umf_analyze.c
20.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/* ========================================================================== */
/* === UMF_analyze ========================================================== */
/* ========================================================================== */
/* -------------------------------------------------------------------------- */
/* UMFPACK Copyright (c) Timothy A. Davis, CISE, */
/* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack */
/* -------------------------------------------------------------------------- */
/*
Symbolic LL' factorization of A'*A, to get upper bounds on the size of
L and U for LU = PAQ, and to determine the frontal matrices and
(supernodal) column elimination tree. No fill-reducing column pre-ordering
is used.
Returns TRUE if successful, FALSE if out of memory. UMF_analyze can only
run out of memory if anzmax (which is Ap [n_row]) is too small.
Uses workspace of size O(nonzeros in A). On input, the matrix A is
stored in row-form at the tail end of Ai. It is destroyed on output.
The rows of A must be sorted by increasing first column index.
The matrix is assumed to be valid.
Empty rows and columns have already been removed.
*/
#include "umf_internal.h"
#include "umf_apply_order.h"
#include "umf_fsize.h"
/* ========================================================================== */
GLOBAL Int UMF_analyze
(
Int n_row, /* A is n_row-by-n_col */
Int n_col,
Int Ai [ ], /* Ai [Ap [0]..Ap[n_row]-1]: column indices */
/* destroyed on output. Note that this is NOT the */
/* user's Ai that was passed to UMFPACK_*symbolic */
/* size of Ai, Ap [n_row] = anzmax >= anz + n_col */
/* Ap [0] must be => n_col. The space to the */
/* front of Ai is used as workspace. */
Int Ap [ ], /* of size MAX (n_row, n_col) + 1 */
/* Ap [0..n_row]: row pointers */
/* Row i is in Ai [Ap [i] ... Ap [i+1]-1] */
/* rows must have smallest col index first, or be */
/* in sorted form. Used as workspace of size n_col */
/* and destroyed. */
/* Note that this is NOT the */
/* user's Ap that was passed to UMFPACK_*symbolic */
Int Up [ ], /* workspace of size n_col, and output column perm.
* for column etree postorder. */
Int fixQ,
/* temporary workspaces: */
Int W [ ], /* W [0..n_col-1] */
Int Link [ ], /* Link [0..n_col-1] */
/* output: information about each frontal matrix: */
Int Front_ncols [ ], /* size n_col */
Int Front_nrows [ ], /* of size n_col */
Int Front_npivcol [ ], /* of size n_col */
Int Front_parent [ ], /* of size n_col */
Int *nfr_out,
Int *p_ncompactions /* number of compactions in UMF_analyze */
)
{
/* ====================================================================== */
/* ==== local variables ================================================= */
/* ====================================================================== */
Int j, j3, col, k, row, parent, j2, pdest, p, p2, thickness, npivots, nfr,
i, *Winv, kk, npiv, jnext, krow, knext, pfirst, jlast, ncompactions,
*Front_stack, *Front_order, *Front_child, *Front_sibling,
Wflag, npivcol, fallrows, fallcols, fpiv, frows, fcols, *Front_size ;
nfr = 0 ;
DEBUG0 (("UMF_analyze: anzmax "ID" anrow "ID" ancol "ID"\n",
Ap [n_row], n_row, n_col)) ;
/* ====================================================================== */
/* ==== initializations ================================================= */
