fvn.tex 77.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
%\documentclass[a4paper,10pt]{article}
\documentclass[a4paper,english]{article}

\usepackage[utf8]{inputenc}
\usepackage{a4wide}
\usepackage{eurosym}
\usepackage{url}
\usepackage[colorlinks=true,hyperfigures=true]{hyperref}
%\usepackage{aeguill}

\usepackage{graphicx}
\usepackage{babel}
\makeatother


%opening
\title{FVN Documentation}
\author{William Daniau}


\begin{document}

\maketitle

%\begin{abstract}

%\end{abstract}
\tableofcontents

\section{Whatis fvn,license}
\subsection{Whatis fvn}
fvn is a Fortran95 mathematical library with several modules. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, special functions etc.

Most of the work for linear algebra is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack.

fvn include some integrated libraries : integration tasks uses a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack}, the fnlib library \url{http://www.netlib.org/fn} is used for special functions and sparse system resolution uses SuiteSparse \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/}.

This library has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in the Time and Frequency Department of institute Femto-ST \url{http://www.femto-st.fr/}.

\subsection{License}
    Your use or distribution of fvn or any modified version of
    fvn implies that you agree to this License.

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 3 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301
    USA

    Permission is hereby granted to use or copy this program under the
    terms of the GNU LGPL, provided that the Copyright, this License,
    and the Availability of the original version is retained on all copies.
    User documentation of any code that uses this code or any modified
    version of this code must cite the Copyright, this License, the
    Availability note, and "Used by permission." Permission to modify
    the code and to distribute modified code is granted, provided the
    Copyright, this License, and the Availability note are retained,
    and a notice that the code was modified is included.

\subsubsection*{Authors and Contributors}
\begin{itemize}
 \item William Daniau (william.daniau@femto-st.fr)
 \item Sylvain Ballandras (sylvain.ballandras@femto-st.fr)
 \item Christian Waterkeyn (christian.waterkeyn@epcos.com)
\end{itemize}

\section{Naming scheme and convention}
The naming scheme of the routines is as follow :
\begin{verbatim}
    fvn_*_name()
\end{verbatim} 
where * can be s,d,c or z. 
\begin{itemize}
 \item s is for single precision real (real,real*4,real(4),real(kind=4))
 \item d for double precision real (double precision,real*8,real(8),real(kind=8))
 \item c for single precision complex (complex,complex*8,complex(4),complex(kind=4))
 \item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8))
\end{itemize}
In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout).

For each routine, there is a generic interface (simply remove \verb'_*' in the name), so using the specific routine is not mandatory.


There's a general module called ``\verb'fvn''' that include all fvn submodules. So whatever part of the library is used in the program a ``\verb'use fvn''' will be sufficient instead of specifying the specific module.

\section{kind specification}
In \verb'fvn' the following definitions are made (this is done in module \verb'fvn_common') to ease portability:

\begin{verbatim}
integer, parameter :: ip_kind = kind(1)
integer, parameter :: sp_kind = kind(1.0E0)
integer, parameter :: dp_kind = kind(1.0D0)
\end{verbatim}

Although not mandatory, it is a good idea to use these definitions when programming with fvn, that is for example : 
\begin{verbatim}
real(kind=sp_kind) :: x 
real(kind=dp_kind) :: y
complex(kind=dp_kind) :: z
\end{verbatim}
instead of
\begin{verbatim}
real :: x
double precision :: y
complex(8) :: z
\end{verbatim}


\section{Linear algebra}
The linear algebra routines of fvn are an interface to lapack, which make it easier to use.
\subsection{Matrix inversion}
\begin{verbatim}
Module : use fvn_linear
call fvn_matinv(d,a,inva,status)
\end{verbatim}
\begin{itemize}
 \item d (in) is an integer equal to the matrix rank
 \item a (in) is a real or complex matrix. It will remain untouched.
 \item inva (out) is a real or complex matrix which contain the inverse of a at the end of the routine
 \item status (out) is an optional integer equal to zero if something went wrong
\end{itemize}

\subsubsection*{Example}
\begin{verbatim}
program inv
 use fvn_linear
 implicit none

 real(8),dimension(3,3) :: a,inva

 call random_number(a)
 a=a*100

 call fvn_matinv(3,a,inva)
 write (*,*) a
 write (*,*)
 write (*,*) inva
 write (*,*)
 write (*,*) matmul(a,inva)
end program
\end{verbatim}



\subsection{Matrix determinants}
\begin{verbatim}
Module : use fvn_linear
det=fvn_det(d,a,status)
\end{verbatim}
\begin{itemize}
 \item d (in) is an integer equal to the matrix rank
 \item a (in) is a real or complex matrix. It will remain untouched.
 \item status (out) is an optional integer equal to zero if something went wrong
\end{itemize}

\subsubsection*{Example}
\begin{verbatim}
program det
 use fvn_linear
 implicit none

 real(8),dimension(3,3) :: a
 real(8) :: deta
 integer :: status

 call random_number(a)
 a=a*100

 deta=fvn_det(3,a,status)
 write (*,*) a
 write (*,*)
 write (*,*) "Det = ",deta
end program

\end{verbatim}



\subsection{Matrix condition}
\begin{verbatim}
Module : use fvn_linear
call fvn_matcon(d,a,rcond,status)
\end{verbatim}
\begin{itemize}
 \item d (in) is an integer equal to the matrix rank
 \item a (in) is a real or complex matrix. It will remain untouched.
 \item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix
 \item status (out) is an optional integer equal to zero if something went wrong
\end{itemize}

The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef}
\begin{equation}
 R = \frac{1}{norm(A)*norm(invA)}
 \label{rconddef}
\end{equation}

The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm}
\begin{equation}
 L1 = max_j ( \sum_i{\mid A(i,j)\mid}  )
 \label{l1norm}
\end{equation}

\subsubsection*{Example}
\begin{verbatim}
program cond
 use fvn_linear
 implicit none

 real(8),dimension(3,3) :: a
 real(8) :: rcond
 integer :: status

 call random_number(a)
 a=a*100

 call fvn_d_matcon(3,a,rcond,status)
 write (*,*) a
 write (*,*)
 write (*,*) "Cond = ",rcond
end program

\end{verbatim}


\subsection{Eigenvalues/Eigenvectors}
\begin{verbatim}
Module : use fvn_linear
call fvn_matev(d,a,evala,eveca,status,sortval)
\end{verbatim}
\begin{itemize}
 \item d (in) is an integer equal to the matrix rank
 \item a (in) is a real or complex matrix. It will remain untouched.
 \item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a
 \item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j).
 \item status (out) is an optional integer equal to zero if something went wrong
 \item sortval (in) is an optional logical, if it is true the eigenvalues (and eigenvectors) are sorted in decreasing order of eigenvalues's modulus.
\end{itemize}


\subsubsection*{Example}
\begin{verbatim}
program eigen
 use fvn_linear
 implicit none

 real(8),dimension(3,3) :: a
 complex(8),dimension(3) :: evala
 complex(8),dimension(3,3) :: eveca
 integer :: status,i,j

 call random_number(a)
 a=a*100

 call fvn_matev(3,a,evala,eveca,status)
 write (*,*) a
 write (*,*)
 do i=1,3
    write(*,*) "Eigenvalue ",i,evala(i)
    write(*,*) "Associated Eigenvector :"
    do j=1,3
        write(*,*) eveca(j,i)
    end do
    write(*,*)
 end do

end program

\end{verbatim}


\subsection{Sparse matrix}
By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems and calculating determinants.

\subsubsection{Sparse solving}
The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form.

Note that interface has changed from previous versions, splitting complex inputs into real and imaginary part and using 0-based indices, to fit umfpack routines inputs and avoid duplicating datas inside the routines.

\begin{verbatim}
Module : fvn_sparse
call fvn_sparse_solve(n,nz,T,Ti,Tj,B,x,status,det)
call fvn_sparse_solve(n,nz,Tx,Tz,Ti,Tj,Bx,Bz,x,status,det)
\end{verbatim}
\begin{itemize}
 \item For this family of subroutines the two letters (zl,zi,dl,di) of the specific interface name decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4)
 \item \texttt{n} (in) is an integer equal to the matrix rank
 \item \texttt{nz} (in) is an integer equal to the number of non-zero elements
 \item \texttt{T(nz) or Tx(nz),Tz(nz)} (in) is a real array (or two real arrays for real/imaginary in case of a complex system) containing the non-zero elements
 \item \texttt{Ti(nz)},\texttt{Tj(nz)} (in) are the indexes of the corresponding element of \texttt{T} in the original matrix, this has to be 0-based as in C.
 \item \texttt{B(n) or Bx(n),Bz(n)} (in) is a real array or two real arrays for real/imaginary in case of a complex system) containing the second member of the equation.
 \item \texttt{x(n)} (out) is a complex/real array containing the solution
 \item \texttt{status} (out) is an integer which contain non-zero is something went wrong
 \item \texttt{det} (out), is an optional real(8) array of dimension 2 for dl and di specific interface (real systems) and dimension 3 for zl and zi interface (complex systems)
\end{itemize}


\subsubsection*{Example}
\begin{verbatim}
program test_sparse

 use fvn_sparse
 implicit none

 integer(8), parameter :: nz=12
 integer(8), parameter :: n=5
 complex(8),dimension(nz) :: A
 real(8), dimension(nz) :: Ax,Az
 integer(8),dimension(nz) :: Ti,Tj
 complex(8),dimension(n) :: B,x
 real(8), dimension(n) :: Bx,Bz
 integer(8) :: status

