amd.f
51.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
C-----------------------------------------------------------------------
C AMD: approximate minimum degree, with aggressive absorption
C-----------------------------------------------------------------------
SUBROUTINE AMD
$ (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT,
$ LAST, HEAD, ELEN, DEGREE, NCMPA, W)
INTEGER N, IWLEN, PFREE, NCMPA, IW (IWLEN), PE (N),
$ DEGREE (N), NV (N), NEXT (N), LAST (N), HEAD (N),
$ ELEN (N), W (N), LEN (N)
C Given a representation of the nonzero pattern of a symmetric matrix,
C A, (excluding the diagonal) perform an approximate minimum
C (UMFPACK/MA38-style) degree ordering to compute a pivot order
C such that the introduction of nonzeros (fill-in) in the Cholesky
C factors A = LL^T are kept low. At each step, the pivot
C selected is the one with the minimum UMFPACK/MA38-style
C upper-bound on the external degree.
C
C Aggresive absorption is used to tighten the bound on the degree.
C **********************************************************************
C ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ******
C **********************************************************************
C References:
C
C [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern
C multifrontal method for sparse LU factorization", SIAM J.
C Matrix Analysis and Applications, vol. 18, no. 1, pp.
C 140-158. Discusses UMFPACK / MA38, which first introduced
C the approximate minimum degree used by this routine.
C
C [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An
C approximate degree ordering algorithm," SIAM J. Matrix
C Analysis and Applications, vol. 17, no. 4, pp. 886-905,
C 1996. Discusses AMD, AMDBAR, and MC47B.
C
C [3] Alan George and Joseph Liu, "The evolution of the minimum
C degree ordering algorithm," SIAM Review, vol. 31, no. 1,
C pp. 1-19, 1989. We list below the features mentioned in
C that paper that this code includes:
C
C mass elimination:
C Yes. MA27 relied on supervariable detection for mass
C elimination.
C indistinguishable nodes:
C Yes (we call these "supervariables"). This was also in
C the MA27 code - although we modified the method of
C detecting them (the previous hash was the true degree,
C which we no longer keep track of). A supervariable is
C a set of rows with identical nonzero pattern. All
C variables in a supervariable are eliminated together.
C Each supervariable has as its numerical name that of
C one of its variables (its principal variable).
C quotient graph representation:
C Yes. We use the term "element" for the cliques formed
C during elimination. This was also in the MA27 code.
C The algorithm can operate in place, but it will work
C more efficiently if given some "elbow room."
C element absorption:
C Yes. This was also in the MA27 code.
C external degree:
C Yes. The MA27 code was based on the true degree.
C incomplete degree update and multiple elimination:
C No. This was not in MA27, either. Our method of
C degree update within MC47B/BD is element-based, not
C variable-based. It is thus not well-suited for use
C with incomplete degree update or multiple elimination.
C-----------------------------------------------------------------------
C Authors, and Copyright (C) 1995 by:
C Timothy A. Davis, Patrick Amestoy, Iain S. Duff, & John K. Reid.
C
C Acknowledgements:
C This work (and the UMFPACK package) was supported by the
C National Science Foundation (ASC-9111263 and DMS-9223088).
C The UMFPACK/MA38 approximate degree update algorithm, the
C unsymmetric analog which forms the basis of MC47B/BD, was
C developed while Tim Davis was supported by CERFACS (Toulouse,
C France) in a post-doctoral position.
C
C Date: September, 1995
C-----------------------------------------------------------------------
C-----------------------------------------------------------------------
C INPUT ARGUMENTS (unaltered):
C-----------------------------------------------------------------------
C n: The matrix order.
C
C Restriction: 1 .le. n .lt. (iovflo/2)-2, where iovflo is
C the largest positive integer that your computer can represent.
C iwlen: The length of iw (1..iwlen). On input, the matrix is
C stored in iw (1..pfree-1). However, iw (1..iwlen) should be
C slightly larger than what is required to hold the matrix, at
C least iwlen .ge. pfree + n is recommended. Otherwise,
C excessive compressions will take place.
C *** We do not recommend running this algorithm with ***
C *** iwlen .lt. pfree + n. ***
C *** Better performance will be obtained if ***
C *** iwlen .ge. pfree + n ***
C *** or better yet ***
C *** iwlen .gt. 1.2 * pfree ***
C *** (where pfree is its value on input). ***
C The algorithm will not run at all if iwlen .lt. pfree-1.
C
C Restriction: iwlen .ge. pfree-1
C-----------------------------------------------------------------------
C INPUT/OUPUT ARGUMENTS:
C-----------------------------------------------------------------------
C pe: On input, pe (i) is the index in iw of the start of row i, or
C zero if row i has no off-diagonal non-zeros.
C
C During execution, it is used for both supervariables and
C elements:
C
C * Principal supervariable i: index into iw of the
C description of supervariable i. A supervariable
C represents one or more rows of the matrix
C with identical nonzero pattern.
