-
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@78 b657c933-2333-4658-acf2-d3c7c2708721
fvn_misc.f90
54.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
module fvn_misc
use fvn_common
implicit none
! Muller
interface fvn_muller
module procedure fvn_z_muller
end interface fvn_muller
public
private :: lmdif,lmpar,qrfac,qrsolv,enorm,fdjac2
! These are made private to not interfere with a
! possibly linked minpack
contains
!
! Muller
!
!
!
! William Daniau 2007
!
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f
! http://plato.asu.edu/ftp/other_software/muller.f
!
! it can be used as a replacement for imsl routine dzanly with minor changes
!
!-----------------------------------------------------------------------
!
! purpose - zeros of an analytic complex function
! using the muller method with deflation
!
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax,
! infer,ier)
!
! arguments f - a complex function subprogram, f(z), written
! by the user specifying the equation whose
! roots are to be found. f must appear in
! an external statement in the calling pro-
! gram.
! eps - 1st stopping criterion. let fp(z)=f(z)/p
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1))
! and z(1),...,z(k-1) are previously found
! roots. if ((cdabs(f(z)).le.eps) .and.
! (cdabs(fp(z)).le.eps)), then z is accepted
! as a root. (input)
! eps1 - 2nd stopping criterion. a root is accepted
! if two successive approximations to a given
! root agree within eps1. (input)
! note. if either or both of the stopping
! criteria are fulfilled, the root is
! accepted.
! kn - the number of known roots which must be stored
! in x(1),...,x(kn), prior to entry to muller
! nguess - the number of initial guesses provided. these
! guesses must be stored in x(kn+1),...,
! x(kn+nguess). nguess must be set equal
! to zero if no guesses are provided. (input)
! n - the number of new roots to be found by
! muller (input)
! x - a complex vector of length kn+n. x(1),...,
! x(kn) on input must contain any known
! roots. x(kn+1),..., x(kn+n) on input may,
! on user option, contain initial guesses for
! the n new roots which are to be computed.
! if the user does not provide an initial
! guess, zero is used.
! on output, x(kn+1),...,x(kn+n) contain the
! approximate roots found by muller.
! itmax - the maximum allowable number of iterations
! per root (input)
! infer - an integer vector of length kn+n. on
! output infer(j) contains the number of
! iterations used in finding the j-th root
! when convergence was achieved. if
! convergence was not obtained in itmax
! iterations, infer(j) will be greater than
! itmax (output).
! ier - error parameter (output)
! warning error
! ier = 33 indicates failure to converge with-
! in itmax iterations for at least one of
! the (n) new roots.
!
!
! remarks muller always returns the last approximation for root j
! in x(j). if the convergence criterion is satisfied,
! then infer(j) is less than or equal to itmax. if the
! convergence criterion is not satisified, then infer(j)
! is set to either itmax+1 or itmax+k, with k greater
! than 1. infer(j) = itmax+1 indicates that muller did
! not obtain convergence in the allowed number of iter-
! ations. in this case, the user may wish to set itmax
! to a larger value. infer(j) = itmax+k means that con-
! vergence was obtained (on iteration k) for the defla-
! ted function
! fp(z) = f(z)/((z-z(1)...(z-z(j-1)))
!
! but failed for f(z). in this case, better initial
! guesses might help or, it might be necessary to relax
! the convergence criterion.
!
!-----------------------------------------------------------------------
!
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
implicit none
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq,eps1w
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, &
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, &
zero,p1,one,four,p5
double complex, external :: f
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, &
knpng,jk,ick,nn,lm1,errcode
double complex :: x(kn+n)
integer :: infer(kn+n)
data zero/(0.0d0,0.0d0)/,p1/(0.1d0,0.0d0)/, &
one/(1.0d0,0.0d0)/,four/(4.0d0,0.0d0)/, &
p5/(0.5d0,0.0d0)/, &
rzero/0.0d0/,rten/10.0d0/,rhun/100.0d0/, &
ax/0.1d0/,ickmax/3/,rp01/0.01d0/
ier = 0
if (n .lt. 1) then ! What the hell are doing here then ...
return
end if
!eps1 = rten **(-nsig)
eps1w = min(eps1,rp01)
knp1 = kn+1
knpn = kn+n
knpng = kn+nguess
do i=1,knpn
infer(i) = 0
if (i .gt. knpng) x(i) = zero
end do
l= knp1
ic=0
rloop: do while (l<=knpn) ! Main loop over new roots
jk = 0
ick = 0
xl = x(l)
icloop: do
ic = 0
h = ax
h = p1*h
if (cdabs(xl) .gt. ax) h = p1*xl
! first three points are
! xl+h, xl-h, xl
rt = xl+h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z0 = fprt
y0 = frt
x0 = rt
rt = xl-h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z1 = fprt
y1 = frt
h = xl-rt
d = h/(rt-x0)
rt = xl
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z2 = fprt
y2 = frt
! begin main algorithm
iloop: do
dd = one + d
t1 = z0*d*d
t2 = z1*dd*dd
xx = z2*dd
t3 = z2*d
bi = t1-t2+xx+t3
den = bi*bi-four*(xx*t1-t3*(t2-xx))
! use denominator of maximum amplitude
t1 = sqrt(den)
qz = rhun*max(cdabs(bi),cdabs(t1))
t2 = bi + t1
tpq = cdabs(t2)+qz
if (tpq .eq. qz) t2 = zero
t3 = bi - t1
tpq = cdabs(t3) + qz
if (tpq .eq. qz) t3 = zero
den = t2
qz = cdabs(t3)-cdabs(t2)
if (qz .gt. rzero) den = t3
! test for zero denominator
if (cdabs(den) .eq. rzero) then
call trans_rt()
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
z2 = fprt
y2 = frt
cycle iloop
end if
d = -xx/den
d = d+d
h = d*h
rt = rt + h
! check convergence of the first kind
if (cdabs(h) .le. eps1w*max(cdabs(rt),ax)) then
if (ic .ne. 0) then
exit icloop
end if
ic = 1
z0 = y1
z1 = y2
z2 = f(rt)
xl = rt
ick = ick+1
if (ick .le. ickmax) then
cycle iloop
end if
! warning error, itmax = maximum
jk = itmax + jk
ier = 33
end if
if (ic .ne. 0) then
cycle icloop
end if
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero)
! take remedial action to induce
! convergence
d = d*p5
h = h*p5
rt = rt-h
call deflated_work(errcode)
if (errcode == 1) then
exit icloop
end if
end do
z0 = z1
z1 = z2
z2 = fprt
y0 = y1
y1 = y2
y2 = frt
end do iloop
end do icloop
x(l) = rt
infer(l) = jk
l = l+1
end do rloop
contains
subroutine trans_rt()
tem = rten*eps1w
if (cdabs(rt) .gt. ax) tem = tem*rt
rt = rt+tem
d = (h+tem)*d/h
h = h+tem
end subroutine trans_rt
subroutine deflated_work(errcode)
! errcode=0 => no errors
! errcode=1 => jk>itmax or convergence of second kind achieved
integer :: errcode,flag
flag=1
loop1: do while(flag==1)
errcode=0
jk = jk+1
if (jk .gt. itmax) then
ier=33
errcode=1
return
end if
frt = f(rt)
fprt = frt
if (l /= 1) then
lm1 = l-1
do i=1,lm1
tem = rt - x(i)
if (cdabs(tem) .eq. rzero) then
!if (ic .ne. 0) go to 15 !! ?? possible?
