fvn.tex
53.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
%\documentclass[a4paper,10pt]{article}
\documentclass[a4paper,english]{article}
\usepackage[utf8]{inputenc}
\usepackage{a4wide}
\usepackage{eurosym}
\usepackage{url}
\usepackage[colorlinks=true,hyperfigures=true]{hyperref}
%\usepackage{aeguill}
\usepackage{graphicx}
\usepackage{babel}
\makeatother
%opening
\title{FVN Documentation}
\author{William Daniau}
\begin{document}
\maketitle
%\begin{abstract}
%\end{abstract}
\tableofcontents
\section{Whatis fvn,licence,disclaimer etc}
\subsection{Whatis fvn}
fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, special functions etc.
Most of the work is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack. Fvn also contains a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack} for performing the numerical integration tasks. Finally the fnlib library \url{http://www.netlib.org/fn} has been added for special functions.
This module has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in the Time and Frequency Department of institute Femto-ST \url{http://www.femto-st.fr/}.
\subsection{Licence}
The licence of fvn is free. You can do whatever you want with this code as far as you credit the authors.
\subsubsection*{Authors}
As of the day this manuel is written there's only one author of fvn :\newline
William Daniau\newline
william.daniau@femto-st.fr\newline
\subsection{Disclaimer}
The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use it at your own risks. The authors should not be taken responsible of anything that may result by the use of this software.
\section{Naming scheme and convention}
The naming scheme of the routines is as follow :
\begin{verbatim}
fvn_*_name()
\end{verbatim}
where * can be s,d,c or z.
\begin{itemize}
\item s is for single precision real (real,real*4,real(4),real(kind=4))
\item d for double precision real (double precision,real*8,real(8),real(kind=8))
\item c for single precision complex (complex,complex*8,complex(4),complex(kind=4))
\item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8))
\end{itemize}
In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout).
For each routine, there is a generic interface (simply remove \verb'_*' in the name), so using the specific routine is not mandatory.
\section{Linear algebra}
The linear algebra routines of fvn are an interface to lapack, which make it easier to use.
\subsection{Matrix inversion}
\begin{verbatim}
call fvn_matinv(d,a,inva,status)
\end{verbatim}
\begin{itemize}
\item d (in) is an integer equal to the matrix rank
\item a (in) is a real or complex matrix. It will remain untouched.
\item inva (out) is a real or complex matrix which contain the inverse of a at the end of the routine
\item status (out) is an optional integer equal to zero if something went wrong
\end{itemize}
\subsubsection*{Example}
\begin{verbatim}
program inv
use fvn
implicit none
real(8),dimension(3,3) :: a,inva
call random_number(a)
a=a*100
call fvn_matinv(3,a,inva)
write (*,*) a
write (*,*)
write (*,*) inva
write (*,*)
write (*,*) matmul(a,inva)
end program
\end{verbatim}
\subsection{Matrix determinants}
\begin{verbatim}
det=fvn_det(d,a,status)
\end{verbatim}
\begin{itemize}
\item d (in) is an integer equal to the matrix rank
\item a (in) is a real or complex matrix. It will remain untouched.
\item status (out) is an optional integer equal to zero if something went wrong
\end{itemize}
\subsubsection*{Example}
\begin{verbatim}
program det
use fvn
implicit none
real(8),dimension(3,3) :: a
real(8) :: deta
integer :: status
call random_number(a)
a=a*100
deta=fvn_det(3,a,status)
write (*,*) a
write (*,*)
write (*,*) "Det = ",deta
end program
\end{verbatim}
\subsection{Matrix condition}
\begin{verbatim}
call fvn_matcon(d,a,rcond,status)
\end{verbatim}
\begin{itemize}
\item d (in) is an integer equal to the matrix rank
\item a (in) is a real or complex matrix. It will remain untouched.
\item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix
\item status (out) is an optional integer equal to zero if something went wrong
\end{itemize}
The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef}
\begin{equation}
R = \frac{1}{norm(A)*norm(invA)}
\label{rconddef}
\end{equation}
The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm}
\begin{equation}
L1 = max_j ( \sum_i{\mid A(i,j)\mid} )
\label{l1norm}
\end{equation}
\subsubsection*{Example}
\begin{verbatim}
program cond
use fvn
implicit none
real(8),dimension(3,3) :: a
real(8) :: rcond
integer :: status
call random_number(a)
a=a*100
call fvn_d_matcon(3,a,rcond,status)
write (*,*) a
write (*,*)
write (*,*) "Cond = ",rcond
end program
\end{verbatim}
\subsection{Eigenvalues/Eigenvectors}
\begin{verbatim}
call fvn_matev(d,a,evala,eveca,status)
\end{verbatim}
\begin{itemize}
\item d (in) is an integer equal to the matrix rank
\item a (in) is a real or complex matrix. It will remain untouched.
\item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a
\item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j).
\item status (out) is an optional integer equal to zero if something went wrong
\end{itemize}
\subsubsection*{Example}
\begin{verbatim}
program eigen
use fvn
implicit none
real(8),dimension(3,3) :: a
complex(8),dimension(3) :: evala
complex(8),dimension(3,3) :: eveca
integer :: status,i,j
call random_number(a)
a=a*100
call fvn_matev(3,a,evala,eveca,status)
write (*,*) a
write (*,*)
do i=1,3
write(*,*) "Eigenvalue ",i,evala(i)
write(*,*) "Associated Eigenvector :"
do j=1,3
write(*,*) eveca(j,i)
end do
write(*,*)
end do
end program
\end{verbatim}
\subsection{Sparse solving}
By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems.
The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form.
\begin{verbatim}
call fvn_sparse_solve(n,nz,T,Ti,Tj,B,x,status)
\end{verbatim}
\begin{itemize}
\item For this family of subroutine the two letters (zl,zi,dl,di) of the specific interface name decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4)
\item n (in) is an integer equal to the matrix rank
\item nz (in) is an integer equal to the number of non-zero elements
\item T(nz) (in) is a complex/real array containing the non-zero elements
\item Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix.
\item B(n) (in) is a complex/real array containing the second member of the equation.
