointers can be passed) if Control [UMFPACK_IRSTEP] is zero, or if a
system other than Ax=b, A'x=b, or A.'x=b is being solved, or if A is
singular, since in each of these cases A is not accessed.
If Az, Xz, or Bz are NULL, then both real
and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]
and Ax[2*k+1] being the real and imaginary part of the kth entry.
double X [n] ; Output argument.
or:
double Xx [n] ; Output argument, real part
Size 2*n for packed complex case.
double Xz [n] ; Output argument, imaginary part.
The solution to the linear system, where n = n_row = n_col is the
dimension of the matrices A, L, and U.
If Az, Xz, or Bz are NULL, then both real
and imaginary parts are returned in Xx[0..2*n-1], with Xx[2*k] and
Xx[2*k+1] being the real and imaginary part of the kth entry.
double B [n] ; Input argument, not modified.
or:
double Bx [n] ; Input argument, not modified, real part.
Size 2*n for packed complex case.
double Bz [n] ; Input argument, not modified, imaginary part.
The right-hand side vector, b, stored as a conventional array of size n
(or two arrays of size n for complex versions). This routine does not
solve for multiple right-hand-sides, nor does it allow b to be stored in
a sparse-column form.
If Az, Xz, or Bz are NULL, then both real
and imaginary parts are contained in Bx[0..2*n-1], with Bx[2*k]
and Bx[2*k+1] being the real and imaginary part of the kth entry.
void *Numeric ; Input argument, not modified.
Numeric must point to a valid Numeric object, computed by
umfpack_*_numeric.
double Control [UMFPACK_CONTROL] ; Input argument, not modified.
If a (double *) NULL pointer is passed, then the default control
settings are used. Otherwise, the settings are determined from the
Control array. See umfpack_*_defaults on how to fill the Control
array with the default settings. If Control contains NaN's, the
defaults are used. The following Control parameters are used:
Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement
steps to attempt. A value less than zero is treated as zero. If
less than 1, or if Ax=b, A'x=b, or A.'x=b is not being solved, or
if A is singular, then the Ap, Ai, Ax, and Az arguments are not
accessed. Default: 2.
double Info [UMFPACK_INFO] ; Output argument.
Contains statistics about the solution factorization. If a
(double *) NULL pointer is passed, then no statistics are returned in
Info (this is not an error condition). The following statistics are
computed in umfpack_*_solve:
Info [UMFPACK_STATUS]: status code. This is also the return value,
whether or not Info is present.
UMFPACK_OK
The linear system was successfully solved.
UMFPACK_WARNING_singular_matrix
A divide-by-zero occurred. Your solution will contain Inf's
and/or NaN's. Some parts of the solution may be valid. For
example, solving Ax=b with
A = [2 0] b = [ 1 ] returns x = [ 0.5 ]
[0 0] [ 0 ] [ Inf ]
UMFPACK_ERROR_out_of_memory
Insufficient memory to solve the linear system.
UMFPACK_ERROR_argument_missing
One or more required arguments are missing. The B, X, (or
Bx and Xx for the complex versions) arguments
are always required. Info and Control are not required. Ap,
Ai, Ax are required if Ax=b,
A'x=b, A.'x=b is to be solved, the (default) iterative
refinement is requested, and the matrix A is nonsingular.
UMFPACK_ERROR_invalid_system
The sys argument is not valid, or the matrix A is not square.
UMFPACK_ERROR_invalid_Numeric_object
The Numeric object is not valid.
Info [UMFPACK_NROW], Info [UMFPACK_NCOL]:
The dimensions of the matrix A (L is n_row-by-n_inner and
U is n_inner-by-n_col, with n_inner = min(n_row,n_col)).
Info [UMFPACK_NZ]: the number of entries in the input matrix, Ap [n],
if iterative refinement is requested (Ax=b, A'x=b, or A.'x=b is
being solved, Control [UMFPACK_IRSTEP] >= 1, and A is nonsingular).
Info [UMFPACK_IR_TAKEN]: The number of iterative refinement steps
effectively taken. The number of steps attempted may be one more
than this; the refinement algorithm backtracks if the last
refinement step worsens the solution.
Info [UMFPACK_IR_ATTEMPTED]: The number of iterative refinement steps
attempted. The number of times a linear system was solved is one
more than this (once for the initial Ax=b, and once for each Ay=r
solved for each iterative refinement step attempted).
Info [UMFPACK_OMEGA1]: sparse backward error estimate, omega1, if
iterative refinement was performed, or -1 if iterative refinement
not performed.
Info [UMFPACK_OMEGA2]: sparse backward error estimate, omega2, if
iterative refinement was performed, or -1 if iterative refinement
not performed.
Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations
performed to solve the linear system. This includes the work
taken for all iterative refinement steps, including the backtrack
(if any).
Info [UMFPACK_SOLVE_TIME]: The time taken, in seconds.
Info [UMFPACK_SOLVE_WALLTIME]: The wallclock time taken, in seconds.
Only the above listed Info [...] entries are accessed. The remaining
entries of Info are not accessed or modified by umfpack_*_solve.
Future versions might modify different parts of Info.
*/