umf_colamd.c 91.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
/* ========================================================================== */
/* === UMF_colamd =========================================================== */
/* ========================================================================== */

/* -------------------------------------------------------------------------- */
/* UMFPACK Copyright (c) Timothy A. Davis, CISE,                              */
/* Univ. of Florida.  All Rights Reserved.  See ../Doc/License for License.   */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack                       */
/* -------------------------------------------------------------------------- */

/*
UMF_colamd:  an approximate minimum degree column ordering algorithm,
    used as a preordering for UMFPACK.

NOTE: if this routine is used outside of UMFPACK, for a sparse Cholesky
factorization of (AQ)'*(AQ) or a QR factorization of A, then one line should
be removed (the "&& pivot_row_thickness > 0" expression).  See the comment
regarding the Cholesky factorization, below.

Purpose:

    Colamd computes a permutation Q such that the Cholesky factorization of
    (AQ)'(AQ) has less fill-in and requires fewer floating point operations
    than A'A.  This also provides a good ordering for sparse partial
    pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
    factorization, and P is computed during numerical factorization via
    conventional partial pivoting with row interchanges.  Colamd is the
    column ordering method used in SuperLU, part of the ScaLAPACK library.
    It is also available as built-in function in MATLAB Version 6,
    available from MathWorks, Inc. (http://www.mathworks.com).  This
    routine can be used in place of colmmd in MATLAB.  By default, the \
    and / operators in MATLAB perform a column ordering (using colmmd
    or colamd) prior to LU factorization using sparse partial pivoting,
    in the built-in MATLAB lu(A) routine.

    This code is derived from Colamd Version 2.0.

Authors:

    The authors of the COLAMD code itself are Stefan I. Larimore and Timothy A.
    Davis, University of Florida.  The algorithm was developed in collaboration
    with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
    The AMD metric on which this is based is by Patrick Amestoy, T. Davis,
    and Iain Duff.

Date:

    UMFPACK Version: see above.
    COLAMD Version 2.0 was released on January 31, 2000.

Acknowledgements:

    This work was supported by the National Science Foundation, under
    grants DMS-9504974, DMS-9803599, and CCR-0203270.

UMFPACK:  Copyright (c) 2003 by Timothy A. Davis.  All Rights Reserved.

See the UMFPACK README file for the License for your use of this code.

Availability:

    Both UMFPACK and the original unmodified colamd/symamd library are
    available at http://www.cise.ufl.edu/research/sparse.

Changes for inclusion in UMFPACK:

    * symamd, symamd_report, and colamd_report removed

    * additional terms added to RowInfo, ColInfo, and stats

    * Frontal matrix information computed for UMFPACK

    * routines renamed

    * column elimination tree post-ordering incorporated.  In the original
	version 2.0, this was performed in colamd.m.

For more information, see:

	Amestoy, P. R. and Davis, T. A. and Duff, I. S.,
	An approximate minimum degree ordering algorithm,
	SIAM J. Matrix Analysis and Applic, vol 17, no 4., pp 886-905, 1996.

	Davis, T. A. and Gilbert, J. R. and Larimore, S. I. and Ng, E. G.,
	A column approximate minimum degree ordering algorithm,
	Univ. of Florida, CISE Dept., TR-00-005, Gainesville, FL
	Oct. 2000.  Submitted to ACM Trans. Math. Softw.

*/

/* ========================================================================== */
/* === Description of user-callable routines ================================ */
/* ========================================================================== */

/*
    ----------------------------------------------------------------------------
    colamd_recommended: removed for UMFPACK
    ----------------------------------------------------------------------------

    ----------------------------------------------------------------------------
    colamd_set_defaults:
    ----------------------------------------------------------------------------

	C syntax:

	    #include "colamd.h"
	    colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;

	Purpose:

	    Sets the default parameters.  The use of this routine is optional.

	Arguments:

	    double knobs [COLAMD_KNOBS] ;	Output only.

		Let c = knobs [COLAMD_DENSE_COL], r = knobs [COLAMD_DENSE_ROW].
		Colamd: rows with more than max (16, r*16*sqrt(n_col))
		entries are removed prior to ordering.  Columns with more than
		max (16, c*16*sqrt(n_row)) entries are removed prior to
		ordering, and placed last in the output column ordering.

		Symamd: removed for UMFPACK.

		COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
		respectively, in colamd.h.  Default values of these two knobs
		are both 0.5.  Currently, only knobs [0] and knobs [1] are
		used, but future versions may use more knobs.  If so, they will
		be properly set to their defaults by the future version of
		colamd_set_defaults, so that the code that calls colamd will
		not need to change, assuming that you either use
		colamd_set_defaults, or pass a (double *) NULL pointer as the
		knobs array to colamd or symamd.

		knobs [COLAMD_AGGRESSIVE]: if nonzero, then perform aggressive
		absorption.  Otherwise, do not.  This version does aggressive
		absorption by default.  COLAMD v2.1 (in MATLAB) always
		does aggressive absorption (it doesn't have an option to turn
		it off).

    ----------------------------------------------------------------------------
    colamd:
    ----------------------------------------------------------------------------

	C syntax:

	    #include "colamd.h"
	    Int UMF_colamd (Int n_row, Int n_col, Int Alen, Int *A, Int *p,
		double knobs [COLAMD_KNOBS], Int stats [COLAMD_STATS]) ;

	Purpose:

	    Computes a column ordering (Q) of A such that P(AQ)=LU or
	    (AQ)'AQ=LL' have less fill-in and require fewer floating point
	    operations than factorizing the unpermuted matrix A or A'A,
	    respectively.

	Returns:

	    TRUE (1) if successful, FALSE (0) otherwise.

	Arguments:

	    Int n_row ;		Input argument.

		Number of rows in the matrix A.
		Restriction:  n_row >= 0.
		Colamd returns FALSE if n_row is negative.

	    Int n_col ;		Input argument.

		Number of columns in the matrix A.
		Restriction:  n_col >= 0.
		Colamd returns FALSE if n_col is negative.

	    Int Alen ;		Input argument.

		Restriction (see note):
		Alen >= 2*nnz + 8*(n_col+1) + 6*(n_row+1) + n_col
		Colamd returns FALSE if these conditions are not met.

		Note:  this restriction makes an modest assumption regarding
		the size of the two typedef's structures in colamd.h.
		We do, however, guarantee that

			Alen >= UMF_COLAMD_RECOMMENDED (nnz, n_row, n_col)

		will be sufficient.

	    Int A [Alen] ;	Input and output argument.

		A is an integer array of size Alen.  Alen must be at least as
		large as the bare minimum value given above, but this is very
		low, and can result in excessive run time.  For best
		performance, we recommend that Alen be greater than or equal to
		UMF_COLAMD_RECOMMENDED (nnz, n_row, n_col), which adds
		nnz/5 to the bare minimum value given above.

		On input, the row indices of the entries in column c of the
		matrix are held in A [(p [c]) ... (p [c+1]-1)].  The row indices
		in a given column c need not be in ascending order, and
		duplicate row indices may be be present.  However, colamd will
		work a little faster if both of these conditions are met
		(Colamd puts the matrix into this format, if it finds that the
		the conditions are not met).

		The matrix is 0-based.  That is, rows are in the range 0 to
		n_row-1, and columns are in the range 0 to n_col-1.  Colamd
		returns FALSE if any row index is out of range.

		A holds the inverse permutation on output.

	    Int p [n_col+1] ;	Both input and output argument.

		p is an integer array of size n_col+1.  On input, it holds the
		"pointers" for the column form of the matrix A.  Column c of
		the matrix A is held in A [(p [c]) ... (p [c+1]-1)].  The first
		entry, p [0], must be zero, and p [c] <= p [c+1] must hold
		for all c in the range 0 to n_col-1.  The value p [n_col] is
		thus the total number of entries in the pattern of the matrix A.
		Colamd returns FALSE if these conditions are not met.

		On output, if colamd returns TRUE, the array p holds the column
		permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
		the first column index in the new ordering, and p [n_col-1] is
		the last.  That is, p [k] = j means that column j of A is the
		kth pivot column, in AQ, where k is in the range 0 to n_col-1
		(p [0] = j means that column j of A is the first column in AQ).

		If colamd returns FALSE, then no permutation is returned, and
		p is undefined on output.

	    double knobs [COLAMD_KNOBS] ;	Input argument.

		See colamd_set_defaults for a description.
		The behavior is undefined if knobs contains NaN's.
		(UMFPACK does not call umf_colamd with NaN-valued knobs).

	    Int stats [COLAMD_STATS] ;		Output argument.

		Statistics on the ordering, and error status.
		See colamd.h for related definitions.
		Colamd returns FALSE if stats is not present.

		stats [0]:  number of dense or empty rows ignored.

		stats [1]:  number of dense or empty columns ignored (and
				ordered last in the output permutation p)
				Note that a row can become "empty" if it
				contains only "dense" and/or "empty" columns,
				and similarly a column can become "empty" if it
				only contains "dense" and/or "empty" rows.

		stats [2]:  number of garbage collections performed.
				This can be excessively high if Alen is close
				to the minimum required value.

		stats [3]:  status code.  < 0 is an error code.
			    > 1 is a warning or notice.

			0	OK.  Each column of the input matrix contained
				row indices in increasing order, with no
				duplicates.

			-11	Columns of input matrix jumbled
				(unsorted columns or duplicate entries).

					stats [4]: the bad column index
					stats [5]: the bad row index

			-1	A is a null pointer

			-2	p is a null pointer

			-3	n_row is negative

					stats [4]: n_row

			-4	n_col is negative

					stats [4]: n_col

			-5	number of nonzeros in matrix is negative

					stats [4]: number of nonzeros, p [n_col]

			-6	p [0] is nonzero

					stats [4]: p [0]

			-7	A is too small

					stats [4]: required size
					stats [5]: actual size (Alen)

			-8	a column has a zero or negative number of
				entries (changed for UMFPACK)

					stats [4]: column with <= 0 entries
					stats [5]: number of entries in col

			-9	a row index is out of bounds

					stats [4]: column with bad row index
					stats [5]: bad row index
					stats [6]: n_row, # of rows of matrx

			-10	unused

			-999	(unused; see symamd.c)

		Future versions may return more statistics in the stats array.

	Example:

	    See http://www.cise.ufl.edu/~davis/colamd/example.c
	    for a complete example.

	    To order the columns of a 5-by-4 matrix with 11 nonzero entries in
	    the following nonzero pattern

		x 0 x 0
		x 0 x x
		0 x x 0
		0 0 x x
		x x 0 0

	    with default knobs and no output statistics, do the following:

		#include "colamd.h"
		#define ALEN UMF_COLAMD_RECOMMENDED (11, 5, 4)
		Int A [ALEN] = {1, 2, 5, 3, 5, 1, 2, 3, 4, 2, 4} ;
		Int p [ ] = {0, 3, 5, 9, 11} ;
		Int stats [COLAMD_STATS] ;
		UMF_colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;

	    The permutation is returned in the array p, and A is destroyed.


    ----------------------------------------------------------------------------
    symamd:  does not appear in this version for UMFPACK
    ----------------------------------------------------------------------------

    ----------------------------------------------------------------------------
    colamd_report: does not appear in this version for UMFPACK
    ----------------------------------------------------------------------------

    ----------------------------------------------------------------------------
    symamd_report: does not appear in this version for UMFPACK
    ----------------------------------------------------------------------------

*/

/* ========================================================================== */
/* === Scaffolding code definitions  ======================================== */
/* ========================================================================== */

/* UMFPACK debugging control moved to amd_internal.h */

/*
   Our "scaffolding code" philosophy:  In our opinion, well-written library
   code should keep its "debugging" code, and just normally have it turned off
   by the compiler so as not to interfere with performance.  This serves
   several purposes:

   (1) assertions act as comments to the reader, telling you what the code
	expects at that point.  All assertions will always be true (unless
	there really is a bug, of course).

   (2) leaving in the scaffolding code assists anyone who would like to modify
	the code, or understand the algorithm (by reading the debugging output,
	one can get a glimpse into what the code is doing).

   (3) (gasp!) for actually finding bugs.  This code has been heavily tested
	and "should" be fully functional and bug-free ... but you never know...