 A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
          (1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)
 B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
 Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
 Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
 Ax=real(A)
 Az=aimag(A)
 Bx=real(B)
 Bz=aimag(B)

 ! 1-based to 0-based translation
 Ti=Ti-1
 Tj=Tj-1

 !specific routine that will be used here
 !call fvn_zl_sparse_solve(n,nz,Ax,Az,Ti,Tj,Bx,Bz,x,status)
 call fvn_sparse_solve(n,nz,Ax,Az,Ti,Tj,Bx,Bz,x,status)
 write(*,*) x

end program


program test_sparse

use fvn_sparse
implicit none

integer(4), parameter :: nz=12
integer(4), parameter :: n=5
real(8),dimension(nz) :: A
integer(4),dimension(nz) :: Ti,Tj
real(8),dimension(n) :: B,x
integer(4) :: status

A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /)
B = (/ 8., 45., -3., 3., 19./)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)

! 1-based to 0-based translation
Ti=Ti-1
Tj=Tj-1
 
!specific routine that will be used here
!call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
call fvn_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x

end program

\end{verbatim}

If optional parameter \texttt{det} is given, the routine will also calculates the matrix determinant and returns it on a mantissa + exponent form, that is the actual determinant will be $det(1).10^{det(2)}$ for real problems and $(det(1)+i.det(2)).10^{det(3)}$ for complex problems. This is given in this form as the determinant can be considerably higher/lower than the biggest/lowest usable double precision real. There's an example of how to use this in following paragraph.

\subsubsection{Sparse determinant}

The provided subroutines calculates the determinant of a matrix given in its triplet form.
\begin{verbatim}
Module : fvn_sparse
call fvn_sparse_det(n,nz,T,Ti,Tj,det,status)
call fvn_sparse_det(n,nz,Tx,Tz,Ti,Tj,det,status)
\end{verbatim}

\begin{itemize}
 \item For this family of subroutines the two letters (zl,zi,dl,di) of the specific interface name decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4)
 \item \texttt{n} (in) is an integer equal to the matrix rank
 \item \texttt{nz} (in) is an integer equal to the number of non-zero elements
 \item \texttt{T(nz) or Tx(nz),Tz(nz)} (in) is a real array (or two real arrays for real/imaginary in case of a complex system) containing the non-zero elements
 \item \texttt{Ti(nz)},\texttt{Tj(nz)} (in) are the indexes of the corresponding element of \texttt{T} in the original matrix, it has to be 0-based as in C.
 \item \texttt{det} (out), a real(8) array of dimension 2 for dl and di specific interface (real systems) and dimension 3 for zl and zi interface (complex systems)
\item \texttt{status} (out) is an integer which contain non-zero is something went wrong
\end{itemize}

The matrix determinant is returned on a mantissa + exponent form, that is the actual determinant will be $det(1).10^{det(2)}$ for real problems and $(det(1)+i.det(2)).10^{det(3)}$ for complex problems. This is given in this form as the determinant can be considerably higher/lower than the biggest/lowest usable double precision real.

Here are the possibly returned errors in \texttt{status} parameter :
\begin{itemize}
 \item \texttt{0} : no errors
 \item \texttt{-1}: out of memory
 \item \texttt{1} : singular matrix
 \item \texttt{2} : determinant underflow, the ``natural'' form of the determinant $det(1).10^{det(2)}$ or $(det(1)+i.det(2)).10^{det(3)}$ will underflow.
 \item \texttt{3} : determinant overflow, the ``natural'' form of the determinant (as above) will overflow
\end{itemize}


And here's an example using this

\begin{verbatim}
program test_sparse
use fvn
implicit none
integer(kind=sp_kind), parameter :: nz=12
integer(kind=sp_kind), parameter :: n=5
complex(kind=dp_kind),dimension(nz) :: A
real(kind=dp_kind), dimension(nz) :: Ax,Az
complex(kind=dp_kind),dimension(n,n) :: As
integer(kind=sp_kind),dimension(nz) :: Ti,Tj
complex(kind=dp_kind),dimension(n) :: B,x
real(kind=dp_kind), dimension(n) :: Bx,Bz
integer(kind=sp_kind) :: status,i
real(kind=dp_kind),dimension(3) :: det
character(len=80) :: fmcmplx

fmcmplx='(5("(",f8.5,",",f8.5,")  "))'

! Description of the matrix in triplet form
A = (/ (2.,-1.),(3.,2.),(3.,1.),(-1.,5.),(4.,-7.),(4.,0.),(-3.,-4.),(1.,3.),(2.,0.),(2.,-2.),(6.,4.),(1.,0.) /)
B = (/ (8.,3.), (45.,1.), (-3.,-2.), (3.,0.), (19.,2.) /)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)

Ax=real(A)
Az=aimag(A)
Bx=real(B)
Bz=aimag(B)

! Reconstruction of the matrix in standard form
As=0.
do i=1,nz
    As(Ti(i),Tj(i))=A(i)
end do

write(*,*) "Matrix in standard representation :"
do i=1,5
    write(*,fmcmplx) As(i,:)
end do
write(*,*)
write(*,*) "Standard determinant : ",fvn_det(5,As)
write(*,*)
write(*,*) "Right hand side :"
write(*,fmcmplx) B

! can use either specific interface, fvn_zi_sparse_det
! either generic one fvn_sparse_det
call fvn_zi_sparse_det(n,nz,Ax,Az,Ti,Tj,det,status)
write(*,*)
write(*,*) "Sparse Det = ",cmplx(det(1),det(2),kind=dp_kind)*10**det(3)
! can use either specific interface fvn_zi_sparse_solve
! either generic one fvn_sparse_solve
! parameter det is optional
call fvn_zi_sparse_solve(n,nz,Ax,Az,Ti,Tj,Bx,Bz,x,status,det)
write(*,*)
write(*,*) "Sparse Det as solve option= ",cmplx(det(1),det(2),kind=dp_kind)*10**det(3)
write(*,*)
write(*,*) "Solution :"
write(*,fmcmplx) x
write(*,*)
write(*,*) "Product matrix Solution :"
write(*,fmcmplx) matmul(As,x)
end program

\end{verbatim}


\subsection{Identity matrix}
\begin{verbatim}
 Module : use fvn_linear
 I=fvn_*_ident(n)     (*=s,d,c,z)
\end{verbatim}
\begin{itemize}
 \item n (in) is an integer equal to the matrix rank
\end{itemize}

This function return the identity matrix of rank n, in the specified type. No generic interface for this one.

\subsection{Operators}
fvn defines some linear operators similar to those defined in IMSL\textregistered (\url{http://www.vni.com/products/imsl/}), that can be used for matrix operations.
\begin{verbatim}
 Module : use fvn_linear
\end{verbatim}

\subsubsection{Unary operators}
\paragraph{.i.}
This operator gives the inverse matrix of the argument which must be a square matrix. The status of the operation can be found in the module variable fvn\_status (fourth parameter fvn\_matinv).
\[
 \textrm{b=.i.a}~\Longleftrightarrow~b=a^{-1}
\]

\paragraph{.t.}
This operator gives the transpose matrix of the argument.
\[
 \textrm{b=.t.a}~\Longleftrightarrow~b= {}^t \! a
\]


\paragraph{.h.}
This operator gives the conjugate transpose matrix of the argument (also called Hermitian transpose or adjoint matrix).
\[
 \textrm{b=.h.a}~\Longleftrightarrow~b=a^*=\overline{({}^t\!a)}={}^t \overline{a}
\]


\subsubsection{Binary operators}
\paragraph{.x.}
This operator gives the matrix product of the two operands.
\[
 \textrm{c=a.x.b}~\Longleftrightarrow~c=ab
\]


\paragraph{.ix.}
This operator gives the matrix product of the inverse of the first operand and the second one. The status of the inversion can be found in the module variable fvn\_status (fourth parameter fvn\_matinv).
\[
 \textrm{c=a.ix.b}~\Longleftrightarrow~c=a^{-1}b
\]

\paragraph{.xi.}
This operator gives the matrix product of the first operand and the inverse of the second one. The status of the inversion can be found in the module variable fvn\_status (fourth parameter fvn\_matinv).
\[
 \textrm{c=a.xi.b}~\Longleftrightarrow~c=ab^{-1}
\]

\paragraph{.tx.}
This operator gives the matrix product of the transpose matrix of the first operand and the second one.
\[
 \textrm{c=a.tx.b}~\Longleftrightarrow~c={}^t\!ab
\]


\paragraph{.xt.}
This operator gives the matrix product of the first operand and the transpose matrix of the second one.
\[
 \textrm{c=a.xt.b}~\Longleftrightarrow~c=a{}^t\!b
\]

\paragraph{.hx.}
This operator gives the matrix product of the conjugate transpose matrix of the first operand and the second one.
\[
 \textrm{c=a.hx.b}~\Longleftrightarrow~c=a^*b
\]

\paragraph{.xh.}
This operator gives the matrix product of thee first operand and the conjugate transpose matrix of the second one.
\[
 \textrm{c=a.xh.b}~\Longleftrightarrow~c=ab^*
\]