call trans_rt()
cycle loop1
end if
fprt = fprt/tem
end do
end if
flag=0
end do loop1
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then
errcode=1
return
end if
end subroutine deflated_work
end subroutine
!
!
!
! Non linear least square using Levenberg-Marquardt algorithm and
! a finite difference jacobian
!
! This uses MINPACK Routines (http://www.netlib.org/minpack)
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au
!
! The purpose of fvn_lm is to minimize the sum of the squares of m nonlinear
! functions in n variables by a modification of the Levenberg-Marquardt
! algorithm. This is done by using the more general least-squares
! solver lmdif. The user must provide a subroutine which calculates the
! functions. The jacobian is then calculated by a forward-difference
! approximation.
!
! call fvn_lm(fcn,m,n,a,info,tol)
!
! fcn : fcn is the user-supplied subroutine which calculates
! the functions. fcn must follow the following interface that must
! be declared in the calling subroutine :
!
! interface
! subroutine fcn(m,n,a,fvec,iflag)
! use fvn_common
! integer(ip_kind), intent(in) :: m
! integer(ip_kind), intent(in) :: n
! real(dp_kind), dimension(:), intent(in) :: a
! real(dp_kind), dimension(:), intent(inout) :: fvec
! integer(ip_kind), intent(inout) :: iflag
! end subroutine
! end interface
!
! This is the function which calculate the differences for which which square sum
! will be minimized outputing this difference in vector fvec.
! Parameters of fcn are as follows :
! m : positive integer input variable set to the number of functions
! (number of measurement points)
! n : positive integer input variable set to the number of variables
! (number of parameters in the function to fit)
! a : vector of length n containing parameters for which fcn should
! perform the calculation
! fvec : vector of length m containing the resulting evaluation
! iflag : integer normally not used, can be used to exit the
! the algorithm by setting it to a negative value
!
! m : positive integer input variable set to the number of functions
! (number of measurement points)
! n : positive integer input variable set to the number of variables
! (number of parameters in the function to fit)
! a : vector of length n, on input must contains an initial guess (or unity vector)
! and on output the solution vector
! info : is an output positive integer
! info = 0 improper input parameters.
! info = 1 algorithm estimates that the relative error
! in the sum of squares is at most tol.
! info = 2 algorithm estimates that the relative error
! between x and the solution is at most tol.
! info = 3 conditions for info = 1 and info = 2 both hold.
! info = 4 fvec is orthogonal to the columns of the
! jacobian to machine precision.
! info = 5 number of calls to fcn has reached or exceeded 200*(n+1).
! info = 6 tol is too small. no further reduction in
! the sum of squares is possible.
! info = 7 tol is too small. No further improvement in
! the approximate solution x is possible.
! tol : is an optional positive value. Termination occurs when the
! algorithm estimates either that the relative error in the sum of
! squares is at most tol or that the relative error between x and the
! solution is at most tol. If not provided default value is :
! sqrt(epsilon(0.0d0))
!
subroutine fvn_lm(fcn,m,n,a,info,tol)
integer(ip_kind), intent(in) :: m
integer(ip_kind), intent(in) :: n
real(dp_kind), dimension(:), intent(inout) :: a
integer(ip_kind), intent(out) :: info
real(dp_kind), intent(in), optional :: tol
real(dp_kind) :: rtol
real(dp_kind), dimension(:), allocatable :: fvec
integer(ip_kind), dimension(:), allocatable :: iwa
interface
subroutine fcn(m,n,a,fvec,iflag)
use fvn_common
integer(ip_kind), intent(in) :: m
integer(ip_kind), intent(in) :: n
real(dp_kind), dimension(:), intent(in) :: a
real(dp_kind), dimension(:), intent(inout) :: fvec
integer(ip_kind), intent(inout) :: iflag
end subroutine
end interface
integer(ip_kind) :: maxfev, mode, nfev, nprint
real(dp_kind) :: epsfcn, ftol, gtol, xtol, fjac(m,n)
real(dp_kind), parameter :: factor = 100._8, zero = 0.0_8
allocate(fvec(m),iwa(n))
rtol=sqrt(epsilon(0.d0))
if (present(tol)) rtol=tol
info = 0
! check the input parameters for errors.
if (n <= 0 .or. m < n .or. rtol < zero) return
! call lmdif.
maxfev = 200*(n + 1)
ftol = rtol
xtol = rtol
gtol = zero
epsfcn = zero
mode = 1
nprint = 0
call lmdif(fcn, m, n, a, fvec, ftol, xtol, gtol, maxfev, epsfcn, &
mode, factor, nprint, info, nfev, fjac, iwa)
if (info == 8) info = 4
deallocate(fvec,iwa)
end subroutine
! lmdif
! MINPACK Subroutine (http://www.netlib.org/minpack)
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au
SUBROUTINE lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, &
mode, factor, nprint, info, nfev, fjac, ipvt)
! N.B. Arguments LDFJAC, DIAG, QTF, WA1, WA2, WA3 & WA4 have been removed.
