umf_2by2.c
23.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/* ========================================================================== */
/* === UMF_2by2 ============================================================= */
/* ========================================================================== */
/* -------------------------------------------------------------------------- */
/* UMFPACK Copyright (c) Timothy A. Davis, CISE, */
/* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack */
/* -------------------------------------------------------------------------- */
/* Not user-callable. Computes a row permutation P so that A (P,:) has a
* mostly zero-free diagonal, with large entries on the diagonal. It does this
* by swapping pairs of rows. Once a row is swapped it is not swapped again.
* This is a "cheap" assignment, not a complete max. transversal or
* bi-partite matching. It is only a partial matching. For most matrices
* for which this algorithm is used, however, the matching is complete (in
* UMFPACK this algorithm is used for matrices with roughly symmetric pattern,
* and these matrices typically have a mostly-zero-free diagonal to begin with.
* This algorithm is not meant to be used on arbitrary unsymmetric matrices
* (for those matrices, UMFPACK uses its unsymmetric strategy and does not
* use this algorithm).
*
* Even if incomplete, the matching is usually good enough for UMFPACK's
* symmetric strategy, which can easily pivot off the diagonal during numerical
* factorization if it finds a weak diagonal entry.
*
* The algorithms works as follows. First, row scaling factors are computed,
* and weak diagonal entries are found. A weak entry is a value A(k,k) whose
* absolute value is < tol * max (abs (A (:,k))). For each weak diagonal k in
* increasing order of degree in A+A', the algorithm finds an index j such
* that A (k,j) and A (j,k) are "large" (greater than or equal to tol times
* the largest magnitude in their columns). Row j must also not have already
* been swapped. Rows j and k are then swapped. If we come to a diagonal k
* that has already been swapped, then it is not modified. This case occurs
* for "oxo" pivots:
*
* k j
* k o x
* j x o
*
* which are swapped once to obtain
*
* k j
* j x o
* k o x
*
* These two rows are then not modified any further (A (j,j) was weak, but
* after one swap the permuted the jth diagonal entry is strong.
*
* This algorithm only works on square matrices (real, complex, or pattern-
* only). The numerical values are optional. If not present, each entry is
* treated as numerically acceptable (tol is ignored), and the algorithm
* operates by just using the pattern, not the values. Each column of the
* input matrix A must be sorted, with no duplicate entries. The matrix A
* can be optionally scaled prior to the numerical test. The matrix A (:,P)
* has the same diagonal entries as A (:,P), except in different order. So
* the output permutation P can also be used to swap the columns of A.
*/
#include "umf_internal.h"
#ifndef NDEBUG
#include "umf_is_permutation.h"
#endif
/* x is "weak" if it is less than ctol. If x or ctol are NaN, then define
* x as not "weak". This is a rather arbitrary choice, made to simplify the
* computation. On all but a PC with Microsoft C/C++, this test becomes
* ((x) - ctol < 0). */
#define WEAK(x,ctol) (SCALAR_IS_LTZERO ((x)-(ctol)))
/* For flag value in Next [col] */
#define IS_WEAK -2
/* ========================================================================== */
/* === two_by_two =========================================================== */
/* ========================================================================== */
