umf_singletons.c 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/* ========================================================================== */
/* === UMF_singletons ======================================================= */
/* ========================================================================== */

/* -------------------------------------------------------------------------- */
/* UMFPACK Copyright (c) Timothy A. Davis, CISE,                              */
/* Univ. of Florida.  All Rights Reserved.  See ../Doc/License for License.   */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack                       */
/* -------------------------------------------------------------------------- */

/* Find and order the row and column singletons of a matrix A.  If there are
 * row and column singletons, the output is a row and column permutation such
 * that the matrix is in the following form:
 *
 *	x x x x x x x x x
 *	. x x x x x x x x
 *	. . x x x x x x x
 *	. . . x . . . . .
 *	. . . x x . . . .
 *	. . . x x s s s s
 *	. . . x x s s s s
 *	. . . x x s s s s
 *	. . . x x s s s s
 *
 * The above example has 3 column singletons (the first three columns and
 * their corresponding pivot rows) and 2 row singletons.  The singletons are
 * ordered first, because they have zero Markowitz cost.  The LU factorization
 * for these first five rows and columns is free - there is no work to do
 * (except to scale the pivot columns for the 2 row singletons), and no
 * fill-in occurs.  The remaining submatrix (4-by-4 in the above example)
 * has no rows or columns with degree one.  It may have empty rows or columns.
 *
 * This algorithm does not perform a full permutation to block triangular
 * form.  If there are one or more singletons, then the matrix can be
 * permuted to block triangular form, but UMFPACK does not perform the full
 * BTF permutation (see also "dmperm" in MATLAB, CSparse cs_dmperm,
 * and SuiteSparse/BTF).
 */

#include "umf_internal.h"

#ifndef NDEBUG

/* ========================================================================== */
/* === debug routines ======================================================= */
/* ========================================================================== */

/* Dump the singleton queue */

PRIVATE void dump_singletons
(
    Int head,		/* head of the queue */
    Int tail,		/* tail of the queue */
    Int Next [ ],	/* Next [i] is the next object after i */
    char *name,		/* "row" or "col" */
    Int Deg [ ],	/* Deg [i] is the degree of object i */
    Int n		/* objects are in the range 0 to n-1 */
)
{
    Int i, next, cnt ;
    DEBUG6 (("%s Singleton list: head "ID" tail "ID"\n", name, head, tail)) ;
    i = head ;
    ASSERT (head >= EMPTY && head < n) ;
    ASSERT (tail >= EMPTY && tail < n) ;
    cnt = 0 ;
    while (i != EMPTY)
    {
	DEBUG7 ((" "ID": "ID" deg: "ID"\n", cnt, i, Deg [i])) ;
	ASSERT (i >= 0 && i < n) ;
	next = Next [i] ;
	if (i == tail) ASSERT (next == EMPTY) ;
	i = next ;
	cnt++ ;
	ASSERT (cnt <= n) ;
    }
}

PRIVATE void dump_mat
(
    char *xname,
    char *yname,
    Int nx,
    Int ny,
    const Int Xp [ ],
    const Int Xi [ ],
    Int Xdeg [ ],
    Int Ydeg [ ]
)
{
    Int x, y, p, p1, p2, xdeg, do_xdeg, ydeg ;
    DEBUG6 (("\n ==== Dump %s mat:\n", xname)) ;
    for (x = 0 ; x < nx ; x++)
    {
	p1 = Xp [x] ;
	p2 = Xp [x+1] ;
	xdeg = Xdeg [x] ;
	DEBUG6 (("Dump %s "ID" p1 "ID" p2 "ID" deg "ID"\n",
	    xname, x, p1, p2, xdeg)) ;
	do_xdeg = (xdeg >= 0) ;
	for (p = p1 ; p < p2 ; p++)
	{
	    y = Xi [p] ;
	    DEBUG7 (("    %s "ID" deg: ", yname, y)) ;
	    ASSERT (y >= 0 && y < ny) ;
	    ydeg = Ydeg [y] ;
	    DEBUG7 ((ID"\n", ydeg)) ;
	    if (do_xdeg && ydeg >= 0)
	    {
		xdeg-- ;
	    }
	}
	ASSERT (IMPLIES (do_xdeg, xdeg == 0)) ;
    }
}
#endif

