umfpack_report.m
15.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
function umfpack_report (Control, Info)
%UMFPACK_REPORT prints optional control settings and statistics
%
% Example:
% umfpack_report (Control, Info) ;
%
% Prints the current Control settings for umfpack2, and the statistical
% information returned by umfpack2 in the Info array. If Control is
% an empty matrix, then the default control settings are printed.
%
% Control is 20-by-1, and Info is 90-by-1. Not all entries are used.
%
% Alternative usages:
%
% umfpack_report ([ ], Info) ; print the default control parameters
% and the Info array.
% umfpack_report (Control) ; print the control parameters only.
% umfpack_report ; print the default control parameters
% and an empty Info array.
%
% See also umfpack, umfpack2, umfpack_make, umfpack_details,
% umfpack_demo, and umfpack_simple.
% Copyright 1995-2007 by Timothy A. Davis.
%-------------------------------------------------------------------------------
% get inputs, use defaults if input arguments not present
%-------------------------------------------------------------------------------
% The contents of Control and Info are defined in umfpack.h
if (nargin < 1)
Control = [] ;
end
if (nargin < 2)
Info = [] ;
end
if (isempty (Control))
Control = umfpack2 ;
end
if (isempty (Info))
Info = [ 0 (-ones (1, 89)) ] ;
end
%-------------------------------------------------------------------------------
% control settings
%-------------------------------------------------------------------------------
fprintf ('\nUMFPACK: Control settings:\n\n') ;
fprintf (' Control (1): print level: %d\n', Control (1)) ;
fprintf (' Control (2): dense row parameter: %g\n', Control (2)) ;
fprintf (' "dense" rows have > max (16, (%g)*16*sqrt(n_col)) entries\n', Control (2)) ;
fprintf (' Control (3): dense column parameter: %g\n', Control (3)) ;
fprintf (' "dense" columns have > max (16, (%g)*16*sqrt(n_row)) entries\n', Control (3)) ;
fprintf (' Control (4): pivot tolerance: %g\n', Control (4)) ;
fprintf (' Control (5): max block size for dense matrix kernels: %d\n', Control (5)) ;
prstrat (' Control (6): strategy: %g ', Control (6)) ;
fprintf (' Control (7): initial allocation ratio: %g\n', Control (7)) ;
fprintf (' Control (8): max iterative refinement steps: %d\n', Control (8)) ;
fprintf (' Control (13): 2-by-2 pivot tolerance: %g\n', Control (13)) ;
fprintf (' Control (14): Q fixed during numeric factorization: %g ', Control (14)) ;
if (Control (14) > 0)
fprintf ('(yes)\n') ;
elseif (Control (14) < 0)
fprintf ('(no)\n') ;
else
fprintf ('(auto)\n') ;
end
fprintf (' Control (15): AMD dense row/column parameter: %g\n', Control (15)) ;
fprintf (' "dense" rows/columns in A+A'' have > max (16, (%g)*sqrt(n)) entries.\n', Control (15)) ;
fprintf (' Only used if the AMD ordering is used.\n') ;
fprintf (' Control (16): diagonal pivot tolerance: %g\n', Control (16)) ;
fprintf (' Only used if diagonal pivoting is attempted.\n') ;
fprintf (' Control (17): scaling option: %g ', Control (17)) ;
if (Control (17) == 0)
fprintf ('(none)\n') ;
elseif (Control (17) == 2)
fprintf ('(scale the matrix by\n') ;
fprintf (' dividing each row by max. abs. value in each row)\n') ;
else
fprintf ('(scale the matrix by\n') ;
fprintf (' dividing each row by sum of abs. values in each row)\n') ;
end
fprintf (' Control (18): frontal matrix allocation ratio: %g\n', Control (18)) ;
fprintf (' Control (19): drop tolerance: %g\n', Control (19)) ;
fprintf (' Control (20): AMD and COLAMD aggressive absorption: %g ', Control (20)) ;
yes_no (Control (20)) ;
% compile-time options:
fprintf ('\n The following options can only be changed at compile-time:\n') ;
if (Control (9) == 1)
fprintf (' Control (9): compiled to use the BLAS\n') ;
else