PRIVATE Int two_by_two /* returns # unmatched weak diagonals */
(
/* input, not modified */
Int n2, /* C is n2-by-n2 */
Int Cp [ ], /* size n2+1, column pointers for C */
Int Ci [ ], /* size snz = Cp [n2], row indices for C */
Int Degree [ ], /* Degree [i] = degree of row i of C+C' */
/* input, not defined on output */
Int Next [ ], /* Next [k] == IS_WEAK if k is a weak diagonal */
Int Ri [ ], /* Ri [i] is the length of row i in C */
/* output, not defined on input */
Int P [ ],
/* workspace, not defined on input or output */
Int Rp [ ],
Int Head [ ]
)
{
Int deg, newcol, row, col, p, p2, unmatched, k, j, j2, j_best, best, jdiff,
jdiff_best, jdeg, jdeg_best, cp, cp1, cp2, rp, rp1, rp2, maxdeg,
mindeg ;
/* ---------------------------------------------------------------------- */
/* place weak diagonals in the degree lists */
/* ---------------------------------------------------------------------- */
for (deg = 0 ; deg < n2 ; deg++)
{
Head [deg] = EMPTY ;
}
maxdeg = 0 ;
mindeg = Int_MAX ;
for (newcol = n2-1 ; newcol >= 0 ; newcol--)
{
if (Next [newcol] == IS_WEAK)
{
/* add this column to the list of weak nodes */
DEBUGm1 ((" newcol "ID" has a weak diagonal deg "ID"\n",
newcol, deg)) ;
deg = Degree [newcol] ;
ASSERT (deg >= 0 && deg < n2) ;
Next [newcol] = Head [deg] ;
Head [deg] = newcol ;
maxdeg = MAX (maxdeg, deg) ;
mindeg = MIN (mindeg, deg) ;
}
}
/* ---------------------------------------------------------------------- */
/* construct R = C' (C = strong entries in pruned submatrix) */
/* ---------------------------------------------------------------------- */
/* Ri [0..n2-1] is the length of each row of R */
/* use P as temporary pointer into the row form of R [ */
Rp [0] = 0 ;
for (row = 0 ; row < n2 ; row++)
{
Rp [row+1] = Rp [row] + Ri [row] ;
P [row] = Rp [row] ;
}
/* Ri no longer needed for row counts */
/* all entries in C are strong */
for (col = 0 ; col < n2 ; col++)
{
p2 = Cp [col+1] ;
for (p = Cp [col] ; p < p2 ; p++)
{
/* place the column index in row = Ci [p] */
Ri [P [Ci [p]]++] = col ;
}
}
/* contents of P no longer needed ] */
#ifndef NDEBUG
DEBUG0 (("==================R: row form of strong entries in A:\n")) ;
UMF_dump_col_matrix ((double *) NULL,
#ifdef COMPLEX
(double *) NULL,
#endif
Ri, Rp, n2, n2, Rp [n2]) ;
#endif
ASSERT (AMD_valid (n2, n2, Rp, Ri) == AMD_OK) ;
/* ---------------------------------------------------------------------- */
/* for each weak diagonal, find a pair of strong off-diagonal entries */
/* ---------------------------------------------------------------------- */
for (row = 0 ; row < n2 ; row++)
{
P [row] = EMPTY ;
}
unmatched = 0 ;
best = EMPTY ;
jdiff = EMPTY ;
jdeg = EMPTY ;
for (deg = mindeg ; deg <= maxdeg ; deg++)
{
/* find the next weak diagonal of lowest degree */
DEBUGm2 (("---------------------------------- Deg: "ID"\n", deg)) ;
for (k = Head [deg] ; k != EMPTY ; k = Next [k])
{
DEBUGm2 (("k: "ID"\n", k)) ;
if (P [k] == EMPTY)
{
/* C (k,k) is a weak diagonal entry. Find an index j != k such
* that C (j,k) and C (k,j) are both strong, and also such
* that Degree [j] is minimized. In case of a tie, pick
* the smallest index j. C and R contain the pattern of
* strong entries only.
*
* Note that row k of R and column k of C are both sorted. */
DEBUGm4 (("===== Weak diagonal k = "ID"\n", k)) ;
DEBUG1 (("Column k of C:\n")) ;
for (p = Cp [k] ; p < Cp [k+1] ; p++)
{
DEBUG1 ((" "ID": deg "ID"\n", Ci [p], Degree [Ci [p]]));
}
DEBUG1 (("Row k of R (strong entries only):\n")) ;
for (p = Rp [k] ; p < Rp [k+1] ; p++)
{
DEBUG1 ((" "ID": deg "ID"\n", Ri [p], Degree [Ri [p]]));
}
/* no (C (k,j), C (j,k)) pair exists yet */
j_best = EMPTY ;
jdiff_best = Int_MAX ;
jdeg_best = Int_MAX ;
/* pointers into column k (including values) */