    To enable debugging, comment out the "#define NDEBUG" above.  For a MATLAB
    mexFunction, you will also need to modify mexopts.sh to remove the -DNDEBUG
    definition.  The code will become outrageously slow when debugging is
    enabled.  To control the level of debugging output, set an environment
    variable D to 0 (little), 1 (some), 2, 3, or 4 (lots).  When debugging,
    you should see the following message on the standard output:

	colamd: debug version, D = 1 (THIS WILL BE SLOW!)

    or a similar message for symamd.  If you don't, then debugging has not
    been enabled.

*/

/* ========================================================================== */
/* === Include files ======================================================== */
/* ========================================================================== */

/* ------------------ */
/* modified for UMFPACK: */
#include "umf_internal.h"
#include "umf_colamd.h"
#include "umf_apply_order.h"
#include "umf_fsize.h"
/* ------------------ */

/* ========================================================================== */
/* === Definitions ========================================================== */
/* ========================================================================== */

/* ------------------ */
/* UMFPACK: duplicate definitions moved to umf_internal.h */
/* ------------------ */

/* Row and column status */
#define ALIVE	(0)
#define DEAD	(-1)

/* Column status */
#define DEAD_PRINCIPAL		(-1)
#define DEAD_NON_PRINCIPAL	(-2)

/* Macros for row and column status update and checking. */
#define ROW_IS_DEAD(r)			ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
#define ROW_IS_MARKED_DEAD(row_mark)	(row_mark < ALIVE)
#define ROW_IS_ALIVE(r)			(Row [r].shared2.mark >= ALIVE)
#define COL_IS_DEAD(c)			(Col [c].start < ALIVE)
#define COL_IS_ALIVE(c)			(Col [c].start >= ALIVE)
#define COL_IS_DEAD_PRINCIPAL(c)	(Col [c].start == DEAD_PRINCIPAL)
#define KILL_ROW(r)			{ Row [r].shared2.mark = DEAD ; }
#define KILL_PRINCIPAL_COL(c)		{ Col [c].start = DEAD_PRINCIPAL ; }
#define KILL_NON_PRINCIPAL_COL(c)	{ Col [c].start = DEAD_NON_PRINCIPAL ; }

/* ------------------ */
/* UMFPACK: Colamd reporting mechanism moved to umf_internal.h */
/* ------------------ */

/* ========================================================================== */
/* === Prototypes of PRIVATE routines ======================================= */
/* ========================================================================== */

PRIVATE Int init_rows_cols
(
    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A [],
    Int p []
    /* Int stats [COLAMD_STATS] */
) ;

PRIVATE void init_scoring
(
    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A [],
    Int head [],
    double knobs [COLAMD_KNOBS],
    Int *p_n_row2,
    Int *p_n_col2,
    Int *p_max_deg
    /* ------------------ */
    /* added for UMFPACK */
    , Int *p_ndense_row		/* number of dense rows */
    , Int *p_nempty_row		/* number of original empty rows */
    , Int *p_nnewlyempty_row	/* number of newly empty rows */
    , Int *p_ndense_col		/* number of dense cols (excl "empty" cols) */
    , Int *p_nempty_col		/* number of original empty cols */
    , Int *p_nnewlyempty_col	/* number of newly empty cols */
) ;

PRIVATE Int find_ordering
(
    Int n_row,
    Int n_col,
    Int Alen,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A [],
    Int head [],
    Int n_col2,
    Int max_deg,
    Int pfree
    /* ------------------ */
    /* added for UMFPACK: */
    , Int Front_npivcol [ ]
    , Int Front_nrows [ ]
    , Int Front_ncols [ ]
    , Int Front_parent [ ]
    , Int Front_cols [ ]
    , Int *p_nfr
    , Int aggressive
    , Int InFront [ ]
    /* ------------------ */
) ;

/* ------------------ */
/* order_children deleted for UMFPACK: */
/* ------------------ */

PRIVATE void detect_super_cols
(

#ifndef NDEBUG
    Int n_col,
    Colamd_Row Row [],
#endif /* NDEBUG */

    Colamd_Col Col [],
    Int A [],
    Int head [],
    Int row_start,
    Int row_length
) ;

PRIVATE Int garbage_collection
(
    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A [],
    Int *pfree
) ;

PRIVATE Int clear_mark
(
    Int n_row,
    Colamd_Row Row []
) ;

/* ------------------ */
/* print_report deleted for UMFPACK */
/* ------------------ */

/* ========================================================================== */
/* === Debugging prototypes and definitions ================================= */
/* ========================================================================== */

#ifndef NDEBUG

/* ------------------ */
/* debugging macros moved for UMFPACK */
/* ------------------ */

PRIVATE void debug_deg_lists
(
    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int head [],
    Int min_score,
    Int should,
    Int max_deg
) ;

PRIVATE void debug_mark
(
    Int n_row,
    Colamd_Row Row [],
    Int tag_mark,
    Int max_mark
) ;

PRIVATE void debug_matrix
(
    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A []
) ;

PRIVATE void debug_structures
(
    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A [],
    Int n_col2
) ;

/* ------------------ */
/* dump_super added for UMFPACK: */
PRIVATE void dump_super
(
    Int super_c,
    Colamd_Col Col [],
    Int n_col
) ;
/* ------------------ */

#endif /* NDEBUG */

/* ========================================================================== */



/* ========================================================================== */
/* === USER-CALLABLE ROUTINES: ============================================== */
/* ========================================================================== */


/* ========================================================================== */
/* === colamd_set_defaults ================================================== */
/* ========================================================================== */

/*
    The colamd_set_defaults routine sets the default values of the user-
    controllable parameters for colamd:

	knobs [0]	rows with knobs[0]*n_col entries or more are removed
			prior to ordering in colamd.  Rows and columns with
			knobs[0]*n_col entries or more are removed prior to
			ordering in symamd and placed last in the output
			ordering.

	knobs [1]	columns with knobs[1]*n_row entries or more are removed
			prior to ordering in colamd, and placed last in the
			column permutation.  Symamd ignores this knob.

	knobs [2]	if nonzero, then perform aggressive absorption.

	knobs [3..19]	unused, but future versions might use this
*/

GLOBAL void UMF_colamd_set_defaults
(
    /* === Parameters ======================================================= */

    double knobs [COLAMD_KNOBS]		/* knob array */
)
{
    /* === Local variables ================================================== */

    Int i ;

#if 0
    if (!knobs)
    {
	return ;			/* UMFPACK always passes knobs array */
    }
#endif
    for (i = 0 ; i < COLAMD_KNOBS ; i++)
    {
	knobs [i] = 0 ;
    }
    knobs [COLAMD_DENSE_ROW] = 0.2 ;	/* default changed for UMFPACK */
    knobs [COLAMD_DENSE_COL] = 0.2 ;	/* default changed for UMFPACK */
    knobs [COLAMD_AGGRESSIVE] = TRUE ;	/* default is to do aggressive
					 * absorption */
}


/* ========================================================================== */
/* === symamd removed for UMFPACK =========================================== */
/* ========================================================================== */



/* ========================================================================== */
/* === colamd =============================================================== */
/* ========================================================================== */

/*
    The colamd routine computes a column ordering Q of a sparse matrix
    A such that the LU factorization P(AQ) = LU remains sparse, where P is
    selected via partial pivoting.   The routine can also be viewed as
    providing a permutation Q such that the Cholesky factorization
    (AQ)'(AQ) = LL' remains sparse.
*/

/* For UMFPACK: colamd always returns TRUE */

GLOBAL Int UMF_colamd		/* returns TRUE if successful, FALSE otherwise*/
(
    /* === Parameters ======================================================= */

    Int n_row,			/* number of rows in A */
    Int n_col,			/* number of columns in A */
    Int Alen,			/* length of A */
    Int A [],			/* row indices of A */
    Int p [],			/* pointers to columns in A */
    double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
    Int stats [COLAMD_STATS]	/* output statistics and error codes */

    /* ------------------ */
    /* added for UMFPACK: each Front_ array is of size n_col+1 */
    , Int Front_npivcol [ ]	/* # pivot cols in each front */
    , Int Front_nrows [ ]	/* # of rows in each front (incl. pivot rows) */
    , Int Front_ncols [ ]	/* # of cols in each front (incl. pivot cols) */
    , Int Front_parent [ ]	/* parent of each front */
    , Int Front_cols [ ]	/* link list of pivot columns for each front */
    , Int *p_nfr		/* total number of frontal matrices */
    , Int InFront [ ]		/* InFront [row] = f if the original row was
				 * absorbed into front f.  EMPTY if the row was
				 * empty, dense, or not absorbed.  This array
				 * has size n_row+1 */
    /* ------------------ */
)
{
    /* === Local variables ================================================== */

    Int row ;			/* row index */
    Int i ;			/* loop index */
    Int nnz ;			/* nonzeros in A */
    Int Row_size ;		/* size of Row [], in integers */
    Int Col_size ;		/* size of Col [], in integers */
#if 0
    Int need ;			/* minimum required length of A */
#endif
    Colamd_Row *Row ;		/* pointer into A of Row [0..n_row] array */
    Colamd_Col *Col ;		/* pointer into A of Col [0..n_col] array */
    Int n_col2 ;		/* number of non-dense, non-empty columns */
    Int n_row2 ;		/* number of non-dense, non-empty rows */
    Int ngarbage ;		/* number of garbage collections performed */
    Int max_deg ;		/* maximum row degree */
    Int aggressive ;		/* TRUE if doing aggressive absorption */
#if 0
    double default_knobs [COLAMD_KNOBS] ;	/* default knobs array */
#endif

    /* ------------------ */
    /* debugging initializations moved for UMFPACK */
    /* ------------------ */

    /* ------------------ */
    /* added for UMFPACK: */
    Int ndense_row, nempty_row, parent, ndense_col,
	nempty_col, k, col, nfr, *Front_child, *Front_sibling, *Front_stack,
	*Front_order, *Front_size ;
    Int nnewlyempty_col, nnewlyempty_row ;
    /* ------------------ */

    /* === Check the input arguments ======================================== */

#if 0
    if (!stats)
    {
	DEBUG0 (("colamd: stats not present\n")) ;
	return (FALSE) ;	/* UMFPACK:  always passes stats [ ] */
    }
#endif

    ASSERT (stats != (Int *) NULL) ;

    for (i = 0 ; i < COLAMD_STATS ; i++)
    {
	stats [i] = 0 ;
    }
    stats [COLAMD_STATUS] = COLAMD_OK ;
    stats [COLAMD_INFO1] = -1 ;
    stats [COLAMD_INFO2] = -1 ;

#if 0
    if (!A)		/* A is not present */
    {
	/* UMFPACK:  always passes A [ ] */
	DEBUG0 (("colamd: A not present\n")) ;
	stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
	return (FALSE) ;
    }

    if (!p)		/* p is not present */
    {
	/* UMFPACK:  always passes p [ ] */
	DEBUG0 (("colamd: p not present\n")) ;
	stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
	return (FALSE) ;
    }

    if (n_row < 0)	/* n_row must be >= 0 */
    {
	/* UMFPACK:  does not call UMF_colamd if n <= 0 */
	DEBUG0 (("colamd: nrow negative "ID"\n", n_row)) ;
	stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
	stats [COLAMD_INFO1] = n_row ;
	return (FALSE) ;
    }

    if (n_col < 0)	/* n_col must be >= 0 */
    {
	/* UMFPACK:  does not call UMF_colamd if n <= 0 */
	DEBUG0 (("colamd: ncol negative "ID"\n", n_col)) ;
	stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
	stats [COLAMD_INFO1] = n_col ;
	return (FALSE) ;
    }
#endif

    ASSERT (A != (Int *) NULL) ;
    ASSERT (p != (Int *) NULL) ;
    ASSERT (n_row >= 0) ;
    ASSERT (n_col >= 0) ;

    nnz = p [n_col] ;

#if 0
    if (nnz < 0)	/* nnz must be >= 0 */
    {
	/* UMFPACK:  does not call UMF_colamd if nnz < 0 */
	DEBUG0 (("colamd: number of entries negative "ID"\n", nnz)) ;
	stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
	stats [COLAMD_INFO1] = nnz ;
	return (FALSE) ;
    }

    if (p [0] != 0)	/* p [0] must be exactly zero */
    {
	DEBUG0 (("colamd: p[0] not zero "ID"\n", p [0])) ;
	stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero	;
	stats [COLAMD_INFO1] = p [0] ;
	return (FALSE) ;
    }
#endif