fprintf (' Control (9): compiled without the BLAS\n') ;
fprintf (' (you will not get the best possible performance)\n') ;
end
if (Control (10) == 1)
fprintf (' Control (10): compiled for MATLAB\n') ;
elseif (Control (10) == 2)
fprintf (' Control (10): compiled for MATLAB\n') ;
else
fprintf (' Control (10): not compiled for MATLAB\n') ;
fprintf (' Printing will be in terms of 0-based matrix indexing,\n') ;
fprintf (' not 1-based as is expected in MATLAB. Diary output may\n') ;
fprintf (' not be properly recorded.\n') ;
end
if (Control (11) == 2)
fprintf (' Control (11): uses POSIX times ( ) to get CPU time and wallclock time.\n') ;
elseif (Control (11) == 1)
fprintf (' Control (11): uses getrusage to get CPU time.\n') ;
else
fprintf (' Control (11): uses ANSI C clock to get CPU time.\n') ;
fprintf (' The CPU time may wrap around, type "help cputime".\n') ;
end
if (Control (12) == 1)
fprintf (' Control (12): compiled with debugging enabled\n') ;
fprintf (' ###########################################\n') ;
fprintf (' ### This will be exceedingly slow! ########\n') ;
fprintf (' ###########################################\n') ;
else
fprintf (' Control (12): compiled for normal operation (no debugging)\n') ;
end
%-------------------------------------------------------------------------------
% Info:
%-------------------------------------------------------------------------------
if (nargin == 1)
return
end
status = Info (1) ;
fprintf ('\nUMFPACK status: Info (1): %d, ', status) ;
if (status == 0)
fprintf ('OK\n') ;
elseif (status == 1)
fprintf ('WARNING matrix is singular\n') ;
elseif (status == -1)
fprintf ('ERROR out of memory\n') ;
elseif (status == -3)
fprintf ('ERROR numeric LU factorization is invalid\n') ;
elseif (status == -4)
fprintf ('ERROR symbolic LU factorization is invalid\n') ;
elseif (status == -5)
fprintf ('ERROR required argument is missing\n') ;
elseif (status == -6)
fprintf ('ERROR n <= 0\n') ;
elseif (status <= -7 & status >= -12 | status == -14) %#ok
fprintf ('ERROR matrix A is corrupted\n') ;
elseif (status == -13)
fprintf ('ERROR invalid system\n') ;
elseif (status == -15)
fprintf ('ERROR invalid permutation\n') ;
elseif (status == -911)
fprintf ('ERROR internal error!\n') ;
fprintf ('Please report this error to Tim Davis (davis@cise.ufl.edu)\n') ;
else
fprintf ('ERROR unrecognized error. Info array corrupted\n') ;
end
fprintf (' (a -1 means the entry has not been computed):\n') ;
fprintf ('\n Basic statistics:\n') ;
fprintf (' Info (2): %d, # of rows of A\n', Info (2)) ;
fprintf (' Info (17): %d, # of columns of A\n', Info (17)) ;
fprintf (' Info (3): %d, nnz (A)\n', Info (3)) ;
fprintf (' Info (4): %d, Unit size, in bytes, for memory usage reported below\n', Info (4)) ;
fprintf (' Info (5): %d, size of int (in bytes)\n', Info (5)) ;
fprintf (' Info (6): %d, size of UF_long (in bytes)\n', Info (6)) ;
fprintf (' Info (7): %d, size of pointer (in bytes)\n', Info (7)) ;
fprintf (' Info (8): %d, size of numerical entry (in bytes)\n', Info (8)) ;
fprintf ('\n Pivots with zero Markowitz cost removed to obtain submatrix S:\n') ;
fprintf (' Info (57): %d, # of pivots with one entry in pivot column\n', Info (57)) ;
fprintf (' Info (58): %d, # of pivots with one entry in pivot row\n', Info (58)) ;
fprintf (' Info (59): %d, # of rows/columns in submatrix S (if square)\n', Info (59)) ;
fprintf (' Info (60): ') ;
if (Info (60) > 0)
fprintf ('submatrix S square and diagonal preserved\n') ;
elseif (Info (60) == 0)
fprintf ('submatrix S not square or diagonal not preserved\n') ;
else
fprintf ('\n') ;
end
fprintf (' Info (9): %d, # of "dense" rows in S\n', Info (9)) ;
fprintf (' Info (10): %d, # of empty rows in S\n', Info (10)) ;
fprintf (' Info (11): %d, # of "dense" columns in S\n', Info (11)) ;