/* ====================================================================== */
#pragma ivdep
for (j = 0 ; j < n_col ; j++)
{
Link [j] = EMPTY ;
W [j] = EMPTY ;
Up [j] = EMPTY ;
/* Frontal matrix data structure: */
Front_npivcol [j] = 0 ; /* number of pivot columns */
Front_nrows [j] = 0 ; /* number of rows, incl. pivot rows */
Front_ncols [j] = 0 ; /* number of cols, incl. pivot cols */
Front_parent [j] = EMPTY ; /* parent front */
/* Note that only non-pivotal columns are stored in a front (a "row" */
/* of U) during elimination. */
}
/* the rows must be sorted by increasing min col */
krow = 0 ;
pfirst = Ap [0] ;
jlast = EMPTY ;
jnext = EMPTY ;
Wflag = 0 ;
/* this test requires the size of Ai to be >= n_col + nz */
ASSERT (pfirst >= n_col) ; /* Ai must be large enough */
/* pdest points to the first free space in Ai */
pdest = 0 ;
ncompactions = 0 ;
/* ====================================================================== */
/* === compute symbolic LL' factorization (unsorted) ==================== */
/* ====================================================================== */
for (j = 0 ; j < n_col ; j = jnext)
{
DEBUG1 (("\n\n============Front "ID" starting. nfr = "ID"\n", j, nfr)) ;
/* ================================================================== */
/* === garbage collection =========================================== */
/* ================================================================== */
if (pdest + (n_col-j) > pfirst)
{
/* we might run out ... compact the rows of U */
#ifndef NDEBUG
DEBUG0 (("UMF_analyze COMPACTION, j="ID" pfirst="ID"\n",
j, pfirst)) ;
for (row = 0 ; row < j ; row++)
{
if (Up [row] != EMPTY)
{
/* this is a live row of U */
DEBUG1 (("Live row: "ID" cols: ", row)) ;
p = Up [row] ;
ASSERT (Front_ncols [row] > Front_npivcol [row]) ;
p2 = p + (Front_ncols [row] - Front_npivcol [row]) ;
for ( ; p < p2 ; p++)
{
DEBUG1 ((ID, Ai [p])) ;
ASSERT (p < pfirst) ;
ASSERT (Ai [p] > row && Ai [p] < n_col) ;
}
DEBUG1 (("\n")) ;
}
}
DEBUG1 (("\nStarting to compact:\n")) ;
#endif
pdest = 0 ;
ncompactions++ ;
for (row = 0 ; row < j ; row++)
{
if (Up [row] != EMPTY)
{
/* this is a live row of U */
DEBUG1 (("Live row: "ID" cols: ", row)) ;
ASSERT (row < n_col) ;
p = Up [row] ;
ASSERT (Front_ncols [row] > Front_npivcol [row]) ;
p2 = p + (Front_ncols [row] - Front_npivcol [row]) ;
Up [row] = pdest ;
for ( ; p < p2 ; p++)
{
DEBUG1 ((ID, Ai [p])) ;
ASSERT (p < pfirst) ;
ASSERT (Ai [p] > row && Ai [p] < n_col) ;
Ai [pdest++] = Ai [p] ;
ASSERT (pdest <= pfirst) ;
}
DEBUG1 (("\n")) ;
}
}
#ifndef NDEBUG
DEBUG1 (("\nAFTER COMPACTION, j="ID" pfirst="ID"\n", j, pfirst)) ;
for (row = 0 ; row < j ; row++)
{
if (Up [row] != EMPTY)
{
/* this is a live row of U */
DEBUG1 (("Live row: "ID" cols: ", row)) ;
p = Up [row] ;
ASSERT (Front_ncols [row] > Front_npivcol [row]) ;
p2 = p + (Front_ncols [row] - Front_npivcol [row]) ;
for ( ; p < p2 ; p++)
{
DEBUG1 ((ID, Ai [p])) ;
ASSERT (p < pfirst) ;
ASSERT (Ai [p] > row && Ai [p] < n_col) ;
}
DEBUG1 (("\n")) ;
}
}
#endif
}
if (pdest + (n_col-j) > pfirst)
{
/* :: out of memory in umf_analyze :: */
/* it can't happen, if pfirst >= n_col */
return (FALSE) ; /* internal error! */
}
/* ------------------------------------------------------------------ */
/* is the last front a child of this one? */