    ASSERT (nnz >= 0) ;
    ASSERT (p [0] == 0) ;

    /* === If no knobs, set default knobs =================================== */

#if 0
    if (!knobs)
    {
	/* UMFPACK:  always passes the knobs */
	UMF_colamd_set_defaults (default_knobs) ;
	knobs = default_knobs ;
    }
#endif

    ASSERT (knobs != (double *) NULL) ;

    /* --------------------- */
    /* added for UMFPACK v4.1: */
    aggressive = (knobs [COLAMD_AGGRESSIVE] != 0) ;
    /* --------------------- */

    /* === Allocate the Row and Col arrays from array A ===================== */

    Col_size = UMF_COLAMD_C (n_col) ;
    Row_size = UMF_COLAMD_R (n_row) ;

#if 0
    need = MAX (2*nnz, 4*n_col) + n_col + Col_size + Row_size ;
    if (need > Alen)
    {
	/* UMFPACK: always passes enough space */
	/* not enough space in array A to perform the ordering */
	DEBUG0 (("colamd: Need Alen >= "ID", given only Alen = "ID"\n",
	    need, Alen)) ;
	stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
	stats [COLAMD_INFO1] = need ;
	stats [COLAMD_INFO2] = Alen ;
	return (FALSE) ;
    }
#endif

    Alen -= Col_size + Row_size ;
    Col = (Colamd_Col *) &A [Alen] ;
    Row = (Colamd_Row *) &A [Alen + Col_size] ;

    /* Size of A is now Alen >= MAX (2*nnz, 4*n_col) + n_col.  The ordering
     * requires Alen >= 2*nnz + n_col, and the postorder requires
     * Alen >= 5*n_col. */

    /* === Construct the row and column data structures ===================== */

    i = init_rows_cols (n_row, n_col, Row, Col, A, p) ;

#if 0
    if (!i)
    {
	/* input matrix is invalid */
	DEBUG0 (("colamd: Matrix invalid\n")) ;
	return (FALSE) ;
    }
#endif

    ASSERT (i) ;

    /* === UMFPACK: Initialize front info =================================== */

    for (col = 0 ; col < n_col ; col++)
    {
	Front_npivcol [col] = 0 ;
	Front_nrows [col] = 0 ;
	Front_ncols [col] = 0 ;
	Front_parent [col] = EMPTY ;
	Front_cols [col] = EMPTY ;
    }

    /* === Initialize scores, kill dense rows/columns ======================= */

    init_scoring (n_row, n_col, Row, Col, A, p, knobs,
	&n_row2, &n_col2, &max_deg
	/* ------------------ */
	/* added for UMFPACK: */
	, &ndense_row, &nempty_row, &nnewlyempty_row
	, &ndense_col, &nempty_col, &nnewlyempty_col
	/* ------------------ */
	) ;
    ASSERT (n_row2 == n_row - nempty_row - nnewlyempty_row - ndense_row) ;
    ASSERT (n_col2 == n_col - nempty_col - nnewlyempty_col - ndense_col) ;

    /* === Order the supercolumns =========================================== */

    ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
	n_col2, max_deg, 2*nnz
	/* ------------------ */
	/* added for UMFPACK: */
	, Front_npivcol, Front_nrows, Front_ncols, Front_parent, Front_cols
	, &nfr, aggressive, InFront
	/* ------------------ */
	) ;

    /* ------------------ */
    /* changed for UMFPACK: */

    /* A is no longer needed, so use A [0..5*nfr-1] as workspace [ [ */
    /* This step requires Alen >= 5*n_col */
    Front_child   = A ;
    Front_sibling = Front_child + nfr ;
    Front_stack   = Front_sibling + nfr ;
    Front_order   = Front_stack + nfr ;
    Front_size    = Front_order + nfr ;

    UMF_fsize (nfr, Front_size, Front_nrows, Front_ncols,
	    Front_parent, Front_npivcol) ;

    AMD_postorder (nfr, Front_parent, Front_npivcol, Front_size,
	Front_order, Front_child, Front_sibling, Front_stack) ;

    /* Front_size, Front_stack, Front_child, Front_sibling no longer needed ] */

    /* use A [0..nfr-1] as workspace */
    UMF_apply_order (Front_npivcol, Front_order, A, nfr, nfr) ;
    UMF_apply_order (Front_nrows,   Front_order, A, nfr, nfr) ;
    UMF_apply_order (Front_ncols,   Front_order, A, nfr, nfr) ;
    UMF_apply_order (Front_parent,  Front_order, A, nfr, nfr) ;
    UMF_apply_order (Front_cols,    Front_order, A, nfr, nfr) ;

    /* fix the parent to refer to the new numbering */
    for (i = 0 ; i < nfr ; i++)
    {
	parent = Front_parent [i] ;
	if (parent != EMPTY)
	{
	    Front_parent [i] = Front_order [parent] ;
	}
    }

    /* fix InFront to refer to the new numbering */
    for (row = 0 ; row < n_row ; row++)
    {
	i = InFront [row] ;
	ASSERT (i >= EMPTY && i < nfr) ;
	if (i != EMPTY)
	{
	    InFront [row] = Front_order [i] ;
	}
    }

    /* Front_order longer needed ] */

    /* === Order the columns in the fronts ================================== */

    /* use A [0..n_col-1] as inverse permutation */
    for (i = 0 ; i < n_col ; i++)
    {
	A [i] = EMPTY ;
    }
    k = 0 ;
    for (i = 0 ; i < nfr ; i++)
    {
	ASSERT (Front_npivcol [i] > 0) ;
	for (col = Front_cols [i] ; col != EMPTY ; col = Col [col].nextcol)
	{
	    ASSERT (col >= 0 && col < n_col) ;
	    DEBUG1 (("Colamd output ordering: k "ID" col "ID"\n", k, col)) ;
	    p [k] = col ;
	    ASSERT (A [col] == EMPTY) ;
	    A [col] = k ;
	    k++ ;
	}
    }

    /* === Order the "dense" and null columns =============================== */

    ASSERT (k == n_col2) ;
    if (n_col2 < n_col)
    {
	for (col = 0 ; col < n_col ; col++)
	{
	    if (A [col] == EMPTY)
	    {
		k = Col [col].shared2.order ;
		ASSERT (k >= n_col2 && k < n_col) ;
		DEBUG1 (("Colamd output ordering: k "ID" col "ID
		    " (dense or null col)\n", k, col)) ;
		p [k] = col ;
		A [col] = k ;
	    }
	}
    }

    /* ------------------ */

    /* === Return statistics in stats ======================================= */

    /* ------------------ */
    /* modified for UMFPACK */
    stats [COLAMD_DENSE_ROW] = ndense_row ;
    stats [COLAMD_EMPTY_ROW] = nempty_row ;
    stats [COLAMD_NEWLY_EMPTY_ROW] = nnewlyempty_row ;
    stats [COLAMD_DENSE_COL] = ndense_col ;
    stats [COLAMD_EMPTY_COL] = nempty_col ;
    stats [COLAMD_NEWLY_EMPTY_COL] = nnewlyempty_col ;
    ASSERT (ndense_col + nempty_col + nnewlyempty_col == n_col - n_col2) ;
    /* ------------------ */
    stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
    *p_nfr = nfr ;
    DEBUG1 (("colamd: done.\n")) ;
    return (TRUE) ;
}




/* ========================================================================== */
/* === colamd_report removed for UMFPACK ==================================== */
/* ========================================================================== */

/* ========================================================================== */
/* === symamd_report removed for UMFPACK ==================================== */
/* ========================================================================== */



/* ========================================================================== */
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
/* ========================================================================== */

/* There are no user-callable routines beyond this point in the file */


/* ========================================================================== */
/* === init_rows_cols ======================================================= */
/* ========================================================================== */

/*
    Takes the column form of the matrix in A and creates the row form of the
    matrix.  Also, row and column attributes are stored in the Col and Row
    structs.  If the columns are un-sorted or contain duplicate row indices,
    this routine will also sort and remove duplicate row indices from the
    column form of the matrix.  Returns FALSE if the matrix is invalid,
    TRUE otherwise.  Not user-callable.
*/

/* For UMFPACK, this always returns TRUE */

PRIVATE Int init_rows_cols	/* returns TRUE if OK, or FALSE otherwise */
(
    /* === Parameters ======================================================= */

    Int n_row,			/* number of rows of A */
    Int n_col,			/* number of columns of A */
    Colamd_Row Row [],		/* of size n_row+1 */
    Colamd_Col Col [],		/* of size n_col+1 */
    Int A [],			/* row indices of A, of size Alen */
    Int p []			/* pointers to columns in A, of size n_col+1 */
/*
    Int stats [COLAMD_STATS]	colamd statistics, removed for UMFPACK
*/
)
{
    /* === Local variables ================================================== */

    Int col ;			/* a column index */
    Int row ;			/* a row index */
    Int *cp ;			/* a column pointer */
    Int *cp_end ;		/* a pointer to the end of a column */

    /* === Initialize columns, and check column pointers ==================== */

    for (col = 0 ; col < n_col ; col++)
    {
	Col [col].start = p [col] ;
	Col [col].length = p [col+1] - p [col] ;

#if 0
	if (Col [col].length < 0)
	{
	    /* column pointers must be non-decreasing */
	    stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
	    stats [COLAMD_INFO1] = col ;
	    stats [COLAMD_INFO2] = Col [col].length ;
	    DEBUG0 (("colamd: col "ID" length "ID" <= 0\n",
		col, Col [col].length));
	    return (FALSE) ;
	}
#endif

	ASSERT (Col [col].length >= 0) ;

	/* added for UMFPACK v4.1 */
	ASSERT (Col [col].length > 0) ;

	Col [col].shared1.thickness = 1 ;
	Col [col].shared2.score = 0 ;
	Col [col].shared3.prev = EMPTY ;
	Col [col].shared4.degree_next = EMPTY ;

	/* ------------------ */
	/* added for UMFPACK: */
	Col [col].nextcol = EMPTY ;
	Col [col].lastcol = col ;
	/* ------------------ */
    }

    /* p [0..n_col] no longer needed, used as "head" in subsequent routines */

    /* === Scan columns, compute row degrees, and check row indices ========= */

    /* ------------------ */
    /* stats [COLAMD_INFO3] = 0 ; */
    /* number of duplicate or unsorted row indices - not computed in UMFPACK */
    /* ------------------ */

    for (row = 0 ; row < n_row ; row++)
    {
	Row [row].length = 0 ;
	/* ------------------ */
	/* removed for UMFPACK */
	/* Row [row].shared2.mark = -1 ; */
	/* ------------------ */
	/* ------------------ */
	/* added for UMFPACK: */
	Row [row].thickness = 1 ;
	Row [row].front = EMPTY ;
	/* ------------------ */
    }

    for (col = 0 ; col < n_col ; col++)
    {
#ifndef NDEBUG
	Int last_row = -1 ;
#endif

	cp = &A [p [col]] ;
	cp_end = &A [p [col+1]] ;

	while (cp < cp_end)
	{
	    row = *cp++ ;

#if 0
	    /* make sure row indices within range */
	    if (row < 0 || row >= n_row)
	    {
		stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
		stats [COLAMD_INFO1] = col ;
		stats [COLAMD_INFO2] = row ;
		/* ------------------ */
		/* not needed in UMFPACK: */
		/* stats [COLAMD_INFO3] = n_row ; */
		/* ------------------ */
		DEBUG0 (("colamd: row "ID" col "ID" out of bounds\n", row,col));
		return (FALSE) ;
	    }
#endif

	    ASSERT (row >= 0 && row < n_row) ;