fprintf (' Info (12): %d, # of empty columns in S\n', Info (12)) ;
fprintf (' Info (34): %g, symmetry of pattern of S\n', Info (34)) ;
fprintf (' Info (35): %d, # of off-diagonal nonzeros in S+S''\n', Info (35)) ;
fprintf (' Info (36): %d, nnz (diag (S))\n', Info (36)) ;
fprintf ('\n 2-by-2 pivoting to place large entries on diagonal:\n') ;
fprintf (' Info (52): %d, # of small diagonal entries of S\n', Info (52)) ;
fprintf (' Info (53): %d, # of unmatched small diagonal entries\n', Info (53)) ;
fprintf (' Info (54): %g, symmetry of P2*S\n', Info (54)) ;
fprintf (' Info (55): %d, # of off-diagonal entries in (P2*S)+(P2*S)''\n', Info (55)) ;
fprintf (' Info (56): %d, nnz (diag (P2*S))\n', Info (56)) ;
fprintf ('\n AMD results, for strict diagonal pivoting:\n') ;
fprintf (' Info (37): %d, est. nz in L and U\n', Info (37)) ;
fprintf (' Info (38): %g, est. flop count\n', Info (38)) ;
fprintf (' Info (39): %g, # of "dense" rows in S+S''\n', Info (39)) ;
fprintf (' Info (40): %g, est. max. nz in any column of L\n', Info (40)) ;
fprintf ('\n Final strategy selection, based on the analysis above:\n') ;
prstrat (' Info (19): %d, strategy used ', Info (19)) ;
fprintf (' Info (20): %d, ordering used ', Info (20)) ;
if (Info (20) == 0)
fprintf ('(COLAMD on A)\n') ;
elseif (Info (20) == 1)
fprintf ('(AMD on A+A'')\n') ;
elseif (Info (20) == 2)
fprintf ('(provided by user)\n') ;
else
fprintf ('(undefined ordering option)\n') ;
end
fprintf (' Info (32): %d, Q fixed during numeric factorization: ', Info (32)) ;
yes_no (Info (32)) ;
fprintf (' Info (33): %d, prefer diagonal pivoting: ', Info (33)) ;
yes_no (Info (33)) ;
fprintf ('\n symbolic analysis time and memory usage:\n') ;
fprintf (' Info (13): %d, defragmentations during symbolic analysis\n', Info (13)) ;
fprintf (' Info (14): %d, memory used during symbolic analysis (Units)\n', Info (14)) ;
fprintf (' Info (15): %d, final size of symbolic factors (Units)\n', Info (15)) ;
fprintf (' Info (16): %.2f, symbolic analysis CPU time (seconds)\n', Info (16)) ;
fprintf (' Info (18): %.2f, symbolic analysis wall clock time (seconds)\n', Info (18)) ;
fprintf ('\n Estimates computed in the symbolic analysis:\n') ;
fprintf (' Info (21): %d, est. size of LU factors (Units)\n', Info (21)) ;
fprintf (' Info (22): %d, est. total peak memory usage (Units)\n', Info (22)) ;
fprintf (' Info (23): %d, est. factorization flop count\n', Info (23)) ;
fprintf (' Info (24): %d, est. nnz (L)\n', Info (24)) ;
fprintf (' Info (25): %d, est. nnz (U)\n', Info (25)) ;
fprintf (' Info (26): %d, est. initial size, variable-part of LU (Units)\n', Info (26)) ;
fprintf (' Info (27): %d, est. peak size, of variable-part of LU (Units)\n', Info (27)) ;
fprintf (' Info (28): %d, est. final size, of variable-part of LU (Units)\n', Info (28)) ;
fprintf (' Info (29): %d, est. max frontal matrix size (# of entries)\n', Info (29)) ;
fprintf (' Info (30): %d, est. max # of rows in frontal matrix\n', Info (30)) ;
fprintf (' Info (31): %d, est. max # of columns in frontal matrix\n', Info (31)) ;
fprintf ('\n Computed in the numeric factorization (estimates shown above):\n') ;
fprintf (' Info (41): %d, size of LU factors (Units)\n', Info (41)) ;
fprintf (' Info (42): %d, total peak memory usage (Units)\n', Info (42)) ;
fprintf (' Info (43): %d, factorization flop count\n', Info (43)) ;
fprintf (' Info (44): %d, nnz (L)\n', Info (44)) ;
fprintf (' Info (45): %d, nnz (U)\n', Info (45)) ;
fprintf (' Info (46): %d, initial size of variable-part of LU (Units)\n', Info (46)) ;
fprintf (' Info (47): %d, peak size of variable-part of LU (Units)\n', Info (47)) ;
fprintf (' Info (48): %d, final size of variable-part of LU (Units)\n', Info (48)) ;
fprintf (' Info (49): %d, max frontal matrix size (# of numerical entries)\n', Info (49)) ;