C * Non-principal supervariable i: if i has been absorbed
C into another supervariable j, then pe (i) = -j.
C That is, j has the same pattern as i.
C Note that j might later be absorbed into another
C supervariable j2, in which case pe (i) is still -j,
C and pe (j) = -j2.
C * Unabsorbed element e: the index into iw of the description
C of element e, if e has not yet been absorbed by a
C subsequent element. Element e is created when
C the supervariable of the same name is selected as
C the pivot.
C * Absorbed element e: if element e is absorbed into element
C e2, then pe (e) = -e2. This occurs when the pattern of
C e (that is, Le) is found to be a subset of the pattern
C of e2 (that is, Le2). If element e is "null" (it has
C no nonzeros outside its pivot block), then pe (e) = 0.
C
C On output, pe holds the assembly tree/forest, which implicitly
C represents a pivot order with identical fill-in as the actual
C order (via a depth-first search of the tree).
C
C On output:
C If nv (i) .gt. 0, then i represents a node in the assembly tree,
C and the parent of i is -pe (i), or zero if i is a root.
C If nv (i) = 0, then (i,-pe (i)) represents an edge in a
C subtree, the root of which is a node in the assembly tree.
C pfree: On input the tail end of the array, iw (pfree..iwlen),
C is empty, and the matrix is stored in iw (1..pfree-1).
C During execution, additional data is placed in iw, and pfree
C is modified so that iw (pfree..iwlen) is always the unused part
C of iw. On output, pfree is set equal to the size of iw that
C would have been needed for no compressions to occur. If
C ncmpa is zero, then pfree (on output) is less than or equal to
C iwlen, and the space iw (pfree+1 ... iwlen) was not used.
C Otherwise, pfree (on output) is greater than iwlen, and all the
C memory in iw was used.
C-----------------------------------------------------------------------
C INPUT/MODIFIED (undefined on output):
C-----------------------------------------------------------------------
C len: On input, len (i) holds the number of entries in row i of the
C matrix, excluding the diagonal. The contents of len (1..n)
C are undefined on output.
C iw: On input, iw (1..pfree-1) holds the description of each row i
C in the matrix. The matrix must be symmetric, and both upper
C and lower triangular parts must be present. The diagonal must
C not be present. Row i is held as follows:
C
C len (i): the length of the row i data structure
C iw (pe (i) ... pe (i) + len (i) - 1):
C the list of column indices for nonzeros
C in row i (simple supervariables), excluding
C the diagonal. All supervariables start with
C one row/column each (supervariable i is just
C row i).
C if len (i) is zero on input, then pe (i) is ignored
C on input.
C
C Note that the rows need not be in any particular order,
C and there may be empty space between the rows.
C
C During execution, the supervariable i experiences fill-in.
C This is represented by placing in i a list of the elements
C that cause fill-in in supervariable i:
C
C len (i): the length of supervariable i
C iw (pe (i) ... pe (i) + elen (i) - 1):
C the list of elements that contain i. This list
C is kept short by removing absorbed elements.
C iw (pe (i) + elen (i) ... pe (i) + len (i) - 1):
C the list of supervariables in i. This list
C is kept short by removing nonprincipal
C variables, and any entry j that is also
C contained in at least one of the elements
C (j in Le) in the list for i (e in row i).
C
C When supervariable i is selected as pivot, we create an
C element e of the same name (e=i):
C
C len (e): the length of element e
C iw (pe (e) ... pe (e) + len (e) - 1):
C the list of supervariables in element e.
C
C An element represents the fill-in that occurs when supervariable
C i is selected as pivot (which represents the selection of row i
C and all non-principal variables whose principal variable is i).
C We use the term Le to denote the set of all supervariables
C in element e. Absorbed supervariables and elements are pruned
C from these lists when computationally convenient.
C
C CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION.
C The contents of iw are undefined on output.
C-----------------------------------------------------------------------
C OUTPUT (need not be set on input):
C-----------------------------------------------------------------------
C nv: During execution, abs (nv (i)) is equal to the number of rows
C that are represented by the principal supervariable i. If i is
C a nonprincipal variable, then nv (i) = 0. Initially,
C nv (i) = 1 for all i. nv (i) .lt. 0 signifies that i is a
C principal variable in the pattern Lme of the current pivot
C element me. On output, nv (e) holds the true degree of element
C e at the time it was created (including the diagonal part).
C ncmpa: The number of times iw was compressed. If this is
C excessive, then the execution took longer than what could have
C been. To reduce ncmpa, try increasing iwlen to be 10% or 20%
C larger than the value of pfree on input (or at least
C iwlen .ge. pfree + n). The fastest performance will be
C obtained when ncmpa is returned as zero. If iwlen is set to
C the value returned by pfree on *output*, then no compressions
C will occur.