\item x(n) (out) is a complex/real array containing the solution
\item status (out) is an integer which contain non-zero is something went wrong
\end{itemize}
\subsubsection*{Example}
\begin{verbatim}
program test_sparse
use fvn
implicit none
integer(8), parameter :: nz=12
integer(8), parameter :: n=5
complex(8),dimension(nz) :: A
integer(8),dimension(nz) :: Ti,Tj
complex(8),dimension(n) :: B,x
integer(8) :: status
A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
(1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)
B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
!specific routine that will be used here
!call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
call fvn_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x
end program
program test_sparse
use fvn
implicit none
integer(4), parameter :: nz=12
integer(4), parameter :: n=5
real(8),dimension(nz) :: A
integer(4),dimension(nz) :: Ti,Tj
real(8),dimension(n) :: B,x
integer(4) :: status
A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /)
B = (/ 8., 45., -3., 3., 19./)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
!specific routine that will be used here
!call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
call fvn_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x
end program
\end{verbatim}
\subsection{Identity matrix}
\begin{verbatim}
I=fvn_*_ident(n) (*=s,d,c,z)
\end{verbatim}
\begin{itemize}
\item n (in) is an integer equal to the matrix rank
\end{itemize}
This function return the identity matrix of rank n, in the type of the left hand side. No generic interface for this one.
\section{Interpolation}
\subsection{Quadratic Interpolation}
fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision.
\subsubsection{One variable function}
\begin{verbatim}
value=fvn_quad_interpol(x,n,xdata,ydata)
\end{verbatim}
\begin{itemize}
\item x is the real where we want to evaluate the function
\item n is the number of tabulated values
\item xdata(n) contains the tabulated coordinates
\item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i))
\end{itemize}
xdata must be strictly increasingly ordered.
x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation
\paragraph*{Example}
\begin{verbatim}
program inter1d
use fvn
implicit none
integer(kind=4),parameter :: ndata=33
integer(kind=4) :: i,nout
real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata)
real(kind=8) ::tv
intrinsic sin
f(x)=sin(x)
xdata(1)=0.
fdata(1)=f(xdata(1))
h=1./32.
do i=2,ndata
xdata(i)=xdata(i-1)+h
fdata(i)=f(xdata(i))
end do
call random_seed()
call random_number(x)
q=fvn_d_quad_interpol(x,ndata,xdata,fdata)
tv=f(x)
write(*,*) "x ",x
write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv)
end program
\end{verbatim}
\subsubsection{Two variables function}
\begin{verbatim}
value=fvn_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
\end{verbatim}
\begin{itemize}
\item x,y are the real coordinates where we want to evaluate the function
\item nx is the number of tabulated values along x axis
\item xdata(nx) contains the tabulated x
\item ny is the number of tabulated values along y axis
\item ydata(ny) contains the tabulated y
\item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j))
\end{itemize}
xdata and ydata must be strictly increasingly ordered.
(x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
\paragraph*{Example}
\begin{verbatim}
program inter2d
use fvn
implicit none
integer(kind=4),parameter :: nx=21,ny=42
integer(kind=4) :: i,j
real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny)
real(kind=8) :: tv
intrinsic dble,sin
f(x,y)=sin(x+2.*y)
do i=1,nx
xdata(i)=dble(i-1)/dble(nx-1)
end do
do i=1,ny
ydata(i)=dble(i-1)/dble(ny-1)
end do
do i=1,nx
do j=1,ny
fdata(i,j)=f(xdata(i),ydata(j))
end do
end do
call random_seed()
call random_number(x)
call random_number(y)
q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata)
tv=f(x,y)
write(*,*) "x y",x,y
write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv)
end program
\end{verbatim}
\subsubsection{Three variables function}
\begin{verbatim}
value=fvn_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
\end{verbatim}
\begin{itemize}
\item x,y,z are the real coordinates where we want to evaluate the function
\item nx is the number of tabulated values along x axis
\item xdata(nx) contains the tabulated x
\item ny is the number of tabulated values along y axis
\item ydata(ny) contains the tabulated y
\item nz is the number of tabulated values along z axis
\item zdata(ny) contains the tabulated z
\item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k))
\end{itemize}
xdata, ydata and zdata must be strictly increasingly ordered.
(x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
\paragraph*{Example}
\begin{verbatim}
program inter3d
use fvn
implicit none
integer(kind=4),parameter :: nx=21,ny=42,nz=18
integer(kind=4) :: i,j,k
real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz)
real(kind=8) :: tv
intrinsic dble,sin
f(x,y,z)=sin(x+2.*y+3.*z)
do i=1,nx
xdata(i)=2.*(dble(i-1)/dble(nx-1))
end do
do i=1,ny
ydata(i)=2.*(dble(i-1)/dble(ny-1))
end do
do i=1,nz
zdata(i)=2.*(dble(i-1)/dble(nz-1))
end do
do i=1,nx
do j=1,ny
do k=1,nz
fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k))
end do
end do
end do
call random_seed()
call random_number(x)
call random_number(y)
call random_number(z)
q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata)
tv=f(x,y,z)
write(*,*) "x y z",x,y,z
write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv)
end program
\end{verbatim}
\subsubsection{Utility procedure}
fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array.
\begin{verbatim}
call fvn_find_interval(x,i,xdata,n)
\end{verbatim}
\begin{itemize}
\item x (in) the real value to locate
\item i (out) the resulting indice
\item xdata(n) (in) increasingly ordered array
\item n (in) size of the array
\end{itemize}
The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned.
\subsection{Akima spline}
fvn provides Akima spline interpolation and evaluation for both single and double precision real.
\subsubsection{Interpolation}
\begin{verbatim}
call fvn_akima(n,x,y,br,co)
\end{verbatim}
\begin{itemize}
\item n (in) is an integer equal to the number of points
\item x(n) (in) ,y(n) (in) are the known couples of coordinates
\item br (out) on output contains a copy of x
\item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval.