#if 0
	    /* ------------------ */
	    /* changed for UMFPACK */
	    if (row <= last_row)
	    {
		/* row index are unsorted or repeated (or both), thus col */
		/* is jumbled.  This is an error condition for UMFPACK */
		stats [COLAMD_STATUS] = COLAMD_ERROR_jumbled_matrix ;
		stats [COLAMD_INFO1] = col ;
		stats [COLAMD_INFO2] = row ;
		DEBUG1 (("colamd: row "ID" col "ID" unsorted/duplicate\n",
		    row, col)) ;
		return (FALSE) ;
	    }
	    /* ------------------ */
#endif

	    ASSERT (row > last_row) ;

	    /* ------------------ */
	    /* changed for UMFPACK - jumbled columns not tolerated */
	    Row [row].length++ ;
	    /* ------------------ */

#ifndef NDEBUG
	    last_row = row ;
#endif
	}
    }

    /* === Compute row pointers ============================================= */

    /* row form of the matrix starts directly after the column */
    /* form of matrix in A */
    Row [0].start = p [n_col] ;
    Row [0].shared1.p = Row [0].start ;
    /* ------------------ */
    /* removed for UMFPACK */
    /* Row [0].shared2.mark = -1 ; */
    /* ------------------ */
    for (row = 1 ; row < n_row ; row++)
    {
	Row [row].start = Row [row-1].start + Row [row-1].length ;
	Row [row].shared1.p = Row [row].start ;
	/* ------------------ */
	/* removed for UMFPACK */
	/* Row [row].shared2.mark = -1 ; */
	/* ------------------ */
    }

    /* === Create row form ================================================== */

    /* ------------------ */
    /* jumbled matrix case removed for UMFPACK */
    /* ------------------ */

	for (col = 0 ; col < n_col ; col++)
	{
	    cp = &A [p [col]] ;
	    cp_end = &A [p [col+1]] ;
	    while (cp < cp_end)
	    {
		A [(Row [*cp++].shared1.p)++] = col ;
	    }
	}

    /* === Clear the row marks and set row degrees ========================== */

    for (row = 0 ; row < n_row ; row++)
    {
	Row [row].shared2.mark = 0 ;
	Row [row].shared1.degree = Row [row].length ;
    }

    /* ------------------ */
    /* recreate columns for jumbled matrix case removed for UMFPACK */
    /* ------------------ */

    return (TRUE) ;
}


/* ========================================================================== */
/* === init_scoring ========================================================= */
/* ========================================================================== */

/*
    Kills dense or empty columns and rows, calculates an initial score for
    each column, and places all columns in the degree lists.  Not user-callable.
*/

PRIVATE void init_scoring
(
    /* === Parameters ======================================================= */

    Int n_row,			/* number of rows of A */
    Int n_col,			/* number of columns of A */
    Colamd_Row Row [],		/* of size n_row+1 */
    Colamd_Col Col [],		/* of size n_col+1 */
    Int A [],			/* column form and row form of A */
    Int head [],		/* of size n_col+1 */
    double knobs [COLAMD_KNOBS],/* parameters */
    Int *p_n_row2,		/* number of non-dense, non-empty rows */
    Int *p_n_col2,		/* number of non-dense, non-empty columns */
    Int *p_max_deg		/* maximum row degree */
    /* ------------------ */
    /* added for UMFPACK */
    , Int *p_ndense_row		/* number of dense rows */
    , Int *p_nempty_row		/* number of original empty rows */
    , Int *p_nnewlyempty_row	/* number of newly empty rows */
    , Int *p_ndense_col		/* number of dense cols (excl "empty" cols) */
    , Int *p_nempty_col		/* number of original empty cols */
    , Int *p_nnewlyempty_col	/* number of newly empty cols */
    /* ------------------ */
)
{
    /* === Local variables ================================================== */

    Int c ;			/* a column index */
    Int r, row ;		/* a row index */
    Int *cp ;			/* a column pointer */
    Int deg ;			/* degree of a row or column */
    Int *cp_end ;		/* a pointer to the end of a column */
    Int *new_cp ;		/* new column pointer */
    Int col_length ;		/* length of pruned column */
    Int score ;			/* current column score */
    Int n_col2 ;		/* number of non-dense, non-empty columns */
    Int n_row2 ;		/* number of non-dense, non-empty rows */
    Int dense_row_count ;	/* remove rows with more entries than this */
    Int dense_col_count ;	/* remove cols with more entries than this */
    Int min_score ;		/* smallest column score */
    Int max_deg ;		/* maximum row degree */
    Int next_col ;		/* Used to add to degree list.*/

    /* ------------------ */
    /* added for UMFPACK */
    Int ndense_row ;		/* number of dense rows */
    Int nempty_row ;		/* number of empty rows */
    Int nnewlyempty_row ;	/* number of newly empty rows */
    Int ndense_col ;		/* number of dense cols (excl "empty" cols) */
    Int nempty_col ;		/* number of original empty cols */
    Int nnewlyempty_col ;	/* number of newly empty cols */
    Int ne ;
    /* ------------------ */

#ifndef NDEBUG
    Int debug_count ;		/* debug only. */
#endif /* NDEBUG */

    /* === Extract knobs ==================================================== */

    /* --------------------- */
    /* old dense row/column knobs:
    dense_row_count = MAX (0, MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ;
    dense_col_count = MAX (0, MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ;
    */
    /* new, for UMFPACK: */
    /* Note: if knobs contains a NaN, this is undefined: */
    dense_row_count =
	UMFPACK_DENSE_DEGREE_THRESHOLD (knobs [COLAMD_DENSE_ROW], n_col) ;
    dense_col_count =
	UMFPACK_DENSE_DEGREE_THRESHOLD (knobs [COLAMD_DENSE_COL], n_row) ;
    /* Make sure dense_*_count is between 0 and n: */
    dense_row_count = MAX (0, MIN (dense_row_count, n_col)) ;
    dense_col_count = MAX (0, MIN (dense_col_count, n_row)) ;
    /* --------------------- */

    DEBUG1 (("colamd: densecount: "ID" "ID"\n",
	dense_row_count, dense_col_count)) ;
    max_deg = 0 ;
    n_col2 = n_col ;
    n_row2 = n_row ;

    /* --------------------- */
    /* added for UMFPACK */
    ndense_col = 0 ;
    nempty_col = 0 ;
    nnewlyempty_col = 0 ;
    ndense_row = 0 ;
    nempty_row = 0 ;
    nnewlyempty_row = 0 ;
    /* --------------------- */

    /* === Kill empty columns =============================================== */

    /* removed for UMFPACK v4.1.  prune_singletons has already removed empty
     * columns and empty rows */

#if 0
    /* Put the empty columns at the end in their natural order, so that LU */
    /* factorization can proceed as far as possible. */
    for (c = n_col-1 ; c >= 0 ; c--)
    {
	deg = Col [c].length ;
	if (deg == 0)
	{
	    /* this is a empty column, kill and order it last */
	    Col [c].shared2.order = --n_col2 ;
	    KILL_PRINCIPAL_COL (c) ;
	    /* --------------------- */
	    /* added for UMFPACK */
	    nempty_col++ ;
	    /* --------------------- */
	}
    }
    DEBUG1 (("colamd: null columns killed: "ID"\n", n_col - n_col2)) ;
#endif

#ifndef NDEBUG
    for (c = 0 ; c < n_col ; c++)
    {
	ASSERT (Col [c].length > 0) ;
    }
#endif

    /* === Count null rows ================================================== */

#if 0
    for (r = 0 ; r < n_row ; r++)
    {
	deg = Row [r].shared1.degree ;
	if (deg == 0)
	{
	    /* this is an original empty row */
	    nempty_row++ ;
	}
    }
#endif

#ifndef NDEBUG
    for (r = 0 ; r < n_row ; r++)
    {
	ASSERT (Row [r].shared1.degree > 0) ;
	ASSERT (Row [r].length > 0) ;
    }
#endif

    /* === Kill dense columns =============================================== */

    /* Put the dense columns at the end, in their natural order */
    for (c = n_col-1 ; c >= 0 ; c--)
    {

	/* ----------------------------------------------------------------- */
#if 0
	/* removed for UMFPACK v4.1: no empty columns */
	/* skip any dead columns */
	if (COL_IS_DEAD (c))
	{
	    continue ;
	}
#endif
	ASSERT (COL_IS_ALIVE (c)) ;
	ASSERT (Col [c].length > 0) ;
	/* ----------------------------------------------------------------- */

	deg = Col [c].length ;
	if (deg > dense_col_count)
	{
	    /* this is a dense column, kill and order it last */
	    Col [c].shared2.order = --n_col2 ;
	    /* --------------------- */
	    /* added for UMFPACK */
	    ndense_col++ ;
	    /* --------------------- */
	    /* decrement the row degrees */
	    cp = &A [Col [c].start] ;
	    cp_end = cp + Col [c].length ;
	    while (cp < cp_end)
	    {
		Row [*cp++].shared1.degree-- ;
	    }
	    KILL_PRINCIPAL_COL (c) ;
	}
    }
    DEBUG1 (("colamd: Dense and null columns killed: "ID"\n", n_col - n_col2)) ;

    /* === Kill dense and empty rows ======================================== */

    /* Note that there can now be empty rows, since dense columns have
     * been deleted.  These are "newly" empty rows. */

    ne = 0 ;
    for (r = 0 ; r < n_row ; r++)
    {
	deg = Row [r].shared1.degree ;
	ASSERT (deg >= 0 && deg <= n_col) ;
	/* --------------------- */
	/* added for UMFPACK */
	if (deg > dense_row_count)
	{
	    /* There is at least one dense row.  Continue ordering, but */
	    /* symbolic factorization will be redone after UMF_colamd is done.*/
	    ndense_row++ ;
	}
	if (deg == 0)
	{
	    /* this is a newly empty row, or original empty row */
	    ne++ ;
	}
	/* --------------------- */
	if (deg > dense_row_count || deg == 0)
	{
	    /* kill a dense or empty row */
	    KILL_ROW (r) ;
	    /* --------------------- */
	    /* added for UMFPACK */
	    Row [r].thickness = 0 ;
	    /* --------------------- */
	    --n_row2 ;
	}
	else
	{
	    /* keep track of max degree of remaining rows */
	    max_deg = MAX (max_deg, deg) ;
	}
    }
    nnewlyempty_row = ne - nempty_row ;
    DEBUG1 (("colamd: Dense rows killed: "ID"\n", ndense_row)) ;
    DEBUG1 (("colamd: Dense and null rows killed: "ID"\n", n_row - n_row2)) ;

    /* === Compute initial column scores ==================================== */

    /* At this point the row degrees are accurate.  They reflect the number */
    /* of "live" (non-dense) columns in each row.  No empty rows exist. */
    /* Some "live" columns may contain only dead rows, however.  These are */
    /* pruned in the code below. */

    /* now find the initial matlab score for each column */
    for (c = n_col-1 ; c >= 0 ; c--)
    {
	/* skip dead column */
	if (COL_IS_DEAD (c))
	{
	    continue ;
	}
	score = 0 ;
	cp = &A [Col [c].start] ;
	new_cp = cp ;
	cp_end = cp + Col [c].length ;
	while (cp < cp_end)
	{
	    /* get a row */
	    row = *cp++ ;
	    /* skip if dead */
	    if (ROW_IS_DEAD (row))
	    {
		continue ;
	    }
	    /* compact the column */
	    *new_cp++ = row ;
	    /* add row's external degree */
	    score += Row [row].shared1.degree - 1 ;
	    /* guard against integer overflow */
	    score = MIN (score, n_col) ;
	}
	/* determine pruned column length */
	col_length = (Int) (new_cp - &A [Col [c].start]) ;
	if (col_length == 0)
	{
	    /* a newly-made null column (all rows in this col are "dense" */
	    /* and have already been killed) */
	    DEBUG2 (("Newly null killed: "ID"\n", c)) ;
	    Col [c].shared2.order = --n_col2 ;
	    KILL_PRINCIPAL_COL (c) ;
	    /* --------------------- */
	    /* added for UMFPACK */
	    nnewlyempty_col++ ;
	    /* --------------------- */
	}
	else
	{
	    /* set column length and set score */
	    ASSERT (score >= 0) ;
	    ASSERT (score <= n_col) ;
	    Col [c].length = col_length ;
	    Col [c].shared2.score = score ;
	}
    }
    DEBUG1 (("colamd: Dense, null, and newly-null columns killed: "ID"\n",
	n_col-n_col2)) ;