/* ========================================================================== */
/* === create_row_form ====================================================== */
/* ========================================================================== */

/* Create the row-form R of the column-form input matrix A.  This could be done
 * by UMF_transpose, except that Rdeg has already been computed.
 */

PRIVATE void create_row_form
(
    /* input, not modified: */
    Int n_row,		    /* A is n_row-by-n_col, nz = Ap [n_col] */
    Int n_col,
    const Int Ap [ ],	    /* Ap [0..n_col]: column pointers for A */
    const Int Ai [ ],	    /* Ai [0..nz-1]:  row indices for A */
    Int Rdeg [ ],	    /* Rdeg [0..n_row-1]: row degrees */

    /* output, not defined on input: */
    Int Rp [ ],		    /* Rp [0..n_row]: row pointers for R */
    Int Ri [ ],		    /* Ri [0..nz-1]:  column indices for R */

    /* workspace, not defined on input or output */
    Int W [ ]		    /* size n_row */
)
{
    Int row, col, p, p2 ;

    /* create the row pointers */
    Rp [0] = 0 ;
    W [0] = 0 ;
    for (row = 0 ; row < n_row ; row++)
    {
	Rp [row+1] = Rp [row] + Rdeg [row] ;
	W [row] = Rp [row] ;
    }

    /* create the indices for the row-form */
    for (col = 0 ; col < n_col ; col++)
    {
	p2 = Ap [col+1] ;
	for (p = Ap [col] ; p < p2 ; p++)
	{
	    Ri [W [Ai [p]]++] = col ;
	}
    }
}

/* ========================================================================== */
/* === order_singletons ===================================================== */
/* ========================================================================== */

PRIVATE int order_singletons	/* return new number of singletons */
(
    Int k,	    /* the number of singletons so far */
    Int head,
    Int tail,
    Int Next [ ],
    Int Xdeg [ ], Int Xperm [ ], const Int Xp [ ], const Int Xi [ ],
    Int Ydeg [ ], Int Yperm [ ], const Int Yp [ ], const Int Yi [ ]
#ifndef NDEBUG
    , char *xname, char *yname, Int nx, Int ny
#endif
)
{
    Int xpivot, x, y, ypivot, p, p2, deg ;

#ifndef NDEBUG
    Int i, k1 = k ;
    dump_singletons (head, tail, Next, xname, Xdeg, nx) ;
    dump_mat (xname, yname, nx, ny, Xp, Xi, Xdeg, Ydeg) ;
    dump_mat (yname, xname, ny, nx, Yp, Yi, Ydeg, Xdeg) ;
#endif

    while (head != EMPTY)
    {
	/* remove the singleton at the head of the queue */
	xpivot = head ;
	DEBUG1 (("------ Order %s singleton: "ID"\n", xname, xpivot)) ;
	head = Next [xpivot] ;
	if (head == EMPTY) tail = EMPTY ;

#ifndef NDEBUG
	if (k % 100 == 0) dump_singletons (head, tail, Next, xname, Xdeg, nx) ;
#endif

	ASSERT (Xdeg [xpivot] >= 0) ;
	if (Xdeg [xpivot] != 1)
	{
	    /* This row/column x is empty.  The matrix is singular.
	     * x will be ordered last in Xperm. */
	    DEBUG1 (("empty %s, after singletons removed\n", xname)) ;
	    continue ;
	}