cp1 = Cp [k] ;
cp2 = Cp [k+1] ;
cp = cp1 ;
/* pointers into row k (strong entries only, no values) */
rp1 = Rp [k] ;
rp2 = Rp [k+1] ;
rp = rp1 ;
/* while entries searched in column k and row k */
while (TRUE)
{
if (cp >= cp2)
{
/* no more entries in this column */
break ;
}
/* get C (j,k), which is strong */
j = Ci [cp] ;
if (rp >= rp2)
{
/* no more entries in this column */
break ;
}
/* get R (k,j2), which is strong */
j2 = Ri [rp] ;
if (j < j2)
{
/* C (j,k) is strong, but R (k,j) is not strong */
cp++ ;
continue ;
}
if (j2 < j)
{
/* C (k,j2) is strong, but R (j2,k) is not strong */
rp++ ;
continue ;
}
/* j == j2: C (j,k) is strong and R (k,j) is strong */
best = FALSE ;
if (P [j] == EMPTY)
{
/* j has not yet been matched */
jdeg = Degree [j] ;
jdiff = SCALAR_ABS (k-j) ;
DEBUG1 (("Try candidate j "ID" deg "ID" diff "ID
"\n", j, jdeg, jdiff)) ;
if (j_best == EMPTY)
{
/* this is the first candidate seen */
DEBUG1 ((" first\n")) ;
best = TRUE ;
}
else
{
if (jdeg < jdeg_best)
{
/* the degree of j is best seen so far. */
DEBUG1 ((" least degree\n")) ;
best = TRUE ;
}
else if (jdeg == jdeg_best)
{
/* degree of j and j_best are the same */
/* tie break by nearest node number */
if (jdiff < jdiff_best)
{
DEBUG1 ((" tie degree, closer\n")) ;
best = TRUE ;
}
else if (jdiff == jdiff_best)
{
/* |j-k| = |j_best-k|. For any given k
* and j_best there is only one other j
* than can be just as close as j_best.
* Tie break by picking the smaller of
* j and j_best */
DEBUG1 ((" tie degree, as close\n"));
best = j < j_best ;
}
}
else
{
/* j has higher degree than best so far */
best = FALSE ;
}
}
}
if (best)
{
/* j is best match for k */
/* found a strong pair, A (j,k) and A (k,j) */
DEBUG1 ((" --- Found pair k: "ID" j: " ID
" jdeg: "ID" jdiff: "ID"\n",
k, j, jdeg, jdiff)) ;
ASSERT (jdiff != EMPTY) ;
ASSERT (jdeg != EMPTY) ;
j_best = j ;
jdeg_best = jdeg ;
jdiff_best = jdiff ;
}
/* get the next entries in column k and row k */
cp++ ;
rp++ ;
}
/* save the pair (j,k), if we found one */
if (j_best != EMPTY)
{
j = j_best ;
DEBUGm4 ((" --- best pair j: "ID" for k: "ID"\n", j, k)) ;
P [k] = j ;
P [j] = k ;
}
else
{
/* no match was found for k */
unmatched++ ;
}
}
}
}
/* ---------------------------------------------------------------------- */
/* finalize the row permutation, P */
/* ---------------------------------------------------------------------- */
for (k = 0 ; k < n2 ; k++)
{
if (P [k] == EMPTY)
{
P [k] = k ;
}
}
ASSERT (UMF_is_permutation (P, Rp, n2, n2)) ;
return (unmatched) ;
}
/* ========================================================================== */
/* === UMF_2by2 ============================================================= */
/* ========================================================================== */
GLOBAL void UMF_2by2
(
/* input, not modified: */
Int n, /* A is n-by-n */
const Int Ap [ ], /* size n+1 */
const Int Ai [ ], /* size nz = Ap [n] */
const double Ax [ ], /* size nz if present */
#ifdef COMPLEX
const double Az [ ], /* size nz if present */
#endif
double tol, /* tolerance for determining whether or not an
* entry is numerically acceptable. If tol <= 0
* then all numerical values ignored. */
Int scale, /* scaling to perform (none, sum, or max) */
Int Cperm1 [ ], /* singleton permutations */
#ifndef NDEBUG
Int Rperm1 [ ], /* not needed, since Rperm1 = Cperm1 for submatrix S */
#endif
Int InvRperm1 [ ], /* inverse of Rperm1 */
Int n1, /* number of singletons */
Int nempty, /* number of empty rows/cols */
/* input, contents undefined on output: */
Int Degree [ ], /* Degree [j] is the number of off-diagonal
* entries in row/column j of S+S', where
* where S = A (Cperm1 [n1..], Rperm1 [n1..]).