C elen: See the description of iw above. At the start of execution,
C elen (i) is set to zero. During execution, elen (i) is the
C number of elements in the list for supervariable i. When e
C becomes an element, elen (e) = -nel is set, where nel is the
C current step of factorization. elen (i) = 0 is done when i
C becomes nonprincipal.
C
C For variables, elen (i) .ge. 0 holds until just before the
C permutation vectors are computed. For elements,
C elen (e) .lt. 0 holds.
C
C On output elen (1..n) holds the inverse permutation (the same
C as the 'INVP' argument in Sparspak). That is, if k = elen (i),
C then row i is the kth pivot row. Row i of A appears as the
C (elen(i))-th row in the permuted matrix, PAP^T.
C last: In a degree list, last (i) is the supervariable preceding i,
C or zero if i is the head of the list. In a hash bucket,
C last (i) is the hash key for i. last (head (hash)) is also
C used as the head of a hash bucket if head (hash) contains a
C degree list (see head, below).
C
C On output, last (1..n) holds the permutation (the same as the
C 'PERM' argument in Sparspak). That is, if i = last (k), then
C row i is the kth pivot row. Row last (k) of A is the k-th row
C in the permuted matrix, PAP^T.
C-----------------------------------------------------------------------
C LOCAL (not input or output - used only during execution):
C-----------------------------------------------------------------------
C degree: If i is a supervariable, then degree (i) holds the
C current approximation of the external degree of row i (an upper
C bound). The external degree is the number of nonzeros in row i,
C minus abs (nv (i)) (the diagonal part). The bound is equal to
C the external degree if elen (i) is less than or equal to two.
C
C We also use the term "external degree" for elements e to refer
C to |Le \ Lme|. If e is an element, then degree (e) holds |Le|,
C which is the degree of the off-diagonal part of the element e
C (not including the diagonal part).
C head: head is used for degree lists. head (deg) is the first
C supervariable in a degree list (all supervariables i in a
C degree list deg have the same approximate degree, namely,
C deg = degree (i)). If the list deg is empty then
C head (deg) = 0.
C
C During supervariable detection head (hash) also serves as a
C pointer to a hash bucket.
C If head (hash) .gt. 0, there is a degree list of degree hash.
C The hash bucket head pointer is last (head (hash)).
C If head (hash) = 0, then the degree list and hash bucket are
C both empty.
C If head (hash) .lt. 0, then the degree list is empty, and
C -head (hash) is the head of the hash bucket.
C After supervariable detection is complete, all hash buckets
C are empty, and the (last (head (hash)) = 0) condition is
C restored for the non-empty degree lists.
C next: next (i) is the supervariable following i in a link list, or
C zero if i is the last in the list. Used for two kinds of
C lists: degree lists and hash buckets (a supervariable can be
C in only one kind of list at a time).
C w: The flag array w determines the status of elements and
C variables, and the external degree of elements.
C
C for elements:
C if w (e) = 0, then the element e is absorbed
C if w (e) .ge. wflg, then w (e) - wflg is the size of
C the set |Le \ Lme|, in terms of nonzeros (the
C sum of abs (nv (i)) for each principal variable i that
C is both in the pattern of element e and NOT in the
C pattern of the current pivot element, me).
C if wflg .gt. w (e) .gt. 0, then e is not absorbed and has
C not yet been seen in the scan of the element lists in
C the computation of |Le\Lme| in loop 150 below.
C
C for variables:
C during supervariable detection, if w (j) .ne. wflg then j is
C not in the pattern of variable i
C
C The w array is initialized by setting w (i) = 1 for all i,
C and by setting wflg = 2. It is reinitialized if wflg becomes
C too large (to ensure that wflg+n does not cause integer
C overflow).
C-----------------------------------------------------------------------
C LOCAL INTEGERS:
C-----------------------------------------------------------------------
INTEGER DEG, DEGME, DEXT, DMAX, E, ELENME, ELN, HASH, HMOD, I,
$ ILAST, INEXT, J, JLAST, JNEXT, K, KNT1, KNT2, KNT3,
$ LENJ, LN, MAXMEM, ME, MEM, MINDEG, NEL, NEWMEM,
$ NLEFT, NVI, NVJ, NVPIV, SLENME, WE, WFLG, WNVI, X
C deg: the degree of a variable or element
C degme: size, |Lme|, of the current element, me (= degree (me))
C dext: external degree, |Le \ Lme|, of some element e
C dmax: largest |Le| seen so far
C e: an element
C elenme: the length, elen (me), of element list of pivotal var.