	/* find the ypivot to match with this xpivot */
#ifndef NDEBUG
	/* there can only be one ypivot, since the degree of x is 1 */
	deg = 0 ;
	p2 = Xp [xpivot+1] ;
	for (p = Xp [xpivot] ; p < p2 ; p++)
	{
	    y = Xi [p] ;
	    DEBUG1 (("%s: "ID"\n", yname, y)) ;
	    if (Ydeg [y] >= 0)
	    {
		/* this is a live index in this xpivot vector */
		deg++ ;
	    }
	}
	ASSERT (deg == 1) ;
#endif

	ypivot = EMPTY ;
	p2 = Xp [xpivot+1] ;
	for (p = Xp [xpivot] ; p < p2 ; p++)
	{
	    y = Xi [p] ;
	    DEBUG1 (("%s: "ID"\n", yname, y)) ;
	    if (Ydeg [y] >= 0)
	    {
		/* this is a live index in this xpivot vector */
		ypivot = y ;
		break ;
	    }
	}

	DEBUG1 (("Pivot %s: "ID"\n", yname, ypivot)) ;
	ASSERT (ypivot != EMPTY) ;
	DEBUG1 (("deg "ID"\n", Ydeg [ypivot])) ;
	ASSERT (Ydeg [ypivot] >= 0) ;

	/* decrement the degrees after removing this singleton */
	DEBUG1 (("p1 "ID"\n", Yp [ypivot])) ;
	DEBUG1 (("p2 "ID"\n", Yp [ypivot+1])) ;
	p2 = Yp [ypivot+1] ;
	for (p = Yp [ypivot] ; p < p2 ; p++)
	{
	    x = Yi [p] ;
	    DEBUG1 (("    %s: "ID" deg: "ID"\n", xname, x, Xdeg [x])) ;
	    if (Xdeg [x] < 0) continue ;
	    ASSERT (Xdeg [x] > 0) ;
	    if (x == xpivot) continue ;
	    deg = --(Xdeg [x]) ;
	    ASSERT (Xdeg [x] >= 0) ;
	    if (deg == 1)
	    {
		/* this is a new singleton, put at the end of the queue */
		Next [x] = EMPTY ;
		if (head == EMPTY)
		{
		    head = x ;
		}
		else
		{
		    ASSERT (tail != EMPTY) ;
		    Next [tail] = x ;
		}
		tail = x ;
		DEBUG1 ((" New %s singleton:  "ID"\n", xname, x)) ;
#ifndef NDEBUG
		if (k % 100 == 0)
		{
		    dump_singletons (head, tail, Next, xname, Xdeg, nx) ;
		}
#endif
	    }
	}

	/* flag the xpivot and ypivot by FLIP'ing the degrees */
	Xdeg [xpivot] = FLIP (1) ;
	Ydeg [ypivot] = FLIP (Ydeg [ypivot]) ;

	/* keep track of the pivot row and column */
	Xperm [k] = xpivot ;
	Yperm [k] = ypivot ;
	k++ ;

#ifndef NDEBUG
	if (k % 1000 == 0)
	{
	    dump_mat (xname, yname, nx, ny, Xp, Xi, Xdeg, Ydeg) ;
	    dump_mat (yname, xname, ny, nx, Yp, Yi, Ydeg, Xdeg) ;
	}
#endif
    }

#ifndef NDEBUG
    DEBUGm4 (("%s singletons: k = "ID"\n", xname, k)) ;
    for (i = k1 ; i < k ; i++)
    {
	DEBUG1 (("  %s: "ID" %s: "ID"\n", xname, Xperm [i], yname, Yperm [i])) ;
    }
    ASSERT (k > 0) ;
#endif

    return (k) ;
}

/* ========================================================================== */
/* === find_any_singletons ================================================== */
/* ========================================================================== */

PRIVATE Int find_any_singletons	    /* returns # of singletons found */
(
    /* input, not modified: */
    Int n_row,
    Int n_col,
    const Int Ap [ ],	    /* size n_col+1 */
    const Int Ai [ ],	    /* size nz = Ap [n_col] */

    /* input, modified on output: */
    Int Cdeg [ ],	    /* size n_col */
    Int Rdeg [ ],	    /* size n_row */

    /* output, not defined on input: */
    Int Cperm [ ],	    /* size n_col */
    Int Rperm [ ],	    /* size n_row */
    Int *p_n1r,		    /* # of row singletons */
    Int *p_n1c,		    /* # of col singletons */