\end{itemize}
\subsubsection{Evaluation}
\begin{verbatim}
y=fvn_spline_eval(x,n,br,co)
\end{verbatim}
\begin{itemize}
\item x (in) is the point where we want to evaluate
\item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\
are the outputs of fvn\_x\_akima(n,x,y,br,co)
\end{itemize}
\subsubsection{Example}
In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x).
One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values.
\begin{verbatim}
program akima
use fvn
implicit none
integer :: nbpoints,nppoints,i
real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d
real(8),dimension(:,:),allocatable :: coeff_fvn_d
real(8) :: xstep_d,xp_d,ty_d,fvn_y_d
open(2,file='fvn_akima_double.dat')
open(3,file='fvn_akima_breakpoints_double.dat')
nbpoints=30
allocate(x_d(nbpoints))
allocate(y_d(nbpoints))
allocate(breakpoints_d(nbpoints))
allocate(coeff_fvn_d(4,nbpoints))
xstep_d=20./dfloat(nbpoints)
do i=1,nbpoints
x_d(i)=-10.+dfloat(i)*xstep_d
y_d(i)=dsin(x_d(i))
write(3,44) (x_d(i),y_d(i))
end do
close(3)
call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d)
nppoints=1000
xstep_d=22./dfloat(nppoints)
do i=1,nppoints
xp_d=-11.+dfloat(i)*xstep_d
ty_d=dsin(xp_d)
fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d)
write(2,44) (xp_d,ty_d,fvn_y_d)
end do
close(2)
44 FORMAT(4(1X,1PE22.14))
end program
\end{verbatim}
Results are plotted on figure \ref{akima}
\begin{figure}
\begin{center}
\includegraphics[width=0.9\textwidth]{akima.pdf}
% akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720
\caption{Akima Spline Interpolation}
\label{akima}
\end{center}
\end{figure}
\section{Least square polynomial}
fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition.
\begin{verbatim}
call fvn_lspoly(np,x,y,deg,coeff,status)
\end{verbatim}
\begin{itemize}
\item np (in) is an integer equal to the number of points
\item x(np) (in),y(np) (in) are the known coordinates
\item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np.
\item coeff(deg+1) (out) on output contains the polynomial coefficients
\item status (out) is an integer containing 0 if a problem occured.
\end{itemize}
\subsection*{Example}
Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points :
\begin{verbatim}
program lsp
use fvn
implicit none
integer,parameter :: npoints=13,deg=3
integer :: status,i
real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc
real(kind=8) :: coeff(deg+1)
xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /)
open(2,file='fvn_lsp_double_mesure.dat')
open(3,file='fvn_lsp_double_poly.dat')
do i=1,npoints
write(2,44) xm(i),ym(i)
end do
close(2)
call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status)
xstep=(xm(npoints)-xm(1))/1000.
do i=1,1000
xc=xm(1)+(i-1)*xstep
yc=poly(xc,coeff)
write(3,44) xc,yc
end do
close(3)
44 FORMAT(4(1X,1PE22.14))
contains
function poly(x,coeff)
implicit none
real(8) :: x
real(8) :: coeff(deg+1)
real(8) :: poly
integer :: i
poly=0.
do i=1,deg+1
poly=poly+coeff(i)*x**(i-1)
end do
end function
end program
\end{verbatim}
The results are plotted on figure \ref{lsp} .
\begin{figure}
\begin{center}
\includegraphics[width=0.9\textwidth]{lsp.pdf}
\caption{Least Square Polynomial}
\label{lsp}
\end{center}
\end{figure}
\section{Zero finding}
fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}.
\begin{verbatim}
call fvn_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
\end{verbatim}
\begin{itemize}
\item f (in) is the complex function (kind=8) for which we search zeros
\item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots. if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root.
\item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted.
\item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine.
\item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided.
\item n (in) is an integer equal to the number of new roots to be found.
\item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots. x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine.
\item itmax (in) is an integer equal to the maximum allowable number of iterations per root.
\item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved. If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax
\item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots.
\end{itemize}
This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion.
\subsection*{Example}
Example to find the ten roots of $x^{10}-1$
\begin{verbatim}
program muller
use fvn
implicit none
integer :: i,info
complex(8),dimension(10) :: roots
integer,dimension(10) :: infer
complex(8), external :: f
call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info)
write(*,*) "Error code :",info
do i=1,10
write(*,*) roots(i),infer(i)
enddo
end program
function f(x)
complex(8) :: x,f
f=x**10-1
end function
\end{verbatim}
\section{Numerical integration}
Using an integrated slightly modified version of quadpack \url{http://www.netlib.org/quadpack}, fvn provide adaptative numerical integration (Gauss Kronrod) of real functions of 1 and 2 variables. fvn also provide a function to calculate Gauss-Legendre abscissas and weight, and a simple non adaptative integration subroutine. All routines exists only in fvn for double precision real.
\subsection{Gauss Legendre Abscissas and Weigth}
This subroutine was inspired by Numerical Recipes routine gauleg.
\begin{verbatim}
call fvn_gauss_legendre(n,qx,qw)
\end{verbatim}
\begin{itemize}
\item n (in) is an integer equal to the number of Gauss Legendre points
\item qx (out) is a real(8) vector of length n containing the abscissas.
\item qw (out) is a real(8) vector of length n containing the weigths.
\end{itemize}
This subroutine computes n Gauss-Legendre abscissas and weigths
\subsection{Gauss Legendre Numerical Integration}
\begin{verbatim}
call fvn_gl_integ(f,a,b,n,res)
\end{verbatim}
\begin{itemize}
\item f (in) is a real(8) function to integrate
\item a (in) and b (in) are real(8) respectively lower and higher bound of integration
\item n (in) is an integer equal to the number of Gauss Legendre points to use
\item res (out) is a real(8) containing the result
\end{itemize}
This function is a simple Gauss Legendre integration subroutine, which evaluate the integral of function f as in equation \ref{intsple} using n Gauss-Legendre pairs.
\subsection{Gauss Kronrod Adaptative Integration}
This kind of numerical integration is an iterative procedure which try to achieve a given precision.