    /* At this point, all empty rows and columns are dead.  All live columns */
    /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
    /* yet).  Rows may contain dead columns, but all live rows contain at */
    /* least one live column. */

#ifndef NDEBUG
    debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
#endif /* NDEBUG */

    /* === Initialize degree lists ========================================== */

#ifndef NDEBUG
    debug_count = 0 ;
#endif /* NDEBUG */

    /* clear the hash buckets */
    for (c = 0 ; c <= n_col ; c++)
    {
	head [c] = EMPTY ;
    }
    min_score = n_col ;
    /* place in reverse order, so low column indices are at the front */
    /* of the lists.  This is to encourage natural tie-breaking */
    for (c = n_col-1 ; c >= 0 ; c--)
    {
	/* only add principal columns to degree lists */
	if (COL_IS_ALIVE (c))
	{
	    DEBUG4 (("place "ID" score "ID" minscore "ID" ncol "ID"\n",
		c, Col [c].shared2.score, min_score, n_col)) ;

	    /* === Add columns score to DList =============================== */

	    score = Col [c].shared2.score ;

	    ASSERT (min_score >= 0) ;
	    ASSERT (min_score <= n_col) ;
	    ASSERT (score >= 0) ;
	    ASSERT (score <= n_col) ;
	    ASSERT (head [score] >= EMPTY) ;

	    /* now add this column to dList at proper score location */
	    next_col = head [score] ;
	    Col [c].shared3.prev = EMPTY ;
	    Col [c].shared4.degree_next = next_col ;

	    /* if there already was a column with the same score, set its */
	    /* previous pointer to this new column */
	    if (next_col != EMPTY)
	    {
		Col [next_col].shared3.prev = c ;
	    }
	    head [score] = c ;

	    /* see if this score is less than current min */
	    min_score = MIN (min_score, score) ;

#ifndef NDEBUG
	    debug_count++ ;
#endif /* NDEBUG */

	}
    }

#ifndef NDEBUG
    DEBUG1 (("colamd: Live cols "ID" out of "ID", non-princ: "ID"\n",
	debug_count, n_col, n_col-debug_count)) ;
    ASSERT (debug_count == n_col2) ;
    debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
#endif /* NDEBUG */

    /* === Return number of remaining columns, and max row degree =========== */

    *p_n_col2 = n_col2 ;
    *p_n_row2 = n_row2 ;
    *p_max_deg = max_deg ;

    /* --------------------- */
    /* added for UMFPACK */
    *p_ndense_row = ndense_row ;
    *p_nempty_row = nempty_row ;	/* original empty rows */
    *p_nnewlyempty_row = nnewlyempty_row ;
    *p_ndense_col = ndense_col ;
    *p_nempty_col = nempty_col ;	/* original empty cols */
    *p_nnewlyempty_col = nnewlyempty_col ;
    /* --------------------- */
}


/* ========================================================================== */
/* === find_ordering ======================================================== */
/* ========================================================================== */

/*
    Order the principal columns of the supercolumn form of the matrix
    (no supercolumns on input).  Uses a minimum approximate column minimum
    degree ordering method.  Not user-callable.
*/

PRIVATE Int find_ordering	/* return the number of garbage collections */
(
    /* === Parameters ======================================================= */

    Int n_row,			/* number of rows of A */
    Int n_col,			/* number of columns of A */
    Int Alen,			/* size of A, 2*nnz + n_col or larger */
    Colamd_Row Row [],		/* of size n_row+1 */
    Colamd_Col Col [],		/* of size n_col+1 */
    Int A [],			/* column form and row form of A */
    Int head [],		/* of size n_col+1 */
    Int n_col2,			/* Remaining columns to order */
    Int max_deg,		/* Maximum row degree */
    Int pfree			/* index of first free slot (2*nnz on entry) */
    /* ------------------ */
    /* added for UMFPACK: */
    , Int Front_npivcol [ ]
    , Int Front_nrows [ ]
    , Int Front_ncols [ ]
    , Int Front_parent [ ]
    , Int Front_cols [ ]
    , Int *p_nfr		/* number of fronts */
    , Int aggressive
    , Int InFront [ ]
    /* ------------------ */
)
{
    /* === Local variables ================================================== */

    Int k ;			/* current pivot ordering step */
    Int pivot_col ;		/* current pivot column */
    Int *cp ;			/* a column pointer */
    Int *rp ;			/* a row pointer */
    Int pivot_row ;		/* current pivot row */
    Int *new_cp ;		/* modified column pointer */
    Int *new_rp ;		/* modified row pointer */
    Int pivot_row_start ;	/* pointer to start of pivot row */
    Int pivot_row_degree ;	/* number of columns in pivot row */
    Int pivot_row_length ;	/* number of supercolumns in pivot row */
    Int pivot_col_score ;	/* score of pivot column */
    Int needed_memory ;		/* free space needed for pivot row */
    Int *cp_end ;		/* pointer to the end of a column */
    Int *rp_end ;		/* pointer to the end of a row */
    Int row ;			/* a row index */
    Int col ;			/* a column index */
    Int max_score ;		/* maximum possible score */
    Int cur_score ;		/* score of current column */
    unsigned Int hash ;		/* hash value for supernode detection */
    Int head_column ;		/* head of hash bucket */
    Int first_col ;		/* first column in hash bucket */
    Int tag_mark ;		/* marker value for mark array */
    Int row_mark ;		/* Row [row].shared2.mark */
    Int set_difference ;	/* set difference size of row with pivot row */
    Int min_score ;		/* smallest column score */
    Int col_thickness ;		/* "thickness" (no. of columns in a supercol) */
    Int max_mark ;		/* maximum value of tag_mark */
    Int pivot_col_thickness ;	/* number of columns represented by pivot col */
    Int prev_col ;		/* Used by Dlist operations. */
    Int next_col ;		/* Used by Dlist operations. */
    Int ngarbage ;		/* number of garbage collections performed */

#ifndef NDEBUG
    Int debug_d ;		/* debug loop counter */
    Int debug_step = 0 ;	/* debug loop counter */
#endif /* NDEBUG */

    /* ------------------ */
    /* added for UMFPACK: */
    Int pivot_row_thickness ;	/* number of rows represented by pivot row */
    Int nfr = 0 ;		/* number of fronts */
    Int child ;
    /* ------------------ */

    /* === Initialization and clear mark ==================================== */

    max_mark = MAX_MARK (n_col) ;	/* defined in umfpack.h */
    tag_mark = clear_mark (n_row, Row) ;
    min_score = 0 ;
    ngarbage = 0 ;
    DEBUG1 (("colamd: Ordering, n_col2="ID"\n", n_col2)) ;

    for (row = 0 ; row < n_row ; row++)
    {
	InFront [row] = EMPTY ;
    }

    /* === Order the columns ================================================ */

    for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
    {

#ifndef NDEBUG
	if (debug_step % 100 == 0)
	{
	    DEBUG2 (("\n...  Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ;
	}
	else
	{
	    DEBUG3 (("\n-----Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ;
	}
	debug_step++ ;
	debug_deg_lists (n_row, n_col, Row, Col, head,
		min_score, n_col2-k, max_deg) ;
	debug_matrix (n_row, n_col, Row, Col, A) ;
#endif /* NDEBUG */

	/* === Select pivot column, and order it ============================ */

	/* make sure degree list isn't empty */
	ASSERT (min_score >= 0) ;
	ASSERT (min_score <= n_col) ;
	ASSERT (head [min_score] >= EMPTY) ;

#ifndef NDEBUG
	for (debug_d = 0 ; debug_d < min_score ; debug_d++)
	{
	    ASSERT (head [debug_d] == EMPTY) ;
	}
#endif /* NDEBUG */

	/* get pivot column from head of minimum degree list */
	while (head [min_score] == EMPTY && min_score < n_col)
	{
	    min_score++ ;
	}
	pivot_col = head [min_score] ;
	ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
	next_col = Col [pivot_col].shared4.degree_next ;
	head [min_score] = next_col ;
	if (next_col != EMPTY)
	{
	    Col [next_col].shared3.prev = EMPTY ;
	}

	ASSERT (COL_IS_ALIVE (pivot_col)) ;
	DEBUG3 (("Pivot col: "ID"\n", pivot_col)) ;

	/* remember score for defrag check */
	pivot_col_score = Col [pivot_col].shared2.score ;

	/* the pivot column is the kth column in the pivot order */
	Col [pivot_col].shared2.order = k ;

	/* increment order count by column thickness */
	pivot_col_thickness = Col [pivot_col].shared1.thickness ;
	/* ------------------ */
	/* changed for UMFPACK: */
	k += pivot_col_thickness ;
	/* ------------------ */
	ASSERT (pivot_col_thickness > 0) ;

	/* === Garbage_collection, if necessary ============================= */

	needed_memory = MIN (pivot_col_score, n_col - k) ;
	if (pfree + needed_memory >= Alen)
	{
	    pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
	    ngarbage++ ;
	    /* after garbage collection we will have enough */
	    ASSERT (pfree + needed_memory < Alen) ;
	    /* garbage collection has wiped out the Row[].shared2.mark array */
	    tag_mark = clear_mark (n_row, Row) ;

#ifndef NDEBUG
	    debug_matrix (n_row, n_col, Row, Col, A) ;
#endif /* NDEBUG */
	}

	/* === Compute pivot row pattern ==================================== */

	/* get starting location for this new merged row */
	pivot_row_start = pfree ;

	/* initialize new row counts to zero */
	pivot_row_degree = 0 ;

	/* ------------------ */
	/* added for UMFPACK: */
	pivot_row_thickness = 0 ;
	/* ------------------ */

	/* [ tag pivot column as having been visited so it isn't included */
	/* in merged pivot row */
	Col [pivot_col].shared1.thickness = -pivot_col_thickness ;

	/* pivot row is the union of all rows in the pivot column pattern */
	cp = &A [Col [pivot_col].start] ;
	cp_end = cp + Col [pivot_col].length ;
	while (cp < cp_end)
	{
	    /* get a row */
	    row = *cp++ ;
	    DEBUG4 (("Pivot col pattern %d "ID"\n", ROW_IS_ALIVE(row), row)) ;
	    /* skip if row is dead */
	    if (ROW_IS_DEAD (row))
	    {
		continue ;
	    }

	    /* ------------------ */
	    /* added for UMFPACK: */
	    /* sum the thicknesses of all the rows */
	    /* ASSERT (Row [row].thickness > 0) ; */
	    pivot_row_thickness += Row [row].thickness ;
	    /* ------------------ */

	    rp = &A [Row [row].start] ;
	    rp_end = rp + Row [row].length ;
	    while (rp < rp_end)
	    {
		/* get a column */
		col = *rp++ ;
		/* add the column, if alive and untagged */
		col_thickness = Col [col].shared1.thickness ;
		if (col_thickness > 0 && COL_IS_ALIVE (col))
		{
		    /* tag column in pivot row */
		    Col [col].shared1.thickness = -col_thickness ;
		    ASSERT (pfree < Alen) ;
		    /* place column in pivot row */
		    A [pfree++] = col ;
		    pivot_row_degree += col_thickness ;
		    /* ------------------ */
		    /* added for UMFPACK: */
		    DEBUG4 (("\t\t\tNew live column in pivot row: "ID"\n",col));
		    /* ------------------ */
		}
		/* ------------------ */
		/* added for UMFPACK */
#ifndef NDEBUG
		if (col_thickness < 0 && COL_IS_ALIVE (col))
		{
		    DEBUG4 (("\t\t\tOld live column in pivot row: "ID"\n",col));
		}
#endif
		/* ------------------ */
	    }
	}

	/* ------------------ */
	/* added for UMFPACK: */
	/* pivot_row_thickness is the number of rows in frontal matrix */
	/* both pivotal rows and nonpivotal rows */
	/* ------------------ */

	/* clear tag on pivot column */
	Col [pivot_col].shared1.thickness = pivot_col_thickness ;	/* ] */
	max_deg = MAX (max_deg, pivot_row_degree) ;

#ifndef NDEBUG
	DEBUG3 (("check2\n")) ;
	debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif /* NDEBUG */

