amd_info.c
4.15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/* ========================================================================= */
/* === AMD_info ============================================================ */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
/* AMD, Copyright (c) Timothy A. Davis, */
/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */
/* web: http://www.cise.ufl.edu/research/sparse/amd */
/* ------------------------------------------------------------------------- */
/* User-callable. Prints the output statistics for AMD. See amd.h
* for details. If the Info array is not present, nothing is printed.
*/
#include "amd_internal.h"
#define PRI(format,x) { if (x >= 0) { PRINTF ((format, x)) ; }}
GLOBAL void AMD_info
(
double Info [ ]
)
{
double n, ndiv, nmultsubs_ldl, nmultsubs_lu, lnz, lnzd ;
PRINTF (("\nAMD version %d.%d.%d, %s, results:\n",
AMD_MAIN_VERSION, AMD_SUB_VERSION, AMD_SUBSUB_VERSION, AMD_DATE)) ;
if (!Info)
{
return ;
}
n = Info [AMD_N] ;
ndiv = Info [AMD_NDIV] ;
nmultsubs_ldl = Info [AMD_NMULTSUBS_LDL] ;
nmultsubs_lu = Info [AMD_NMULTSUBS_LU] ;
lnz = Info [AMD_LNZ] ;
lnzd = (n >= 0 && lnz >= 0) ? (n + lnz) : (-1) ;
/* AMD return status */
PRINTF ((" status: ")) ;
if (Info [AMD_STATUS] == AMD_OK)
{
PRINTF (("OK\n")) ;
}
else if (Info [AMD_STATUS] == AMD_OUT_OF_MEMORY)
{
PRINTF (("out of memory\n")) ;
}
else if (Info [AMD_STATUS] == AMD_INVALID)
{
PRINTF (("invalid matrix\n")) ;
}
else if (Info [AMD_STATUS] == AMD_OK_BUT_JUMBLED)
{
PRINTF (("OK, but jumbled\n")) ;
}
else
{
PRINTF (("unknown\n")) ;
}
/* statistics about the input matrix */
PRI (" n, dimension of A: %.20g\n", n);
PRI (" nz, number of nonzeros in A: %.20g\n",
Info [AMD_NZ]) ;
PRI (" symmetry of A: %.4f\n",
Info [AMD_SYMMETRY]) ;
PRI (" number of nonzeros on diagonal: %.20g\n",
Info [AMD_NZDIAG]) ;
PRI (" nonzeros in pattern of A+A' (excl. diagonal): %.20g\n",
Info [AMD_NZ_A_PLUS_AT]) ;
PRI (" # dense rows/columns of A+A': %.20g\n",
Info [AMD_NDENSE]) ;
/* statistics about AMD's behavior */
PRI (" memory used, in bytes: %.20g\n",
Info [AMD_MEMORY]) ;
PRI (" # of memory compactions: %.20g\n",
Info [AMD_NCMPA]) ;
/* statistics about the ordering quality */
PRINTF (("\n"
" The following approximate statistics are for a subsequent\n"
" factorization of A(P,P) + A(P,P)'. They are slight upper\n"
" bounds if there are no dense rows/columns in A+A', and become\n"
" looser if dense rows/columns exist.\n\n")) ;
PRI (" nonzeros in L (excluding diagonal): %.20g\n",
lnz) ;
PRI (" nonzeros in L (including diagonal): %.20g\n",
lnzd) ;
PRI (" # divide operations for LDL' or LU: %.20g\n",
ndiv) ;
PRI (" # multiply-subtract operations for LDL': %.20g\n",
nmultsubs_ldl) ;
PRI (" # multiply-subtract operations for LU: %.20g\n",
nmultsubs_lu) ;
PRI (" max nz. in any column of L (incl. diagonal): %.20g\n",
Info [AMD_DMAX]) ;
/* total flop counts for various factorizations */
if (n >= 0 && ndiv >= 0 && nmultsubs_ldl >= 0 && nmultsubs_lu >= 0)
{
PRINTF (("\n"
" chol flop count for real A, sqrt counted as 1 flop: %.20g\n"
" LDL' flop count for real A: %.20g\n"
" LDL' flop count for complex A: %.20g\n"
" LU flop count for real A (with no pivoting): %.20g\n"
" LU flop count for complex A (with no pivoting): %.20g\n\n",
n + ndiv + 2*nmultsubs_ldl,
ndiv + 2*nmultsubs_ldl,
9*ndiv + 8*nmultsubs_ldl,
ndiv + 2*nmultsubs_lu,
9*ndiv + 8*nmultsubs_lu)) ;
}
}