\subsubsection{Numerical integration of a one variable function}
\begin{verbatim}
call fvn_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
\end{verbatim}
This routine evaluate the integral of function f as in equation \ref{intsple}
\begin{itemize}
\item f (in) is an external real(8) function of one variable
\item a (in) and b (in) are real(8) respectively lower an higher bound of integration
\item epsabs (in) and epsrel (in) are real(8) respectively desired absolute and relative error
\item key (in) is an integer between 1 and 6 correspondind to the Gauss-Kronrod rule to use :
\begin{itemize}
\item 1 : 7 - 15 points
\item 2 : 10 - 21 points
\item 3 : 15 - 31 points
\item 4 : 20 - 41 points
\item 5 : 25 - 51 points
\item 6 : 30 - 61 points
\end{itemize}
\item res (out) is a real(8) containing the estimation of the integration.
\item abserr (out) is a real(8) equal to the estimated absolute error
\item ier (out) is an integer used as an error flag
\begin{itemize}
\item 0 : no error
\item 1 : maximum number of subdivisions allowed has been achieved. one can allow more subdivisions by increasing the value of limit (and taking the according dimension adjustments into account). however, if this yield no improvement it is advised to analyze the integrand in order to determine the integration difficulaties. If the position of a local difficulty can be determined (i.e.singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. If possible, an appropriate special-purpose integrator should be used which is designed for handling the type of difficulty involved.
\item 2 : the occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved.
\item 3 : extremely bad integrand behaviour occurs at some points of the integration interval.
\item 6 : the input is invalid, because (epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) or limit.lt.1 or lenw.lt.limit*4. result, abserr, neval, last are set to zero. Except when lenw is invalid, iwork(1), work(limit*2+1) and work(limit*3+1) are set to zero, work(1) is set to a and work(limit+1) to b.
\end{itemize}
\item limit (in) is an optional integer equal to maximum number of subintervals in the partition of the given integration interval (a,b). If the parameter is not present a default value of 500 will be used.
\end{itemize}
\begin{equation}
\int_a^b f(x)~dx
\label{intsple}
\end{equation}
\subsubsection{Numerical integration of a two variable function}
\begin{verbatim}
call fvn_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
\end{verbatim}
This function evaluate the integral of a function f(x,y) as defined in equation \ref{intdble}. The parameters of same name as in the previous paragraph have exactly the same function and behaviour thus only what differs is decribed here
\begin{itemize}
\item a (in) and b (in) are real(8) corresponding respectively to lower and higher bound of integration for the x variable.
\item g(x) (in) and h(x) (in) are external functions describing the lower and higher bound of integration for the y variable as a function of x.
\end{itemize}
\begin{equation}
\int_a^b \int_{g(x)}^{h(x)} f(x,y)~dy~dx
\label{intdble}
\end{equation}
\subsubsection*{Example}
\begin{verbatim}
program integ
use fvn
implicit none
real(8), external :: f1,f2,g,h
real(8) :: a,b,epsabs,epsrel,abserr,res
integer :: key,ier
a=0.
b=1.
epsabs=1d-8
epsrel=1d-8
key=2
call fvn_d_integ_1_gk(f1,a,b,epsabs,epsrel,key,res,abserr,ier,500)
write(*,*) "Integration of x*x between 0 and 1 : "
write(*,*) res
call fvn_d_integ_2_gk(f2,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,500)
write(*,*) "Integration of x*y between 0 and 1 on both x and y : "
write(*,*) res
end program
function f1(x)
implicit none
real(8) :: x,f1
f1=x*x
end function
function f2(x,y)
implicit none
real(8) :: x,y,f2
f2=x*y
end function
function g(x)
implicit none
real(8) :: x,g
g=0.
end function
function h(x)
implicit none
real(8) :: x,h
h=1.
end function
\end{verbatim}
\section{Special functions}
Specials functions are available in fvn by using an implementation of fnlib \url{http://www.netlib.org/fn}. This can be used separatly from the rest of fvn by using the module \verb'fvn_fnlib' and linking the library \verb'libfvn_fnlib.a' . The module provides a generic interfaces to all the routines. Specific names of the routines are given in the description. The double complex versions of the routines are not present in the web version of fnlib, so these have been added, but not intensely tested.
\paragraph{Important Note}
Due to the addition of fnlib to fvn, some functions that were in fvn and are redondant will be removed from fvn, so update your code now and replace them with the fnlib version. These are listed here after :
\begin{itemize}
\item \verb'fvn_z_acos' replaced by \verb'acos'
\item \verb'fvn_z_asin' replaced by \verb'asin'
\item \verb'fvn_d_asinh' replaced by \verb'asinh'
\item \verb'fvn_d_acosh' replaced by \verb'acosh'
\item \verb'fvn_s_csevl' replaced by \verb'csevl'
\item \verb'fvn_d_csevl' replaced by \verb'csevl'
\item \verb'fvn_d_factorial' replaced by \verb'fac'
\item \verb'fvn_d_lngamma' replaced by \verb'alngam'
\end{itemize}
\subsection{Elementary functions}
\subsubsection{carg}
\begin{verbatim}
carg(z)
\end{verbatim}
\begin{itemize}
\item z (in) is a complex
\end{itemize}
This function evaluates the argument of the complex z. That is $\theta$ for $z=\rho e^{i\theta}$.
Specific interfaces : \verb'carg,zarg'
\subsubsection{cbrt}
\begin{verbatim}
cbrt(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the cubic root of the argument x.
Specific interfaces : \verb'cbrt,dcbrt,ccbrt,zcbrt'
\subsubsection{exprl}
\begin{verbatim}
exprl(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates ${e^x-1}\over x$.
Specific interfaces : \verb'exprel,dexprl,cexprl,zexprl'
\subsubsection{log10}
\begin{verbatim}
log10(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function is an extension of the intrinsic function log10 to complex arguments.
Specific interfaces : \verb'clog10,zlog10'
\subsubsection{alnrel}
\begin{verbatim}
alnrel(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates $ln(1+x)$.
Specific interfaces : \verb'alnrel,dlnrel,clnrel,zlnrel'
\subsection{Trigonometry}
\subsubsection{tan}
\begin{verbatim}
tan(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the tangent of the argument. It is an extension of the intrinsic function tan to complex arguments.