C eln: the length, elen (...), of an element list
C hash: the computed value of the hash function
C hmod: the hash function is computed modulo hmod = max (1,n-1)
C i: a supervariable
C ilast: the entry in a link list preceding i
C inext: the entry in a link list following i
C j: a supervariable
C jlast: the entry in a link list preceding j
C jnext: the entry in a link list, or path, following j
C k: the pivot order of an element or variable
C knt1: loop counter used during element construction
C knt2: loop counter used during element construction
C knt3: loop counter used during compression
C lenj: len (j)
C ln: length of a supervariable list
C maxmem: amount of memory needed for no compressions
C me: current supervariable being eliminated, and the
C current element created by eliminating that
C supervariable
C mem: memory in use assuming no compressions have occurred
C mindeg: current minimum degree
C nel: number of pivots selected so far
C newmem: amount of new memory needed for current pivot element
C nleft: n - nel, the number of nonpivotal rows/columns remaining
C nvi: the number of variables in a supervariable i (= nv (i))
C nvj: the number of variables in a supervariable j (= nv (j))
C nvpiv: number of pivots in current element
C slenme: number of variables in variable list of pivotal variable
C we: w (e)
C wflg: used for flagging the w array. See description of iw.
C wnvi: wflg - nv (i)
C x: either a supervariable or an element
C-----------------------------------------------------------------------
C LOCAL POINTERS:
C-----------------------------------------------------------------------
INTEGER P, P1, P2, P3, PDST, PEND, PJ, PME, PME1, PME2, PN, PSRC
C Any parameter (pe (...) or pfree) or local variable
C starting with "p" (for Pointer) is an index into iw,
C and all indices into iw use variables starting with
C "p." The only exception to this rule is the iwlen
C input argument.
C p: pointer into lots of things
C p1: pe (i) for some variable i (start of element list)
C p2: pe (i) + elen (i) - 1 for some var. i (end of el. list)
C p3: index of first supervariable in clean list
C pdst: destination pointer, for compression
C pend: end of memory to compress
C pj: pointer into an element or variable
C pme: pointer into the current element (pme1...pme2)
C pme1: the current element, me, is stored in iw (pme1...pme2)
C pme2: the end of the current element
C pn: pointer into a "clean" variable, also used to compress
C psrc: source pointer, for compression
C-----------------------------------------------------------------------
C FUNCTIONS CALLED:
C-----------------------------------------------------------------------
INTRINSIC MAX, MIN, MOD
C=======================================================================
C INITIALIZATIONS
C=======================================================================
WFLG = 2
MINDEG = 1
NCMPA = 0
NEL = 0
HMOD = MAX (1, N-1)
DMAX = 0
MEM = PFREE - 1
MAXMEM = MEM
ME = 0
DO 10 I = 1, N
LAST (I) = 0
HEAD (I) = 0
NV (I) = 1
W (I) = 1
ELEN (I) = 0
DEGREE (I) = LEN (I)
10 CONTINUE
C ----------------------------------------------------------------
C initialize degree lists and eliminate rows with no off-diag. nz.
C ----------------------------------------------------------------
DO 20 I = 1, N
DEG = DEGREE (I)
IF (DEG .GT. 0) THEN
C ----------------------------------------------------------
C place i in the degree list corresponding to its degree
C ----------------------------------------------------------
INEXT = HEAD (DEG)
IF (INEXT .NE. 0) LAST (INEXT) = I
NEXT (I) = INEXT
HEAD (DEG) = I
ELSE
C ----------------------------------------------------------
C we have a variable that can be eliminated at once because
C there is no off-diagonal non-zero in its row.
C ----------------------------------------------------------
NEL = NEL + 1
ELEN (I) = -NEL
PE (I) = 0
W (I) = 0
ENDIF
20 CONTINUE
C=======================================================================
C WHILE (selecting pivots) DO
C=======================================================================
30 CONTINUE
IF (NEL .LT. N) THEN
C=======================================================================
C GET PIVOT OF MINIMUM DEGREE
C=======================================================================
C -------------------------------------------------------------
C find next supervariable for elimination
C -------------------------------------------------------------
DO 40 DEG = MINDEG, N
ME = HEAD (DEG)
IF (ME .GT. 0) GOTO 50
40 CONTINUE
50 CONTINUE
MINDEG = DEG
C -------------------------------------------------------------
C remove chosen variable from link list
C -------------------------------------------------------------
INEXT = NEXT (ME)
IF (INEXT .NE. 0) LAST (INEXT) = 0
HEAD (DEG) = INEXT
C -------------------------------------------------------------
C me represents the elimination of pivots nel+1 to nel+nv(me).
C place me itself as the first in this set. It will be moved
C to the nel+nv(me) position when the permutation vectors are
C computed.
C -------------------------------------------------------------
ELENME = ELEN (ME)
ELEN (ME) = - (NEL + 1)
NVPIV = NV (ME)
NEL = NEL + NVPIV
C=======================================================================
C CONSTRUCT NEW ELEMENT
C=======================================================================
C -------------------------------------------------------------
C At this point, me is the pivotal supervariable. It will be
C converted into the current element. Scan list of the
C pivotal supervariable, me, setting tree pointers and
C constructing new list of supervariables for the new element,
C me. p is a pointer to the current position in the old list.