/* ------------------------------------------------------------------ */
if (jlast != EMPTY && Link [j] == jlast)
{
/* yes - create row j by appending to jlast */
DEBUG1 (("GOT:last front is child of this one: j "ID" jlast "ID"\n",
j, jlast)) ;
ASSERT (jlast >= 0 && jlast < j) ;
Up [j] = Up [jlast] ;
Up [jlast] = EMPTY ;
/* find the parent, delete column j, and update W */
parent = n_col ;
for (p = Up [j] ; p < pdest ; )
{
j3 = Ai [p] ;
DEBUG1 (("Initial row of U: col "ID" ", j3)) ;
ASSERT (j3 >= 0 && j3 < n_col) ;
DEBUG1 (("W: "ID" \n", W [j3])) ;
ASSERT (W [j3] == Wflag) ;
if (j == j3)
{
DEBUG1 (("Found column j at p = "ID"\n", p)) ;
Ai [p] = Ai [--pdest] ;
}
else
{
if (j3 < parent)
{
parent = j3 ;
}
p++ ;
}
}
/* delete jlast from the link list of j */
Link [j] = Link [jlast] ;
ASSERT (Front_nrows [jlast] > Front_npivcol [jlast]) ;
thickness = (Front_nrows [jlast] - Front_npivcol [jlast]) ;
DEBUG1 (("initial thickness: "ID"\n", thickness)) ;
}
else
{
Up [j] = pdest ;
parent = n_col ;
/* thickness: number of (nonpivotal) rows in frontal matrix j */
thickness = 0 ;
Wflag = j ;
}
/* ================================================================== */
/* === compute row j of A*A' ======================================== */
/* ================================================================== */
/* ------------------------------------------------------------------ */
/* flag the diagonal entry in row U, but do not add to pattern */
/* ------------------------------------------------------------------ */
ASSERT (pdest <= pfirst) ;
W [j] = Wflag ;
DEBUG1 (("\nComputing row "ID" of A'*A\n", j)) ;
DEBUG2 ((" col: "ID" (diagonal)\n", j)) ;
/* ------------------------------------------------------------------ */
/* find the rows the contribute to this column j */
/* ------------------------------------------------------------------ */
jnext = n_col ;
for (knext = krow ; knext < n_row ; knext++)
{
ASSERT (Ap [knext] < Ap [knext+1]) ;
ASSERT (Ap [knext] >= pfirst && Ap [knext] <= Ap [n_row]) ;
jnext = Ai [Ap [knext]] ;
ASSERT (jnext >= j) ;
if (jnext != j)
{
break ;
}
}
/* rows krow ... knext-1 all have first column index of j */
/* (or are empty) */
/* row knext has first column index of jnext */
/* if knext = n_row, then jnext is n_col */
if (knext == n_row)
{
jnext = n_col ;
}
ASSERT (jnext > j) ;
ASSERT (jnext <= n_col) ;
/* ------------------------------------------------------------------ */
/* for each nonzero A (k,j) in column j of A do: */
/* ------------------------------------------------------------------ */
for (k = krow ; k < knext ; k++)
{
p = Ap [k] ;
p2 = Ap [k+1] ;
ASSERT (p < p2) ;
/* merge row k of A into W */
DEBUG2 ((" ---- A row "ID" ", k)) ;
ASSERT (k >= 0 && k < n_row) ;
ASSERT (Ai [p] == j) ;
DEBUG2 ((" p "ID" p2 "ID"\n cols:", p, p2)) ;
ASSERT (p >= pfirst && p < Ap [n_row]) ;
ASSERT (p2 > pfirst && p2 <= Ap [n_row]) ;
for ( ; p < p2 ; p++)
{
/* add to pattern if seen for the first time */
col = Ai [p] ;
ASSERT (col >= j && col < n_col) ;
DEBUG3 ((" "ID, col)) ;
if (W [col] != Wflag)
{
Ai [pdest++] = col ;
ASSERT (pdest <= pfirst) ;
/* flag this column has having been seen for row j */
W [col] = Wflag ;
if (col < parent)
{
parent = col ;
}
}
}
DEBUG2 (("\n")) ;
thickness++ ;
}
#ifndef NDEBUG
DEBUG3 (("\nRow "ID" of A'A:\n", j)) ;
for (p = Up [j] ; p < pdest ; p++)
{
DEBUG3 ((" "ID, Ai [p])) ;