Specific interfaces : \verb'ctan,ztan'
\subsubsection{cot}
\begin{verbatim}
cot(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluate the cotangent of the argument.
Specific interfaces : \verb'cot,dcot,ccot,zcot'
\subsubsection{sindg}
\begin{verbatim}
sindg(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluate the sinus of the argument expressed in degrees.
Specific interfaces : \verb'sindg,dsindg'
\subsubsection{cosdg}
\begin{verbatim}
cosdg(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluate the cosinus of the argument expressed in degrees.
Specific interfaces : \verb'cosdg,dcosdg'
\subsubsection{asin}
\begin{verbatim}
asin(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the arc sine of the argument. It is an extension of the intrinsic function asin to complex arguments.
Specific interfaces : \verb'casin,zasin'
\subsubsection{acos}
\begin{verbatim}
acos(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the arc cosine of the argument. It is an extension of the intrinsic function acos to complex arguments.
Specific interfaces : \verb'cacos,zacos'
\subsubsection{atan}
\begin{verbatim}
atan(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the arc tangent of the argument. It is an extension of the intrinsic function atan to complex arguments.
Specific interfaces : \verb'catan,zatan'
\subsubsection{atan2}
\begin{verbatim}
atan2(x,y)
\end{verbatim}
\begin{itemize}
\item x,y are real or complex
\end{itemize}
This function evaluates the arc tangent of $x \over y$. It is an extension of the intrinsic function atan2 to complex arguments.
Specific interfaces : \verb'catan2,zatan2'
\subsubsection{sinh}
\begin{verbatim}
sinh(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the hyperbolic sine of the argument. It is an extension of the intrinsic function sinh to complex arguments.
Specific interfaces : \verb'csinh,zsinh'
\subsubsection{cosh}
\begin{verbatim}
cosh(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the hyperbolic cosine of the argument. It is an extension of the intrinsic function cosh to complex arguments.
Specific interfaces : \verb'ccosh,zcosh'
\subsubsection{tanh}
\begin{verbatim}
tanh(x)
\end{verbatim}
This function evaluates the hyperbolic tangent of the argument. It is an extension of the intrinsic function tanh to complex arguments.
Specific interfaces : \verb'ctanh,ztanh'
\subsubsection{asinh}
\begin{verbatim}
asinh(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the arc hyperbolic sine of the argument.
Specific interfaces : \verb'asinh,dasinh,casinh,zasinh'
\subsubsection{acosh}
\begin{verbatim}
acosh(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the arc hyperbolic cosine of the argument.
Specific interfaces : \verb'acosh,dacosh,cacosh,zacosh'
\subsubsection{atanh}
\begin{verbatim}
atanh(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the arc hyperbolic tangent of the argument.
Specific interfaces : \verb'atanh,datanh,catanh,zatanh'
\subsection{Exponential Integral and related}
\subsubsection{ei}
\begin{verbatim}
ei(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the exponential integral for argument greater then 0 and the Cauchy principal value for argument less than 0. It is define by equation \ref{ei} for $x \neq 0$.
\begin{equation}
\label{ei}
ei(x)= - \int _{-x} ^\infty {e^{-t}\over t}dt
\end{equation}
Specific interfaces : \verb'ei,dei'
\subsubsection{e1}
\begin{verbatim}
e1(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the exponential integral for argument greater than 0 and the Cauchy principal value for argument less than 0. It is define by equation \ref{e1} for $x \neq 0$.
\begin{equation}
\label{e1}
e1(x)= \int _{x} ^\infty {e^{-t}\over t}dt
\end{equation}
Specific interfaces : \verb'e1,de1'
\subsubsection{ali}
\begin{verbatim}
ali(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the logarithm integral. it is define by equation \ref{ali} for $x > 0$ and $x \neq 1$.
\begin{equation}
\label{ali}
ali(x)= - \int _0 ^x {dt \over ln(x)}
\end{equation}
Specific interfaces : \verb'ali,dli'
\subsubsection{si}
\begin{verbatim}
si(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the sine integral defined by equation \ref{si}.
\begin{equation}
\label{si}
si(x)= \int _0 ^x {sin(t) \over t }dt
\end{equation}
Specific interfaces : \verb'si,dsi'
\subsubsection{ci}
\begin{verbatim}
ci(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the cosine integral defined by equation \ref{ci} where $\gamma \approx 0.57721566$ represent Euler's constant.
\begin{equation}
\label{ci}
ci(x)= \gamma + ln(x) + \int _0 ^x {{1-cos(t)} \over t} dt
\end{equation}
Specific interfaces : \verb'ci,dci'
\subsubsection{cin}
\begin{verbatim}
cin(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the cosine integral alternate definition given by equation \ref{cin}.
\begin{equation}
\label{cin}
cin(x)= \int _0 ^x {{1-cos(t)} \over t} dt
\end{equation}
Specific interface : \verb'cin,dcin'
\subsubsection{shi}
\begin{equation}
shi(x)
\end{equation}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the hyperbolic sine integral defined by equation \ref{shi}.
\begin{equation}
\label{shi}
shi(x) = \int _0 ^x {sinh(t) \over t}dt
\end{equation}
Specific interfaces : \verb'shi,dshi'
\subsubsection{chi}
\begin{verbatim}
chi(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the hyperbolic cosine integral defined by equation \ref{chi} where $\gamma \approx 0.57721566$ represent Euler's constant.
\begin{equation}
\label{chi}
chi(x)= \gamma + ln(x) + \int _0 ^x {{cosh(t) -1} \over t}dt
\end{equation}
Specific interfaces : chi,dchi
\subsubsection{cinh}
\begin{verbatim}
cinh(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the hyperbolic cosine integral alternate definition given by equation \ref{cinh}.
\begin{equation}
\label{cinh}
cinh(x) = \int _0 ^x {{cosh(t) -1} \over t}dt
\end{equation}
Specific interfaces : cinh,dcinh
\subsection{Gamma function and related}
\subsubsection{fac}
\begin{verbatim}
fac(n)
dfac(n)
\end{verbatim}
\begin{itemize}
\item n is an integer
\end{itemize}
This function return $n!$ as a real(4) or real(8) for dfac. There's no generic interface for this one.