INTEGER, PARAMETER :: dp = dp_kind
INTEGER, INTENT(IN) :: m
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: x(:)
REAL (dp), INTENT(OUT) :: fvec(:)
REAL (dp), INTENT(IN) :: ftol
REAL (dp), INTENT(IN) :: xtol
REAL (dp), INTENT(IN OUT) :: gtol
INTEGER, INTENT(IN OUT) :: maxfev
REAL (dp), INTENT(IN OUT) :: epsfcn
INTEGER, INTENT(IN) :: mode
REAL (dp), INTENT(IN) :: factor
INTEGER, INTENT(IN) :: nprint
INTEGER, INTENT(OUT) :: info
INTEGER, INTENT(OUT) :: nfev
REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n)
INTEGER, INTENT(OUT) :: ipvt(:)
! EXTERNAL fcn
INTERFACE
SUBROUTINE fcn(m, n, x, fvec, iflag)
use fvn_common
INTEGER(ip_kind), INTENT(IN) :: m, n
REAL (dp_kind), INTENT(IN) :: x(:)
REAL (dp_kind), INTENT(IN OUT) :: fvec(:)
INTEGER(ip_kind), INTENT(IN OUT) :: iflag
END SUBROUTINE fcn
END INTERFACE
! **********
! subroutine lmdif
! The purpose of lmdif is to minimize the sum of the squares of m nonlinear
! functions in n variables by a modification of the Levenberg-Marquardt
! algorithm. The user must provide a subroutine which calculates the
! functions. The jacobian is then calculated by a forward-difference
! approximation.
! the subroutine statement is
! subroutine lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn,
! diag, mode, factor, nprint, info, nfev, fjac,
! ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4)
! N.B. 7 of these arguments have been removed in this version.
! where
! fcn is the name of the user-supplied subroutine which calculates the
! functions. fcn must be declared in an external statement in the user
! calling program, and should be written as follows.
! subroutine fcn(m, n, x, fvec, iflag)
! integer m, n, iflag
! REAL (dp) x(:), fvec(m)
! ----------
! calculate the functions at x and return this vector in fvec.
! ----------
! return
! end
! the value of iflag should not be changed by fcn unless
! the user wants to terminate execution of lmdif.
! in this case set iflag to a negative integer.
! m is a positive integer input variable set to the number of functions.
! n is a positive integer input variable set to the number of variables.
! n must not exceed m.
! x is an array of length n. On input x must contain an initial estimate
! of the solution vector. On output x contains the final estimate of the
! solution vector.
! fvec is an output array of length m which contains
! the functions evaluated at the output x.
! ftol is a nonnegative input variable. Termination occurs when both the
! actual and predicted relative reductions in the sum of squares are at
! most ftol. Therefore, ftol measures the relative error desired
! in the sum of squares.
! xtol is a nonnegative input variable. Termination occurs when the
! relative error between two consecutive iterates is at most xtol.
! Therefore, xtol measures the relative error desired in the approximate
! solution.
! gtol is a nonnegative input variable. Termination occurs when the cosine
! of the angle between fvec and any column of the jacobian is at most
! gtol in absolute value. Therefore, gtol measures the orthogonality
! desired between the function vector and the columns of the jacobian.
! maxfev is a positive integer input variable. Termination occurs when the
! number of calls to fcn is at least maxfev by the end of an iteration.
! epsfcn is an input variable used in determining a suitable step length
! for the forward-difference approximation. This approximation assumes
! that the relative errors in the functions are of the order of epsfcn.
! If epsfcn is less than the machine precision, it is assumed that the
! relative errors in the functions are of the order of the machine
! precision.
! diag is an array of length n. If mode = 1 (see below), diag is
! internally set. If mode = 2, diag must contain positive entries that
! serve as multiplicative scale factors for the variables.
! mode is an integer input variable. If mode = 1, the variables will be
! scaled internally. If mode = 2, the scaling is specified by the input
! diag. other values of mode are equivalent to mode = 1.
! factor is a positive input variable used in determining the initial step
! bound. This bound is set to the product of factor and the euclidean
! norm of diag*x if nonzero, or else to factor itself. In most cases
! factor should lie in the interval (.1,100.). 100. is a generally
! recommended value.
! nprint is an integer input variable that enables controlled printing of
! iterates if it is positive. In this case, fcn is called with iflag = 0
! at the beginning of the first iteration and every nprint iterations
! thereafter and immediately prior to return, with x and fvec available
! for printing. If nprint is not positive, no special calls
! of fcn with iflag = 0 are made.
! info is an integer output variable. If the user has terminated
! execution, info is set to the (negative) value of iflag.
! See description of fcn. Otherwise, info is set as follows.
! info = 0 improper input parameters.
! info = 1 both actual and predicted relative reductions
! in the sum of squares are at most ftol.
! info = 2 relative error between two consecutive iterates <= xtol.
! info = 3 conditions for info = 1 and info = 2 both hold.
! info = 4 the cosine of the angle between fvec and any column of
! the Jacobian is at most gtol in absolute value.
! info = 5 number of calls to fcn has reached or exceeded maxfev.
! info = 6 ftol is too small. no further reduction in
! the sum of squares is possible.
! info = 7 xtol is too small. no further improvement in
! the approximate solution x is possible.
! info = 8 gtol is too small. fvec is orthogonal to the
! columns of the jacobian to machine precision.
! nfev is an integer output variable set to the number of calls to fcn.
! fjac is an output m by n array. the upper n by n submatrix
! of fjac contains an upper triangular matrix r with
! diagonal elements of nonincreasing magnitude such that
! t t t
! p *(jac *jac)*p = r *r,
! where p is a permutation matrix and jac is the final calculated
! Jacobian. Column j of p is column ipvt(j) (see below) of the
! identity matrix. the lower trapezoidal part of fjac contains
! information generated during the computation of r.
! ldfjac is a positive integer input variable not less than m
! which specifies the leading dimension of the array fjac.
! ipvt is an integer output array of length n. ipvt defines a permutation
! matrix p such that jac*p = q*r, where jac is the final calculated
! jacobian, q is orthogonal (not stored), and r is upper triangular
! with diagonal elements of nonincreasing magnitude.
! Column j of p is column ipvt(j) of the identity matrix.
! qtf is an output array of length n which contains
! the first n elements of the vector (q transpose)*fvec.
! wa1, wa2, and wa3 are work arrays of length n.
! wa4 is a work array of length m.
