cpsi.f
2.68 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
complex function cpsi (zin)
c may 1978 edition. w. fullerton, c3, los alamos scientific lab.
complex zin, z, z2inv, corr, ccot, clog
dimension bern(13)
external ccot, r1mach
c
data bern( 1) / .8333333333 3333333 e-1 /
data bern( 2) / -.8333333333 3333333 e-2 /
data bern( 3) / .3968253968 2539683 e-2 /
data bern( 4) / -.4166666666 6666667 e-2 /
data bern( 5) / .7575757575 7575758 e-2 /
data bern( 6) / -.2109279609 2796093 e-1 /
data bern( 7) / .8333333333 3333333 e-1 /
data bern( 8) / -.4432598039 2156863 e0 /
data bern( 9) / .3053954330 2701197 e1 /
data bern(10) / -.2645621212 1212121 e2 /
data bern(11) / .2814601449 2753623 e3 /
data bern(12) / -.3454885393 7728938 e4 /
data bern(13) / .5482758333 3333333 e5 /
c
data pi / 3.141592653 589793 e0 /
data nterm, bound, dxrel, rmin, rbig / 0, 4*0.0 /
c
if (nterm.ne.0) go to 10
nterm = -0.30*alog(r1mach(3))
c maybe bound = n*(0.1*eps)**(-1/(2*n-1)) / (pi*exp(1))
bound = 0.1171*float(nterm) *
1 (0.1*r1mach(3))**(-1.0/(2.0*float(nterm)-1.0))
dxrel = sqrt(r1mach(4))
rmin = exp (amax1 (alog(r1mach(1)), -alog(r1mach(2))) + 0.011 )
rbig = 1.0/r1mach(3)
c
10 z = zin
x = real(z)
y = aimag(z)
if (y.lt.0.0) z = conjg(z)
c
corr = (0.0, 0.0)
cabsz = cabs(z)
if (x.ge.0.0 .and. cabsz.gt.bound) go to 50
if (x.lt.0.0 .and. abs(y).gt.bound) go to 50
c
if (cabsz.lt.bound) go to 20
c
c use the reflection formula for real(z) negative, cabs(z) large, and
c abs(aimag(y)) small.
c
corr = -pi*ccot(pi*z)
z = 1.0 - z
go to 50
c
c use the recursion relation for cabs(z) small.
c
20 if (cabsz.lt.rmin) call seteru (
1 56hcpsi cpsi called with z so near 0 that cpsi overflows,
1 56, 2, 2)
c
if (x.ge.(-0.5) .or. abs(y).gt.dxrel) go to 30
if (cabs((z-aint(x-0.5))/x).lt.dxrel) call seteru (
1 68hcpsi answer lt half precision because z too near negative
2integer, 68, 1, 1)
if (y.eq.0.0 .and. x.eq.aint(x)) call seteru (
1 31hcpsi z is a negative integer, 31, 3, 2)
c
30 n = sqrt(bound**2-y**2) - x + 1.0
do 40 i=1,n
corr = corr - 1.0/z
z = z + 1.0
40 continue
c
c now evaluate the asymptotic series for suitably large z.
c
50 if (cabsz.gt.rbig) cpsi = clog(z) + corr
if (cabsz.gt.rbig) go to 70
c
cpsi = (0.0, 0.0)
z2inv = 1.0/z**2
do 60 i=1,nterm
ndx = nterm + 1 - i
cpsi = bern(ndx) + z2inv*cpsi
60 continue
cpsi = clog(z) - 0.5/z - cpsi*z2inv + corr
c
70 if (y.lt.0.0) cpsi = conjg(cpsi)
c
return
end