\section{Interpolation}

\subsection{Quadratic Interpolation}
fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision.
\subsubsection{One variable function}
\begin{verbatim}
 Module : use fvn_interpol
 value=fvn_quad_interpol(x,n,xdata,ydata)
\end{verbatim}
\begin{itemize}
 \item x is the real where we want to evaluate the function
 \item n is the number of tabulated values
 \item xdata(n) contains the tabulated coordinates
 \item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i))
\end{itemize}
xdata must be strictly increasingly ordered.
x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation
\paragraph*{Example}
\begin{verbatim}
program inter1d

use fvn_interpol
implicit none

integer(kind=4),parameter :: ndata=33
integer(kind=4) :: i,nout
real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata)
real(kind=8) ::tv

intrinsic sin

f(x)=sin(x)

xdata(1)=0.
fdata(1)=f(xdata(1))
h=1./32.
do i=2,ndata
      xdata(i)=xdata(i-1)+h
      fdata(i)=f(xdata(i))
end do
call random_seed()
call random_number(x)

q=fvn_d_quad_interpol(x,ndata,xdata,fdata)

tv=f(x)
write(*,*) "x ",x
write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv)

end program

\end{verbatim}


\subsubsection{Two variables function}
\begin{verbatim}
Module : use fvn_interpol
value=fvn_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
\end{verbatim}
\begin{itemize}
 \item x,y are the real coordinates where we want to evaluate the function
 \item nx is the number of tabulated values along x axis
 \item xdata(nx) contains the tabulated x
 \item ny is the number of tabulated values along y axis
 \item ydata(ny) contains the tabulated y
 \item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j))
\end{itemize}
xdata and ydata must be strictly increasingly ordered.
(x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation

\paragraph*{Example}

\begin{verbatim}
program inter2d
use fvn_interpol
implicit none

integer(kind=4),parameter  :: nx=21,ny=42
integer(kind=4) :: i,j
real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny)
real(kind=8) :: tv

intrinsic dble,sin

f(x,y)=sin(x+2.*y)
do i=1,nx
      xdata(i)=dble(i-1)/dble(nx-1)
end do
do i=1,ny
      ydata(i)=dble(i-1)/dble(ny-1)
end do
do i=1,nx
      do j=1,ny
            fdata(i,j)=f(xdata(i),ydata(j))
      end do
end do
call random_seed()
call random_number(x)
call random_number(y)

q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata)
tv=f(x,y)

write(*,*) "x y",x,y
write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv)

end program

\end{verbatim}



\subsubsection{Three variables function}
\begin{verbatim}
 Module : use fvn_interpol
value=fvn_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
\end{verbatim}
\begin{itemize}
 \item x,y,z are the real coordinates where we want to evaluate the function
 \item nx is the number of tabulated values along x axis
 \item xdata(nx) contains the tabulated x
 \item ny is the number of tabulated values along y axis
 \item ydata(ny) contains the tabulated y
 \item nz is the number of tabulated values along z axis
 \item zdata(ny) contains the tabulated z
 \item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k))
\end{itemize}
xdata, ydata and zdata must be strictly increasingly ordered.
(x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation

\paragraph*{Example}
\begin{verbatim}
program inter3d
use fvn_interpol

implicit none

integer(kind=4),parameter  :: nx=21,ny=42,nz=18
integer(kind=4) :: i,j,k
real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz)
real(kind=8) :: tv

intrinsic dble,sin

f(x,y,z)=sin(x+2.*y+3.*z)
do i=1,nx
      xdata(i)=2.*(dble(i-1)/dble(nx-1))
end do
do i=1,ny
      ydata(i)=2.*(dble(i-1)/dble(ny-1))
end do
do i=1,nz
      zdata(i)=2.*(dble(i-1)/dble(nz-1))
end do
do i=1,nx
      do j=1,ny
            do k=1,nz
                  fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k))
            end do
      end do
end do
call random_seed()
call random_number(x)
call random_number(y)
call random_number(z)

q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata)
tv=f(x,y,z)

write(*,*) "x y z",x,y,z
write(*,*) "Calculated (real) value :",tv
write(*,*) "fvn interpolation :",q
write(*,*) "Relative fvn error :",abs((q-tv)/tv)

end program

\end{verbatim}

\subsubsection{Utility procedure}
fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array.
\begin{verbatim}
Module : use fvn_interpol
call fvn_find_interval(x,i,xdata,n)
\end{verbatim}
\begin{itemize}
 \item x (in) the real value to locate
 \item i (out) the resulting indice
 \item xdata(n) (in) increasingly ordered array
 \item n (in) size of the array
\end{itemize}
The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned.



\subsection{Akima spline}
fvn provides Akima spline interpolation and evaluation for both single and double precision real.
\subsubsection{Interpolation}
\begin{verbatim}
Module : use fvn_interpol
call fvn_akima(n,x,y,br,co)
\end{verbatim}
\begin{itemize}
 \item n (in) is an integer equal to the number of points
 \item x(n) (in) ,y(n) (in) are the known couples of coordinates
 \item br (out) on output contains a copy of x
 \item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval.
\end{itemize}

\subsubsection{Evaluation}
\begin{verbatim}
Module : use fvn_interpol
y=fvn_spline_eval(x,n,br,co)
\end{verbatim}
\begin{itemize}
 \item x (in) is the point where we want to evaluate
 \item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\
are the outputs of fvn\_x\_akima(n,x,y,br,co) 
\end{itemize}

\subsubsection{Example}
In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x).

One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values.

\begin{verbatim}
program akima
 use fvn_interpol
 implicit none

 integer :: nbpoints,nppoints,i
 real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d
 real(8),dimension(:,:),allocatable :: coeff_fvn_d
 real(8) :: xstep_d,xp_d,ty_d,fvn_y_d

 open(2,file='fvn_akima_double.dat')
 open(3,file='fvn_akima_breakpoints_double.dat')
 nbpoints=30
 allocate(x_d(nbpoints))
 allocate(y_d(nbpoints))
 allocate(breakpoints_d(nbpoints))
 allocate(coeff_fvn_d(4,nbpoints))

 xstep_d=20./dfloat(nbpoints)
 do i=1,nbpoints
    x_d(i)=-10.+dfloat(i)*xstep_d
    y_d(i)=dsin(x_d(i))
    write(3,44) (x_d(i),y_d(i))
 end do
 close(3)

 call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d)

 nppoints=1000 
 xstep_d=22./dfloat(nppoints)
 do i=1,nppoints
    xp_d=-11.+dfloat(i)*xstep_d
    ty_d=dsin(xp_d)
    fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d)
    write(2,44) (xp_d,ty_d,fvn_y_d)
 end do

 close(2)

44      FORMAT(4(1X,1PE22.14))

end program

\end{verbatim}
Results are plotted on figure \ref{akima}

\begin{figure}
 \begin{center}
 \includegraphics[width=0.9\textwidth]{akima.pdf}
 % akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720
 \caption{Akima Spline Interpolation}
 \label{akima}
\end{center}

\end{figure}



\section{Least square polynomial}
fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgels (dgels), which solve this problem.

\begin{verbatim}
Module : use fvn_linear
call fvn_lspoly(np,x,y,deg,coeff,status)
\end{verbatim}
\begin{itemize}
 \item np (in) is an integer equal to the number of points
 \item x(np) (in),y(np) (in) are the known coordinates
 \item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np.
 \item coeff(deg+1) (out) on output contains the polynomial coefficients
 \item status (out) is an integer containing 0 if a problem occured.
\end{itemize}

\subsection*{Example}
Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points :
\begin{verbatim}
 program lsp
 use fvn_linear
 implicit none

 integer,parameter :: npoints=13,deg=3
 integer :: status,i
 real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc
 real(kind=8) :: coeff(deg+1)

 xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
 ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5  /)

 open(2,file='fvn_lsp_double_mesure.dat')
 open(3,file='fvn_lsp_double_poly.dat')

 do i=1,npoints
    write(2,44) xm(i),ym(i)
 end do
 close(2)


 call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status)

 xstep=(xm(npoints)-xm(1))/1000.
 do i=1,1000
    xc=xm(1)+(i-1)*xstep
    yc=poly(xc,coeff)
    write(3,44) xc,yc
 end do
 close(3)

44      FORMAT(4(1X,1PE22.14))

contains
function poly(x,coeff)
    implicit none
    real(8) :: x
    real(8) :: coeff(deg+1)
    real(8) :: poly
    integer :: i

    poly=0.

    do i=1,deg+1
        poly=poly+coeff(i)*x**(i-1)
    end do

end function
end program
\end{verbatim}
The results are plotted on figure \ref{lsp} .

\begin{figure}[ht]
 \begin{center}
 \includegraphics[width=0.9\textwidth]{lsp.pdf}
 \caption{Least Square Polynomial}
 \label{lsp}
 \end{center}
\end{figure}

\section{General least square fitting}
fvn provides a routine performing a general least square fitting using Levenberg-Marquardt algorithm. It uses routine \verb'lmdif' from \verb'MINPACK' (\url{http://www.netlib.org/minpack}). The used version has been converted to fortran90 by Alan Miller \verb'amiller @ bigpond.net.au'.
\newline
The purpose of \verb'fvn_lm' is to minimize the sum of the squares of m nonlinear
functions in n variables by a modification of the Levenberg-Marquardt
algorithm.  This is done by using the more general least-squares
solver lmdif.  The user must provide a subroutine which calculates the
functions.  The jacobian is then calculated by a forward-difference
approximation.

\begin{verbatim}
Module : use fvn_misc
call fvn_lm(fcn,m,n,a,info,tol)
\end{verbatim}
\begin{itemize}
\item fcn is the user-supplied subroutine which calculates
        the functions.  fcn must follow the following interface that must
        be declared in the calling subroutine :
\begin{verbatim}
         interface
             subroutine fcn(m,n,a,fvec,iflag)
                 use fvn_common
                 integer(ip_kind), intent(in) :: m
                 integer(ip_kind), intent(in) :: n
                 real(dp_kind), dimension(:), intent(in) :: a
                 real(dp_kind), dimension(:), intent(inout) :: fvec
                 integer(ip_kind), intent(inout) :: iflag
             end subroutine
         end interface
 