! subprograms called
! user-supplied ...... fcn
! minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac
! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
! **********
INTEGER :: i, iflag, iter, j, l
REAL (dp) :: actred, delta, dirder, epsmch, fnorm, fnorm1, gnorm, &
par, pnorm, prered, ratio, sum, temp, temp1, temp2, xnorm
REAL (dp) :: diag(n), qtf(n), wa1(n), wa2(n), wa3(n), wa4(m)
REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, &
p25 = 0.25_dp, p75 = 0.75_dp, p0001 = 0.0001_dp, &
zero = 0.0_dp
! epsmch is the machine precision.
epsmch = EPSILON(zero)
info = 0
iflag = 0
nfev = 0
! check the input parameters for errors.
IF (n <= 0 .OR. m < n .OR. ftol < zero .OR. xtol < zero .OR. gtol < zero &
.OR. maxfev <= 0 .OR. factor <= zero) GO TO 300
IF (mode /= 2) GO TO 20
DO j = 1, n
IF (diag(j) <= zero) GO TO 300
END DO
! evaluate the function at the starting point and calculate its norm.
20 iflag = 1
CALL fcn(m, n, x, fvec, iflag)
nfev = 1
IF (iflag < 0) GO TO 300
fnorm = enorm(m, fvec)
! initialize levenberg-marquardt parameter and iteration counter.
par = zero
iter = 1
! beginning of the outer loop.
! calculate the jacobian matrix.
30 iflag = 2
CALL fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn)
nfev = nfev + n
IF (iflag < 0) GO TO 300
! If requested, call fcn to enable printing of iterates.
IF (nprint <= 0) GO TO 40
iflag = 0
IF (MOD(iter-1,nprint) == 0) CALL fcn(m, n, x, fvec, iflag)
IF (iflag < 0) GO TO 300
! Compute the qr factorization of the jacobian.
40 CALL qrfac(m, n, fjac, .true., ipvt, wa1, wa2)
! On the first iteration and if mode is 1, scale according
! to the norms of the columns of the initial jacobian.
IF (iter /= 1) GO TO 80
IF (mode == 2) GO TO 60
DO j = 1, n
diag(j) = wa2(j)
IF (wa2(j) == zero) diag(j) = one
END DO
! On the first iteration, calculate the norm of the scaled x
! and initialize the step bound delta.
60 wa3(1:n) = diag(1:n)*x(1:n)
xnorm = enorm(n, wa3)
delta = factor*xnorm
IF (delta == zero) delta = factor
! Form (q transpose)*fvec and store the first n components in qtf.
80 wa4(1:m) = fvec(1:m)
DO j = 1, n
IF (fjac(j,j) == zero) GO TO 120
sum = DOT_PRODUCT( fjac(j:m,j), wa4(j:m) )
temp = -sum/fjac(j,j)
DO i = j, m
wa4(i) = wa4(i) + fjac(i,j)*temp
END DO
120 fjac(j,j) = wa1(j)
qtf(j) = wa4(j)
END DO
! compute the norm of the scaled gradient.
gnorm = zero
IF (fnorm == zero) GO TO 170
DO j = 1, n
l = ipvt(j)
IF (wa2(l) == zero) CYCLE
sum = zero
DO i = 1, j
sum = sum + fjac(i,j)*(qtf(i)/fnorm)
END DO
gnorm = MAX(gnorm, ABS(sum/wa2(l)))
END DO
! test for convergence of the gradient norm.
170 IF (gnorm <= gtol) info = 4
IF (info /= 0) GO TO 300
! rescale if necessary.
IF (mode == 2) GO TO 200
DO j = 1, n
diag(j) = MAX(diag(j), wa2(j))
END DO
! beginning of the inner loop.
! determine the Levenberg-Marquardt parameter.
200 CALL lmpar(n, fjac, ipvt, diag, qtf, delta, par, wa1, wa2)
! store the direction p and x + p. calculate the norm of p.
DO j = 1, n
wa1(j) = -wa1(j)
wa2(j) = x(j) + wa1(j)
wa3(j) = diag(j)*wa1(j)
END DO
pnorm = enorm(n, wa3)
! on the first iteration, adjust the initial step bound.
IF (iter == 1) delta = MIN(delta, pnorm)
! evaluate the function at x + p and calculate its norm.
iflag = 1
CALL fcn(m, n, wa2, wa4, iflag)
nfev = nfev + 1
IF (iflag < 0) GO TO 300
fnorm1 = enorm(m, wa4)
! compute the scaled actual reduction.
actred = -one
IF (p1*fnorm1 < fnorm) actred = one - (fnorm1/fnorm)**2
! Compute the scaled predicted reduction and
! the scaled directional derivative.
DO j = 1, n
wa3(j) = zero
l = ipvt(j)
temp = wa1(l)
DO i = 1, j
wa3(i) = wa3(i) + fjac(i,j)*temp
END DO
END DO
temp1 = enorm(n,wa3)/fnorm
temp2 = (SQRT(par)*pnorm)/fnorm
prered = temp1**2 + temp2**2/p5
dirder = -(temp1**2 + temp2**2)
! compute the ratio of the actual to the predicted reduction.
ratio = zero
IF (prered /= zero) ratio = actred/prered
! update the step bound.
IF (ratio <= p25) THEN
IF (actred >= zero) temp = p5
IF (actred < zero) temp = p5*dirder/(dirder + p5*actred)
IF (p1*fnorm1 >= fnorm .OR. temp < p1) temp = p1
delta = temp*MIN(delta,pnorm/p1)
par = par/temp
ELSE
IF (par /= zero .AND. ratio < p75) GO TO 260
delta = pnorm/p5
par = p5*par
END IF
! test for successful iteration.
260 IF (ratio < p0001) GO TO 290
! successful iteration. update x, fvec, and their norms.
DO j = 1, n
x(j) = wa2(j)
wa2(j) = diag(j)*x(j)
END DO
fvec(1:m) = wa4(1:m)
xnorm = enorm(n, wa2)
fnorm = fnorm1
iter = iter + 1
! tests for convergence.
290 IF (ABS(actred) <= ftol .AND. prered <= ftol .AND. p5*ratio <= one) info = 1
IF (delta <= xtol*xnorm) info = 2
IF (ABS(actred) <= ftol .AND. prered <= ftol &
.AND. p5*ratio <= one .AND. info == 2) info = 3
IF (info /= 0) GO TO 300
! tests for termination and stringent tolerances.
IF (nfev >= maxfev) info = 5
IF (ABS(actred) <= epsmch .AND. prered <= epsmch &
.AND. p5*ratio <= one) info = 6
IF (delta <= epsmch*xnorm) info = 7
IF (gnorm <= epsmch) info = 8
IF (info /= 0) GO TO 300
! end of the inner loop. repeat if iteration unsuccessful.