    /* workspace, not defined on input or output */
    Int Rp [ ],		    /* size n_row+1 */
    Int Ri [ ],		    /* size nz */
    Int W [ ],		    /* size n_row */
    Int Next [ ]	    /* size MAX (n_row, n_col) */
)
{
    Int n1, col, row, row_form, head, tail, n1r, n1c ;

    /* ---------------------------------------------------------------------- */
    /* eliminate column singletons */
    /* ---------------------------------------------------------------------- */

    n1 = 0 ;
    n1r = 0 ;
    n1c = 0 ;
    row_form = FALSE ;

    head = EMPTY ;
    tail = EMPTY ;
    for (col = n_col-1 ; col >= 0 ; col--)
    {
	if (Cdeg [col] == 1)
	{
	    /* put the column singleton in the queue */
	    if (head == EMPTY) tail = col ;
	    Next [col] = head ;
	    head = col ;
	    DEBUG1 (("Column singleton: "ID"\n", col)) ;
	}
    }

    if (head != EMPTY)
    {

	/* ------------------------------------------------------------------ */
	/* create the row-form of A */
	/* ------------------------------------------------------------------ */

	create_row_form (n_row, n_col, Ap, Ai, Rdeg, Rp, Ri, W) ;
	row_form = TRUE ;

	/* ------------------------------------------------------------------ */
	/* find and order the column singletons */
	/* ------------------------------------------------------------------ */

	n1 = order_singletons (0, head, tail, Next,
		Cdeg, Cperm, Ap, Ai,
		Rdeg, Rperm, Rp, Ri
#ifndef NDEBUG
		, "col", "row", n_col, n_row
#endif
		) ;
	n1c = n1 ;
    }

    /* ---------------------------------------------------------------------- */
    /* eliminate row singletons */
    /* ---------------------------------------------------------------------- */

    head = EMPTY ;
    tail = EMPTY ;
    for (row = n_row-1 ; row >= 0 ; row--)
    {
	if (Rdeg [row] == 1)
	{
	    /* put the row singleton in the queue */
	    if (head == EMPTY) tail = row ;
	    Next [row] = head ;
	    head = row ;
	    DEBUG1 (("Row singleton: "ID"\n", row)) ;
	}
    }

    if (head != EMPTY)
    {

	/* ------------------------------------------------------------------ */
	/* create the row-form of A, if not already created */
	/* ------------------------------------------------------------------ */

	if (!row_form)
	{
	    create_row_form (n_row, n_col, Ap, Ai, Rdeg, Rp, Ri, W) ;
	}

	/* ------------------------------------------------------------------ */
	/* find and order the row singletons */
	/* ------------------------------------------------------------------ */

	n1 = order_singletons (n1, head, tail, Next,
		Rdeg, Rperm, Rp, Ri,
		Cdeg, Cperm, Ap, Ai
#ifndef NDEBUG
		, "row", "col", n_row, n_col
#endif
		) ;
	n1r = n1 - n1c ;
    }

    DEBUG0 (("n1 "ID"\n", n1)) ;
    *p_n1r = n1r ;
    *p_n1c = n1c ;
    return (n1) ;
}

/* ========================================================================== */
/* === find_user_singletons ================================================= */
/* ========================================================================== */

PRIVATE Int find_user_singletons	/* returns # singletons found */
(
    /* input, not modified: */
    Int n_row,
    Int n_col,
    const Int Ap [ ],	    /* size n_col+1 */
    const Int Ai [ ],	    /* size nz = Ap [n_col] */
    const Int Quser [ ],    /* size n_col if present */

    /* input, modified on output: */
    Int Cdeg [ ],	    /* size n_col */
    Int Rdeg [ ],	    /* size n_row */

    /* output, not defined on input */
    Int Cperm [ ],	    /* size n_col */
    Int Rperm [ ],	    /* size n_row */
    Int *p_n1r,		    /* # of row singletons */
    Int *p_n1c,		    /* # of col singletons */