	/* === Kill all rows used to construct pivot row ==================== */

	/* also kill pivot row, temporarily */
	cp = &A [Col [pivot_col].start] ;
	cp_end = cp + Col [pivot_col].length ;
	while (cp < cp_end)
	{
	    /* may be killing an already dead row */
	    row = *cp++ ;

	    DEBUG2 (("Kill row in pivot col: "ID" alive? %d, front "ID"\n",
		row, ROW_IS_ALIVE (row), Row [row].front)) ;

	    /* added for UMFPACK: */
	    if (ROW_IS_ALIVE (row))
	    {
		if (Row [row].front != EMPTY)
		{
		    /* This row represents a frontal matrix. */
		    /* Row [row].front is a child of current front */
		    child = Row [row].front ;
		    Front_parent [child] = nfr ;
		    DEBUG1 (("Front "ID" => front "ID", normal\n", child, nfr));
		}
		else
		{
		    /* This is an original row.  Keep track of which front
		     * is its parent in the row-merge tree. */
		    InFront [row] = nfr ;
		    DEBUG1 (("Row "ID" => front "ID", normal\n", row, nfr)) ;
		}
	    }

	    KILL_ROW (row) ;

	    /* ------------------ */
	    /* added for UMFPACK: */
	    Row [row].thickness = 0 ;
	    /* ------------------ */
	}

	/* === Select a row index to use as the new pivot row =============== */

	pivot_row_length = pfree - pivot_row_start ;
	if (pivot_row_length > 0)
	{
	    /* pick the "pivot" row arbitrarily (first row in col) */
	    pivot_row = A [Col [pivot_col].start] ;
	    DEBUG3 (("Pivotal row is "ID"\n", pivot_row)) ;
	}
	else
	{
	    /* there is no pivot row, since it is of zero length */
	    pivot_row = EMPTY ;
	    ASSERT (pivot_row_length == 0) ;
	}
	ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;

	/* === Approximate degree computation =============================== */

	/* Here begins the computation of the approximate degree.  The column */
	/* score is the sum of the pivot row "length", plus the size of the */
	/* set differences of each row in the column minus the pattern of the */
	/* pivot row itself.  The column ("thickness") itself is also */
	/* excluded from the column score (we thus use an approximate */
	/* external degree). */

	/* The time taken by the following code (compute set differences, and */
	/* add them up) is proportional to the size of the data structure */
	/* being scanned - that is, the sum of the sizes of each column in */
	/* the pivot row.  Thus, the amortized time to compute a column score */
	/* is proportional to the size of that column (where size, in this */
	/* context, is the column "length", or the number of row indices */
	/* in that column).  The number of row indices in a column is */
	/* monotonically non-decreasing, from the length of the original */
	/* column on input to colamd. */

	/* === Compute set differences ====================================== */

	DEBUG3 (("** Computing set differences phase. **\n")) ;

	/* pivot row is currently dead - it will be revived later. */

	DEBUG3 (("Pivot row: \n")) ;
	/* for each column in pivot row */
	rp = &A [pivot_row_start] ;
	rp_end = rp + pivot_row_length ;
	while (rp < rp_end)
	{
	    col = *rp++ ;
	    ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
	    DEBUG3 (("    Col: "ID"\n", col)) ;

	    /* clear tags used to construct pivot row pattern */
	    col_thickness = -Col [col].shared1.thickness ;
	    ASSERT (col_thickness > 0) ;
	    Col [col].shared1.thickness = col_thickness ;

	    /* === Remove column from degree list =========================== */

	    cur_score = Col [col].shared2.score ;
	    prev_col = Col [col].shared3.prev ;
	    next_col = Col [col].shared4.degree_next ;
	    ASSERT (cur_score >= 0) ;
	    ASSERT (cur_score <= n_col) ;
	    ASSERT (cur_score >= EMPTY) ;
	    if (prev_col == EMPTY)
	    {
		head [cur_score] = next_col ;
	    }
	    else
	    {
		Col [prev_col].shared4.degree_next = next_col ;
	    }
	    if (next_col != EMPTY)
	    {
		Col [next_col].shared3.prev = prev_col ;
	    }

	    /* === Scan the column ========================================== */

	    cp = &A [Col [col].start] ;
	    cp_end = cp + Col [col].length ;
	    while (cp < cp_end)
	    {
		/* get a row */
		row = *cp++ ;
		row_mark = Row [row].shared2.mark ;
		/* skip if dead */
		if (ROW_IS_MARKED_DEAD (row_mark))
		{
		    continue ;
		}
		ASSERT (row != pivot_row) ;
		set_difference = row_mark - tag_mark ;
		/* check if the row has been seen yet */
		if (set_difference < 0)
		{
		    ASSERT (Row [row].shared1.degree <= max_deg) ;
		    set_difference = Row [row].shared1.degree ;
		}
		/* subtract column thickness from this row's set difference */
		set_difference -= col_thickness ;
		ASSERT (set_difference >= 0) ;
		ASSERT (ROW_IS_ALIVE (row)) ;

		/* absorb this row if the set difference becomes zero */
		if (set_difference == 0 && aggressive)
		{
		    /* v4.1: do aggressive absorption */
		    DEBUG3 (("aggressive absorption. Row: "ID"\n", row)) ;

		    if (Row [row].front != EMPTY)
		    {
			/* Row [row].front is a child of current front. */
			child = Row [row].front ;
			Front_parent [child] = nfr ;
			DEBUG1 (("Front "ID" => front "ID", aggressive\n",
				    child, nfr)) ;
		    }
		    else
		    {
			/* this is an original row.  Keep track of which front
			 * assembles it, for the row-merge tree */
			InFront [row] = nfr ;
			DEBUG1 (("Row "ID" => front "ID", aggressive\n",
				    row, nfr)) ;
		    }

		    KILL_ROW (row) ;

		    /* sum the thicknesses of all the rows */
		    /* ASSERT (Row [row].thickness > 0) ; */
		    pivot_row_thickness += Row [row].thickness ;
		    Row [row].thickness = 0 ;

		}
		else
		{
		    /* save the new mark */
		    Row [row].shared2.mark = set_difference + tag_mark ;
		}
	    }
	}

#ifndef NDEBUG
	debug_deg_lists (n_row, n_col, Row, Col, head,
		min_score, n_col2-k-pivot_row_degree, max_deg) ;
#endif /* NDEBUG */

	/* === Add up set differences for each column ======================= */

	DEBUG3 (("** Adding set differences phase. **\n")) ;

	/* for each column in pivot row */
	rp = &A [pivot_row_start] ;
	rp_end = rp + pivot_row_length ;
	while (rp < rp_end)
	{
	    /* get a column */
	    col = *rp++ ;
	    ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
	    hash = 0 ;
	    cur_score = 0 ;
	    cp = &A [Col [col].start] ;
	    /* compact the column */
	    new_cp = cp ;
	    cp_end = cp + Col [col].length ;

	    DEBUG4 (("Adding set diffs for Col: "ID".\n", col)) ;

	    while (cp < cp_end)
	    {
		/* get a row */
		row = *cp++ ;
		ASSERT(row >= 0 && row < n_row) ;
		row_mark = Row [row].shared2.mark ;
		/* skip if dead */
		if (ROW_IS_MARKED_DEAD (row_mark))
		{
		    /* ------------------ */
		    /* changed for UMFPACK: */
		    DEBUG4 ((" Row "ID", dead\n", row)) ;
		    /* ------------------ */
		    continue ;
		}
		/* ------------------ */
		/* changed for UMFPACK: */
		/* ASSERT (row_mark > tag_mark) ; */
		DEBUG4 ((" Row "ID", set diff "ID"\n", row, row_mark-tag_mark));
		ASSERT (row_mark >= tag_mark) ;
		/* ------------------ */
		/* compact the column */
		*new_cp++ = row ;
		/* compute hash function */
		hash += row ;
		/* add set difference */
		cur_score += row_mark - tag_mark ;
		/* integer overflow... */
		cur_score = MIN (cur_score, n_col) ;
	    }

	    /* recompute the column's length */
	    Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;

	    /* === Further mass elimination ================================= */

	    if (Col [col].length == 0)
	    {
		DEBUG4 (("further mass elimination. Col: "ID"\n", col)) ;
		/* nothing left but the pivot row in this column */
		KILL_PRINCIPAL_COL (col) ;
		pivot_row_degree -= Col [col].shared1.thickness ;
		ASSERT (pivot_row_degree >= 0) ;
		/* order it */
		Col [col].shared2.order = k ;
		/* increment order count by column thickness */
		k += Col [col].shared1.thickness ;

		/* ------------------ */
		/* added for UMFPACK: */
		pivot_col_thickness += Col [col].shared1.thickness ;

		/* add to column list of front ... */
#ifndef NDEBUG
		DEBUG1 (("Mass")) ;
		dump_super (col, Col, n_col) ;
#endif
		Col [Col [col].lastcol].nextcol = Front_cols [nfr] ;
		Front_cols [nfr] = col ;
		/* ------------------ */

	    }
	    else
	    {
		/* === Prepare for supercolumn detection ==================== */

		DEBUG4 (("Preparing supercol detection for Col: "ID".\n", col));

		/* save score so far */
		Col [col].shared2.score = cur_score ;

		/* add column to hash table, for supercolumn detection */
		/* NOTE: hash is an unsigned Int to avoid a problem in ANSI C.
		 * The sign of the expression a % b is not defined when a and/or
		 * b are negative.  Since hash is unsigned and n_col >= 0,
		 * this problem is avoided. */
		hash %= n_col + 1 ;

		DEBUG4 ((" Hash = "ID", n_col = "ID".\n", (Int) hash, n_col)) ;
		ASSERT (((Int) hash) <= n_col) ;

		head_column = head [hash] ;
		if (head_column > EMPTY)
		{
		    /* degree list "hash" is non-empty, use prev (shared3) of */
		    /* first column in degree list as head of hash bucket */
		    first_col = Col [head_column].shared3.headhash ;
		    Col [head_column].shared3.headhash = col ;
		}
		else
		{
		    /* degree list "hash" is empty, use head as hash bucket */
		    first_col = - (head_column + 2) ;
		    head [hash] = - (col + 2) ;
		}
		Col [col].shared4.hash_next = first_col ;

		/* save hash function in Col [col].shared3.hash */
		Col [col].shared3.hash = (Int) hash ;
		ASSERT (COL_IS_ALIVE (col)) ;
	    }
	}

	/* The approximate external column degree is now computed.  */

	/* === Supercolumn detection ======================================== */

	DEBUG3 (("** Supercolumn detection phase. **\n")) ;

	detect_super_cols (

#ifndef NDEBUG
		n_col, Row,
#endif /* NDEBUG */

		Col, A, head, pivot_row_start, pivot_row_length) ;

	/* === Kill the pivotal column ====================================== */

	KILL_PRINCIPAL_COL (pivot_col) ;

	/* ------------------ */
	/* added for UMFPACK: */
	/* add columns to column list of front */
#ifndef NDEBUG
	DEBUG1 (("Pivot")) ;
	dump_super (pivot_col, Col, n_col) ;
#endif
	Col [Col [pivot_col].lastcol].nextcol = Front_cols [nfr] ;
	Front_cols [nfr] = pivot_col ;
	/* ------------------ */

	/* === Clear mark =================================================== */

	tag_mark += (max_deg + 1) ;
	if (tag_mark >= max_mark)
	{
	    DEBUG2 (("clearing tag_mark\n")) ;
	    tag_mark = clear_mark (n_row, Row) ;
	}

#ifndef NDEBUG
	DEBUG3 (("check3\n")) ;
	debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif /* NDEBUG */

	/* === Finalize the new pivot row, and column scores ================ */

	DEBUG3 (("** Finalize scores phase. **\n")) ;
	DEBUG3 (("pivot_row_degree "ID"\n", pivot_row_degree)) ;

	/* for each column in pivot row */
	rp = &A [pivot_row_start] ;
	/* compact the pivot row */
	new_rp = rp ;
	rp_end = rp + pivot_row_length ;
	while (rp < rp_end)
	{
	    col = *rp++ ;
	    DEBUG3 (("Col "ID" \n", col)) ;
	    /* skip dead columns */
	    if (COL_IS_DEAD (col))
	    {
		DEBUG3 (("dead\n")) ;
		continue ;
	    }
	    *new_rp++ = col ;
	    /* add new pivot row to column */
	    A [Col [col].start + (Col [col].length++)] = pivot_row ;