Specific interfaces : \verb'fac,dfac'
\subsubsection{binom}
\begin{verbatim}
binom(n,m)
dbinom(n,m)
\end{verbatim}
\begin{itemize}
\item n,m are integers
\end{itemize}
This function return the binomial coefficient defined by equation \ref{binom} with $n \geq m \geq 0$. binom returns a real(4), dbinom a real(8). There's no generic interface for this one.
\begin{equation}
\label{binom}
binom(n,m) = C_n^m = {{n!} \over {m!(n-m)!}}
\end{equation}
Specific interfaces : \verb'binom,dbinom'
\subsubsection{gamma}
\begin{verbatim}
gamma(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates $ \Gamma (x) $ defined by equation \ref{gamma}.
\begin{equation}
\label{gamma}
\Gamma (x) = \int _0 ^{\infty} t^{x-1}e^{-t}dt
\end{equation}
Note that $n!=\Gamma (n+1)$.
Specific interfaces :\verb'gamma,dgamma,cgamma,zgamm'
\subsubsection{gamr}
\begin{verbatim}
gamr(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the reciprocal gamma function $gamr(x)= {1 \over \Gamma(x)}$
\subsubsection{alngam}
\begin{verbatim}
alngam(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates $ln(|\Gamma(x)|)$
Specific interfaces : \verb'alngam,dlngam,clngam,zlngam'
\subsubsection{algams}
\begin{verbatim}
call algams(x,algam,sgngam)
\end{verbatim}
\begin{itemize}
\item x (in) is a real
\item algam (out) is a real
\item sgngam (out) is a real
\end{itemize}
This subroutine evaluates the logarithm of the absolute value of gamma and the sign of gamma.
$algam=ln(|\Gamma(x)|)$ and $sgngam=1.0$ or $-1.0$ according to the sign of $\Gamma(x)$.
Specific interfaces : \verb'algams,dlgams'
\subsubsection{gami}
\begin{verbatim}
gami(a,x)
\end{verbatim}
\begin{itemize}
\item x is a positive real
\item a is a strictly positive real
\end{itemize}
This function evaluates the incomplete gamma function defined by equation \ref{gami}.
\begin{equation}
\label{gami}
gami(a,x)=\gamma(a,x)=\int _0 ^x t^{a-1} e^{-t}dt
\end{equation}
Specific interfaces : \verb'gami,dgami'
\subsubsection{gamic}
\begin{verbatim}
gamic(a,x)
\end{verbatim}
\begin{itemize}
\item x is a positive real
\item a is a real
\end{itemize}
This function evaluates the complementary incomplete gamma function defined by equation \ref{gamic}.
\begin{equation}
\label{gamic}
gamic(a,x)=\Gamma(a,x)=\int _x ^\infty t^{a-1} e^{-t}dt
\end{equation}
Specific interfaces : \verb'gamic,dgamic'
\subsubsection{gamit}
\begin{verbatim}
gamit(a,x)
\end{verbatim}
\begin{itemize}
\item x is a positive real
\item a is a real
\end{itemize}
This function evaluates the Tricomi's incomplete gamma function defined by equation \ref{gamit}.
\begin{equation}
\label{gamit}
gamit(a,x)=\gamma^* (a,x)= {{x^{-a}\gamma(a,x)}\over \Gamma(a)}
\end{equation}
Specific interfaces : \verb'gamit,dgamit'
\subsubsection{psi}
\begin{verbatim}
psi(x)
\end{verbatim}
\begin{itemize}
\item x is a real or complex
\end{itemize}
This function evaluates the psi function which is the logarithm derivative of the gamma function as defined in equation \ref{psi}.
\begin{equation}
\label{psi}
psi(x)= \psi(x) = {d\over dx} ln(\Gamma(x))
\end{equation}
x must not be zero or a negative integer.
Specific interfaces : \verb'psi,dpsi,cpsi,zpsi'
\subsubsection{poch}
\begin{verbatim}
poch(a,x)
\end{verbatim}
\begin{itemize}
\item x is a real
\item a is a real
\end{itemize}
This function evaluates a generalization of Pochhammer's symbol.
Pochhammer's symbol for n a positive integer is given by equation \ref{poch_int}
\begin{equation}
\label{poch_int}
(a)_n = a(a-1)(a-2)...(a-n+1)
\end{equation}
The generalization of Pochhammer's symbol is given by equation \ref{poch}
\begin{equation}
\label{poch}
poch(a,x)= (a)_x = {\Gamma(a+x) \over \Gamma(a)}
\end{equation}
Specific interfaces : \verb'poch,dpoch'
\subsubsection{poch1}
\begin{verbatim}
poch1(a,x)
\end{verbatim}
\begin{itemize}
\item x is a real
\item a is a real
\end{itemize}
This function is defined by equation \ref{poch1}. It is usefull for certains situations, especially when x is small.
\begin{equation}
\label{poch1}
poch1(a,x)={{(a)_x-1} \over x}
\end{equation}
Specific interfaces : \verb'poch1,dpoch1'
\subsubsection{beta}
\begin{verbatim}
beta(a,b)
\end{verbatim}
\begin{itemize}
\item a,b are real positive or complex
\end{itemize}
This function evaluates $\beta$ function defined by equation \ref{beta}.
\begin{equation}
\label{beta}
beta(a,b)=\beta(a,b)={ {\Gamma(a) \Gamma(b)} \over \Gamma(a+b) }
\end{equation}
Specific interfaces : \verb'beta,dbeta,cbeta,zbeta'
\subsubsection{albeta}
\begin{verbatim}
albeta(a,b)
\end{verbatim}
\begin{itemize}
\item a,b are real positive or complex
\end{itemize}
This function evaluates the natural logarithm of beta function : $ln(\beta(a,b))$
Specific interfaces : \verb'albeta,dlbeta,clbeta,zlbeta'
\subsubsection{betai}
\begin{verbatim}
betai(x,pin,qin)
\end{verbatim}
\begin{itemize}
\item x is a real in [0,1]
\item pin and qin are strictly positive real
\end{itemize}
This function evaluates the incomplete beta function ratio, that is the probability that a random variable from a beta distribution having parameters pin and qin will be less than or equal to x. It is defined by equation \ref{betai}.