* Note that S is not used, nor formed. */
/* output: */
Int P [ ], /* P [k] = i means original row i is kth row in S(P,:)
* where S = A (Cperm1 [n1..], Rperm1 [n1..]) */
Int *p_nweak,
Int *p_unmatched,
/* workspace (not defined on input or output): */
Int Ri [ ], /* of size >= max (nz, n) */
Int Rp [ ], /* of size n+1 */
double Rs [ ], /* of size n if present. Rs = sum (abs (A),2) or
* max (abs (A),2), the sum or max of each row. Unused
* if scale is equal to UMFPACK_SCALE_NONE. */
Int Head [ ], /* of size n. Head pointers for bucket sort */
Int Next [ ], /* of size n. Next pointers for bucket sort */
Int Ci [ ], /* size nz */
Int Cp [ ] /* size n+1 */
)
{
/* ---------------------------------------------------------------------- */
/* local variables */
/* ---------------------------------------------------------------------- */
Entry aij ;
double cmax, value, rs, ctol, dvalue ;
Int k, p, row, col, do_values, do_sum, do_max, do_scale, nweak, weak,
p1, p2, dfound, unmatched, n2, oldrow, newrow, oldcol, newcol, pp ;
#ifdef COMPLEX
Int split = SPLIT (Az) ;
#endif
#ifndef NRECIPROCAL
Int do_recip = FALSE ;
#endif
#ifndef NDEBUG
/* UMF_debug += 99 ; */
DEBUGm3 (("\n ==================================UMF_2by2: tol %g\n", tol)) ;
ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ;
for (k = n1 ; k < n - nempty ; k++)
{
ASSERT (Cperm1 [k] == Rperm1 [k]) ;
}
#endif
/* ---------------------------------------------------------------------- */
/* determine scaling options */
/* ---------------------------------------------------------------------- */
/* use the values, but only if they are present */
/* ignore the values if tol <= 0 */
do_values = (tol > 0) && (Ax != (double *) NULL) ;
if (do_values && (Rs != (double *) NULL))
{
do_sum = (scale == UMFPACK_SCALE_SUM) ;
do_max = (scale == UMFPACK_SCALE_MAX) ;
}
else
{
/* no scaling */
do_sum = FALSE ;
do_max = FALSE ;
}
do_scale = do_max || do_sum ;
DEBUGm3 (("do_values "ID" do_sum "ID" do_max "ID" do_scale "ID"\n",
do_values, do_sum, do_max, do_scale)) ;
/* ---------------------------------------------------------------------- */
/* compute the row scaling, if requested */
/* ---------------------------------------------------------------------- */
/* see also umf_kernel_init */
if (do_scale)
{
#ifndef NRECIPROCAL
double rsmin ;
#endif
for (row = 0 ; row < n ; row++)
{
Rs [row] = 0.0 ;
}
for (col = 0 ; col < n ; col++)
{
p2 = Ap [col+1] ;
for (p = Ap [col] ; p < p2 ; p++)
{
row = Ai [p] ;
ASSIGN (aij, Ax, Az, p, split) ;
APPROX_ABS (value, aij) ;
rs = Rs [row] ;
if (!SCALAR_IS_NAN (rs))
{
if (SCALAR_IS_NAN (value))
{
/* if any entry in a row is NaN, then the scale factor
* for the row is NaN. It will be set to 1 later. */
Rs [row] = value ;
}
else if (do_max)
{
Rs [row] = MAX (rs, value) ;
}
else
{
Rs [row] += value ;
}
}
}
}
#ifndef NRECIPROCAL
rsmin = Rs [0] ;
if (SCALAR_IS_ZERO (rsmin) || SCALAR_IS_NAN (rsmin))
{
rsmin = 1.0 ;
}
#endif
for (row = 0 ; row < n ; row++)
{
/* do not scale an empty row, or a row with a NaN */
rs = Rs [row] ;
if (SCALAR_IS_ZERO (rs) || SCALAR_IS_NAN (rs))
{
Rs [row] = 1.0 ;
}
#ifndef NRECIPROCAL
rsmin = MIN (rsmin, Rs [row]) ;
#endif
}
#ifndef NRECIPROCAL
/* multiply by the reciprocal if Rs is not too small */