\end{verbatim}

          This is the function which calculate the differences for which which square sum 
          will be minimized outputing this difference in vector fvec.
           Parameters of fcn are as follows :
\begin{itemize}
 \item m : positive integer input variable set to the number of functions
               (number of measurement points)
 \item n : positive integer input variable set to the number of variables
               (number of parameters in the function to fit)
 \item a : vector of length n containing parameters for which fcn should
               perform the calculation
 \item fvec : vector of length m containing the resulting evaluation
 \item iflag : integer normally not used, can be used to exit the
               the algorithm by setting it to a negative value
\end{itemize}

\item m : positive integer input variable set to the number of functions
               (number of measurement points)
\item n : positive integer input variable set to the number of variables
               (number of parameters in the function to fit)
\item a(n) : vector of length n, on input must contains an initial guess (or unity vector)
           and on output the solution vector
\item info : is an output positive integer
\begin{itemize}
 \item info = 0  improper input parameters.
 \item info = 1  algorithm estimates that the relative error
                 in the sum of squares is at most tol.
 \item info = 2  algorithm estimates that the relative error
                between x and the solution is at most tol.
 \item info = 3  conditions for info = 1 and info = 2 both hold.
 \item info = 4  fvec is orthogonal to the columns of the
                jacobian to machine precision.
 \item info = 5  number of calls to fcn has reached or exceeded 200*(n+1).
 \item info = 6  tol is too small. no further reduction in
                the sum of squares is possible.
 \item info = 7  tol is too small.  No further improvement in
                the approximate solution x is possible.
\end{itemize}
         
\item tol : is an optional positive value. Termination occurs when the
      algorithm estimates either that the relative error in the sum of
      squares is at most tol or that the relative error between x and the
      solution is at most tol. If not provided default value is :
               sqrt(epsilon(0.0d0))
\end{itemize}

\subsection*{Example}
Here's a simple example solving the same problem as for the least square polynomial example but using \verb'fvn_lm' instead :
\begin{verbatim}
module excursion
real(8), dimension(:), pointer :: xm => NULL()
real(8), dimension(:), pointer :: ym => NULL()
end module


program gls
use fvn_misc
use excursion
implicit none

    interface
        subroutine zef(m, n, x, fvec, iflag)
            integer(4), intent(in) :: m,n
            real(8), dimension(:), intent(in) :: x
            real(8), dimension(:), intent(inout) :: fvec
            integer(4), intent(inout) :: iflag
        end subroutine
    end interface


 integer,parameter :: npoints=13,deg=3
 integer :: status,i
 real(kind=dp_kind) :: xstep,xc,yc
 real(kind=dp_kind) :: coeff(deg+1)
 real(kind=dp_kind) :: fvec(npoints)
 integer(4) :: iwa(deg+1)
 integer(4) :: info
 real(8) :: tol
 
 allocate(xm(npoints),ym(npoints))
 
 xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
 ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /)
 open(2,file='fvn_lsp_double_mesure.dat')
 open(3,file='fvn_lm.dat')
 do i=1,npoints
    write(2,44) xm(i),ym(i)
 end do
 close(2)
 
 coeff=1.
 call fvn_lm(zef,npoints,deg+1,coeff,info)
 write(*,*) "info : ",info
 
 xstep=(xm(npoints)-xm(1))/1000.
 do i=1,1000
    xc=xm(1)+(i-1)*xstep
    yc=poly(xc,coeff)
    write(3,44) xc,yc
 end do
 close(3)
write(*,*) "All done, plot results with gnuplot using command :"
write(*,*) "pl 'fvn_lsp_double_mesure.dat' u 1:2 w p,'fvn_lm.dat' u 1:2 w l"
44      FORMAT(4(1X,1PE22.14))
contains
function poly(x,coeff)
    use fvn_common
    implicit none
    real(kind=dp_kind) :: x
    real(kind=dp_kind) :: coeff(deg+1)
    real(kind=dp_kind) :: poly
    integer :: i
    poly=0.
    do i=1,deg+1
         poly=poly+coeff(i)*x**(i-1)
    end do
end function
end program

subroutine zef(m, n, x, fvec, iflag)
    use excursion
    implicit none
    integer(4), intent(in) :: m,n
    real(8), dimension(:), intent(in) :: x
    real(8), dimension(:), intent(inout) :: fvec
    integer(4), intent(inout) :: iflag
    
    integer(4) :: i
        
    do i=1,m
        fvec(i)=ym(i)-(x(1)+x(2)*xm(i)+x(3)*xm(i)**2+x(4)*xm(i)**3)
    enddo
end subroutine
\end{verbatim}
Note the need to use a supplementary module \verb'excursion', to allow the subroutine \verb'zef' to have access to the measurement points.

\section{Zero finding}
fvn provides a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}.

\begin{verbatim}
 Module : use fvn_misc
 call fvn_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
\end{verbatim}
\begin{itemize}
 \item f (in) is the complex function (kind=8) for which we search zeros
 \item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots.  if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root.
 \item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted.
 \item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine.
 \item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided.
 \item n (in) is an integer equal to the number of new roots to be found.
 \item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots.  x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine.
 \item itmax (in) is an integer equal to the maximum allowable number of iterations per root.
 \item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved.  If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax
 \item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots.
\end{itemize}
This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion.

\subsection*{Example}
Example to find the ten roots of $x^{10}-1$
\begin{verbatim}
 program muller
 use fvn_misc
 implicit none

 integer :: i,info
 complex(8),dimension(10) :: roots
 integer,dimension(10) :: infer
 complex(8), external :: f

 call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info)

 write(*,*) "Error code :",info
 do i=1,10
    write(*,*) roots(i),infer(i)
 enddo
 end program

 function f(x)
    complex(8) :: x,f
    f=x**10-1
 end function

\end{verbatim}



\section{Numerical integration}
Using an integrated slightly modified version of quadpack \url{http://www.netlib.org/quadpack}, fvn provide adaptative numerical integration (Gauss Kronrod) of real functions of 1 and 2 variables. fvn also provide a function to calculate Gauss-Legendre abscissas and weight, and a simple non adaptative integration subroutine. All routines exists only in fvn for double precision real.

\subsection{Gauss Legendre Abscissas and Weigth}
This subroutine was inspired by Numerical Recipes routine gauleg.
\begin{verbatim}
Module : use fvn_integ
call fvn_gauss_legendre(n,qx,qw)
\end{verbatim}
\begin{itemize}
 \item n (in) is an integer equal to the number of Gauss Legendre points
 \item qx (out) is a real(8) vector of length n containing the abscissas.
 \item qw (out) is a real(8) vector of length n containing the weigths.
\end{itemize}
This subroutine computes n Gauss-Legendre abscissas and weigths

\subsection{Gauss Legendre Numerical Integration}
\begin{verbatim}
Module : use fvn_integ
call fvn_gl_integ(f,a,b,n,res)
\end{verbatim}
\begin{itemize}
 \item f (in) is a real(8) function to integrate
 \item a (in) and b (in) are real(8) respectively lower and higher bound of integration
 \item n (in) is an integer equal to the number of Gauss Legendre points to use
 \item res (out) is a real(8) containing the result
\end{itemize}
This function is a simple Gauss Legendre integration subroutine, which evaluate the integral of function f as in equation \ref{intsple} using n Gauss-Legendre pairs.

\subsection{Gauss Kronrod Adaptative Integration}
This kind of numerical integration is an iterative procedure which try to achieve a given precision.
\subsubsection{Numerical integration of a one variable function}
\begin{verbatim}
Module : use fvn_integ
call fvn_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
\end{verbatim}
This routine evaluate the integral of function f as in equation \ref{intsple}
\begin{itemize}
 \item f (in) is an external real(8) function of one variable
 \item a (in) and b (in) are real(8) respectively lower an higher bound of integration
 \item epsabs (in) and epsrel (in) are real(8) respectively desired absolute and relative error
 \item key (in) is an integer between 1 and 6 correspondind to the Gauss-Kronrod rule to use :
    \begin{itemize}
        \item 1 : 7 - 15 points
        \item 2 : 10 - 21 points
        \item 3 : 15 - 31 points
        \item 4 : 20 - 41 points
        \item 5 : 25 - 51 points
        \item 6 : 30 - 61 points
    \end{itemize}
 \item res (out) is a real(8) containing the estimation of the integration.
 \item abserr (out) is a real(8) equal to the estimated absolute error
 \item ier (out) is an integer used as an error flag
    \begin{itemize}
        \item 0 : no error
        \item 1 : maximum number of subdivisions allowed has been achieved. one can allow more subdivisions by increasing the value of limit (and taking the according dimension adjustments into account). however, if this yield no improvement it is advised to analyze the integrand in order to determine the integration difficulaties. If the position of a local difficulty can be determined (i.e.singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. If possible, an appropriate special-purpose integrator should be used which is designed for handling the type of difficulty involved.
        \item 2 : the occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved.
        \item 3 : extremely bad integrand behaviour occurs at some points of the integration interval.
        \item 6 : the input is invalid, because (epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) or limit.lt.1 or lenw.lt.limit*4. result, abserr, neval, last are set to zero. Except when lenw is invalid, iwork(1), work(limit*2+1) and work(limit*3+1) are set to zero, work(1) is set to a and work(limit+1) to b.
    \end{itemize}
 \item limit (in) is an optional integer equal to maximum number of subintervals in the partition of the given integration interval (a,b). If the parameter is not present a default value of 500 will be used.
\end{itemize}

\begin{equation}
 \int_a^b f(x)~dx
 \label{intsple}
\end{equation}




\subsubsection{Numerical integration of a two variable function}
\begin{verbatim}
Module : use fvn_integ
call fvn_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
\end{verbatim}
This function evaluate the integral of a function f(x,y) as defined in equation \ref{intdble}. The parameters of same name as in the previous paragraph have exactly the same function and behaviour thus only what differs is decribed here
\begin{itemize}
 \item a (in) and b (in) are real(8) corresponding respectively to lower and higher bound of integration for the x variable.
 \item g(x) (in) and h(x) (in) are external functions describing the lower and higher bound of integration for the y variable as a function of x.
\end{itemize}

\begin{equation}
 \int_a^b \int_{g(x)}^{h(x)} f(x,y)~dy~dx
 \label{intdble}
\end{equation}