    /* workspace, not defined on input or output */
    Int Rp [ ],		    /* size n_row+1 */
    Int Ri [ ],		    /* size nz */
    Int W [ ]		    /* size n_row */
)
{
    Int n1, col, row, p, p2, pivcol, pivrow, found, k, n1r, n1c ;

    n1 = 0 ;
    n1r = 0 ;
    n1c = 0 ;
    *p_n1r = 0 ;
    *p_n1c = 0 ;

    /* find singletons in the user column permutation, Quser */
    pivcol = Quser [0] ;
    found = (Cdeg [pivcol] == 1) ;
    DEBUG0 (("Is first col: "ID" a col singleton?: "ID"\n", pivcol, found)) ;
    if (!found)
    {
	/* the first column is not a column singleton, check for a row
	 * singleton in the first column. */
	for (p = Ap [pivcol] ; p < Ap [pivcol+1] ; p++)
	{
	    if (Rdeg [Ai [p]] == 1)
	    {
		DEBUG0 (("Row singleton in first col: "ID" row: "ID"\n",
		    pivcol, Ai [p])) ;
		found = TRUE ;
		break ;
	    }
	}
    }

    if (!found)
    {
	/* no singletons in the leading part of A (:,Quser) */
	return (0) ;
    }

    /* there is at least one row or column singleton.  Look for more. */
    create_row_form (n_row, n_col, Ap, Ai, Rdeg, Rp, Ri, W) ;

    n1 = 0 ;

    for (k = 0 ; k < n_col ; k++)
    {
	pivcol = Quser [k] ;
	pivrow = EMPTY ;

	/* ------------------------------------------------------------------ */
	/* check if col is a column singleton, or contains a row singleton */
	/* ------------------------------------------------------------------ */

	found = (Cdeg [pivcol] == 1) ;

	if (found)
	{

	    /* -------------------------------------------------------------- */
	    /* pivcol is a column singleton */
	    /* -------------------------------------------------------------- */

	    DEBUG0 (("Found a col singleton: k "ID" pivcol "ID"\n", k, pivcol));

	    /* find the pivrow to match with this pivcol */
#ifndef NDEBUG
	    /* there can only be one pivrow, since the degree of pivcol is 1 */
	    {
		Int deg = 0 ;
		p2 = Ap [pivcol+1] ;
		for (p = Ap [pivcol] ; p < p2 ; p++)
		{
		    row = Ai [p] ;
		    DEBUG1 (("row: "ID"\n", row)) ;
		    if (Rdeg [row] >= 0)
		    {
			/* this is a live index in this column vector */
			deg++ ;
		    }
		}
		ASSERT (deg == 1) ;
	    }
#endif

	    p2 = Ap [pivcol+1] ;
	    for (p = Ap [pivcol] ; p < p2 ; p++)
	    {
		row = Ai [p] ;
		DEBUG1 (("row: "ID"\n", row)) ;
		if (Rdeg [row] >= 0)
		{
		    /* this is a live index in this pivcol vector */
		    pivrow = row ;
		    break ;
		}
	    }

	    DEBUG1 (("Pivot row: "ID"\n", pivrow)) ;
	    ASSERT (pivrow != EMPTY) ;
	    DEBUG1 (("deg "ID"\n", Rdeg [pivrow])) ;
	    ASSERT (Rdeg [pivrow] >= 0) ;

	    /* decrement the degrees after removing this col singleton */
	    DEBUG1 (("p1 "ID"\n", Rp [pivrow])) ;
	    DEBUG1 (("p2 "ID"\n", Rp [pivrow+1])) ;
	    p2 = Rp [pivrow+1] ;
	    for (p = Rp [pivrow] ; p < p2 ; p++)
	    {
		col = Ri [p] ;
		DEBUG1 (("    col: "ID" deg: "ID"\n", col, Cdeg [col])) ;
		if (Cdeg [col] < 0) continue ;
		ASSERT (Cdeg [col] > 0) ;
		Cdeg [col]-- ;
		ASSERT (Cdeg [col] >= 0) ;
	    }