do_recip = (rsmin >= RECIPROCAL_TOLERANCE) ;
if (do_recip)
{
/* invert the scale factors */
for (row = 0 ; row < n ; row++)
{
Rs [row] = 1.0 / Rs [row] ;
}
}
#endif
}
/* ---------------------------------------------------------------------- */
/* compute the max in each column and find diagonal */
/* ---------------------------------------------------------------------- */
nweak = 0 ;
#ifndef NDEBUG
for (k = 0 ; k < n ; k++)
{
ASSERT (Rperm1 [k] >= 0 && Rperm1 [k] < n) ;
ASSERT (InvRperm1 [Rperm1 [k]] == k) ;
}
#endif
n2 = n - n1 - nempty ;
/* use Ri to count the number of strong entries in each row */
for (row = 0 ; row < n2 ; row++)
{
Ri [row] = 0 ;
}
pp = 0 ;
ctol = 0 ;
dvalue = 1 ;
/* construct C = pruned submatrix, strong values only, column form */
for (k = n1 ; k < n - nempty ; k++)
{
oldcol = Cperm1 [k] ;
newcol = k - n1 ;
Next [newcol] = EMPTY ;
DEBUGm1 (("Column "ID" newcol "ID" oldcol "ID"\n", k, newcol, oldcol)) ;
Cp [newcol] = pp ;
dfound = FALSE ;
p1 = Ap [oldcol] ;
p2 = Ap [oldcol+1] ;
if (do_values)
{
cmax = 0 ;
dvalue = 0 ;
if (!do_scale)
{
/* no scaling */
for (p = p1 ; p < p2 ; p++)
{
oldrow = Ai [p] ;
ASSERT (oldrow >= 0 && oldrow < n) ;
newrow = InvRperm1 [oldrow] - n1 ;
ASSERT (newrow >= -n1 && newrow < n2) ;
if (newrow < 0) continue ;
ASSIGN (aij, Ax, Az, p, split) ;
APPROX_ABS (value, aij) ;
/* if either cmax or value is NaN, define cmax as NaN */
if (!SCALAR_IS_NAN (cmax))
{
if (SCALAR_IS_NAN (value))
{
cmax = value ;
}
else
{
cmax = MAX (cmax, value) ;
}
}
if (oldrow == oldcol)
{
/* we found the diagonal entry in this column */
dvalue = value ;
dfound = TRUE ;
ASSERT (newrow == newcol) ;
}
}
}
#ifndef NRECIPROCAL
else if (do_recip)
{
/* multiply by the reciprocal */
for (p = p1 ; p < p2 ; p++)
{
oldrow = Ai [p] ;
ASSERT (oldrow >= 0 && oldrow < n) ;
newrow = InvRperm1 [oldrow] - n1 ;
ASSERT (newrow >= -n1 && newrow < n2) ;
if (newrow < 0) continue ;
ASSIGN (aij, Ax, Az, p, split) ;
APPROX_ABS (value, aij) ;
value *= Rs [oldrow] ;
/* if either cmax or value is NaN, define cmax as NaN */
if (!SCALAR_IS_NAN (cmax))
{
if (SCALAR_IS_NAN (value))
{
cmax = value ;
}
else
{
cmax = MAX (cmax, value) ;
}
}
if (oldrow == oldcol)
{
/* we found the diagonal entry in this column */
dvalue = value ;
dfound = TRUE ;
ASSERT (newrow == newcol) ;
}
}
}
#endif
else
{
/* divide instead */
for (p = p1 ; p < p2 ; p++)
{
oldrow = Ai [p] ;
ASSERT (oldrow >= 0 && oldrow < n) ;
newrow = InvRperm1 [oldrow] - n1 ;
ASSERT (newrow >= -n1 && newrow < n2) ;
if (newrow < 0) continue ;
ASSIGN (aij, Ax, Az, p, split) ;
APPROX_ABS (value, aij) ;
value /= Rs [oldrow] ;
/* if either cmax or value is NaN, define cmax as NaN */
if (!SCALAR_IS_NAN (cmax))
{
if (SCALAR_IS_NAN (value))
{
cmax = value ;
}
else
{
cmax = MAX (cmax, value) ;
}
}
if (oldrow == oldcol)
{
/* we found the diagonal entry in this column */
dvalue = value ;
dfound = TRUE ;
ASSERT (newrow == newcol) ;
}
}
}
ctol = tol * cmax ;
DEBUGm1 ((" cmax col "ID" %g ctol %g\n", oldcol, cmax, ctol)) ;
}
else
{
for (p = p1 ; p < p2 ; p++)
{
oldrow = Ai [p] ;
ASSERT (oldrow >= 0 && oldrow < n) ;
newrow = InvRperm1 [oldrow] - n1 ;
ASSERT (newrow >= -n1 && newrow < n2) ;
if (newrow < 0) continue ;
Ci [pp++] = newrow ;
if (oldrow == oldcol)