fprintf (' Info (50): %d, max # of rows in frontal matrix\n', Info (50)) ;
fprintf (' Info (51): %d, max # of columns in frontal matrix\n', Info (51)) ;
fprintf ('\n Computed in the numeric factorization (no estimates computed a priori):\n') ;
fprintf (' Info (61): %d, defragmentations during numeric factorization\n', Info (61)) ;
fprintf (' Info (62): %d, reallocations during numeric factorization\n', Info (62)) ;
fprintf (' Info (63): %d, costly reallocations during numeric factorization\n', Info (63)) ;
fprintf (' Info (64): %d, integer indices in compressed pattern of L and U\n', Info (64)) ;
fprintf (' Info (65): %d, numerical values stored in L and U\n', Info (65)) ;
fprintf (' Info (66): %.2f, numeric factorization CPU time (seconds)\n', Info (66)) ;
fprintf (' Info (76): %.2f, numeric factorization wall clock time (seconds)\n', Info (76)) ;
if (Info (66) > 0.05 & Info (43) > 0) %#ok
fprintf (' mflops in numeric factorization phase: %.2f\n', 1e-6 * Info (43) / Info (66)) ;
end
fprintf (' Info (67): %d, nnz (diag (U))\n', Info (67)) ;
fprintf (' Info (68): %g, reciprocal condition number estimate\n', Info (68)) ;
fprintf (' Info (69): %g, matrix was ', Info (69)) ;
if (Info (69) == 0)
fprintf ('not scaled\n') ;
elseif (Info (69) == 2)
fprintf ('scaled (row max)\n') ;
else
fprintf ('scaled (row sum)\n') ;
end
fprintf (' Info (70): %g, min. scale factor of rows of A\n', Info (70)) ;
fprintf (' Info (71): %g, max. scale factor of rows of A\n', Info (71)) ;
fprintf (' Info (72): %g, min. abs. on diagonal of U\n', Info (72)) ;
fprintf (' Info (73): %g, max. abs. on diagonal of U\n', Info (73)) ;
fprintf (' Info (74): %g, initial allocation parameter used\n', Info (74)) ;
fprintf (' Info (75): %g, # of forced updates due to frontal growth\n', Info (75)) ;
fprintf (' Info (77): %d, # of off-diaogonal pivots\n', Info (77)) ;
fprintf (' Info (78): %d, nnz (L), if no small entries dropped\n', Info (78)) ;
fprintf (' Info (79): %d, nnz (U), if no small entries dropped\n', Info (79)) ;
fprintf (' Info (80): %d, # of small entries dropped\n', Info (80)) ;
fprintf ('\n Computed in the solve step:\n') ;
fprintf (' Info (81): %d, iterative refinement steps taken\n', Info (81)) ;
fprintf (' Info (82): %d, iterative refinement steps attempted\n', Info (82)) ;
fprintf (' Info (83): %g, omega(1), sparse-backward error estimate\n', Info (83)) ;
fprintf (' Info (84): %g, omega(2), sparse-backward error estimate\n', Info (84)) ;
fprintf (' Info (85): %d, solve flop count\n', Info (85)) ;
fprintf (' Info (86): %.2f, solve CPU time (seconds)\n', Info (86)) ;
fprintf (' Info (87): %.2f, solve wall clock time (seconds)\n', Info (87)) ;
fprintf ('\n Info (88:90): unused\n\n') ;
%-------------------------------------------------------------------------------
function prstrat (fmt, strategy)
% prstrat print the ordering strategy
fprintf (fmt, strategy) ;
if (strategy == 1)
fprintf ('(unsymmetric)\n') ;
fprintf (' Q = COLAMD (A), Q refined during numerical\n') ;
fprintf (' factorization, and no attempt at diagonal pivoting.\n') ;
elseif (strategy == 2)
fprintf ('(symmetric, with 2-by-2 pivoting)\n') ;
fprintf (' P2 = row permutation to place large values on the diagonal\n') ;
fprintf (' Q = AMD (P2*A+(P2*A)''), Q not refined during numeric factorization,\n') ;
fprintf (' and diagonal pivoting attempted.\n') ;
elseif (strategy == 3)
fprintf ('(symmetric)\n') ;
fprintf (' Q = AMD (A+A''), Q not refined during numeric factorization,\n') ;
fprintf (' and diagonal pivoting (P=Q'') attempted.\n') ;
else
% strategy = 0 ;
fprintf ('(auto)\n') ;
end
%-------------------------------------------------------------------------------
function yes_no (s)
% yes_no print yes or no
if (s == 0)
fprintf ('(no)\n') ;
else
fprintf ('(yes)\n') ;
end