	    /* flag the pivcol and pivrow by FLIP'ing the degrees */
	    Cdeg [pivcol] = FLIP (1) ;
	    Rdeg [pivrow] = FLIP (Rdeg [pivrow]) ;
	    n1c++ ;

	}
	else
	{

	    /* -------------------------------------------------------------- */
	    /* pivcol may contain a row singleton */
	    /* -------------------------------------------------------------- */

	    p2 = Ap [pivcol+1] ;
	    for (p = Ap [pivcol] ; p < p2 ; p++)
	    {
		pivrow = Ai [p] ;
		if (Rdeg [pivrow] == 1)
		{
		    DEBUG0 (("Row singleton in pivcol: "ID" row: "ID"\n",
			pivcol, pivrow)) ;
		    found = TRUE ;
		    break ;
		}
	    }

	    if (!found)
	    {
		DEBUG0 (("End of user singletons\n")) ;
		break ;
	    }

#ifndef NDEBUG
	    /* there can only be one pivrow, since the degree of pivcol is 1 */
	    {
		Int deg = 0 ;
		p2 = Rp [pivrow+1] ;
		for (p = Rp [pivrow] ; p < p2 ; p++)
		{
		    col = Ri [p] ;
		    DEBUG1 (("col: "ID" cdeg::: "ID"\n", col, Cdeg [col])) ;
		    if (Cdeg [col] >= 0)
		    {
			/* this is a live index in this column vector */
			ASSERT (col == pivcol) ;
			deg++ ;
		    }
		}
		ASSERT (deg == 1) ;
	    }
#endif

	    DEBUG1 (("Pivot row: "ID"\n", pivrow)) ;
	    DEBUG1 (("pivcol deg "ID"\n", Cdeg [pivcol])) ;
	    ASSERT (Cdeg [pivcol] > 1) ;

	    /* decrement the degrees after removing this row singleton */
	    DEBUG1 (("p1 "ID"\n", Ap [pivcol])) ;
	    DEBUG1 (("p2 "ID"\n", Ap [pivcol+1])) ;
	    p2 = Ap [pivcol+1] ;
	    for (p = Ap [pivcol] ; p < p2 ; p++)
	    {
		row = Ai [p] ;
		DEBUG1 (("    row: "ID" deg: "ID"\n", row, Rdeg [row])) ;
		if (Rdeg [row] < 0) continue ;
		ASSERT (Rdeg [row] > 0) ;
		Rdeg [row]-- ;
		ASSERT (Rdeg [row] >= 0) ;
	    }

	    /* flag the pivcol and pivrow by FLIP'ing the degrees */
	    Cdeg [pivcol] = FLIP (Cdeg [pivcol]) ;
	    Rdeg [pivrow] = FLIP (1) ;
	    n1r++ ;
	}

	/* keep track of the pivot row and column */
	Cperm [k] = pivcol ;
	Rperm [k] = pivrow ;
	n1++ ;

#ifndef NDEBUG
	dump_mat ("col", "row", n_col, n_row, Ap, Ai, Cdeg, Rdeg) ;
	dump_mat ("row", "col", n_row, n_col, Rp, Ri, Rdeg, Cdeg) ;
#endif

    }

    DEBUGm4 (("User singletons found: "ID"\n", n1)) ;
    ASSERT (n1 > 0) ;

    *p_n1r = n1r ;
    *p_n1c = n1c ;
    return (n1) ;
}

/* ========================================================================== */
/* === finish_permutation =================================================== */
/* ========================================================================== */

/* Complete the permutation for the pruned submatrix.  The singletons are
 * already ordered, but remove their flags.  Place rows/columns that are empty
 * in the pruned submatrix at the end of the output permutation.  This can only
 * occur if the matrix is singular.
 */

