-
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@71 b657c933-2333-4658-acf2-d3c7c2708721
fvn_misc.f90
12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
module fvn_misc
use fvn_common
implicit none
! Muller
interface fvn_muller
module procedure fvn_z_muller
end interface fvn_muller
contains
!
! Muller
!
!
!
! William Daniau 2007
!
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f
! http://plato.asu.edu/ftp/other_software/muller.f
!
! it can be used as a replacement for imsl routine dzanly with minor changes
!
!-----------------------------------------------------------------------
!
! purpose - zeros of an analytic complex function
! using the muller method with deflation
!
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax,
! infer,ier)
!
! arguments f - a complex function subprogram, f(z), written
! by the user specifying the equation whose
! roots are to be found. f must appear in
! an external statement in the calling pro-
! gram.
! eps - 1st stopping criterion. let fp(z)=f(z)/p
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1))
! and z(1),...,z(k-1) are previously found
! roots. if ((cdabs(f(z)).le.eps) .and.
! (cdabs(fp(z)).le.eps)), then z is accepted
! as a root. (input)
! eps1 - 2nd stopping criterion. a root is accepted
! if two successive approximations to a given
! root agree within eps1. (input)
! note. if either or both of the stopping
! criteria are fulfilled, the root is
! accepted.
! kn - the number of known roots which must be stored
! in x(1),...,x(kn), prior to entry to muller
! nguess - the number of initial guesses provided. these
! guesses must be stored in x(kn+1),...,
! x(kn+nguess). nguess must be set equal
! to zero if no guesses are provided. (input)
! n - the number of new roots to be found by
! muller (input)
! x - a complex vector of length kn+n. x(1),...,
! x(kn) on input must contain any known
! roots. x(kn+1),..., x(kn+n) on input may,
! on user option, contain initial guesses for
! the n new roots which are to be computed.
! if the user does not provide an initial
! guess, zero is used.
! on output, x(kn+1),...,x(kn+n) contain the
! approximate roots found by muller.
! itmax - the maximum allowable number of iterations
! per root (input)
! infer - an integer vector of length kn+n. on
! output infer(j) contains the number of
! iterations used in finding the j-th root
! when convergence was achieved. if
! convergence was not obtained in itmax
! iterations, infer(j) will be greater than
! itmax (output).
! ier - error parameter (output)
! warning error
! ier = 33 indicates failure to converge with-
! in itmax iterations for at least one of
! the (n) new roots.
!
!
! remarks muller always returns the last approximation for root j
! in x(j). if the convergence criterion is satisfied,
! then infer(j) is less than or equal to itmax. if the
! convergence criterion is not satisified, then infer(j)
! is set to either itmax+1 or itmax+k, with k greater
! than 1. infer(j) = itmax+1 indicates that muller did
! not obtain convergence in the allowed number of iter-
! ations. in this case, the user may wish to set itmax
! to a larger value. infer(j) = itmax+k means that con-
! vergence was obtained (on iteration k) for the defla-
! ted function
! fp(z) = f(z)/((z-z(1)...(z-z(j-1)))
!
! but failed for f(z). in this case, better initial
! guesses might help or, it might be necessary to relax
! the convergence criterion.
!
!-----------------------------------------------------------------------
!
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
implicit none
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq,eps1w
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, &
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, &
zero,p1,one,four,p5
double complex, external :: f
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, &
knpng,jk,ick,nn,lm1,errcode
double complex :: x(kn+n)
integer :: infer(kn+n)
data zero/(0.0d0,0.0d0)/,p1/(0.1d0,0.0d0)/, &
one/(1.0d0,0.0d0)/,four/(4.0d0,0.0d0)/, &
p5/(0.5d0,0.0d0)/, &
rzero/0.0d0/,rten/10.0d0/,rhun/100.0d0/, &
ax/0.1d0/,ickmax/3/,rp01/0.01d0/
ier = 0
if (n .lt. 1) then ! What the hell are doing here then ...
return
end if
!eps1 = rten **(-nsig)
eps1w = min(eps1,rp01)
knp1 = kn+1
knpn = kn+n
knpng = kn+nguess
do i=1,knpn
infer(i) = 0
if (i .gt. knpng) x(i) = zero
end do
l= knp1
ic=0
rloop: do while (l<=knpn) ! Main loop over new roots
jk = 0
ick = 0
xl = x(l)
icloop: do
ic = 0
h = ax
h = p1*h
if (cdabs(xl) .gt. ax) h = p1*xl
! first three points are
! xl+h, xl-h, xl
rt = xl+h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z0 = fprt
y0 = frt
x0 = rt
rt = xl-h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z1 = fprt
y1 = frt
h = xl-rt
d = h/(rt-x0)
rt = xl
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z2 = fprt
y2 = frt
! begin main algorithm
iloop: do
dd = one + d
t1 = z0*d*d
t2 = z1*dd*dd
xx = z2*dd
t3 = z2*d
bi = t1-t2+xx+t3
den = bi*bi-four*(xx*t1-t3*(t2-xx))
! use denominator of maximum amplitude
t1 = sqrt(den)
qz = rhun*max(cdabs(bi),cdabs(t1))
t2 = bi + t1
tpq = cdabs(t2)+qz
if (tpq .eq. qz) t2 = zero
t3 = bi - t1
tpq = cdabs(t3) + qz
if (tpq .eq. qz) t3 = zero
den = t2
qz = cdabs(t3)-cdabs(t2)
if (qz .gt. rzero) den = t3
! test for zero denominator
if (cdabs(den) .eq. rzero) then
call trans_rt()
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z2 = fprt
y2 = frt
cycle iloop
end if
d = -xx/den
d = d+d
h = d*h
rt = rt + h
! check convergence of the first kind
if (cdabs(h) .le. eps1w*max(cdabs(rt),ax)) then
if (ic .ne. 0) then
exit icloop
end if
ic = 1
z0 = y1
z1 = y2
z2 = f(rt)
xl = rt
ick = ick+1
if (ick .le. ickmax) then
cycle iloop
end if
! warning error, itmax = maximum
jk = itmax + jk
ier = 33
end if
if (ic .ne. 0) then
cycle icloop
end if
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero)
! take remedial action to induce
! convergence
d = d*p5
h = h*p5
rt = rt-h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
end do
z0 = z1
z1 = z2
z2 = fprt
y0 = y1
y1 = y2
y2 = frt
end do iloop
end do icloop
x(l) = rt
infer(l) = jk
l = l+1
end do rloop
contains
subroutine trans_rt()
tem = rten*eps1w
if (cdabs(rt) .gt. ax) tem = tem*rt
rt = rt+tem
d = (h+tem)*d/h
h = h+tem
end subroutine trans_rt
subroutine deflated_work(errcode)
! errcode=0 => no errors
! errcode=1 => jk>itmax or convergence of second kind achieved
integer :: errcode,flag
flag=1
loop1: do while(flag==1)
errcode=0
jk = jk+1
if (jk .gt. itmax) then
ier=33
errcode=1
return
end if
frt = f(rt)
fprt = frt
if (l /= 1) then
lm1 = l-1
do i=1,lm1
tem = rt - x(i)
if (cdabs(tem) .eq. rzero) then
!if (ic .ne. 0) go to 15 !! ?? possible?
call trans_rt()
cycle loop1
end if
fprt = fprt/tem
end do
end if
flag=0
end do loop1
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then
errcode=1
return
end if
end subroutine deflated_work
end subroutine
end module fvn_misc