C -------------------------------------------------------------
C flag the variable "me" as being in Lme by negating nv (me)
NV (ME) = -NVPIV
DEGME = 0
IF (ELENME .EQ. 0) THEN
C ----------------------------------------------------------
C construct the new element in place
C ----------------------------------------------------------
PME1 = PE (ME)
PME2 = PME1 - 1
DO 60 P = PME1, PME1 + LEN (ME) - 1
I = IW (P)
NVI = NV (I)
IF (NVI .GT. 0) THEN
C ----------------------------------------------------
C i is a principal variable not yet placed in Lme.
C store i in new list
C ----------------------------------------------------
DEGME = DEGME + NVI
C flag i as being in Lme by negating nv (i)
NV (I) = -NVI
PME2 = PME2 + 1
IW (PME2) = I
C ----------------------------------------------------
C remove variable i from degree list.
C ----------------------------------------------------
ILAST = LAST (I)
INEXT = NEXT (I)
IF (INEXT .NE. 0) LAST (INEXT) = ILAST
IF (ILAST .NE. 0) THEN
NEXT (ILAST) = INEXT
ELSE
C i is at the head of the degree list
HEAD (DEGREE (I)) = INEXT
ENDIF
ENDIF
60 CONTINUE
C this element takes no new memory in iw:
NEWMEM = 0
ELSE
C ----------------------------------------------------------
C construct the new element in empty space, iw (pfree ...)
C ----------------------------------------------------------
P = PE (ME)
PME1 = PFREE
SLENME = LEN (ME) - ELENME
DO 120 KNT1 = 1, ELENME + 1
IF (KNT1 .GT. ELENME) THEN
C search the supervariables in me.
E = ME
PJ = P
LN = SLENME
ELSE
C search the elements in me.
E = IW (P)
P = P + 1
PJ = PE (E)
LN = LEN (E)
ENDIF
C -------------------------------------------------------
C search for different supervariables and add them to the
C new list, compressing when necessary. this loop is
C executed once for each element in the list and once for
C all the supervariables in the list.
C -------------------------------------------------------
DO 110 KNT2 = 1, LN
I = IW (PJ)
PJ = PJ + 1
NVI = NV (I)
IF (NVI .GT. 0) THEN
C -------------------------------------------------
C compress iw, if necessary
C -------------------------------------------------
IF (PFREE .GT. IWLEN) THEN
C prepare for compressing iw by adjusting
C pointers and lengths so that the lists being
C searched in the inner and outer loops contain
C only the remaining entries.
PE (ME) = P
LEN (ME) = LEN (ME) - KNT1
IF (LEN (ME) .EQ. 0) THEN
C nothing left of supervariable me
PE (ME) = 0
ENDIF
PE (E) = PJ
LEN (E) = LN - KNT2
IF (LEN (E) .EQ. 0) THEN
C nothing left of element e
PE (E) = 0
ENDIF
NCMPA = NCMPA + 1
C store first item in pe
C set first entry to -item
DO 70 J = 1, N
PN = PE (J)
IF (PN .GT. 0) THEN
PE (J) = IW (PN)
IW (PN) = -J
ENDIF
70 CONTINUE
C psrc/pdst point to source/destination
PDST = 1
PSRC = 1
PEND = PME1 - 1
C while loop:
80 CONTINUE
IF (PSRC .LE. PEND) THEN
C search for next negative entry
J = -IW (PSRC)
PSRC = PSRC + 1
IF (J .GT. 0) THEN
IW (PDST) = PE (J)
PE (J) = PDST
PDST = PDST + 1
C copy from source to destination
LENJ = LEN (J)
DO 90 KNT3 = 0, LENJ - 2
IW (PDST + KNT3) = IW (PSRC + KNT3)
90 CONTINUE
PDST = PDST + LENJ - 1
PSRC = PSRC + LENJ - 1
ENDIF
GOTO 80
ENDIF
C move the new partially-constructed element
P1 = PDST
DO 100 PSRC = PME1, PFREE - 1
IW (PDST) = IW (PSRC)
PDST = PDST + 1
100 CONTINUE
PME1 = P1
PFREE = PDST
PJ = PE (E)
P = PE (ME)
ENDIF
C -------------------------------------------------
C i is a principal variable not yet placed in Lme
C store i in new list
C -------------------------------------------------
DEGME = DEGME + NVI
C flag i as being in Lme by negating nv (i)
NV (I) = -NVI
IW (PFREE) = I
PFREE = PFREE + 1
C -------------------------------------------------
C remove variable i from degree link list
C -------------------------------------------------
ILAST = LAST (I)
INEXT = NEXT (I)
IF (INEXT .NE. 0) LAST (INEXT) = ILAST
IF (ILAST .NE. 0) THEN
NEXT (ILAST) = INEXT
ELSE
C i is at the head of the degree list
HEAD (DEGREE (I)) = INEXT
ENDIF
ENDIF
110 CONTINUE
IF (E .NE. ME) THEN
C set tree pointer and flag to indicate element e is
C absorbed into new element me (the parent of e is me)
PE (E) = -ME
W (E) = 0
ENDIF
120 CONTINUE
PME2 = PFREE - 1
C this element takes newmem new memory in iw (possibly zero)
NEWMEM = PFREE - PME1