	    /* retrieve score so far and add on pivot row's degree. */
	    /* (we wait until here for this in case the pivot */
	    /* row's degree was reduced due to mass elimination). */
	    cur_score = Col [col].shared2.score + pivot_row_degree ;
	    DEBUG3 ((" cur_score "ID" ", cur_score)) ;

	    /* calculate the max possible score as the number of */
	    /* external columns minus the 'k' value minus the */
	    /* columns thickness */
	    max_score = n_col - k - Col [col].shared1.thickness ;
	    DEBUG3 ((" max_score "ID" ", max_score)) ;

	    /* make the score the external degree of the union-of-rows */
	    cur_score -= Col [col].shared1.thickness ;
	    DEBUG3 ((" cur_score "ID" ", cur_score)) ;

	    /* make sure score is less or equal than the max score */
	    cur_score = MIN (cur_score, max_score) ;
	    ASSERT (cur_score >= 0) ;

	    /* store updated score */
	    Col [col].shared2.score = cur_score ;
	    DEBUG3 ((" "ID"\n", cur_score)) ;

	    /* === Place column back in degree list ========================= */

	    ASSERT (min_score >= 0) ;
	    ASSERT (min_score <= n_col) ;
	    ASSERT (cur_score >= 0) ;
	    ASSERT (cur_score <= n_col) ;
	    ASSERT (head [cur_score] >= EMPTY) ;
	    next_col = head [cur_score] ;
	    Col [col].shared4.degree_next = next_col ;
	    Col [col].shared3.prev = EMPTY ;
	    if (next_col != EMPTY)
	    {
		Col [next_col].shared3.prev = col ;
	    }
	    head [cur_score] = col ;

	    /* see if this score is less than current min */
	    min_score = MIN (min_score, cur_score) ;

	}

#ifndef NDEBUG
	debug_deg_lists (n_row, n_col, Row, Col, head,
		min_score, n_col2-k, max_deg) ;
#endif /* NDEBUG */

	/* ------------------ */
	/* added for UMFPACK: */
	/* frontal matrix can have more pivot cols than pivot rows for */
	/* singular matrices. */

	/* number of candidate pivot columns */
	Front_npivcol [nfr] = pivot_col_thickness ;

	/* all rows (not just size of contrib. block) */
	Front_nrows [nfr] = pivot_row_thickness ;

	/* all cols */
	Front_ncols [nfr] = pivot_col_thickness + pivot_row_degree ;

	Front_parent [nfr] = EMPTY ;

	pivot_row_thickness -= pivot_col_thickness ;
	DEBUG1 (("Front "ID" Pivot_row_thickness after pivot cols elim: "ID"\n",
	    nfr, pivot_row_thickness)) ;
	pivot_row_thickness = MAX (0, pivot_row_thickness) ;
	/* ------------------ */

	/* === Resurrect the new pivot row ================================== */

	if (pivot_row_degree > 0
	/* ------------------ */
	/* added for UMFPACK.  Note that this part of the expression should be
	 * removed if this routine is used outside of UMFPACK, for a Cholesky
	 * factorization of (AQ)'(AQ) */
	&& pivot_row_thickness > 0
	/* ------------------ */
	)
	{
	    /* update pivot row length to reflect any cols that were killed */
	    /* during super-col detection and mass elimination */
	    Row [pivot_row].start  = pivot_row_start ;
	    Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
	    ASSERT (Row [pivot_row].length > 0) ;
	    Row [pivot_row].shared1.degree = pivot_row_degree ;
	    Row [pivot_row].shared2.mark = 0 ;
	    /* ------------------ */
	    /* added for UMFPACK: */
	    Row [pivot_row].thickness = pivot_row_thickness ;
	    Row [pivot_row].front = nfr ;
	    /* ------------------ */
	    /* pivot row is no longer dead */
	}

	/* ------------------ */
	/* added for UMFPACK: */

#ifndef NDEBUG
	DEBUG1 (("Front "ID" : "ID" "ID" "ID" ", nfr,
		Front_npivcol [nfr], Front_nrows [nfr], Front_ncols [nfr])) ;
	DEBUG1 ((" cols:[ ")) ;
	debug_d = 0 ;
	for (col = Front_cols [nfr] ; col != EMPTY ; col = Col [col].nextcol)
	{
	    DEBUG1 ((" "ID, col)) ;
	    ASSERT (col >= 0 && col < n_col) ;
	    ASSERT (COL_IS_DEAD (col)) ;
	    debug_d++ ;
	    ASSERT (debug_d <= pivot_col_thickness) ;
	}
	ASSERT (debug_d == pivot_col_thickness) ;
	DEBUG1 ((" ]\n ")) ;
#endif
	nfr++ ; /* one more front */
	/* ------------------ */

    }

    /* === All principal columns have now been ordered ====================== */

    /* ------------------ */
    /* added for UMFPACK: */
    *p_nfr = nfr ;
    /* ------------------ */

    return (ngarbage) ;
}


/* ========================================================================== */
/* === order_children deleted for UMFPACK =================================== */
/* ========================================================================== */

/* ========================================================================== */
/* === detect_super_cols ==================================================== */
/* ========================================================================== */

/*
    Detects supercolumns by finding matches between columns in the hash buckets.
    Check amongst columns in the set A [row_start ... row_start + row_length-1].
    The columns under consideration are currently *not* in the degree lists,
    and have already been placed in the hash buckets.

    The hash bucket for columns whose hash function is equal to h is stored
    as follows:

	if head [h] is >= 0, then head [h] contains a degree list, so:

		head [h] is the first column in degree bucket h.
		Col [head [h]].headhash gives the first column in hash bucket h.

	otherwise, the degree list is empty, and:

		-(head [h] + 2) is the first column in hash bucket h.

    For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
    column" pointer.  Col [c].shared3.hash is used instead as the hash number
    for that column.  The value of Col [c].shared4.hash_next is the next column
    in the same hash bucket.

    Assuming no, or "few" hash collisions, the time taken by this routine is
    linear in the sum of the sizes (lengths) of each column whose score has
    just been computed in the approximate degree computation.
    Not user-callable.
*/

PRIVATE void detect_super_cols
(
    /* === Parameters ======================================================= */

#ifndef NDEBUG
    /* these two parameters are only needed when debugging is enabled: */
    Int n_col,			/* number of columns of A */
    Colamd_Row Row [],		/* of size n_row+1 */
#endif /* NDEBUG */

    Colamd_Col Col [],		/* of size n_col+1 */
    Int A [],			/* row indices of A */
    Int head [],		/* head of degree lists and hash buckets */
    Int row_start,		/* pointer to set of columns to check */
    Int row_length		/* number of columns to check */
)
{
    /* === Local variables ================================================== */

    Int hash ;			/* hash value for a column */
    Int *rp ;			/* pointer to a row */
    Int c ;			/* a column index */
    Int super_c ;		/* column index of the column to absorb into */
    Int *cp1 ;			/* column pointer for column super_c */
    Int *cp2 ;			/* column pointer for column c */
    Int length ;		/* length of column super_c */
    Int prev_c ;		/* column preceding c in hash bucket */
    Int i ;			/* loop counter */
    Int *rp_end ;		/* pointer to the end of the row */
    Int col ;			/* a column index in the row to check */
    Int head_column ;		/* first column in hash bucket or degree list */
    Int first_col ;		/* first column in hash bucket */

    /* === Consider each column in the row ================================== */

    rp = &A [row_start] ;
    rp_end = rp + row_length ;
    while (rp < rp_end)
    {
	col = *rp++ ;
	if (COL_IS_DEAD (col))
	{
	    continue ;
	}

	/* get hash number for this column */
	hash = Col [col].shared3.hash ;
	ASSERT (hash <= n_col) ;

	/* === Get the first column in this hash bucket ===================== */

	head_column = head [hash] ;
	if (head_column > EMPTY)
	{
	    first_col = Col [head_column].shared3.headhash ;
	}
	else
	{
	    first_col = - (head_column + 2) ;
	}

	/* === Consider each column in the hash bucket ====================== */

	for (super_c = first_col ; super_c != EMPTY ;
	    super_c = Col [super_c].shared4.hash_next)
	{
	    ASSERT (COL_IS_ALIVE (super_c)) ;
	    ASSERT (Col [super_c].shared3.hash == hash) ;
	    length = Col [super_c].length ;

	    /* prev_c is the column preceding column c in the hash bucket */
	    prev_c = super_c ;

	    /* === Compare super_c with all columns after it ================ */

	    for (c = Col [super_c].shared4.hash_next ;
		c != EMPTY ; c = Col [c].shared4.hash_next)
	    {
		ASSERT (c != super_c) ;
		ASSERT (COL_IS_ALIVE (c)) ;
		ASSERT (Col [c].shared3.hash == hash) ;

		/* not identical if lengths or scores are different */
		if (Col [c].length != length ||
		    Col [c].shared2.score != Col [super_c].shared2.score)
		{
		    prev_c = c ;
		    continue ;
		}

		/* compare the two columns */
		cp1 = &A [Col [super_c].start] ;
		cp2 = &A [Col [c].start] ;

		for (i = 0 ; i < length ; i++)
		{
		    /* the columns are "clean" (no dead rows) */
		    ASSERT (ROW_IS_ALIVE (*cp1))  ;
		    ASSERT (ROW_IS_ALIVE (*cp2))  ;
		    /* row indices will same order for both supercols, */
		    /* no gather scatter nessasary */
		    if (*cp1++ != *cp2++)
		    {
			break ;
		    }
		}

		/* the two columns are different if the for-loop "broke" */
		if (i != length)
		{
		    prev_c = c ;
		    continue ;
		}

		/* === Got it!  two columns are identical =================== */

		ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;

		Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
		Col [c].shared1.parent = super_c ;
		KILL_NON_PRINCIPAL_COL (c) ;

		Col [c].shared2.order = EMPTY ;
		/* remove c from hash bucket */
		Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;

		/* ------------------ */
		/* added for UMFPACK: */
		/* add c to end of list of super_c */
		ASSERT (Col [super_c].lastcol >= 0) ;
		ASSERT (Col [super_c].lastcol < n_col) ;
		Col [Col [super_c].lastcol].nextcol = c ;
		Col [super_c].lastcol = Col [c].lastcol ;
#ifndef NDEBUG
		/* dump the supercolumn */
		DEBUG1 (("Super")) ;
		dump_super (super_c, Col, n_col) ;
#endif
		/* ------------------ */

	    }
	}

	/* === Empty this hash bucket ======================================= */

	if (head_column > EMPTY)
	{
	    /* corresponding degree list "hash" is not empty */
	    Col [head_column].shared3.headhash = EMPTY ;
	}
	else
	{
	    /* corresponding degree list "hash" is empty */
	    head [hash] = EMPTY ;
	}
    }
}


/* ========================================================================== */
/* === garbage_collection =================================================== */
/* ========================================================================== */

/*
    Defragments and compacts columns and rows in the workspace A.  Used when
    all avaliable memory has been used while performing row merging.  Returns
    the index of the first free position in A, after garbage collection.  The
    time taken by this routine is linear is the size of the array A, which is
    itself linear in the number of nonzeros in the input matrix.
    Not user-callable.
*/

PRIVATE Int garbage_collection  /* returns the new value of pfree */
(
    /* === Parameters ======================================================= */

    Int n_row,			/* number of rows */
    Int n_col,			/* number of columns */
    Colamd_Row Row [],		/* row info */
    Colamd_Col Col [],		/* column info */
    Int A [],			/* A [0 ... Alen-1] holds the matrix */
    Int *pfree			/* &A [0] ... pfree is in use */
)
{
    /* === Local variables ================================================== */

    Int *psrc ;			/* source pointer */
    Int *pdest ;		/* destination pointer */
    Int j ;			/* counter */
    Int r ;			/* a row index */
    Int c ;			/* a column index */
    Int length ;		/* length of a row or column */

#ifndef NDEBUG
    Int debug_rows ;
    DEBUG2 (("Defrag..\n")) ;
    for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
    debug_rows = 0 ;
#endif /* NDEBUG */