IF (ratio < p0001) GO TO 200
! end of the outer loop.
GO TO 30
! termination, either normal or user imposed.
300 IF (iflag < 0) info = iflag
iflag = 0
IF (nprint > 0) CALL fcn(m, n, x, fvec, iflag)
RETURN
! last card of subroutine lmdif.
END SUBROUTINE lmdif
! **********
! lmpar
! MINPACK Subroutine (http://www.netlib.org/minpack)
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au
SUBROUTINE lmpar(n, r, ipvt, diag, qtb, delta, par, x, sdiag)
! Code converted using TO_F90 by Alan Miller
! Date: 1999-12-09 Time: 12:46:12
! N.B. Arguments LDR, WA1 & WA2 have been removed.
INTEGER, PARAMETER :: dp = dp_kind
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: r(:,:)
INTEGER, INTENT(IN) :: ipvt(:)
REAL (dp), INTENT(IN) :: diag(:)
REAL (dp), INTENT(IN) :: qtb(:)
REAL (dp), INTENT(IN) :: delta
REAL (dp), INTENT(OUT) :: par
REAL (dp), INTENT(OUT) :: x(:)
REAL (dp), INTENT(OUT) :: sdiag(:)
! **********
! subroutine lmpar
! Given an m by n matrix a, an n by n nonsingular diagonal matrix d,
! an m-vector b, and a positive number delta, the problem is to determine a
! value for the parameter par such that if x solves the system
! a*x = b , sqrt(par)*d*x = 0 ,
! in the least squares sense, and dxnorm is the euclidean
! norm of d*x, then either par is zero and
! (dxnorm-delta) <= 0.1*delta ,
! or par is positive and
! abs(dxnorm-delta) <= 0.1*delta .
! This subroutine completes the solution of the problem if it is provided
! with the necessary information from the r factorization, with column
! qpivoting, of a. That is, if a*p = q*r, where p is a permutation matrix,
! q has orthogonal columns, and r is an upper triangular matrix with diagonal
! elements of nonincreasing magnitude, then lmpar expects the full upper
! triangle of r, the permutation matrix p, and the first n components of
! (q transpose)*b.
! On output lmpar also provides an upper triangular matrix s such that
! t t t
! p *(a *a + par*d*d)*p = s *s .
! s is employed within lmpar and may be of separate interest.
! Only a few iterations are generally needed for convergence of the algorithm.
! If, however, the limit of 10 iterations is reached, then the output par
! will contain the best value obtained so far.
! the subroutine statement is
! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, wa1,wa2)
! where
! n is a positive integer input variable set to the order of r.
! r is an n by n array. on input the full upper triangle
! must contain the full upper triangle of the matrix r.
! On output the full upper triangle is unaltered, and the
! strict lower triangle contains the strict upper triangle
! (transposed) of the upper triangular matrix s.
! ldr is a positive integer input variable not less than n
! which specifies the leading dimension of the array r.
! ipvt is an integer input array of length n which defines the
! permutation matrix p such that a*p = q*r. column j of p
! is column ipvt(j) of the identity matrix.
! diag is an input array of length n which must contain the
! diagonal elements of the matrix d.
! qtb is an input array of length n which must contain the first
! n elements of the vector (q transpose)*b.
! delta is a positive input variable which specifies an upper
! bound on the euclidean norm of d*x.
! par is a nonnegative variable. on input par contains an
! initial estimate of the levenberg-marquardt parameter.
! on output par contains the final estimate.
! x is an output array of length n which contains the least
! squares solution of the system a*x = b, sqrt(par)*d*x = 0,
! for the output par.
! sdiag is an output array of length n which contains the
! diagonal elements of the upper triangular matrix s.
! wa1 and wa2 are work arrays of length n.
! subprograms called
! minpack-supplied ... dpmpar,enorm,qrsolv
! fortran-supplied ... ABS,MAX,MIN,SQRT
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
! **********
INTEGER :: iter, j, jm1, jp1, k, l, nsing
REAL (dp) :: dxnorm, dwarf, fp, gnorm, parc, parl, paru, sum, temp
REAL (dp) :: wa1(n), wa2(n)
REAL (dp), PARAMETER :: p1 = 0.1_dp, p001 = 0.001_dp, zero = 0.0_dp
! dwarf is the smallest positive magnitude.
dwarf = TINY(zero)
! compute and store in x the gauss-newton direction. if the
! jacobian is rank-deficient, obtain a least squares solution.
nsing = n
DO j = 1, n
wa1(j) = qtb(j)
IF (r(j,j) == zero .AND. nsing == n) nsing = j - 1
IF (nsing < n) wa1(j) = zero
END DO
DO k = 1, nsing
j = nsing - k + 1
wa1(j) = wa1(j)/r(j,j)
temp = wa1(j)
jm1 = j - 1
wa1(1:jm1) = wa1(1:jm1) - r(1:jm1,j)*temp
END DO
DO j = 1, n
l = ipvt(j)
x(l) = wa1(j)
END DO
! initialize the iteration counter.
! evaluate the function at the origin, and test
! for acceptance of the gauss-newton direction.
iter = 0
wa2(1:n) = diag(1:n)*x(1:n)
dxnorm = enorm(n, wa2)
fp = dxnorm - delta
IF (fp <= p1*delta) GO TO 220
! if the jacobian is not rank deficient, the newton
! step provides a lower bound, parl, for the zero of
! the function. Otherwise set this bound to zero.
parl = zero
IF (nsing < n) GO TO 120
DO j = 1, n
l = ipvt(j)
wa1(j) = diag(l)*(wa2(l)/dxnorm)
END DO
DO j = 1, n
sum = DOT_PRODUCT( r(1:j-1,j), wa1(1:j-1) )
wa1(j) = (wa1(j) - sum)/r(j,j)
END DO
temp = enorm(n,wa1)
parl = ((fp/delta)/temp)/temp
! calculate an upper bound, paru, for the zero of the function.
120 DO j = 1, n
sum = DOT_PRODUCT( r(1:j,j), qtb(1:j) )
l = ipvt(j)
wa1(j) = sum/diag(l)
END DO
gnorm = enorm(n,wa1)
paru = gnorm/delta
IF (paru == zero) paru = dwarf/MIN(delta,p1)
! if the input par lies outside of the interval (parl,paru),
! set par to the closer endpoint.
par = MAX(par,parl)
par = MIN(par,paru)
IF (par == zero) par = gnorm/dxnorm
! beginning of an iteration.