\subsubsection*{Example}
\begin{verbatim}
program integ
 use fvn_integ
 implicit none

 real(8), external :: f1,f2,g,h
 real(8) :: a,b,epsabs,epsrel,abserr,res
 integer :: key,ier

 a=0.
 b=1.
 epsabs=1d-8
 epsrel=1d-8
 key=2
 call fvn_d_integ_1_gk(f1,a,b,epsabs,epsrel,key,res,abserr,ier,500)
 write(*,*) "Integration of x*x between 0 and 1 : "
 write(*,*) res

 call fvn_d_integ_2_gk(f2,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,500)
 write(*,*) "Integration of x*y between 0 and 1 on both x and y : "
 write(*,*) res
 

end program

function f1(x)
 implicit none
    real(8) :: x,f1
    f1=x*x
end function

function f2(x,y)
 implicit none
    real(8) :: x,y,f2
    f2=x*y
end function

function g(x)
 implicit none
    real(8) :: x,g
    g=0.
end function

function h(x)
 implicit none
    real(8) :: x,h
    h=1.
end function
\end{verbatim}


\section{Special functions}
Specials functions are available in fvn by using an implementation of fnlib \url{http://www.netlib.org/fn} with some additions. This can be used separatly from the rest of fvn by using the module \verb'fvn_fnlib' and linking the library \verb'libfvn_fnlib.a' . The module provides a generic interfaces to all the routines. Specific names of the routines are given in the description.

\begin{verbatim}
 Module : use fvn_fnlib
\end{verbatim}

\paragraph{Important Note}
Due to the addition of fnlib to fvn, some functions that were in fvn and are redondant are now removed from fvn, so update your code now and replace them with the fnlib version. These are listed here after :
\begin{itemize}
 \item \verb'fvn_z_acos' replaced by \verb'acos'
 \item \verb'fvn_z_asin' replaced by \verb'asin'
 \item \verb'fvn_d_asinh' replaced by \verb'asinh'
 \item \verb'fvn_d_acosh' replaced by \verb'acosh'
 \item \verb'fvn_s_csevl' replaced by \verb'csevl'
 \item \verb'fvn_d_csevl' replaced by \verb'csevl'
 \item \verb'fvn_d_factorial' replaced by \verb'fac'
 \item \verb'fvn_d_lngamma' replaced by \verb'alngam'
\end{itemize}


\subsection{Elementary functions}
\subsubsection{carg}
\begin{verbatim}
 carg(z)
\end{verbatim}
\begin{itemize}
 \item z (in) is a complex
\end{itemize}
This function evaluates the argument of the complex z. That is $\theta$ for $z=\rho e^{i\theta}$.

Specific interfaces : \verb'carg,zarg'


\subsubsection{cbrt}
\begin{verbatim}
 cbrt(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the cubic root of the argument x.

Specific interfaces : \verb'cbrt,dcbrt,ccbrt,zcbrt'


\subsubsection{exprl}
\begin{verbatim}
 exprl(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates ${e^x-1}\over x$.

Specific interfaces : \verb'exprel,dexprl,cexprl,zexprl'

\subsubsection{log10}
\begin{verbatim}
 log10(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function is an extension of the intrinsic function log10 to complex arguments.

Specific interfaces : \verb'clog10,zlog10'


\subsubsection{alnrel}
\begin{verbatim}
 alnrel(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates $ln(1+x)$.

Specific interfaces : \verb'alnrel,dlnrel,clnrel,zlnrel'


\subsection{Trigonometry}
\subsubsection{tan}
\begin{verbatim}
 tan(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the tangent of the argument. It is an extension of the intrinsic function tan to complex arguments.

Specific interfaces : \verb'ctan,ztan'


\subsubsection{cot}
\begin{verbatim}
 cot(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluate the cotangent of the argument.

Specific interfaces : \verb'cot,dcot,ccot,zcot'

\subsubsection{sindg}
\begin{verbatim}
 sindg(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluate the sinus of the argument expressed in degrees.

Specific interfaces : \verb'sindg,dsindg'


\subsubsection{cosdg}
\begin{verbatim}
 cosdg(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluate the cosinus of the argument expressed in degrees.

Specific interfaces : \verb'cosdg,dcosdg'


\subsubsection{asin}
\begin{verbatim}
 asin(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the arc sine of the argument. It is an extension of the intrinsic function asin to complex arguments.

Specific interfaces : \verb'casin,zasin'

\subsubsection{acos}
\begin{verbatim}
 acos(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the arc cosine of the argument. It is an extension of the intrinsic function acos to complex arguments.

Specific interfaces : \verb'cacos,zacos'


\subsubsection{atan}
\begin{verbatim}
 atan(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the arc tangent of the argument. It is an extension of the intrinsic function atan to complex arguments.

Specific interfaces : \verb'catan,zatan'

\subsubsection{atan2}
\begin{verbatim}
 atan2(x,y)
\end{verbatim}
\begin{itemize}
 \item x,y are real or complex
\end{itemize}
This function evaluates the arc tangent of $x \over y$. It is an extension of the intrinsic function atan2 to complex arguments.

Specific interfaces : \verb'catan2,zatan2'

\subsubsection{sinh}
\begin{verbatim}
 sinh(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the hyperbolic sine of the argument. It is an extension of the intrinsic function sinh to complex arguments.

Specific interfaces : \verb'csinh,zsinh'


\subsubsection{cosh}
\begin{verbatim}
 cosh(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the hyperbolic cosine of the argument. It is an extension of the intrinsic function cosh to complex arguments.

Specific interfaces : \verb'ccosh,zcosh'

\subsubsection{tanh}
\begin{verbatim}
 tanh(x)
\end{verbatim}
This function evaluates the hyperbolic tangent of the argument. It is an extension of the intrinsic function tanh to complex arguments.

Specific interfaces : \verb'ctanh,ztanh'

\subsubsection{asinh}
\begin{verbatim}
 asinh(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the arc hyperbolic sine of the argument.

Specific interfaces : \verb'asinh,dasinh,casinh,zasinh'

\subsubsection{acosh}
\begin{verbatim}
 acosh(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the arc hyperbolic cosine of the argument.

Specific interfaces : \verb'acosh,dacosh,cacosh,zacosh'

\subsubsection{atanh}
\begin{verbatim}
 atanh(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the arc hyperbolic tangent of the argument.

Specific interfaces : \verb'atanh,datanh,catanh,zatanh'

\subsection{Exponential Integral and related}
\subsubsection{ei}
\begin{verbatim}
 ei(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the exponential integral for argument greater then 0 and the Cauchy principal value for argument less than 0. It is define by equation \ref{ei} for $x \neq 0$.
\begin{equation}
\label{ei}
 ei(x)= - \int _{-x} ^\infty {e^{-t}\over t}dt
\end{equation}

Specific interfaces : \verb'ei,dei'


\subsubsection{e1}
\begin{verbatim}
 e1(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
For a real argument, this function evaluates the exponential integral for argument greater than 0 and the Cauchy principal value for argument less than 0. It is define by equation \ref{e1} for $x \neq 0$.
\begin{equation}
\label{e1}
 e1(x)= \int _{x} ^\infty {e^{-t}\over t}dt
\end{equation}

For a complex argument, the notation in equation \ref{e1cplx} is used (Abramowitz and Stegun, p.228 \url{http://www.math.ucla.edu/~cbm/aands/page_228.htm}):
\begin{equation}
\label{e1cplx}
 e1(z) = \int _{z} ^\infty {e^{-t}\over t}dt \textrm{~with~} \left|  arg(z) \right| < \pi
\end{equation}
For positive values of real part of $z$, this can be written as in equation \ref{e1cplx_pos} :
\begin{equation}
\label{e1cplx_pos}
 e1(z)= \int _{1} ^\infty {e^{-tz}\over t}dt \textrm{~with~} Re(z) > 0
\end{equation}

 

Specific interfaces : \verb'e1,de1,ze1'

\subsubsection{ali}
\begin{verbatim}
 ali(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the logarithm integral. it is define by equation \ref{ali} for $x > 0$ and $x \neq 1$.
\begin{equation}
 \label{ali}
 ali(x)= - \int _0 ^x {dt \over ln(x)}
\end{equation}

Specific interfaces : \verb'ali,dli'

\subsubsection{si}
\begin{verbatim}
 si(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the sine integral defined by equation \ref{si}.
\begin{equation}
 \label{si}
 si(x)= \int _0 ^x {sin(t) \over t }dt
\end{equation}