{
/* we found the diagonal entry in this column */
ASSERT (newrow == newcol) ;
dfound = TRUE ;
}
/* count the entries in each column */
Ri [newrow]++ ;
}
}
/* ------------------------------------------------------------------ */
/* flag the weak diagonals */
/* ------------------------------------------------------------------ */
if (!dfound)
{
/* no diagonal entry present */
weak = TRUE ;
}
else
{
/* diagonal entry is present, check its value */
weak = (do_values) ? WEAK (dvalue, ctol) : FALSE ;
}
if (weak)
{
/* flag this column as weak */
DEBUG0 (("Weak!\n")) ;
Next [newcol] = IS_WEAK ;
nweak++ ;
}
/* ------------------------------------------------------------------ */
/* count entries in each row that are not numerically weak */
/* ------------------------------------------------------------------ */
if (do_values)
{
if (!do_scale)
{
/* no scaling */
for (p = p1 ; p < p2 ; p++)
{
oldrow = Ai [p] ;
newrow = InvRperm1 [oldrow] - n1 ;
if (newrow < 0) continue ;
ASSIGN (aij, Ax, Az, p, split) ;
APPROX_ABS (value, aij) ;
weak = WEAK (value, ctol) ;
if (!weak)
{
DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ;
Ci [pp++] = newrow ;
Ri [newrow]++ ;
}
}
}
#ifndef NRECIPROCAL
else if (do_recip)
{
/* multiply by the reciprocal */
for (p = p1 ; p < p2 ; p++)
{
oldrow = Ai [p] ;
newrow = InvRperm1 [oldrow] - n1 ;
if (newrow < 0) continue ;
ASSIGN (aij, Ax, Az, p, split) ;
APPROX_ABS (value, aij) ;
value *= Rs [oldrow] ;
weak = WEAK (value, ctol) ;
if (!weak)
{
DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ;
Ci [pp++] = newrow ;
Ri [newrow]++ ;
}
}
}
#endif
else
{
/* divide instead */
for (p = p1 ; p < p2 ; p++)
{
oldrow = Ai [p] ;
newrow = InvRperm1 [oldrow] - n1 ;
if (newrow < 0) continue ;
ASSIGN (aij, Ax, Az, p, split) ;
APPROX_ABS (value, aij) ;
value /= Rs [oldrow] ;
weak = WEAK (value, ctol) ;
if (!weak)
{
DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ;
Ci [pp++] = newrow ;
Ri [newrow]++ ;
}
}
}
}
}
Cp [n2] = pp ;
ASSERT (AMD_valid (n2, n2, Cp, Ci) == AMD_OK) ;
if (nweak == 0)
{
/* nothing to do, quick return */
DEBUGm2 (("\n =============================UMF_2by2: quick return\n")) ;
for (k = 0 ; k < n ; k++)
{
P [k] = k ;
}
*p_nweak = 0 ;
*p_unmatched = 0 ;
return ;
}
#ifndef NDEBUG
for (k = 0 ; k < n2 ; k++)
{
P [k] = EMPTY ;
}
for (k = 0 ; k < n2 ; k++)
{
ASSERT (Degree [k] >= 0 && Degree [k] < n2) ;
}
#endif
/* ---------------------------------------------------------------------- */
/* find the 2-by-2 permutation */
/* ---------------------------------------------------------------------- */
/* The matrix S is now mapped to the index range 0 to n2-1. We have
* S = A (Rperm [n1 .. n-nempty-1], Cperm [n1 .. n-nempty-1]), and then
* C = pattern of strong entries in S. A weak diagonal k in S is marked
* with Next [k] = IS_WEAK. */
unmatched = two_by_two (n2, Cp, Ci, Degree, Next, Ri, P, Rp, Head) ;
/* ---------------------------------------------------------------------- */
*p_nweak = nweak ;
*p_unmatched = unmatched ;
#ifndef NDEBUG
DEBUGm4 (("UMF_2by2: weak "ID" unmatched "ID"\n", nweak, unmatched)) ;
for (row = 0 ; row < n ; row++)
{
DEBUGm2 (("P ["ID"] = "ID"\n", row, P [row])) ;
}
DEBUGm2 (("\n =============================UMF_2by2: done\n\n")) ;
#endif
}