MEM = MEM + NEWMEM
MAXMEM = MAX (MAXMEM, MEM)
ENDIF
C -------------------------------------------------------------
C me has now been converted into an element in iw (pme1..pme2)
C -------------------------------------------------------------
C degme holds the external degree of new element
DEGREE (ME) = DEGME
PE (ME) = PME1
LEN (ME) = PME2 - PME1 + 1
C -------------------------------------------------------------
C make sure that wflg is not too large. With the current
C value of wflg, wflg+n must not cause integer overflow
C -------------------------------------------------------------
IF (WFLG + N .LE. WFLG) THEN
DO 130 X = 1, N
IF (W (X) .NE. 0) W (X) = 1
130 CONTINUE
WFLG = 2
ENDIF
C=======================================================================
C COMPUTE (w (e) - wflg) = |Le\Lme| FOR ALL ELEMENTS
C=======================================================================
C -------------------------------------------------------------
C Scan 1: compute the external degrees of previous elements
C with respect to the current element. That is:
C (w (e) - wflg) = |Le \ Lme|
C for each element e that appears in any supervariable in Lme.
C The notation Le refers to the pattern (list of
C supervariables) of a previous element e, where e is not yet
C absorbed, stored in iw (pe (e) + 1 ... pe (e) + iw (pe (e))).
C The notation Lme refers to the pattern of the current element
C (stored in iw (pme1..pme2)). If (w (e) - wflg) becomes
C zero, then the element e will be absorbed in scan 2.
C -------------------------------------------------------------
DO 150 PME = PME1, PME2
I = IW (PME)
ELN = ELEN (I)
IF (ELN .GT. 0) THEN
C note that nv (i) has been negated to denote i in Lme:
NVI = -NV (I)
WNVI = WFLG - NVI
DO 140 P = PE (I), PE (I) + ELN - 1
E = IW (P)
WE = W (E)
IF (WE .GE. WFLG) THEN
C unabsorbed element e has been seen in this loop
WE = WE - NVI
ELSE IF (WE .NE. 0) THEN
C e is an unabsorbed element
C this is the first we have seen e in all of Scan 1
WE = DEGREE (E) + WNVI
ENDIF
W (E) = WE
140 CONTINUE
ENDIF
150 CONTINUE
C=======================================================================
C DEGREE UPDATE AND ELEMENT ABSORPTION
C=======================================================================
C -------------------------------------------------------------
C Scan 2: for each i in Lme, sum up the degree of Lme (which
C is degme), plus the sum of the external degrees of each Le
C for the elements e appearing within i, plus the
C supervariables in i. Place i in hash list.
C -------------------------------------------------------------
DO 180 PME = PME1, PME2
I = IW (PME)
P1 = PE (I)
P2 = P1 + ELEN (I) - 1
PN = P1
HASH = 0
DEG = 0
C ----------------------------------------------------------
C scan the element list associated with supervariable i
C ----------------------------------------------------------
DO 160 P = P1, P2
E = IW (P)
C dext = | Le \ Lme |
DEXT = W (E) - WFLG
IF (DEXT .GT. 0) THEN
DEG = DEG + DEXT
IW (PN) = E
PN = PN + 1
HASH = HASH + E
ELSE IF (DEXT .EQ. 0) THEN
C aggressive absorption: e is not adjacent to me, but
C the |Le \ Lme| is 0, so absorb it into me
PE (E) = -ME
W (E) = 0
ELSE
C element e has already been absorbed, due to
C regular absorption, in do loop 120 above. Ignore it.
CONTINUE
ENDIF
160 CONTINUE
C count the number of elements in i (including me):
ELEN (I) = PN - P1 + 1
C ----------------------------------------------------------
C scan the supervariables in the list associated with i
C ----------------------------------------------------------
P3 = PN
DO 170 P = P2 + 1, P1 + LEN (I) - 1
J = IW (P)
NVJ = NV (J)
IF (NVJ .GT. 0) THEN
C j is unabsorbed, and not in Lme.
C add to degree and add to new list
DEG = DEG + NVJ
IW (PN) = J
PN = PN + 1
HASH = HASH + J
ENDIF
170 CONTINUE
C ----------------------------------------------------------
C update the degree and check for mass elimination
C ----------------------------------------------------------
IF (DEG .EQ. 0) THEN
C -------------------------------------------------------
C mass elimination
C -------------------------------------------------------
C There is nothing left of this node except for an
C edge to the current pivot element. elen (i) is 1,
C and there are no variables adjacent to node i.