}
DEBUG3 (("\n")) ;
#endif
/* ------------------------------------------------------------------ */
/* delete rows up to but not including knext */
/* ------------------------------------------------------------------ */
krow = knext ;
pfirst = Ap [knext] ;
/* we can now use Ai [0..pfirst-1] as workspace for rows of U */
/* ================================================================== */
/* === compute jth row of U ========================================= */
/* ================================================================== */
/* for each nonzero U (k,j) in column j of U (1:j-1,:) do */
for (k = Link [j] ; k != EMPTY ; k = Link [k])
{
/* merge row k of U into W */
DEBUG2 ((" ---- U row "ID, k)) ;
ASSERT (k >= 0 && k < n_col) ;
ASSERT (Up [k] != EMPTY) ;
p = Up [k] ;
ASSERT (Front_ncols [k] > Front_npivcol [k]) ;
p2 = p + (Front_ncols [k] - Front_npivcol [k]) ;
DEBUG2 ((" p "ID" p2 "ID"\n cols:", p, p2)) ;
ASSERT (p <= pfirst) ;
ASSERT (p2 <= pfirst) ;
for ( ; p < p2 ; p++)
{
/* add to pattern if seen for the first time */
col = Ai [p] ;
ASSERT (col >= j && col < n_col) ;
DEBUG3 ((" "ID, col)) ;
if (W [col] != Wflag)
{
Ai [pdest++] = col ;
ASSERT (pdest <= pfirst) ;
/* flag this col has having been seen for row j */
W [col] = Wflag ;
if (col < parent)
{
parent = col ;
}
}
}
DEBUG2 (("\n")) ;
/* mark the row k as deleted */
Up [k] = EMPTY ;
ASSERT (Front_nrows [k] > Front_npivcol [k]) ;
thickness += (Front_nrows [k] - Front_npivcol [k]) ;
ASSERT (Front_parent [k] == j) ;
}
#ifndef NDEBUG
DEBUG3 (("\nRow "ID" of U prior to supercolumn detection:\n", j));
for (p = Up [j] ; p < pdest ; p++)
{
DEBUG3 ((" "ID, Ai [p])) ;
}
DEBUG3 (("\n")) ;
DEBUG1 (("thickness, prior to supercol detect: "ID"\n", thickness)) ;
#endif
/* ================================================================== */
/* === quicky mass elimination ====================================== */
/* ================================================================== */
/* this code detects some supernodes, but it might miss */
/* some because the elimination tree (created on the fly) */
/* is not yet post-ordered, and because the pattern of A'*A */
/* is also computed on the fly. */
/* j2 is incremented because the pivot columns are not stored */
for (j2 = j+1 ; j2 < jnext ; j2++)
{
ASSERT (j2 >= 0 && j2 < n_col) ;
if (W [j2] != Wflag || Link [j2] != EMPTY)
{
break ;
}
}
/* the loop above terminated with j2 at the first non-supernode */
DEBUG1 (("jnext = "ID"\n", jnext)) ;
ASSERT (j2 <= jnext) ;
jnext = j2 ;
j2-- ;
DEBUG1 (("j2 = "ID"\n", j2)) ;
ASSERT (j2 < n_col) ;
npivots = j2-j+1 ;
DEBUG1 (("Number of pivot columns: "ID"\n", npivots)) ;
/* rows j:j2 have the same nonzero pattern, except for columns j:j2-1 */
if (j2 > j)
{
/* supernode detected, prune the pattern of new row j */
ASSERT (parent == j+1) ;
ASSERT (j2 < n_col) ;
DEBUG1 (("Supernode detected, j "ID" to j2 "ID"\n", j, j2)) ;
parent = n_col ;
p2 = pdest ;
pdest = Up [j] ;
for (p = Up [j] ; p < p2 ; p++)
{
col = Ai [p] ;
ASSERT (col >= 0 && col < n_col) ;
ASSERT (W [col] == Wflag) ;
if (col > j2)
{
/* keep this col in the pattern of the new row j */
Ai [pdest++] = col ;
if (col < parent)
{
parent = col ;
}
}
}
}
DEBUG1 (("Parent ["ID"] = "ID"\n", j, parent)) ;
ASSERT (parent > j2) ;
if (parent == n_col)
{
/* this front has no parent - it is the root of a subtree */