\begin{equation}
\label{betai}
betai(x,pin,qin)=I_x(pin,qin)={1 \over \beta(pin,qin)} \int _0 ^x t^{pin-1}(1-t)^{qin-1}dt
\end{equation}
Specific interfaces : \verb'betai,dbetai'
\subsection{Error function and related}
\subsubsection{erf}
\begin{verbatim}
erf(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the error function defined by equation \ref{erf}.
\begin{equation}
\label{erf}
erf(x)={2\over \sqrt{ \pi}} \int _0 ^x e^{-t^2}dt
\end{equation}
Specific interfaces : \verb'erf,derf'
\subsubsection{erfc}
\begin{verbatim}
erfc(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the complimentary error function defined by equation \ref{erfc}.
\begin{equation}
\label{erfc}
erfc(x)={2\over \sqrt{ \pi}} \int _x ^\infty e^{-t^2}dt
\end{equation}
Specific interfaces : \verb'erfc,derfc'
\subsubsection{daws}
\begin{verbatim}
daws(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates Dawson's function defined by equation \ref{daws}.
\begin{equation}
\label{daws}
daws(x)=e^{-x^2} \int _0 ^x e^{t^2}dt
\end{equation}
Specific interfaces : \verb'daws,ddaws'
\subsection{Bessel functions and related}
\subsubsection{bsj0}
\begin{verbatim}
bsj0(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates Bessel function of the first kind of order 0 defined by equation \ref{bsj0}.
\begin{equation}
\label{bsj0}
bsj0(x)=J_0(x)= {1 \over \pi} \int _0 ^\pi cos(x sin(\theta)) d\theta
\end{equation}
Specific interfaces : \verb'besj0,dbesj0'
\subsubsection{bsj1}
\begin{verbatim}
bsj1(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates Bessel function of the first kind of order 1 defined by equation \ref{bsj1}.
\begin{equation}
\label{bsj1}
bsj1(x)=J_1(x)={1 \over \pi} \int _0 ^\pi cos(x sin(\theta)-\theta) d\theta
\end{equation}
Specific interfaces : \verb'besj1,dbesj1'
\subsubsection{bsy0}
\begin{verbatim}
bsy0(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the Bessel function of the second kind of order 0 defined by equation \ref{bsy0}
\begin{equation}
\label{bsy0}
bsy0(x)=Y_0(x)={1 \over \pi} \int _0 ^\pi sin(x sin(\theta))d\theta -{2 \over \pi} \int _0 ^\infty e^{-x sinh(t)}dt
\end{equation}
Specific interfaces : \verb'besy0,dbesy0'
\subsubsection{bsy1}
\begin{verbatim}
bsy1(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the Bessel function of the second kind of order 1 defined by equation \ref{bsy1}.
\begin{equation}
\label{bsy1}
bsy1(x)=Y_1(x)=-{1 \over \pi} \int _0 ^\pi sin (\theta - x sin(\theta)) d\theta
- {1 \over \pi} \int _0 ^\infty (e^t -e^{-t})e^{-x sinh(t)}dt
\end{equation}
Specific interfaces : \verb'besy1,dbesy1'
\subsubsection{bsi0}
\begin{verbatim}
bsi0(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the Bessel function of the third kind of order 0 defined by equation \ref{bsi0}.
\begin{equation}
\label{bsi0}
bsi0(x)=I_0(x)={1 \over \pi} \int _0 ^\pi cosh(x cos(\theta))d\theta
\end{equation}
Specific interfaces : \verb'besi0,dbesi0'
\subsubsection{bsi1}
\begin{verbatim}
bsi1(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the Bessel function of the third kind of order 1 defined by equation \ref{bsi1}.
\begin{equation}
\label{bsi1}
bsi1(x)=I_1(x)={1 \over \pi} \int _0 ^\pi e^{x cos(\theta)} cos(\theta)d\theta
\end{equation}
Specific interfaces : \verb'besi1,dbesi1'
\subsubsection{bsk0}
\begin{verbatim}
bsk0(x)
\end{verbatim}
\begin{itemize}
\item x is a strictly positive real
\end{itemize}
This function evaluates the modified Bessel function of the second kind of order 0 defined by equation \ref{bsk0}
\begin{equation}
\label{bsk0}
bsk0(x)=K_0(x)=\int _0 ^\infty cos(x sinh(t))dt
\end{equation}
Specific interfaces : \verb'besk0,dbesk0'
\subsubsection{bsk1}
\begin{verbatim}
bsk1(x)
\end{verbatim}
\begin{itemize}
\item x is a strictly positive real
\end{itemize}
This function evaluates the modified Bessel function of the second kind of order 1 defined by equation \ref{bsk1}
\begin{equation}
\label{bsk1}
bsk1(x)=K_1(x)=\int _0 ^\infty sin(x sinh(t))sinh(t)dt
\end{equation}
Specific interfaces : \verb'besk1,dbesk1'
\subsubsection{bsi0e}
\begin{verbatim}
bsi0e(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates $e^{-|x|}I_0(x)$
Specific interfaces : \verb'besi0e,dbsi0e'
\subsubsection{bsi1e}
\begin{verbatim}
bsi1e(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates $e^{-|x|}I_1(x)$
Specific interfaces : \verb'besi1e,dbsi1e'
\subsubsection{bsk0e}
\begin{verbatim}
bsk0e(x)
\end{verbatim}
\begin{itemize}
\item x is a strictly positive real
\end{itemize}
This function evaluates $e^x K_0(x)$
Specific interfaces : \verb'besk0e,dbsk0e'
\subsubsection{bsk1e}
\begin{verbatim}
bsk1e(x)
\end{verbatim}
\begin{itemize}
\item x is a strictly positive real
\end{itemize}
This function evaluates $e^x K_1(x)$
Specific interfaces : \verb'besk1e,dbsk1e'
\subsubsection{bsks}
\begin{verbatim}
call bsks(xnu,x,nin,bk)
\end{verbatim}
\begin{itemize}
\item xnu (in) is a real with $|xnu|<1$. It's the fractional order
\item x (in) is a real. The value for which the sequence of Bessel functions is to be evaluated.