Specific interfaces : \verb'si,dsi'


\subsubsection{ci}
\begin{verbatim}
 ci(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the cosine integral defined by equation \ref{ci} where $\gamma \approx 0.57721566$ represent Euler's constant.
\begin{equation}
 \label{ci}
 ci(x)= \gamma + ln(x) + \int _0 ^x {{1-cos(t)} \over t} dt
\end{equation}

Specific interfaces : \verb'ci,dci'

\subsubsection{cin}
\begin{verbatim}
 cin(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the cosine integral alternate definition given by equation \ref{cin}.
\begin{equation}
 \label{cin}
 cin(x)= \int _0 ^x {{1-cos(t)} \over t} dt
\end{equation}

Specific interface : \verb'cin,dcin'

\subsubsection{shi}
\begin{equation}
 shi(x)
\end{equation}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the hyperbolic sine integral defined by equation \ref{shi}.
\begin{equation}
 \label{shi}
 shi(x) = \int _0 ^x {sinh(t) \over t}dt
\end{equation}

Specific interfaces : \verb'shi,dshi'

\subsubsection{chi}
\begin{verbatim}
 chi(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the hyperbolic cosine integral defined by equation \ref{chi} where $\gamma \approx 0.57721566$ represent Euler's constant.
\begin{equation}
 \label{chi}
 chi(x)= \gamma + ln(x) + \int _0 ^x {{cosh(t) -1} \over t}dt
\end{equation}

Specific interfaces : chi,dchi


\subsubsection{cinh}
\begin{verbatim}
 cinh(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the hyperbolic cosine integral alternate definition given by equation \ref{cinh}.
\begin{equation}
 \label{cinh}
 cinh(x) = \int _0 ^x {{cosh(t) -1} \over t}dt
\end{equation}

Specific interfaces : cinh,dcinh


\subsection{Gamma function and related}
\subsubsection{fac}
\begin{verbatim}
 fac(n)
 dfac(n)
\end{verbatim}
\begin{itemize}
 \item n is an integer
\end{itemize}
This function return $n!$ as a real(4) or real(8) for dfac. There's no generic interface for this one.

Specific interfaces : \verb'fac,dfac'

\subsubsection{binom}
\begin{verbatim}
 binom(n,m)
 dbinom(n,m)
\end{verbatim}
\begin{itemize}
 \item n,m are integers
\end{itemize}
This function return the binomial coefficient defined by equation \ref{binom} with $n \geq m \geq 0$. binom returns a real(4), dbinom a real(8). There's no generic interface for this one.
\begin{equation}
 \label{binom}
 binom(n,m) = C_n^m = {{n!} \over {m!(n-m)!}}
\end{equation}

Specific interfaces : \verb'binom,dbinom'


\subsubsection{gamma}
\begin{verbatim}
 gamma(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates $ \Gamma (x) $ defined by equation \ref{gamma}.
\begin{equation}
 \label{gamma}
 \Gamma (x) = \int _0 ^{\infty} t^{x-1}e^{-t}dt
\end{equation}
Note that $n!=\Gamma (n+1)$.

Specific interfaces :\verb'gamma,dgamma,cgamma,zgamm'

\subsubsection{gamr}
\begin{verbatim}
 gamr(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the reciprocal gamma function $gamr(x)= {1 \over \Gamma(x)}$


\subsubsection{alngam}
\begin{verbatim}
 alngam(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates $ln(|\Gamma(x)|)$

Specific interfaces : \verb'alngam,dlngam,clngam,zlngam'


\subsubsection{algams}
\begin{verbatim}
 call algams(x,algam,sgngam)
\end{verbatim}
\begin{itemize}
 \item x (in) is a real
 \item algam (out) is a real
 \item sgngam (out) is a real
\end{itemize}
This subroutine evaluates the logarithm of the absolute value of gamma and the sign of gamma. 
$algam=ln(|\Gamma(x)|)$ and $sgngam=1.0$ or $-1.0$ according to the sign of $\Gamma(x)$.

Specific interfaces : \verb'algams,dlgams'

\subsubsection{gami}
\begin{verbatim}
 gami(a,x)
\end{verbatim}
\begin{itemize}
 \item x is a positive real
 \item a is a strictly positive real
\end{itemize}
This function evaluates the incomplete gamma function defined by equation \ref{gami}.
\begin{equation}
 \label{gami}
 gami(a,x)=\gamma(a,x)=\int _0 ^x t^{a-1} e^{-t}dt
\end{equation}

Specific interfaces : \verb'gami,dgami'

\subsubsection{gamic}
\begin{verbatim}
 gamic(a,x)
\end{verbatim}
\begin{itemize}
 \item x is a positive real
 \item a is a real
\end{itemize}
This function evaluates the complementary incomplete gamma function defined by equation \ref{gamic}.
\begin{equation}
 \label{gamic}
 gamic(a,x)=\Gamma(a,x)=\int _x ^\infty t^{a-1} e^{-t}dt
\end{equation}

Specific interfaces : \verb'gamic,dgamic'

\subsubsection{gamit}
\begin{verbatim}
 gamit(a,x)
\end{verbatim}
\begin{itemize}
 \item x is a positive real
 \item a is a real
\end{itemize}
This function evaluates the Tricomi's incomplete gamma function defined by equation \ref{gamit}.
\begin{equation}
 \label{gamit}
 gamit(a,x)=\gamma^* (a,x)= {{x^{-a}\gamma(a,x)}\over \Gamma(a)}
\end{equation}

Specific interfaces : \verb'gamit,dgamit'


\subsubsection{psi}
\begin{verbatim}
 psi(x)
\end{verbatim}
\begin{itemize}
 \item x is a real or complex
\end{itemize}
This function evaluates the psi function which is the logarithm derivative of the gamma function as defined in equation \ref{psi}.
\begin{equation}
 \label{psi}
  psi(x)= \psi(x) = {d\over dx} ln(\Gamma(x))
\end{equation}
x must not be zero or a negative integer.

Specific interfaces : \verb'psi,dpsi,cpsi,zpsi'


\subsubsection{poch}
\begin{verbatim}
 poch(a,x)
\end{verbatim}
\begin{itemize}
 \item x is a real
 \item a is a real
\end{itemize}
This function evaluates a generalization of Pochhammer's symbol.

Pochhammer's symbol for n a positive integer is given by equation \ref{poch_int}
\begin{equation}
 \label{poch_int}
(a)_n = a(a-1)(a-2)...(a-n+1)
\end{equation}

The generalization of Pochhammer's symbol is given by equation \ref{poch}
\begin{equation}
 \label{poch}
 poch(a,x)= (a)_x = {\Gamma(a+x) \over \Gamma(a)}
\end{equation}

Specific interfaces : \verb'poch,dpoch'


\subsubsection{poch1}
\begin{verbatim}
 poch1(a,x)
\end{verbatim}
\begin{itemize}
 \item x is a real
 \item a is a real
\end{itemize}
This function is defined by equation \ref{poch1}. It is usefull for certains situations, especially when x is small.

\begin{equation}
 \label{poch1}
 poch1(a,x)={{(a)_x-1} \over x}
\end{equation}

Specific interfaces : \verb'poch1,dpoch1'

\subsubsection{beta}
\begin{verbatim}
 beta(a,b)
\end{verbatim}
\begin{itemize}
 \item a,b are real positive or complex
\end{itemize}
This function evaluates $\beta$ function defined by equation \ref{beta}.
\begin{equation}
 \label{beta}
beta(a,b)=\beta(a,b)={  {\Gamma(a) \Gamma(b)} \over \Gamma(a+b) }
\end{equation}

Specific interfaces : \verb'beta,dbeta,cbeta,zbeta'


\subsubsection{albeta}
\begin{verbatim}
 albeta(a,b)
\end{verbatim}
\begin{itemize}
 \item a,b are real positive or complex
\end{itemize}
This function evaluates the natural logarithm of beta function : $ln(\beta(a,b))$

Specific interfaces : \verb'albeta,dlbeta,clbeta,zlbeta'

\subsubsection{betai}
\begin{verbatim}
 betai(x,pin,qin)
\end{verbatim}
\begin{itemize}
 \item x is a real in [0,1]
 \item pin and qin are strictly positive real
\end{itemize}
This function evaluates the incomplete beta function ratio, that is the probability that a random variable from a beta distribution having parameters pin and qin will be less than or equal to x. It is defined by equation \ref{betai}.

\begin{equation}
 \label{betai}
betai(x,pin,qin)=I_x(pin,qin)={1 \over \beta(pin,qin)} \int _0 ^x t^{pin-1}(1-t)^{qin-1}dt
\end{equation}

Specific interfaces : \verb'betai,dbetai'

\subsection{Error function and related}
\subsubsection{erf}
\begin{verbatim}
 erf(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the error function defined by equation \ref{erf}.
\begin{equation}
 \label{erf}
 erf(x)={2\over \sqrt{ \pi}} \int _0 ^x e^{-t^2}dt
\end{equation}

Specific interfaces : \verb'erf,derf'

\subsubsection{erfc}
\begin{verbatim}
 erfc(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the complimentary error function defined by equation \ref{erfc}.
\begin{equation}
 \label{erfc}
 erfc(x)={2\over \sqrt{ \pi}} \int _x ^\infty e^{-t^2}dt
\end{equation}

Specific interfaces : \verb'erfc,derfc'