PRIVATE Int finish_permutation
(
    Int n1,
    Int nx,
    Int Xdeg [ ],
    const Int Xuser [ ],
    Int Xperm [ ],
    Int *p_max_deg
)
{
    Int nempty, x, deg, s, max_deg, k ;
    nempty = 0 ;
    s = n1 ;
    max_deg = 0 ;
    DEBUG0 (("n1 "ID" nempty "ID"\n", n1, nempty)) ;
    for (k = 0 ; k < nx ; k++)
    {
	x = (Xuser != (Int *) NULL) ? Xuser [k] : k ;
	DEBUG0 (("finish perm k "ID" x "ID" nx "ID"\n", k, x, nx)) ;
	deg = Xdeg [x] ;
	if (deg == 0)
	{
	    /* this row/col is empty in the pruned submatrix */
	    ASSERT (s < nx - nempty) ;
	    DEBUG0 (("empty k "ID"\n", k)) ;
	    nempty++ ;
	    Xperm [nx - nempty] = x ;
	}
	else if (deg > 0)
	{
	    /* this row/col is nonempty in the pruned submatrix */
	    ASSERT (s < nx - nempty) ;
	    Xperm [s++] = x ;
	    max_deg = MAX (max_deg, deg) ;
	}
	else
	{
	    /* This is a singleton row/column - it is already ordered.
	     * Just clear the flag. */
	    Xdeg [x] = FLIP (deg) ;
	}
    }
    ASSERT (s == nx - nempty) ;
    *p_max_deg = max_deg ;
    return (nempty) ;
}

/* ========================================================================== */
/* === UMF_singletons ======================================================= */
/* ========================================================================== */

GLOBAL Int UMF_singletons
(

    /* input, not modified: */
    Int n_row,
    Int n_col,
    const Int Ap [ ],	    /* size n_col+1 */
    const Int Ai [ ],	    /* size nz = Ap [n_col] */
    const Int Quser [ ],    /* size n_col if present */
    Int strategy,	    /* strategy requested by user */

    /* output, not defined on input: */
    Int Cdeg [ ],	/* size n_col */
    Int Cperm [ ],	/* size n_col */
    Int Rdeg [ ],	/* size n_row */
    Int Rperm [ ],	/* size n_row */
    Int InvRperm [ ],	/* size n_row, the inverse of Rperm */
    Int *p_n1,		/* # of col and row singletons */
    Int *p_n1c,		/* # of col singletons */
    Int *p_n1r,		/* # of row singletons */
    Int *p_nempty_col,	/* # of empty columns in pruned submatrix */
    Int *p_nempty_row,	/* # of empty columns in pruned submatrix */
    Int *p_is_sym,	/* TRUE if pruned submatrix is square and has been
			 * symmetrically permuted by Cperm and Rperm */
    Int *p_max_rdeg,	/* maximum Rdeg in pruned submatrix */

    /* workspace, not defined on input or output */
    Int Rp [ ],		/* size n_row+1 */
    Int Ri [ ],		/* size nz */
    Int W [ ],		/* size n_row */
    Int Next [ ]	/* size MAX (n_row, n_col) */
)
{
    Int n1, s, col, row, p, p1, p2, cdeg, last_row, is_sym, k,
	nempty_row, nempty_col, max_cdeg, max_rdeg, n1c, n1r ;

    /* ---------------------------------------------------------------------- */
    /* initializations */
    /* ---------------------------------------------------------------------- */

#ifndef NDEBUG
    UMF_dump_start ( ) ;
    DEBUGm4 (("Starting umf_singletons\n")) ;
#endif

    /* ---------------------------------------------------------------------- */
    /* scan the columns, check for errors and count row degrees */
    /* ---------------------------------------------------------------------- */

    if (Ap [0] != 0 || Ap [n_col] < 0)
    {
	return (UMFPACK_ERROR_invalid_matrix) ;
    }
    for (row = 0 ; row < n_row ; row++)
    {
	Rdeg [row] = 0 ;
    }
    for (col = 0 ; col < n_col ; col++)
    {
	p1 = Ap [col] ;
	p2 = Ap [col+1] ;
	cdeg = p2 - p1 ;
	if (cdeg < 0)
	{
	    return (UMFPACK_ERROR_invalid_matrix) ;
	}
	last_row = EMPTY ;
	for (p = p1 ; p < p2 ; p++)
	{
	    row = Ai [p] ;
	    if (row <= last_row || row >= n_row)
	    {
		return (UMFPACK_ERROR_invalid_matrix) ;
	    }
	    Rdeg [row]++ ;
	    last_row = row ;
	}
	Cdeg [col] = cdeg ;
    }