150 iter = iter + 1
! evaluate the function at the current value of par.
IF (par == zero) par = MAX(dwarf, p001*paru)
temp = SQRT(par)
wa1(1:n) = temp*diag(1:n)
CALL qrsolv(n, r, ipvt, wa1, qtb, x, sdiag)
wa2(1:n) = diag(1:n)*x(1:n)
dxnorm = enorm(n, wa2)
temp = fp
fp = dxnorm - delta
! if the function is small enough, accept the current value
! of par. also test for the exceptional cases where parl
! is zero or the number of iterations has reached 10.
IF (ABS(fp) <= p1*delta .OR. parl == zero .AND. fp <= temp &
.AND. temp < zero .OR. iter == 10) GO TO 220
! compute the newton correction.
DO j = 1, n
l = ipvt(j)
wa1(j) = diag(l)*(wa2(l)/dxnorm)
END DO
DO j = 1, n
wa1(j) = wa1(j)/sdiag(j)
temp = wa1(j)
jp1 = j + 1
wa1(jp1:n) = wa1(jp1:n) - r(jp1:n,j)*temp
END DO
temp = enorm(n,wa1)
parc = ((fp/delta)/temp)/temp
! depending on the sign of the function, update parl or paru.
IF (fp > zero) parl = MAX(parl,par)
IF (fp < zero) paru = MIN(paru,par)
! compute an improved estimate for par.
par = MAX(parl, par+parc)
! end of an iteration.
GO TO 150
! termination.
220 IF (iter == 0) par = zero
RETURN
! last card of subroutine lmpar.
END SUBROUTINE lmpar
! qrfac
! MINPACK Subroutine (http://www.netlib.org/minpack)
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au
SUBROUTINE qrfac(m, n, a, pivot, ipvt, rdiag, acnorm)
! Code converted using TO_F90 by Alan Miller
! Date: 1999-12-09 Time: 12:46:17
! N.B. Arguments LDA, LIPVT & WA have been removed.
INTEGER, PARAMETER :: dp = dp_kind
INTEGER, INTENT(IN) :: m
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: a(:,:)
LOGICAL, INTENT(IN) :: pivot
INTEGER, INTENT(OUT) :: ipvt(:)
REAL (dp), INTENT(OUT) :: rdiag(:)
REAL (dp), INTENT(OUT) :: acnorm(:)
! **********
! subroutine qrfac
! This subroutine uses Householder transformations with column pivoting
! (optional) to compute a qr factorization of the m by n matrix a.
! That is, qrfac determines an orthogonal matrix q, a permutation matrix p,
! and an upper trapezoidal matrix r with diagonal elements of nonincreasing
! magnitude, such that a*p = q*r. The householder transformation for
! column k, k = 1,2,...,min(m,n), is of the form
! t
! i - (1/u(k))*u*u
! where u has zeros in the first k-1 positions. The form of this
! transformation and the method of pivoting first appeared in the
! corresponding linpack subroutine.
! the subroutine statement is
! subroutine qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa)
! N.B. 3 of these arguments have been omitted in this version.
! where
! m is a positive integer input variable set to the number of rows of a.
! n is a positive integer input variable set to the number of columns of a.
! a is an m by n array. On input a contains the matrix for
! which the qr factorization is to be computed. On output
! the strict upper trapezoidal part of a contains the strict
! upper trapezoidal part of r, and the lower trapezoidal
! part of a contains a factored form of q (the non-trivial
! elements of the u vectors described above).
! lda is a positive integer input variable not less than m
! which specifies the leading dimension of the array a.
! pivot is a logical input variable. If pivot is set true,
! then column pivoting is enforced. If pivot is set false,
! then no column pivoting is done.
! ipvt is an integer output array of length lipvt. ipvt
! defines the permutation matrix p such that a*p = q*r.
! Column j of p is column ipvt(j) of the identity matrix.
! If pivot is false, ipvt is not referenced.
! lipvt is a positive integer input variable. If pivot is false,
! then lipvt may be as small as 1. If pivot is true, then
! lipvt must be at least n.
! rdiag is an output array of length n which contains the
! diagonal elements of r.
! acnorm is an output array of length n which contains the norms of the
! corresponding columns of the input matrix a.
! If this information is not needed, then acnorm can coincide with rdiag.
! wa is a work array of length n. If pivot is false, then wa
! can coincide with rdiag.
! subprograms called
! minpack-supplied ... dpmpar,enorm
! fortran-supplied ... MAX,SQRT,MIN
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
! **********
INTEGER :: i, j, jp1, k, kmax, minmn
REAL (dp) :: ajnorm, epsmch, sum, temp, wa(n)
REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp
! epsmch is the machine precision.
epsmch = EPSILON(zero)
! compute the initial column norms and initialize several arrays.
DO j = 1, n
acnorm(j) = enorm(m,a(1:,j))
rdiag(j) = acnorm(j)
wa(j) = rdiag(j)
IF (pivot) ipvt(j) = j
END DO
! Reduce a to r with Householder transformations.
minmn = MIN(m,n)
DO j = 1, minmn
IF (.NOT.pivot) GO TO 40
! Bring the column of largest norm into the pivot position.
kmax = j
DO k = j, n
IF (rdiag(k) > rdiag(kmax)) kmax = k
END DO
IF (kmax == j) GO TO 40
DO i = 1, m
temp = a(i,j)
a(i,j) = a(i,kmax)
a(i,kmax) = temp
END DO
rdiag(kmax) = rdiag(j)
wa(kmax) = wa(j)
k = ipvt(j)
ipvt(j) = ipvt(kmax)
ipvt(kmax) = k
! Compute the Householder transformation to reduce the
! j-th column of a to a multiple of the j-th unit vector.
