amd_demo2.out
8.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
AMD demo, with a jumbled version of the 24-by-24
Harwell/Boeing matrix, can_24:
AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
dense row parameter: 10
(rows with more than max (10 * sqrt (n), 16) entries are
considered "dense", and placed last in output permutation)
aggressive absorption: yes
size of AMD integer: 4
Jumbled input matrix: 24-by-24, with 116 entries.
Note that for a symmetric matrix such as this one, only the
strictly lower or upper triangular parts would need to be
passed to AMD, since AMD computes the ordering of A+A'. The
diagonal entries are also not needed, since AMD ignores them.
This version of the matrix has jumbled columns and duplicate
row indices.
Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]:
row indices: 0 17 18 21 5 12 5 0 13
Column: 1, number of entries: 5, with row indices in Ai [9 ... 13]:
row indices: 14 1 8 13 17
Column: 2, number of entries: 6, with row indices in Ai [14 ... 19]:
row indices: 2 20 11 6 11 22
Column: 3, number of entries: 8, with row indices in Ai [20 ... 27]:
row indices: 3 3 10 7 18 18 15 19
Column: 4, number of entries: 5, with row indices in Ai [28 ... 32]:
row indices: 7 9 15 14 16
Column: 5, number of entries: 4, with row indices in Ai [33 ... 36]:
row indices: 5 13 6 17
Column: 6, number of entries: 7, with row indices in Ai [37 ... 43]:
row indices: 5 0 11 6 12 6 23
Column: 7, number of entries: 9, with row indices in Ai [44 ... 52]:
row indices: 3 4 9 7 14 16 15 17 18
Column: 8, number of entries: 5, with row indices in Ai [53 ... 57]:
row indices: 1 9 14 14 14
Column: 9, number of entries: 5, with row indices in Ai [58 ... 62]:
row indices: 7 13 8 1 17
Column: 10, number of entries: 0, with row indices in Ai [63 ... 62]:
row indices:
Column: 11, number of entries: 3, with row indices in Ai [63 ... 65]:
row indices: 2 12 23
Column: 12, number of entries: 3, with row indices in Ai [66 ... 68]:
row indices: 5 11 12
Column: 13, number of entries: 3, with row indices in Ai [69 ... 71]:
row indices: 0 13 17
Column: 14, number of entries: 3, with row indices in Ai [72 ... 74]:
row indices: 1 9 14
Column: 15, number of entries: 3, with row indices in Ai [75 ... 77]:
row indices: 3 15 16
Column: 16, number of entries: 4, with row indices in Ai [78 ... 81]:
row indices: 16 4 4 15
Column: 17, number of entries: 4, with row indices in Ai [82 ... 85]:
row indices: 13 17 19 17
Column: 18, number of entries: 5, with row indices in Ai [86 ... 90]:
row indices: 15 17 19 9 10
Column: 19, number of entries: 6, with row indices in Ai [91 ... 96]:
row indices: 17 19 20 0 6 10
Column: 20, number of entries: 4, with row indices in Ai [97 ... 100]:
row indices: 22 10 20 21
Column: 21, number of entries: 11, with row indices in Ai [101 ... 111]:
row indices: 6 2 10 19 20 11 21 22 22 22 22
Column: 22, number of entries: 0, with row indices in Ai [112 ... 111]:
row indices:
Column: 23, number of entries: 4, with row indices in Ai [112 ... 115]:
row indices: 12 11 12 23
Plot of (jumbled) input matrix pattern:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
0: X . . . . . X . . . . . . X . . . . . X . . . .
1: . X . . . . . . X X . . . . X . . . . . . . . .
2: . . X . . . . . . . . X . . . . . . . . . X . .
3: . . . X . . . X . . . . . . . X . . . . . . . .
4: . . . . . . . X . . . . . . . . X . . . . . . .
5: X . . . . X X . . . . . X . . . . . . . . . . .
6: . . X . . X X . . . . . . . . . . . . X . X . .
7: . . . X X . . X . X . . . . . . . . . . . . . .
8: . X . . . . . . . X . . . . . . . . . . . . . .
9: . . . . X . . X X . . . . . X . . . X . . . . .
10: . . . X . . . . . . . . . . . . . . X X X X . .
11: . . X . . . X . . . . . X . . . . . . . . X . X
12: X . . . . . X . . . . X X . . . . . . . . . . X
13: X X . . . X . . . X . . . X . . . X . . . . . .
14: . X . . X . . X X . . . . . X . . . . . . . . .
15: . . . X X . . X . . . . . . . X X . X . . . . .
16: . . . . X . . X . . . . . . . X X . . . . . . .