    /* === Defragment the columns =========================================== */

    pdest = &A[0] ;
    for (c = 0 ; c < n_col ; c++)
    {
	if (COL_IS_ALIVE (c))
	{
	    psrc = &A [Col [c].start] ;

	    /* move and compact the column */
	    ASSERT (pdest <= psrc) ;
	    Col [c].start = (Int) (pdest - &A [0]) ;
	    length = Col [c].length ;
	    for (j = 0 ; j < length ; j++)
	    {
		r = *psrc++ ;
		if (ROW_IS_ALIVE (r))
		{
		    *pdest++ = r ;
		}
	    }
	    Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
	}
    }

    /* === Prepare to defragment the rows =================================== */

    for (r = 0 ; r < n_row ; r++)
    {
	if (ROW_IS_ALIVE (r))
	{
	    if (Row [r].length == 0)
	    {
		/* :: defrag row kill :: */
		/* This row is of zero length.  cannot compact it, so kill it.
		 * NOTE: in the current version, there are no zero-length live
		 * rows when garbage_collection is called.  So this code will
		 * never trigger.  However, if the code is modified, or if
		 * garbage_collection is called at a different place, then rows
		 * can be of zero length.  So this test is kept, just in case.
		 */
		DEBUGm4 (("Defrag row kill\n")) ;
		KILL_ROW (r) ;
	    }
	    else
	    {
		/* save first column index in Row [r].shared2.first_column */
		psrc = &A [Row [r].start] ;
		Row [r].shared2.first_column = *psrc ;
		ASSERT (ROW_IS_ALIVE (r)) ;
		/* flag the start of the row with the one's complement of row */
		*psrc = ONES_COMPLEMENT (r) ;
#ifndef NDEBUG
		debug_rows++ ;
#endif /* NDEBUG */
	    }
	}
    }

    /* === Defragment the rows ============================================== */

    psrc = pdest ;
    while (psrc < pfree)
    {
	/* find a negative number ... the start of a row */
	if (*psrc++ < 0)
	{
	    psrc-- ;
	    /* get the row index */
	    r = ONES_COMPLEMENT (*psrc) ;
	    ASSERT (r >= 0 && r < n_row) ;
	    /* restore first column index */
	    *psrc = Row [r].shared2.first_column ;
	    ASSERT (ROW_IS_ALIVE (r)) ;

	    /* move and compact the row */
	    ASSERT (pdest <= psrc) ;
	    Row [r].start = (Int) (pdest - &A [0]) ;
	    length = Row [r].length ;
	    for (j = 0 ; j < length ; j++)
	    {
		c = *psrc++ ;
		if (COL_IS_ALIVE (c))
		{
		    *pdest++ = c ;
		}
	    }
	    Row [r].length = (Int) (pdest - &A [Row [r].start]) ;

#ifndef NDEBUG
	    debug_rows-- ;
#endif /* NDEBUG */

	}
    }
    /* ensure we found all the rows */
    ASSERT (debug_rows == 0) ;

    /* === Return the new value of pfree ==================================== */

    return ((Int) (pdest - &A [0])) ;
}


/* ========================================================================== */
/* === clear_mark =========================================================== */
/* ========================================================================== */

/*
    Clears the Row [].shared2.mark array, and returns the new tag_mark.
    Return value is the new tag_mark.  Not user-callable.
*/

PRIVATE Int clear_mark	/* return the new value for tag_mark */
(
    /* === Parameters ======================================================= */

    Int n_row,		/* number of rows in A */
    Colamd_Row Row []	/* Row [0 ... n-1].shared2.mark is set to zero */
)
{
    /* === Local variables ================================================== */

    Int r ;

    for (r = 0 ; r < n_row ; r++)
    {
	if (ROW_IS_ALIVE (r))
	{
	    Row [r].shared2.mark = 0 ;
	}
    }

    /* ------------------ */
    return (1) ;
    /* ------------------ */

}


/* ========================================================================== */
/* === print_report removed for UMFPACK ===================================== */
/* ========================================================================== */



/* ========================================================================== */
/* === colamd debugging routines ============================================ */
/* ========================================================================== */

/* When debugging is disabled, the remainder of this file is ignored. */

#ifndef NDEBUG


/* ========================================================================== */
/* === debug_structures ===================================================== */
/* ========================================================================== */

/*
    At this point, all empty rows and columns are dead.  All live columns
    are "clean" (containing no dead rows) and simplicial (no supercolumns
    yet).  Rows may contain dead columns, but all live rows contain at
    least one live column.
*/

PRIVATE void debug_structures
(
    /* === Parameters ======================================================= */

    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A [],
    Int n_col2
)
{
    /* === Local variables ================================================== */

    Int i ;
    Int c ;
    Int *cp ;
    Int *cp_end ;
    Int len ;
    Int score ;
    Int r ;
    Int *rp ;
    Int *rp_end ;
    Int deg ;

    /* === Check A, Row, and Col ============================================ */

    for (c = 0 ; c < n_col ; c++)
    {
	if (COL_IS_ALIVE (c))
	{
	    len = Col [c].length ;
	    score = Col [c].shared2.score ;
	    DEBUG4 (("initial live col "ID" "ID" "ID"\n", c, len, score)) ;
	    ASSERT (len > 0) ;
	    ASSERT (score >= 0) ;
	    ASSERT (Col [c].shared1.thickness == 1) ;
	    cp = &A [Col [c].start] ;
	    cp_end = cp + len ;
	    while (cp < cp_end)
	    {
		r = *cp++ ;
		ASSERT (ROW_IS_ALIVE (r)) ;
	    }
	}
	else
	{
	    i = Col [c].shared2.order ;
	    ASSERT (i >= n_col2 && i < n_col) ;
	}
    }

    for (r = 0 ; r < n_row ; r++)
    {
	if (ROW_IS_ALIVE (r))
	{
	    i = 0 ;
	    len = Row [r].length ;
	    deg = Row [r].shared1.degree ;
	    ASSERT (len > 0) ;
	    ASSERT (deg > 0) ;
	    rp = &A [Row [r].start] ;
	    rp_end = rp + len ;
	    while (rp < rp_end)
	    {
		c = *rp++ ;
		if (COL_IS_ALIVE (c))
		{
		    i++ ;
		}
	    }
	    ASSERT (i > 0) ;
	}
    }
}


/* ========================================================================== */
/* === debug_deg_lists ====================================================== */
/* ========================================================================== */

/*
    Prints the contents of the degree lists.  Counts the number of columns
    in the degree list and compares it to the total it should have.  Also
    checks the row degrees.
*/

PRIVATE void debug_deg_lists
(
    /* === Parameters ======================================================= */

    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int head [],
    Int min_score,
    Int should,
    Int max_deg
)
{
    /* === Local variables ================================================== */

    Int deg ;
    Int col ;
    Int have ;
    Int row ;

    /* === Check the degree lists =========================================== */

    if (n_col > 10000 && UMF_debug <= 0)
    {
	return ;
    }
    have = 0 ;
    DEBUG4 (("Degree lists: "ID"\n", min_score)) ;
    for (deg = 0 ; deg <= n_col ; deg++)
    {
	col = head [deg] ;
	if (col == EMPTY)
	{
	    continue ;
	}
	DEBUG4 ((ID":", deg)) ;
	while (col != EMPTY)
	{
	    DEBUG4 ((" "ID, col)) ;
	    have += Col [col].shared1.thickness ;
	    ASSERT (COL_IS_ALIVE (col)) ;
	    col = Col [col].shared4.degree_next ;
	}
	DEBUG4 (("\n")) ;
    }
    DEBUG4 (("should "ID" have "ID"\n", should, have)) ;
    ASSERT (should == have) ;

    /* === Check the row degrees ============================================ */

    if (n_row > 10000 && UMF_debug <= 0)
    {
	return ;
    }
    for (row = 0 ; row < n_row ; row++)
    {
	if (ROW_IS_ALIVE (row))
	{
	    ASSERT (Row [row].shared1.degree <= max_deg) ;
	}
    }
}


/* ========================================================================== */
/* === debug_mark =========================================================== */
/* ========================================================================== */

/*
    Ensures that the tag_mark is less that the maximum and also ensures that
    each entry in the mark array is less than the tag mark.
*/

PRIVATE void debug_mark
(
    /* === Parameters ======================================================= */

    Int n_row,
    Colamd_Row Row [],
    Int tag_mark,
    Int max_mark
)
{
    /* === Local variables ================================================== */

    Int r ;

    /* === Check the Row marks ============================================== */

    ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
    if (n_row > 10000 && UMF_debug <= 0)
    {
	return ;
    }
    for (r = 0 ; r < n_row ; r++)
    {
	ASSERT (Row [r].shared2.mark < tag_mark) ;
    }
}


/* ========================================================================== */
/* === debug_matrix ========================================================= */
/* ========================================================================== */

/*
    Prints out the contents of the columns and the rows.
*/

PRIVATE void debug_matrix
(
    /* === Parameters ======================================================= */

    Int n_row,
    Int n_col,
    Colamd_Row Row [],
    Colamd_Col Col [],
    Int A []
)
{
    /* === Local variables ================================================== */

    Int r ;
    Int c ;
    Int *rp ;
    Int *rp_end ;
    Int *cp ;
    Int *cp_end ;

    /* === Dump the rows and columns of the matrix ========================== */

    if (UMF_debug < 3)
    {
	return ;
    }
    DEBUG3 (("DUMP MATRIX:\n")) ;
    for (r = 0 ; r < n_row ; r++)
    {
	DEBUG3 (("Row "ID" alive? %d\n", r, ROW_IS_ALIVE (r))) ;
	if (ROW_IS_DEAD (r))
	{
	    continue ;
	}

	/* ------------------ */
	/* changed for UMFPACK: */
	DEBUG3 (("start "ID" length "ID" degree "ID" thickness "ID"\n",
		Row [r].start, Row [r].length, Row [r].shared1.degree,
		Row [r].thickness)) ;
	/* ------------------ */

	rp = &A [Row [r].start] ;
	rp_end = rp + Row [r].length ;
	while (rp < rp_end)
	{
	    c = *rp++ ;
	    DEBUG4 (("	%d col "ID"\n", COL_IS_ALIVE (c), c)) ;
	}
    }

    for (c = 0 ; c < n_col ; c++)
    {
	DEBUG3 (("Col "ID" alive? %d\n", c, COL_IS_ALIVE (c))) ;
	if (COL_IS_DEAD (c))
	{
	    continue ;
	}
	/* ------------------ */
	/* changed for UMFPACK: */
	DEBUG3 (("start "ID" length "ID" shared1[thickness,parent] "ID
		" shared2 [order,score] "ID"\n", Col [c].start, Col [c].length,
		Col [c].shared1.thickness, Col [c].shared2.score));
	/* ------------------ */
	cp = &A [Col [c].start] ;
	cp_end = cp + Col [c].length ;
	while (cp < cp_end)
	{
	    r = *cp++ ;
	    DEBUG4 (("	%d row "ID"\n", ROW_IS_ALIVE (r), r)) ;
	}

	/* ------------------ */
	/* added for UMFPACK: */
	DEBUG1 (("Col")) ;
	dump_super (c, Col, n_col) ;
	/* ------------------ */

    }
}

/* ------------------ */
/* dump_super added for UMFPACK: */
PRIVATE void dump_super
(
    Int super_c,
    Colamd_Col Col [],
    Int n_col
)
{
    Int col, ncols ;

    DEBUG1 ((" =[ ")) ;
    ncols = 0 ;
    for (col = super_c ; col != EMPTY ; col = Col [col].nextcol)
    {
	DEBUG1 ((" "ID, col)) ;
	ASSERT (col >= 0 && col < n_col) ;
	if (col != super_c)
	{
	    ASSERT (COL_IS_DEAD (col)) ;
	}
	if (Col [col].nextcol == EMPTY)
	{
	    ASSERT (col == Col [super_c].lastcol) ;
	}
	ncols++ ;
	ASSERT (ncols <= Col [super_c].shared1.thickness) ;
    }
    ASSERT (ncols == Col [super_c].shared1.thickness) ;
    DEBUG1 (("]\n")) ;
}
/* ------------------ */


#endif /* NDEBUG */