\item nin (in) is an integer.
\item bk (out) is a real vector of length abs(nin), containing the values of the function.
\end{itemize}
This subroutine evaluates a sequence of modified Bessel function of the second kind of fractional order.
If nin is positive, on completion $bk(1)=K_\nu(x)$,$bk(2)=K_{\nu+1}(x)$,...,$bk(nin)=K_{\nu+nin-1}(x)$. If nin is negative, on completion $bk(1)=K_\nu(x)$,$bk(2)=K_{\nu-1}(x)$,...,$bk(|nin|)=K_{\nu+nin+1}(x)$.
Specific interfaces : \verb'besks,dbesks'
\subsubsection{bskes}
\begin{verbatim}
call bskes(xnu,x,nin,bke)
\end{verbatim}
\begin{itemize}
\item xnu (in) is a real with $|xnu|<1$. It's the fractional order
\item x (in) is a real. The value for which the sequence of exponentialy scaled Bessel functions is to be evaluated.
\item nin (in) is an integer. Number of elements in the sequence.
\item bke (out) is a real vector of length abs(nin), containing the values of the function.
\end{itemize}
This subroutine evaluates a sequence of exponentially scaled modified Bessel function of the second kind of fractional order.
If nin is positive, on completion $bk(1)=e^x K_\nu(x)$,$bk(2)=e^x K_{\nu+1}(x)$,...,$bk(nin)=e^x K_{\nu+nin-1}(x)$. If nin is negative, on completion $bk(1)=e^x K_\nu(x)$,$bk(2)=e^x K_{\nu-1}(x)$,...,$bk(|nin|)=e^x K_{\nu+nin+1}(x)$.
Specific interfaces : \verb'beskes,dbskes'
\subsection{Airy function and related}
\subsubsection{ai}
\begin{verbatim}
ai(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the airy function defined by equation \ref{ai}
\begin{equation}
\label{ai}
Ai(x)={1 \over \pi} \int _0 ^\infty cos(xt+ {1 \over 3}t^3)dt
\end{equation}
Specific interfaces : \verb'ai,dai'
\subsubsection{bi}
\begin{verbatim}
bi(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the Airy function of the second kind defined by equation \ref{bi}
\begin{equation}
\label{bi}
Bi(x)={1 \over \pi} \int _0 ^\infty e^{xt- {1 \over 3}t^3}dt +
{1 \over \pi} \int _0 ^\infty sin(xt+ {1 \over 3}t^3)dt
\end{equation}
Specific interfaces : \verb'bi,dbi'
\subsubsection{aid}
\begin{verbatim}
aid(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the derivative of the Airy function, $aid(x)={d \over {dx}}Ai(x)$.
Specific interface : \verb'aid,daid'
\subsubsection{bid}
\begin{verbatim}
bid(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the derivative of the Airy function of the second kind, $bid(x)={d \over {dx}}Bi(x)$.
Specific interfaces : \verb'bid,dbid'
\subsubsection{aie}
\begin{verbatim}
aie(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the exponentially scaled Airy function defined in equation \ref{aie}.
\begin{equation}
\label{aie}
aie(x)=Ai(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai(x)\rm{~if~}x>0
\end{equation}
%\begin{equation}
% \left{\begin{array}{ll}
% Ai(x) & \textrm{~if~}x\leq0 \\
% e^{{2\over3}x^{3\over2}}Ai(x) & \textrm{~if~}x>0
%\end{array}\right.
%\label{aie}
%\end{equation}
Specific interfaces : \verb'aie,daie'
\subsubsection{bie}
\begin{verbatim}
bie(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the exponentially scaled Airy function of the second kind defined in equation \ref{bie}.
\begin{equation}
\label{bie}
bie(x)=Bi(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi(x)\rm{~if~}x>0
\end{equation}
Specific interfaces : \verb'bie,dbie'
\subsubsection{aide}
\begin{verbatim}
aide(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the exponentially scaled derivative of the Airy function as defined in equation \ref{aide}.
\begin{equation}
\label{aide}
aie(x)=Ai^\prime(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai^\prime(x)\rm{~if~}x>0
\end{equation}
Specific interfaces : \verb'aide,daide'
\subsubsection{bide}
\begin{verbatim}
bide(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates the exponentially scaled derivative of the Airy function of the second kind as defined in equation \ref{bide}.
\begin{equation}
\label{bide}
bie(x)=Bi^\prime(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi^\prime(x)\rm{~if~}x>0
\end{equation}
Specific interfaces : \verb'bide,dbide'
\subsection{Miscellanous functions}
\subsubsection{spenc}
\begin{verbatim}
spenc(x)
\end{verbatim}
\begin{itemize}
\item x is a real
\end{itemize}
This function evaluates Spence function defined in equation \ref{spenc}.
\begin{equation}
\label{spenc}
spenc(x)=s(x)=- \int_0^x {{ln(|1-t|)}\over t}dt
\end{equation}
Specific interfaces : \verb'spenc,dspenc'
\subsubsection{inits}
\begin{verbatim}
inits(os,nos,eta)
\end{verbatim}
\begin{itemize}
\item os is a real vector of length nos, containing the coefficients in an orthogonal series.
\item nos is an integer
\item eta is a real (Warning eta is a real(4) even with the double precision version) representing the requested accuracy.
\end{itemize}
This function initialize the orthogonal series so that inits is the number of terms needed to insure the error is no larger than eta.
Specific interfaces : \verb'inits,initds'
\subsubsection{csevl}
\begin{verbatim}
csevl(x,cs,n)
\end{verbatim}
\begin{itemize}
\item x is a real in [-1,1]
\item cs is a real vector of length n containing the coefficients of the Chebyshev serie.
\item n is an integer
\end{itemize}
This function evaluates the Chebyshev series whose coefficients are stored in cs.
Specific interfaces : \verb'csevl,dcsevl'
\end{document}