\subsubsection{daws}
\begin{verbatim}
 daws(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates Dawson's function defined by equation \ref{daws}.
\begin{equation}
 \label{daws}
daws(x)=e^{-x^2} \int _0 ^x e^{t^2}dt
\end{equation}

Specific interfaces : \verb'daws,ddaws'

\subsection{Bessel functions and related}
\subsubsection{bsj0}
\begin{verbatim}
 bsj0(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates Bessel function of the first kind of order 0 defined by equation \ref{bsj0}.
\begin{equation}
 \label{bsj0}
 bsj0(x)=J_0(x)= {1 \over \pi} \int _0 ^\pi cos(x sin(\theta)) d\theta
\end{equation}

Specific interfaces : \verb'besj0,dbesj0'

\subsubsection{bsj1}
\begin{verbatim}
 bsj1(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates Bessel function of the first kind of order 1 defined by equation \ref{bsj1}.
\begin{equation}
 \label{bsj1}
bsj1(x)=J_1(x)={1 \over \pi} \int _0 ^\pi cos(x sin(\theta)-\theta) d\theta
\end{equation}

Specific interfaces : \verb'besj1,dbesj1'

\subsubsection{bsjn}
\begin{verbatim}
 bsjn(n,x,factor,big)
\end{verbatim}
\begin{itemize}
 \item n is an integer
 \item x is a real
 \item factor is an optional integer
 \item big is an optional real
\end{itemize}
This function evaluates Bessel function of the first kind of order n (plotted in figure \ref{besseljnfamily}). These functions satisfy the recurrent relation \ref {bsjn}.
\begin{equation}
 \label{bsjn}
J_{n+1}(x)={{2n}\over x} J_n(x) - J_{n-1}(x)
\end{equation}
This relation is directly used in upward direction to compute $J_n(x)$ for $x>n$. However it is unstable for $x<n$, therefore a Miller's Algorithm is used. The principle of this method is to use the reccurent relation downward from an arbitrary higher than n order with an arbitrary seed and then normalize the solution with \ref{bsjnnorm}
\begin{equation}
 \label{bsjnnorm}
 1=J_0+2J_2+2J_4+2J_6+...
\end{equation}
The optional parameters \verb'factor' and \verb'big' can be used to modify the behaviour of the algorithm. \verb'factor' is used in determining the arbitrary starting order ( an even integer near $n+\sqrt{factor~n}$), the default $factor$ value is 40 for single precision and 150 for double precision. \verb'big' is a real determining the threshold for which anti-overflow counter measures has to be taken, default value is $1.10^{10}$

By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsj0(x)$ or $bsj1(x)$ is actually performed.

\begin{figure}
 \begin{center}
 \includegraphics[width=0.9\textwidth]{besselj-mono.pdf}
 \caption{Bessel $J_n$ functions family}
 \label{besseljnfamily}
 \end{center}
\end{figure}


Specific interfaces : \verb'besjn,dbesjn'


\subsubsection{besrj}
\begin{verbatim}
 call besrj(x,n,b)
\end{verbatim}
\begin{itemize}
 \item x (in) is a real
 \item n (in) is an integer
 \item b (out) is a real array of dimension n
\end{itemize}
This subroutine evaluates Bessel function of the first kind of order \verb'0' to \verb'n-1' for argument x and return the result in array b, which then contain \verb'b(1)='$J_0(x)$,\verb'b(2)='$J_1(x)$,...,\verb'b(n)='$J_{n-1}(x)$.

The algorithm is different from the one used in \verb'bsjn', the choice between the two depends on accuracy and timing considerations, there are test programs (\verb'test_besrj' and \verb'test_bestime') in the \verb'fvn_test' directory which can help choosing the good one. 

Specific interfaces : \verb'besrj,dbesrj'

\subsubsection{bsy0}
\begin{verbatim}
 bsy0(x)
\end{verbatim}
\begin{itemize}
 \item x is a strictly positive real
\end{itemize}
This function evaluates the Bessel function of the second kind of order 0 defined by equation \ref{bsy0}
\begin{equation}
 \label{bsy0}
 bsy0(x)=Y_0(x)={1 \over \pi} \int _0 ^\pi sin(x sin(\theta))d\theta -{2 \over \pi} \int _0 ^\infty e^{-x sinh(t)}dt
\end{equation}

Specific interfaces : \verb'besy0,dbesy0'

\subsubsection{bsy1}
\begin{verbatim}
 bsy1(x)
\end{verbatim}
\begin{itemize}
 \item x is a strictly positive real
\end{itemize}
This function evaluates the Bessel function of the second kind of order 1 defined by equation \ref{bsy1}.
\begin{equation}
 \label{bsy1}
 bsy1(x)=Y_1(x)=-{1 \over \pi} \int _0 ^\pi sin (\theta - x sin(\theta)) d\theta 
- {1 \over \pi} \int _0 ^\infty (e^t -e^{-t})e^{-x sinh(t)}dt
\end{equation}

Specific interfaces : \verb'besy1,dbesy1'


\subsubsection{bsyn}
\begin{verbatim}
 bsyn(n,x)
\end{verbatim}
\begin{itemize}
 \item n is an integer
 \item x is a strictly positive real
\end{itemize}
This function evaluates the Bessel function of the second kind of order n (plotted in figure \ref{besselynfamily}). These functions satisfy the recurrent relation \ref {bsyn}.
\begin{equation}
 \label{bsyn}
Y_{n+1}(x)={{2n}\over x} Y_n(x) - Y_{n-1}(x)
\end{equation}
This recurrent relation is directly used in the upward direction to compute $Y_n(x)$.

By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsy0(x)$ or $bsy1(x)$ is actually performed.

\begin{figure}
 \begin{center}
 \includegraphics[width=0.9\textwidth]{bessely-mono.pdf}
 \caption{Bessel $Y_n$ functions family}
 \label{besselynfamily}
 \end{center}
\end{figure}


Specific interfaces : \verb'besyn,dbesyn'

\subsubsection{bsi0}
\begin{verbatim}
 bsi0(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the Bessel function of the third kind of order 0 defined by equation \ref{bsi0}.
\begin{equation}
 \label{bsi0}
bsi0(x)=I_0(x)={1 \over \pi} \int _0 ^\pi cosh(x cos(\theta))d\theta
\end{equation}

Specific interfaces : \verb'besi0,dbesi0'

\subsubsection{bsi1}
\begin{verbatim}
 bsi1(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the Bessel function of the third kind of order 1 defined by equation \ref{bsi1}.
\begin{equation}
 \label{bsi1}
bsi1(x)=I_1(x)={1 \over \pi} \int _0 ^\pi e^{x cos(\theta)} cos(\theta)d\theta
\end{equation}

Specific interfaces : \verb'besi1,dbesi1'

\subsubsection{bsin}
\begin{verbatim}
 bsin(n,x,factor,big)
\end{verbatim}
\begin{itemize}
 \item n is an integer
 \item x is a real
 \item factor is an optional integer
 \item big is an optional real
\end{itemize}
This function evaluates Bessel function of the third kind of order n (plotted in figure \ref{besselinfamily}). These functions satisfy the recuurent relation \ref{bsin}
\begin{equation}
 \label{bsin}
I_{n+1}(x)=-{{2n}\over x}I_n(x) + I_{n-1}(x)
\end{equation}
This relation is unstable in the upward direction, therefore a Miller's Algorithm is used to evaluate the function. Even if there's a usable normalization relation \ref{bsinnorm}, it is not used in the routine, instead normalization  is done by a simple call to \verb'bsi0(x)'.
\begin{equation}
 \label{bsinnorm}
 1=I_0-2I_2+2I_4-2I_6+....
\end{equation}
The optional parameters \verb'factor' and \verb'big' can be used to modify the behaviour of the algorithm. \verb'factor' is used in determining the arbitrary starting order ( an even integer near $n+\sqrt{factor~n}$), the default $factor$ value is 40 for single precision and 150 for double precision. \verb'big' is a real determining the threshold for which anti-overflow counter measures has to be taken, default value is $1.10^{10}$

By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsi0(x)$ or $bsi1(x)$ is actually performed.

\begin{figure}
 \begin{center}
 \includegraphics[width=0.9\textwidth]{besseli-mono.pdf}
 \caption{Bessel $I_n$ functions family}
 \label{besselinfamily}
 \end{center}
\end{figure}


Specific interfaces : \verb'besin,dbesin'


\subsubsection{besri}
\begin{verbatim}
 call besri(x,n,b)
\end{verbatim}
\begin{itemize}
 \item x (in) is a real
 \item n (in) is an integer
 \item b (out) is a real array of dimension n
\end{itemize}
This subroutine evaluates Bessel function of the third kind of order \verb'0' to \verb'n-1' for argument x and return the result in array b, which then contain \verb'b(1)='$I_0(x)$,\verb'b(2)='$I_1(x)$,...,\verb'b(n)='$I_{n-1}(x)$.

The algorithm is different from the one used in \verb'bsin' and tends to be more accurate, the choice between the two depends on accuracy and timing considerations, there are test programs (\verb'test_besri' and \verb'test_bestime') in the \verb'fvn_test' directory which can help choosing the good one. 