40 ajnorm = enorm(m-j+1, a(j:,j))
IF (ajnorm == zero) CYCLE
IF (a(j,j) < zero) ajnorm = -ajnorm
a(j:m,j) = a(j:m,j)/ajnorm
a(j,j) = a(j,j) + one
! Apply the transformation to the remaining columns and update the norms.
jp1 = j + 1
DO k = jp1, n
sum = DOT_PRODUCT( a(j:m,j), a(j:m,k) )
temp = sum/a(j,j)
a(j:m,k) = a(j:m,k) - temp*a(j:m,j)
IF (.NOT.pivot .OR. rdiag(k) == zero) CYCLE
temp = a(j,k)/rdiag(k)
rdiag(k) = rdiag(k)*SQRT(MAX(zero, one-temp**2))
IF (p05*(rdiag(k)/wa(k))**2 > epsmch) CYCLE
rdiag(k) = enorm(m-j, a(jp1:,k))
wa(k) = rdiag(k)
END DO
rdiag(j) = -ajnorm
END DO
RETURN
! last card of subroutine qrfac.
END SUBROUTINE qrfac
! qrsolv
! MINPACK Subroutine (http://www.netlib.org/minpack)
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au
SUBROUTINE qrsolv(n, r, ipvt, diag, qtb, x, sdiag)
! N.B. Arguments LDR & WA have been removed.
INTEGER, PARAMETER :: dp = dp_kind
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: r(:,:)
INTEGER, INTENT(IN) :: ipvt(:)
REAL (dp), INTENT(IN) :: diag(:)
REAL (dp), INTENT(IN) :: qtb(:)
REAL (dp), INTENT(OUT) :: x(:)
REAL (dp), INTENT(OUT) :: sdiag(:)
! **********
! subroutine qrsolv
! Given an m by n matrix a, an n by n diagonal matrix d, and an m-vector b,
! the problem is to determine an x which solves the system
! a*x = b , d*x = 0 ,
! in the least squares sense.
! This subroutine completes the solution of the problem if it is provided
! with the necessary information from the qr factorization, with column
! pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix,
! q has orthogonal columns, and r is an upper triangular matrix with diagonal
! elements of nonincreasing magnitude, then qrsolv expects the full upper
! triangle of r, the permutation matrix p, and the first n components of
! (q transpose)*b. The system a*x = b, d*x = 0, is then equivalent to
! t t
! r*z = q *b , p *d*p*z = 0 ,
! where x = p*z. if this system does not have full rank,
! then a least squares solution is obtained. On output qrsolv
! also provides an upper triangular matrix s such that
! t t t
! p *(a *a + d*d)*p = s *s .
! s is computed within qrsolv and may be of separate interest.
! the subroutine statement is
! subroutine qrsolv(n, r, ldr, ipvt, diag, qtb, x, sdiag, wa)
! N.B. Arguments LDR and WA have been removed in this version.
! where
! n is a positive integer input variable set to the order of r.
! r is an n by n array. On input the full upper triangle must contain
! the full upper triangle of the matrix r.
! On output the full upper triangle is unaltered, and the strict lower
! triangle contains the strict upper triangle (transposed) of the
! upper triangular matrix s.
! ldr is a positive integer input variable not less than n
! which specifies the leading dimension of the array r.
! ipvt is an integer input array of length n which defines the
! permutation matrix p such that a*p = q*r. Column j of p
! is column ipvt(j) of the identity matrix.
! diag is an input array of length n which must contain the
! diagonal elements of the matrix d.
! qtb is an input array of length n which must contain the first
! n elements of the vector (q transpose)*b.
! x is an output array of length n which contains the least
! squares solution of the system a*x = b, d*x = 0.
! sdiag is an output array of length n which contains the
! diagonal elements of the upper triangular matrix s.
! wa is a work array of length n.
! subprograms called
! fortran-supplied ... ABS,SQRT
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
! **********
INTEGER :: i, j, k, kp1, l, nsing
REAL (dp) :: COS, cotan, qtbpj, SIN, sum, TAN, temp, wa(n)
REAL (dp), PARAMETER :: p5 = 0.5_dp, p25 = 0.25_dp, zero = 0.0_dp
! Copy r and (q transpose)*b to preserve input and initialize s.
! In particular, save the diagonal elements of r in x.
DO j = 1, n
r(j:n,j) = r(j,j:n)
x(j) = r(j,j)
wa(j) = qtb(j)
END DO
! Eliminate the diagonal matrix d using a givens rotation.
DO j = 1, n
! Prepare the row of d to be eliminated, locating the
! diagonal element using p from the qr factorization.
l = ipvt(j)
IF (diag(l) == zero) CYCLE
sdiag(j:n) = zero
sdiag(j) = diag(l)
! The transformations to eliminate the row of d modify only a single
! element of (q transpose)*b beyond the first n, which is initially zero.
qtbpj = zero
DO k = j, n
! Determine a givens rotation which eliminates the
! appropriate element in the current row of d.
IF (sdiag(k) == zero) CYCLE
IF (ABS(r(k,k)) < ABS(sdiag(k))) THEN
cotan = r(k,k)/sdiag(k)
SIN = p5/SQRT(p25 + p25*cotan**2)
COS = SIN*cotan
ELSE
TAN = sdiag(k)/r(k,k)
COS = p5/SQRT(p25 + p25*TAN**2)
SIN = COS*TAN
END IF
! Compute the modified diagonal element of r and
! the modified element of ((q transpose)*b,0).
r(k,k) = COS*r(k,k) + SIN*sdiag(k)
temp = COS*wa(k) + SIN*qtbpj
qtbpj = -SIN*wa(k) + COS*qtbpj
wa(k) = temp
! Accumulate the tranformation in the row of s.
kp1 = k + 1
DO i = kp1, n
temp = COS*r(i,k) + SIN*sdiag(i)
sdiag(i) = -SIN*r(i,k) + COS*sdiag(i)
r(i,k) = temp
END DO
END DO
! Store the diagonal element of s and restore
! the corresponding diagonal element of r.
sdiag(j) = r(j,j)
r(j,j) = x(j)
END DO
! Solve the triangular system for z. If the system is singular,
! then obtain a least squares solution.
nsing = n
DO j = 1, n
IF (sdiag(j) == zero .AND. nsing == n) nsing = j - 1
IF (nsing < n) wa(j) = zero
END DO
DO k = 1, nsing
j = nsing - k + 1
sum = DOT_PRODUCT( r(j+1:nsing,j), wa(j+1:nsing) )
wa(j) = (wa(j) - sum)/sdiag(j)
END DO
! Permute the components of z back to components of x.
DO j = 1, n
l = ipvt(j)
x(l) = wa(j)
END DO
RETURN
! last card of subroutine qrsolv.