C Absorb i into the current pivot element, me.
PE (I) = -ME
NVI = -NV (I)
DEGME = DEGME - NVI
NVPIV = NVPIV + NVI
NEL = NEL + NVI
NV (I) = 0
ELEN (I) = 0
ELSE
C -------------------------------------------------------
C update the upper-bound degree of i
C -------------------------------------------------------
C the following degree does not yet include the size
C of the current element, which is added later:
DEGREE (I) = MIN (DEGREE (I), DEG)
C -------------------------------------------------------
C add me to the list for i
C -------------------------------------------------------
C move first supervariable to end of list
IW (PN) = IW (P3)
C move first element to end of element part of list
IW (P3) = IW (P1)
C add new element to front of list.
IW (P1) = ME
C store the new length of the list in len (i)
LEN (I) = PN - P1 + 1
C -------------------------------------------------------
C place in hash bucket. Save hash key of i in last (i).
C -------------------------------------------------------
HASH = MOD (HASH, HMOD) + 1
J = HEAD (HASH)
IF (J .LE. 0) THEN
C the degree list is empty, hash head is -j
NEXT (I) = -J
HEAD (HASH) = -I
ELSE
C degree list is not empty
C use last (head (hash)) as hash head
NEXT (I) = LAST (J)
LAST (J) = I
ENDIF
LAST (I) = HASH
ENDIF
180 CONTINUE
DEGREE (ME) = DEGME
C -------------------------------------------------------------
C Clear the counter array, w (...), by incrementing wflg.
C -------------------------------------------------------------
DMAX = MAX (DMAX, DEGME)
WFLG = WFLG + DMAX
C make sure that wflg+n does not cause integer overflow
IF (WFLG + N .LE. WFLG) THEN
DO 190 X = 1, N
IF (W (X) .NE. 0) W (X) = 1
190 CONTINUE
WFLG = 2
ENDIF
C at this point, w (1..n) .lt. wflg holds
C=======================================================================
C SUPERVARIABLE DETECTION
C=======================================================================
DO 250 PME = PME1, PME2
I = IW (PME)
IF (NV (I) .LT. 0) THEN
C i is a principal variable in Lme
C -------------------------------------------------------
C examine all hash buckets with 2 or more variables. We
C do this by examing all unique hash keys for super-
C variables in the pattern Lme of the current element, me
C -------------------------------------------------------
HASH = LAST (I)
C let i = head of hash bucket, and empty the hash bucket
J = HEAD (HASH)
IF (J .EQ. 0) GOTO 250
IF (J .LT. 0) THEN
C degree list is empty
I = -J
HEAD (HASH) = 0
ELSE
C degree list is not empty, restore last () of head
I = LAST (J)
LAST (J) = 0
ENDIF
IF (I .EQ. 0) GOTO 250
C while loop:
200 CONTINUE
IF (NEXT (I) .NE. 0) THEN
C ----------------------------------------------------
C this bucket has one or more variables following i.
C scan all of them to see if i can absorb any entries
C that follow i in hash bucket. Scatter i into w.
C ----------------------------------------------------
LN = LEN (I)
ELN = ELEN (I)
C do not flag the first element in the list (me)
DO 210 P = PE (I) + 1, PE (I) + LN - 1
W (IW (P)) = WFLG
210 CONTINUE
C ----------------------------------------------------
C scan every other entry j following i in bucket
C ----------------------------------------------------
JLAST = I
J = NEXT (I)
C while loop:
220 CONTINUE
IF (J .NE. 0) THEN
C -------------------------------------------------
C check if j and i have identical nonzero pattern
C -------------------------------------------------
IF (LEN (J) .NE. LN) THEN
C i and j do not have same size data structure
GOTO 240
ENDIF
IF (ELEN (J) .NE. ELN) THEN
C i and j do not have same number of adjacent el
GOTO 240
ENDIF
C do not flag the first element in the list (me)
DO 230 P = PE (J) + 1, PE (J) + LN - 1
IF (W (IW (P)) .NE. WFLG) THEN
C an entry (iw(p)) is in j but not in i
GOTO 240
ENDIF
230 CONTINUE
C -------------------------------------------------
C found it! j can be absorbed into i
C -------------------------------------------------
PE (J) = -I
C both nv (i) and nv (j) are negated since they
C are in Lme, and the absolute values of each
C are the number of variables in i and j:
NV (I) = NV (I) + NV (J)
NV (J) = 0
ELEN (J) = 0
C delete j from hash bucket
J = NEXT (J)
NEXT (JLAST) = J
GOTO 220
C -------------------------------------------------
240 CONTINUE
C j cannot be absorbed into i
C -------------------------------------------------
JLAST = J
J = NEXT (J)
GOTO 220
ENDIF
C ----------------------------------------------------
C no more variables can be absorbed into i
C go to next i in bucket and clear flag array
C ----------------------------------------------------
WFLG = WFLG + 1
I = NEXT (I)
IF (I .NE. 0) GOTO 200
ENDIF
ENDIF
250 CONTINUE
C=======================================================================
C RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVAR. FROM ELEMENT
C=======================================================================