Specific interfaces : \verb'besri,dbesri'


\subsubsection{bsk0}
\begin{verbatim}
 bsk0(x)
\end{verbatim}
\begin{itemize}
 \item x is a strictly positive real
\end{itemize}
This function evaluates the modified Bessel function of the second kind of order 0 defined by equation \ref{bsk0}
\begin{equation}
 \label{bsk0}
bsk0(x)=K_0(x)=\int _0 ^\infty cos(x sinh(t))dt
\end{equation}

Specific interfaces : \verb'besk0,dbesk0'

\subsubsection{bsk1}
\begin{verbatim}
 bsk1(x)
\end{verbatim}
\begin{itemize}
 \item x is a strictly positive real
\end{itemize}
This function evaluates the modified Bessel function of the second kind of order 1 defined by equation \ref{bsk1}
\begin{equation}
 \label{bsk1}
bsk1(x)=K_1(x)=\int _0 ^\infty sin(x sinh(t))sinh(t)dt
\end{equation}

Specific interfaces : \verb'besk1,dbesk1'

\subsubsection{bskn}
\begin{verbatim}
 bskn(n,x)
\end{verbatim}
\begin{itemize}
 \item n is an integer
 \item x is strictly positive real
\end{itemize}
This function evaluates the modified Bessel function of the second kind of order n (plotted in figure \ref{besselknfamily}). These functions satisfy the recurrent relation \ref{bskn}

\begin{equation}
 \label{bskn}
K_{n+1}(x)={{2n}\over x}K_n(x)+K_{n-1}(x)
\end{equation}
This recurrent relation is directly used in the upward direction to compute $K_n(x)$.

By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsk0(x)$ or $bsk1(x)$ is actually performed.

\begin{figure}
 \begin{center}
 \includegraphics[width=0.9\textwidth]{besselk-mono.pdf}
 \caption{Bessel $K_n$ functions family}
 \label{besselknfamily}
 \end{center}
\end{figure}


Specific interface : \verb'beskn,dbeskn'


\subsubsection{bsi0e}
\begin{verbatim}
 bsi0e(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates $e^{-|x|}I_0(x)$

Specific interfaces : \verb'besi0e,dbsi0e'

\subsubsection{bsi1e}
\begin{verbatim}
 bsi1e(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates $e^{-|x|}I_1(x)$

Specific interfaces : \verb'besi1e,dbsi1e'

\subsubsection{bsk0e}
\begin{verbatim}
 bsk0e(x)
\end{verbatim}
\begin{itemize}
 \item x is a strictly positive real
\end{itemize}
This function evaluates $e^x K_0(x)$

Specific interfaces : \verb'besk0e,dbsk0e'

\subsubsection{bsk1e}
\begin{verbatim}
 bsk1e(x)
\end{verbatim}
\begin{itemize}
 \item x is a strictly positive real
\end{itemize}
This function evaluates $e^x K_1(x)$

Specific interfaces : \verb'besk1e,dbsk1e'

\subsubsection{bsks}
\begin{verbatim}
 call bsks(xnu,x,nin,bk)
\end{verbatim}
\begin{itemize}
 \item xnu (in) is a real with $|xnu|<1$. It's the fractional order
 \item x (in) is a real. The value for which the sequence of Bessel functions is to be evaluated.
 \item nin (in) is an integer.
 \item bk (out) is a real vector of length abs(nin), containing the values of the function.
\end{itemize}
This subroutine evaluates a sequence of modified Bessel function of the second kind of fractional order.

If nin is positive, on completion $bk(1)=K_\nu(x)$,$bk(2)=K_{\nu+1}(x)$,...,$bk(nin)=K_{\nu+nin-1}(x)$. If nin is negative, on completion $bk(1)=K_\nu(x)$,$bk(2)=K_{\nu-1}(x)$,...,$bk(|nin|)=K_{\nu+nin+1}(x)$.

Specific interfaces : \verb'besks,dbesks'

\subsubsection{bskes}
\begin{verbatim}
 call bskes(xnu,x,nin,bke)
\end{verbatim}
\begin{itemize}
 \item xnu (in) is a real with $|xnu|<1$. It's the fractional order
 \item x (in) is a real. The value for which the sequence of exponentialy scaled Bessel functions is to be evaluated.
 \item nin (in) is an integer. Number of elements in the sequence.
 \item bke (out) is a real vector of length abs(nin), containing the values of the function.
\end{itemize}
This subroutine evaluates a sequence of exponentially scaled modified Bessel function of the second kind of fractional order.

If nin is positive, on completion $bk(1)=e^x K_\nu(x)$,$bk(2)=e^x K_{\nu+1}(x)$,...,$bk(nin)=e^x K_{\nu+nin-1}(x)$. If nin is negative, on completion $bk(1)=e^x K_\nu(x)$,$bk(2)=e^x K_{\nu-1}(x)$,...,$bk(|nin|)=e^x K_{\nu+nin+1}(x)$.

Specific interfaces : \verb'beskes,dbskes'

\subsection{Airy function and related}
\subsubsection{ai}
\begin{verbatim}
 ai(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the airy function defined by equation \ref{ai}
\begin{equation}
 \label{ai}
Ai(x)={1 \over \pi} \int _0 ^\infty cos(xt+ {1 \over 3}t^3)dt
\end{equation}

Specific interfaces : \verb'ai,dai'

\subsubsection{bi}
\begin{verbatim}
 bi(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the Airy function of the second kind defined by equation \ref{bi}
\begin{equation}
 \label{bi}
Bi(x)={1 \over \pi} \int _0 ^\infty e^{xt- {1 \over 3}t^3}dt +
{1 \over \pi} \int _0 ^\infty sin(xt+ {1 \over 3}t^3)dt
\end{equation}

Specific interfaces : \verb'bi,dbi'


\subsubsection{aid}
\begin{verbatim}
 aid(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the derivative of the Airy function, $aid(x)={d \over {dx}}Ai(x)$.

Specific interface : \verb'aid,daid'

\subsubsection{bid}
\begin{verbatim}
 bid(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the derivative of the Airy function of the second kind, $bid(x)={d \over {dx}}Bi(x)$.

Specific interfaces : \verb'bid,dbid'


\subsubsection{aie}
\begin{verbatim}
 aie(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}

This function evaluates the exponentially scaled Airy function defined in equation \ref{aie}.
%\begin{equation}
% \label{aie}
%aie(x)=Ai(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai(x)\rm{~if~}x>0
%\end{equation}
\begin{equation}
\label{aie}
  aie(x)=\left\{\begin{array}{ll}
  Ai(x) & \textrm{~if~}x\leq0 \\
  e^{{2\over3}x^{3\over2}}Ai(x) & \textrm{~if~}x>0
\end{array}\right.
\end{equation}

Specific interfaces : \verb'aie,daie'

\subsubsection{bie}

\begin{verbatim}
 bie(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the exponentially scaled Airy function of the second kind defined in equation \ref{bie}.
%\begin{equation}
% \label{bie}
%bie(x)=Bi(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi(x)\rm{~if~}x>0
%\end{equation}
\begin{equation}
 \label{bie}
bie(x)=\left\{\begin{array}{ll}
Bi(x) & \textrm{~if~}x\leq0 \\
e^{-{2\over3}x^{3\over2}}Bi(x) & \textrm{~if~}x>0
\end{array}\right.
\end{equation}

Specific interfaces : \verb'bie,dbie'

\subsubsection{aide}
\begin{verbatim}
 aide(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the exponentially scaled derivative of the Airy function as defined in equation \ref{aide}.
%\begin{equation}
% \label{aide}
%aie(x)=Ai^\prime(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai^\prime(x)\rm{~if~}x>0
%\end{equation}
\begin{equation}
 \label{aide}
aide(x)=\left\{\begin{array}{ll}
Ai^\prime(x) & \textrm{~if~}x\leq0 \\
e^{{2\over3}x^{3\over2}}Ai^\prime(x) & \textrm{~if~}x>0
\end{array}\right.
\end{equation}


Specific interfaces : \verb'aide,daide'


\subsubsection{bide}
\begin{verbatim}
 bide(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates the exponentially scaled derivative of the Airy function of the second kind as defined in equation \ref{bide}.
\begin{equation}
 \label{bide}
bie(x)=\left\{\begin{array}{ll}
Bi^\prime(x) & \textrm{~if~}x\leq0 \\
e^{-{2\over3}x^{3\over2}}Bi^\prime(x) & \textrm{~if~}x>0
\end{array}\right.
\end{equation}

Specific interfaces : \verb'bide,dbide'


\subsection{Miscellanous functions}
\subsubsection{spenc}
\begin{verbatim}
 spenc(x)
\end{verbatim}
\begin{itemize}
 \item x is a real
\end{itemize}
This function evaluates Spence function defined in equation \ref{spenc}.
\begin{equation}
 \label{spenc}
spenc(x)=s(x)=- \int_0^x {{ln(|1-t|)}\over t}dt
\end{equation}

Specific interfaces : \verb'spenc,dspenc'


\subsubsection{inits}
\begin{verbatim}
 inits(os,nos,eta)
\end{verbatim}
\begin{itemize}
 \item os is a real vector of length nos, containing the coefficients in an orthogonal series.
 \item nos is an integer
 \item eta is a real (Warning eta is a real(4) even with the double precision version) representing the requested accuracy.
\end{itemize}
This function initialize the orthogonal series so that inits is the number of terms needed to insure the error is no larger than eta.

Specific interfaces : \verb'inits,initds'


\subsubsection{csevl}
\begin{verbatim}
 csevl(x,cs,n)
\end{verbatim}
\begin{itemize}
 \item x is a real in [-1,1]
 \item cs is a real vector of length n containing the coefficients of the Chebyshev serie.
 \item n is an integer
\end{itemize}
This function evaluates the Chebyshev series whose coefficients are stored in cs.

Specific interfaces : \verb'csevl,dcsevl'




\end{document}