END SUBROUTINE qrsolv
! enorm
! MINPACK Subroutine (http://www.netlib.org/minpack)
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au
FUNCTION enorm(n,x) RESULT(fn_val)
! Code converted using TO_F90 by Alan Miller
! Date: 1999-12-09 Time: 12:45:34
INTEGER, PARAMETER :: dp = dp_kind
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN) :: x(:)
REAL (dp) :: fn_val
! **********
! function enorm
! given an n-vector x, this function calculates the euclidean norm of x.
! the euclidean norm is computed by accumulating the sum of squares in
! three different sums. The sums of squares for the small and large
! components are scaled so that no overflows occur. Non-destructive
! underflows are permitted. Underflows and overflows do not occur in the
! computation of the unscaled sum of squares for the intermediate
! components. The definitions of small, intermediate and large components
! depend on two constants, rdwarf and rgiant. The main restrictions on
! these constants are that rdwarf**2 not underflow and rgiant**2 not
! overflow. The constants given here are suitable for every known computer.
! the function statement is
! REAL (dp) function enorm(n,x)
! where
! n is a positive integer input variable.
! x is an input array of length n.
! subprograms called
! fortran-supplied ... ABS,SQRT
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
! **********
INTEGER :: i
REAL (dp) :: agiant, floatn, s1, s2, s3, xabs, x1max, x3max
REAL (dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp, rdwarf = 3.834E-20_dp, &
rgiant = 1.304E+19_dp
s1 = zero
s2 = zero
s3 = zero
x1max = zero
x3max = zero
floatn = n
agiant = rgiant/floatn
DO i = 1, n
xabs = ABS(x(i))
IF (xabs > rdwarf .AND. xabs < agiant) GO TO 70
IF (xabs <= rdwarf) GO TO 30
! sum for large components.
IF (xabs <= x1max) GO TO 10
s1 = one + s1*(x1max/xabs)**2
x1max = xabs
GO TO 20
10 s1 = s1 + (xabs/x1max)**2
20 GO TO 60
! sum for small components.
30 IF (xabs <= x3max) GO TO 40
s3 = one + s3*(x3max/xabs)**2
x3max = xabs
GO TO 60
40 IF (xabs /= zero) s3 = s3 + (xabs/x3max)**2
60 CYCLE
! sum for intermediate components.
70 s2 = s2 + xabs**2
END DO
! calculation of norm.
IF (s1 == zero) GO TO 100
fn_val = x1max*SQRT(s1 + (s2/x1max)/x1max)
GO TO 120
100 IF (s2 == zero) GO TO 110
IF (s2 >= x3max) fn_val = SQRT(s2*(one + (x3max/s2)*(x3max*s3)))
IF (s2 < x3max) fn_val = SQRT(x3max*((s2/x3max) + (x3max*s3)))
GO TO 120
110 fn_val = x3max*SQRT(s3)
120 RETURN
! last card of function enorm.
END FUNCTION enorm
! fdjac2
! MINPACK Subroutine (http://www.netlib.org/minpack)
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au
SUBROUTINE fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn)
! Code converted using TO_F90 by Alan Miller
! Date: 1999-12-09 Time: 12:45:44
! N.B. Arguments LDFJAC & WA have been removed.
INTEGER, PARAMETER :: dp = dp_kind
INTEGER, INTENT(IN) :: m
INTEGER, INTENT(IN) :: n
REAL (dp), INTENT(IN OUT) :: x(n)
REAL (dp), INTENT(IN) :: fvec(m)
REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n)
INTEGER, INTENT(IN OUT) :: iflag
REAL (dp), INTENT(IN) :: epsfcn
INTERFACE
SUBROUTINE fcn(m, n, x, fvec, iflag)
use fvn_common
INTEGER(ip_kind), INTENT(IN) :: m, n
REAL (dp_kind), INTENT(IN) :: x(:)
REAL (dp_kind), INTENT(IN OUT) :: fvec(:)
INTEGER(ip_kind), INTENT(IN OUT) :: iflag
END SUBROUTINE fcn
END INTERFACE
! **********
! subroutine fdjac2
! this subroutine computes a forward-difference approximation
! to the m by n jacobian matrix associated with a specified
! problem of m functions in n variables.
! the subroutine statement is
! subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
! where
! fcn is the name of the user-supplied subroutine which calculates the
! functions. fcn must be declared in an external statement in the user
! calling program, and should be written as follows.
! subroutine fcn(m,n,x,fvec,iflag)
! integer m,n,iflag
! REAL (dp) x(n),fvec(m)
! ----------
! calculate the functions at x and
! return this vector in fvec.
! ----------
! return
! end
! the value of iflag should not be changed by fcn unless
! the user wants to terminate execution of fdjac2.
! in this case set iflag to a negative integer.
! m is a positive integer input variable set to the number of functions.
! n is a positive integer input variable set to the number of variables.
! n must not exceed m.
! x is an input array of length n.
! fvec is an input array of length m which must contain the
! functions evaluated at x.
! fjac is an output m by n array which contains the
! approximation to the jacobian matrix evaluated at x.
! ldfjac is a positive integer input variable not less than m
! which specifies the leading dimension of the array fjac.
! iflag is an integer variable which can be used to terminate
! the execution of fdjac2. see description of fcn.
! epsfcn is an input variable used in determining a suitable step length
! for the forward-difference approximation. This approximation assumes
! that the relative errors in the functions are of the order of epsfcn.
! If epsfcn is less than the machine precision, it is assumed that the
! relative errors in the functions are of the order of the machine
! precision.
! wa is a work array of length m.
! subprograms called
! user-supplied ...... fcn
! minpack-supplied ... dpmpar
! fortran-supplied ... ABS,MAX,SQRT
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
! **********
INTEGER :: j
REAL (dp) :: eps, epsmch, h, temp, wa(m)
REAL (dp), PARAMETER :: zero = 0.0_dp
! epsmch is the machine precision.
epsmch = EPSILON(zero)
eps = SQRT(MAX(epsfcn, epsmch))
DO j = 1, n
temp = x(j)
h = eps*ABS(temp)
IF (h == zero) h = eps
x(j) = temp + h
CALL fcn(m, n, x, wa, iflag)
IF (iflag < 0) EXIT
x(j) = temp
fjac(1:m,j) = (wa(1:m) - fvec(1:m))/h
END DO
RETURN
! last card of subroutine fdjac2.
END SUBROUTINE fdjac2
end module fvn_misc