P = PME1
NLEFT = N - NEL
DO 260 PME = PME1, PME2
I = IW (PME)
NVI = -NV (I)
IF (NVI .GT. 0) THEN
C i is a principal variable in Lme
C restore nv (i) to signify that i is principal
NV (I) = NVI
C -------------------------------------------------------
C compute the external degree (add size of current elem)
C -------------------------------------------------------
DEG = MIN (DEGREE (I) + DEGME - NVI, NLEFT - NVI)
C -------------------------------------------------------
C place the supervariable at the head of the degree list
C -------------------------------------------------------
INEXT = HEAD (DEG)
IF (INEXT .NE. 0) LAST (INEXT) = I
NEXT (I) = INEXT
LAST (I) = 0
HEAD (DEG) = I
C -------------------------------------------------------
C save the new degree, and find the minimum degree
C -------------------------------------------------------
MINDEG = MIN (MINDEG, DEG)
DEGREE (I) = DEG
C -------------------------------------------------------
C place the supervariable in the element pattern
C -------------------------------------------------------
IW (P) = I
P = P + 1
ENDIF
260 CONTINUE
C=======================================================================
C FINALIZE THE NEW ELEMENT
C=======================================================================
NV (ME) = NVPIV + DEGME
C nv (me) is now the degree of pivot (including diagonal part)
C save the length of the list for the new element me
LEN (ME) = P - PME1
IF (LEN (ME) .EQ. 0) THEN
C there is nothing left of the current pivot element
PE (ME) = 0
W (ME) = 0
ENDIF
IF (NEWMEM .NE. 0) THEN
C element was not constructed in place: deallocate part
C of it (final size is less than or equal to newmem,
C since newly nonprincipal variables have been removed).
PFREE = P
MEM = MEM - NEWMEM + LEN (ME)
ENDIF
C=======================================================================
C END WHILE (selecting pivots)
GOTO 30
ENDIF
C=======================================================================
C=======================================================================
C COMPUTE THE PERMUTATION VECTORS
C=======================================================================
C ----------------------------------------------------------------
C The time taken by the following code is O(n). At this
C point, elen (e) = -k has been done for all elements e,
C and elen (i) = 0 has been done for all nonprincipal
C variables i. At this point, there are no principal
C supervariables left, and all elements are absorbed.
C ----------------------------------------------------------------
C ----------------------------------------------------------------
C compute the ordering of unordered nonprincipal variables
C ----------------------------------------------------------------
DO 290 I = 1, N
IF (ELEN (I) .EQ. 0) THEN
C ----------------------------------------------------------
C i is an un-ordered row. Traverse the tree from i until
C reaching an element, e. The element, e, was the
C principal supervariable of i and all nodes in the path
C from i to when e was selected as pivot.
C ----------------------------------------------------------
J = -PE (I)
C while (j is a variable) do:
270 CONTINUE
IF (ELEN (J) .GE. 0) THEN
J = -PE (J)
GOTO 270
ENDIF
E = J
C ----------------------------------------------------------
C get the current pivot ordering of e
C ----------------------------------------------------------
K = -ELEN (E)
C ----------------------------------------------------------
C traverse the path again from i to e, and compress the
C path (all nodes point to e). Path compression allows
C this code to compute in O(n) time. Order the unordered
C nodes in the path, and place the element e at the end.
C ----------------------------------------------------------
J = I
C while (j is a variable) do:
280 CONTINUE
IF (ELEN (J) .GE. 0) THEN
JNEXT = -PE (J)
PE (J) = -E
IF (ELEN (J) .EQ. 0) THEN
C j is an unordered row
ELEN (J) = K
K = K + 1
ENDIF
J = JNEXT
GOTO 280
ENDIF
C leave elen (e) negative, so we know it is an element
ELEN (E) = -K
ENDIF
290 CONTINUE
C ----------------------------------------------------------------
C reset the inverse permutation (elen (1..n)) to be positive,
C and compute the permutation (last (1..n)).
C ----------------------------------------------------------------
DO 300 I = 1, N
K = ABS (ELEN (I))
LAST (K) = I
ELEN (I) = K
300 CONTINUE
C=======================================================================
C RETURN THE MEMORY USAGE IN IW
C=======================================================================
C If maxmem is less than or equal to iwlen, then no compressions
C occurred, and iw (maxmem+1 ... iwlen) was unused. Otherwise
C compressions did occur, and iwlen would have had to have been
C greater than or equal to maxmem for no compressions to occur.
C Return the value of maxmem in the pfree argument.
PFREE = MAXMEM
RETURN
END