zcot.f
1.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
complex(8) function zcot (z)
implicit none
c march 1979 edition. w. fullerton, c3, los alamos scientific lab.
complex(8) z
real(8) d1mach
real(8) eps, xmax, ylarge, ybig, rmin, ymin
real(8) x,y,x2,y2,sn2x,den
integer irold,irold2
external d1mach
data eps, xmax, ylarge, ybig, rmin, ymin / 5*0.0, 1.5 /
c
if (eps.ne.0.0) go to 10
eps = d1mach(4)
xmax = 1.0/eps
ylarge = -0.5*log(0.5*d1mach(3))
ybig = -0.5*log(0.5*sqrt(d1mach(3)))
rmin = exp (max(log(d1mach(1)), -log(d1mach(2))) + 0.01)
c
10 x = real (z)
y = aimag (z)
if (abs(y).gt.ylarge) go to 30
c
x2 = 2.0*x
y2 = 2.0*y
if (abs(x2).gt.xmax) go to 20
if ( abs(z).lt.rmin) call seteru (55hzcot abs(z) is zero or so
1 small that zcot overflows, 55, 5, 2)
c
call entsrc (irold, 1)
sn2x = sin(x2)
call erroff
den = cosh(y2) - cos(x2)
call erroff
call entsrc (irold2, irold)
c
if (den.lt.x*x2*eps*eps) call seteru (74hzcot cot is nearly sin
1gular, x is near a multiple of pi and y is near 0, 74, 3, 2)
if (den.lt.x*x2*eps .and. abs(x).gt.0.5) call seteru (65hzcot a
1nswer is lt half precision, x is near pi and y is near 0, 65, 1,1)
c
zcot = dcmplx (sn2x/den, -sinh(y2)/den)
return
c
20 if (abs(y).lt.ymin) call seteru (75hzcot answer would have no p
1recision, abs(x) is very big and abs(y) small, 75, 4, 2)
if (abs(y).lt.ybig) call seteru (69hzcot answer lt half precisi
1on, abs(x) is very big and abs(y) small, 69, 2, 1)
c
zcot = dcmplx (0.0, 1.0/tanh(y2))
return
c
30 zcot = dcmplx (0.0, sign (1.0d0, y))
return
c
end