parent = EMPTY ;
}
#ifndef NDEBUG
DEBUG3 (("\nFinal row "ID" of U after supercolumn detection:\n", j)) ;
for (p = Up [j] ; p < pdest ; p++)
{
ASSERT (Ai [p] >= 0 && Ai [p] < n_col) ;
DEBUG3 ((" "ID" ("ID")", Ai [p], W [Ai [p]])) ;
ASSERT (W [Ai [p]] == Wflag) ;
}
DEBUG3 (("\n")) ;
#endif
/* ================================================================== */
/* === frontal matrix =============================================== */
/* ================================================================== */
/* front has Front_npivcol [j] pivot columns */
/* entire front is Front_nrows [j] -by- Front_ncols [j] */
/* j is first column in the front */
npivcol = npivots ;
fallrows = thickness ;
fallcols = npivots + pdest - Up [j] ;
/* number of pivots in the front (rows and columns) */
fpiv = MIN (npivcol, fallrows) ;
/* size of contribution block */
frows = fallrows - fpiv ;
fcols = fallcols - fpiv ;
if (frows == 0 || fcols == 0)
{
/* front has no contribution block and thus needs no parent */
DEBUG1 (("Frontal matrix evaporation\n")) ;
Up [j] = EMPTY ;
parent = EMPTY ;
}
Front_npivcol [j] = npivots ;
Front_nrows [j] = fallrows ;
Front_ncols [j] = fallcols ;
Front_parent [j] = parent ;
ASSERT (npivots > 0) ;
/* Front_parent [j] is the first column of the parent frontal matrix */
DEBUG1 (("\n\n==== Front "ID", nfr "ID" pivot columns "ID":"ID
" all front: "ID"-by-"ID" Parent: "ID"\n", j, nfr, j,j+npivots-1,
Front_nrows [j], Front_ncols [j], Front_parent [j])) ;
nfr++ ;
/* ================================================================== */
/* === prepare this row for its parent ============================== */
/* ================================================================== */
if (parent != EMPTY)
{
Link [j] = Link [parent] ;
Link [parent] = j ;
}
ASSERT (jnext > j) ;
jlast = j ;
}
/* ====================================================================== */
/* === postorder the fronts ============================================= */
/* ====================================================================== */
*nfr_out = nfr ;
Front_order = W ; /* use W for Front_order [ */
if (fixQ)
{
/* do not postorder the fronts if Q is fixed */
DEBUG1 (("\nNo postorder (Q is fixed)\n")) ;
k = 0 ;
/* Pragma added May 14, 2003. The Intel compiler icl 6.0 (an old
* version) incorrectly vectorizes this loop. */
#pragma novector
for (j = 0 ; j < n_col ; j++)
{
if (Front_npivcol [j] > 0)
{
Front_order [j] = k++ ;
DEBUG1 (("Front order of j: "ID" is:"ID"\n", j,
Front_order [j])) ;
}
else
{
Front_order [j] = EMPTY ;
}
}
}
else
{
/* use Ap for Front_child and use Link for Front_sibling [ */
Front_child = Ap ;
Front_sibling = Link ;
/* use Ai for Front_stack, size of Ai is >= 2*n_col */
Front_stack = Ai ;
Front_size = Front_stack + n_col ;
UMF_fsize (n_col, Front_size, Front_nrows, Front_ncols,
Front_parent, Front_npivcol) ;
AMD_postorder (n_col, Front_parent, Front_npivcol, Front_size,
Front_order, Front_child, Front_sibling, Front_stack) ;
/* done with Front_child, Front_sibling, Front_size, and Front_stack ]*/
/* ------------------------------------------------------------------ */
/* construct the column permutation (return in Up) */
/* ------------------------------------------------------------------ */
/* Front_order [i] = k means that front i is kth front in the new order.