    /* ---------------------------------------------------------------------- */
    /* find singletons */
    /* ---------------------------------------------------------------------- */

    if (Quser != (Int *) NULL)
    {
	/* user has provided an input column ordering */
	if (strategy == UMFPACK_STRATEGY_UNSYMMETRIC)
	{
	    /* look for singletons, but respect the user's input permutation */
	    n1 = find_user_singletons (n_row, n_col, Ap, Ai, Quser,
		    Cdeg, Rdeg, Cperm, Rperm, &n1r, &n1c, Rp, Ri, W) ;
	}
	else
	{
	    /* do not look for singletons if Quser given and strategy is
	     * not unsymmetric */
	    n1 = 0 ;
	    n1r = 0 ;
	    n1c = 0 ;
	}
    }
    else
    {
	/* look for singletons anywhere */
	n1 = find_any_singletons (n_row, n_col, Ap, Ai,
		Cdeg, Rdeg, Cperm, Rperm, &n1r, &n1c, Rp, Ri, W, Next) ;
    }

    /* ---------------------------------------------------------------------- */
    /* eliminate empty columns and complete the column permutation */
    /* ---------------------------------------------------------------------- */

    nempty_col = finish_permutation (n1, n_col, Cdeg, Quser, Cperm, &max_cdeg) ;

    /* ---------------------------------------------------------------------- */
    /* eliminate empty rows and complete the row permutation */
    /* ---------------------------------------------------------------------- */

    if (Quser != (Int *) NULL && strategy == UMFPACK_STRATEGY_SYMMETRIC)
    {
	/* rows should be symmetrically permuted according to Quser */
	ASSERT (n_row == n_col) ;
	nempty_row = finish_permutation (n1, n_row, Rdeg, Quser, Rperm,
	    &max_rdeg) ;
    }
    else
    {
	/* rows should not be symmetrically permuted according to Quser */
	nempty_row = finish_permutation (n1, n_row, Rdeg, (Int *) NULL, Rperm,
	    &max_rdeg) ;
    }

    /* ---------------------------------------------------------------------- */
    /* compute the inverse of Rperm */
    /* ---------------------------------------------------------------------- */

    for (k = 0 ; k < n_row ; k++)
    {
	ASSERT (Rperm [k] >= 0 && Rperm [k] < n_row) ;
	InvRperm [Rperm [k]] = k ;
    }

    /* ---------------------------------------------------------------------- */
    /* see if pruned submatrix is square and has been symmetrically permuted */
    /* ---------------------------------------------------------------------- */

    if (n_row == n_col && nempty_row == nempty_col)
    {
	/* is_sym is true if the submatrix is square, and
	 * Rperm [n1..n_row-nempty_row-1] = Cperm [n1..n_col-nempty_col-1] */
	is_sym = TRUE ;
	for (s = n1 ; s < n_col - nempty_col ; s++)
	{
	    if (Cperm [s] != Rperm [s])
	    {
		is_sym = FALSE ;
		break ;
	    }
	}
    }
    else
    {
	is_sym = FALSE ;
    }
    DEBUGm4 (("Submatrix square and symmetrically permuted? "ID"\n", is_sym)) ;
    DEBUGm4 (("singletons "ID" row "ID" col "ID"\n", n1, n1r, n1c)) ;
    DEBUGm4 (("Empty cols "ID" rows "ID"\n", nempty_col, nempty_row)) ;
    *p_n1 = n1 ;
    *p_n1r = n1r ;
    *p_n1c = n1c ;
    *p_is_sym = is_sym ;
    *p_nempty_col = nempty_col ;
    *p_nempty_row = nempty_row ;
    *p_max_rdeg = max_rdeg ;
    return (UMFPACK_OK) ;
}