* i is in the range 0 to n_col-1, and k is in the range 0 to nfr-1 */
/* Use Ai as workspace for Winv [ */
Winv = Ai ;
for (k = 0 ; k < nfr ; k++)
{
Winv [k] = EMPTY ;
}
/* compute the inverse of Front_order, so that Winv [k] = i */
/* if Front_order [i] = k */
DEBUG1 (("\n\nComputing output column permutation:\n")) ;
for (i = 0 ; i < n_col ; i++)
{
k = Front_order [i] ;
if (k != EMPTY)
{
DEBUG1 (("Front "ID" new order: "ID"\n", i, k)) ;
ASSERT (k >= 0 && k < nfr) ;
ASSERT (Winv [k] == EMPTY) ;
Winv [k] = i ;
}
}
/* Use Up as output permutation */
kk = 0 ;
for (k = 0 ; k < nfr ; k++)
{
i = Winv [k] ;
DEBUG1 (("Old Front "ID" New Front "ID" npivots "ID" nrows "ID
" ncols "ID"\n",
i, k, Front_npivcol [i], Front_nrows [i], Front_ncols [i])) ;
ASSERT (i >= 0 && i < n_col) ;
ASSERT (Front_npivcol [i] > 0) ;
for (npiv = 0 ; npiv < Front_npivcol [i] ; npiv++)
{
Up [kk] = i + npiv ;
DEBUG1 ((" Cperm ["ID"] = "ID"\n", kk, Up [kk])) ;
kk++ ;
}
}
ASSERT (kk == n_col) ;
/* Winv no longer needed ] */
}
/* ---------------------------------------------------------------------- */
/* apply the postorder traversal to renumber the frontal matrices */
/* (or pack them in same order, if fixQ) */
/* ---------------------------------------------------------------------- */
/* use Ai as workspace */
UMF_apply_order (Front_npivcol, Front_order, Ai, n_col, nfr) ;
UMF_apply_order (Front_nrows, Front_order, Ai, n_col, nfr) ;
UMF_apply_order (Front_ncols, Front_order, Ai, n_col, nfr) ;
UMF_apply_order (Front_parent, Front_order, Ai, n_col, nfr) ;
/* fix the parent to refer to the new numbering */
for (i = 0 ; i < nfr ; i++)
{
parent = Front_parent [i] ;
if (parent != EMPTY)
{
ASSERT (parent >= 0 && parent < n_col) ;
ASSERT (Front_order [parent] >= 0 && Front_order [parent] < nfr) ;
Front_parent [i] = Front_order [parent] ;
}
}
/* Front_order longer needed ] */
#ifndef NDEBUG
DEBUG1 (("\nFinal frontal matrices:\n")) ;
for (i = 0 ; i < nfr ; i++)
{
DEBUG1 (("Final front "ID": npiv "ID" nrows "ID" ncols "ID" parent "
ID"\n", i, Front_npivcol [i], Front_nrows [i],
Front_ncols [i], Front_parent [i])) ;
}
#endif
*p_ncompactions = ncompactions ;
return (TRUE) ;
}