17: X X . . . X . X . X . . . X . . . X X X . . . .
18: X . . X . . . X . . . . . . . . . . . . . . . .
19: . . . X . . . . . . . . . . . . . X X X . X . .
20: . . X . . . . . . . . . . . . . . . . X X X . .
21: X . . . . . . . . . . . . . . . . . . . X X . .
22: . . X . . . . . . . . . . . . . . . . . X X . .
23: . . . . . . X . . . . X . . . . . . . . . . . X
Plot of symmetric matrix to be ordered by amd_order:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
0: X . . . . X X . . . . . X X . . . X X X . X . .
1: . X . . . . . . X X . . . X X . . X . . . . . .
2: . . X . . . X . . . . X . . . . . . . . X X X .
3: . . . X . . . X . . X . . . . X . . X X . . . .
4: . . . . X . . X . X . . . . X X X . . . . . . .
5: X . . . . X X . . . . . X X . . . X . . . . . .
6: X . X . . X X . . . . X X . . . . . . X . X . X
7: . . . X X . . X . X . . . . X X X X X . . . . .
8: . X . . . . . . X X . . . . X . . . . . . . . .
9: . X . . X . . X X X . . . X X . . X X . . . . .
10: . . . X . . . . . . X . . . . . . . X X X X . .
11: . . X . . . X . . . . X X . . . . . . . . X . X
12: X . . . . X X . . . . X X . . . . . . . . . . X
13: X X . . . X . . . X . . . X . . . X . . . . . .
14: . X . . X . . X X X . . . . X . . . . . . . . .
15: . . . X X . . X . . . . . . . X X . X . . . . .
16: . . . . X . . X . . . . . . . X X . . . . . . .
17: X X . . . X . X . X . . . X . . . X X X . . . .
18: X . . X . . . X . X X . . . . X . X X X . . . .
19: X . . X . . X . . . X . . . . . . X X X X X . .
20: . . X . . . . . . . X . . . . . . . . X X X X .
21: X . X . . . X . . . X X . . . . . . . X X X X .
22: . . X . . . . . . . . . . . . . . . . . X X X .
23: . . . . . . X . . . . X X . . . . . . . . . . X
return value from amd_order: 1 (should be 1)
AMD version 2.2.0, May 31, 2007, results:
status: OK, but jumbled
n, dimension of A: 24
nz, number of nonzeros in A: 102
symmetry of A: 0.4000
number of nonzeros on diagonal: 17
nonzeros in pattern of A+A' (excl. diagonal): 136
# dense rows/columns of A+A': 0
memory used, in bytes: 2080
# of memory compactions: 0
The following approximate statistics are for a subsequent
factorization of A(P,P) + A(P,P)'. They are slight upper
bounds if there are no dense rows/columns in A+A', and become
looser if dense rows/columns exist.
nonzeros in L (excluding diagonal): 97
nonzeros in L (including diagonal): 121
# divide operations for LDL' or LU: 97
# multiply-subtract operations for LDL': 275
# multiply-subtract operations for LU: 453
max nz. in any column of L (incl. diagonal): 8
chol flop count for real A, sqrt counted as 1 flop: 671
LDL' flop count for real A: 647
LDL' flop count for complex A: 3073
LU flop count for real A (with no pivoting): 1003
LU flop count for complex A (with no pivoting): 4497
Permutation vector:
22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19
Inverse permutation vector:
16 12 17 18 9 5 19 11 7 13 2 20 4 14 8 10 6 15 21 23 1 22 0 3
Plot of (symmetrized) permuted matrix pattern:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
0: X X . . . . . . . . . . . . . . . X . . . . X .
1: X X X . . . . . . . . . . . . . . X . . . . X X
2: . X X . . . . . . . . . . . . . . . X . . X X X
3: . . . X X . . . . . . . . . . . . . . X X . . .
4: . . . X X X . . . . . . . . . . X . . X X . . .
5: . . . . X X . . . . . . . . X X X . . X . . . .
6: . . . . . . X . . X X X . . . . . . . . . . . .
7: . . . . . . . X X . . . X X . . . . . . . . . .
8: . . . . . . . X X X . X X X . . . . . . . . . .
9: . . . . . . X . X X X X . X . . . . . . . . . .
10: . . . . . . X . . X X X . . . . . . X . . X . .
11: . . . . . . X . X X X X . X . X . . X . . X . .
12: . . . . . . . X X . . . X X X X . . . . . . . .
13: . . . . . . . X X X . X X X X X . . . . . X . .
14: . . . . . X . . . . . . X X X X X . . . . . . .
15: . . . . . X . . . . . X X X X X X . . . . X . X
16: . . . . X X . . . . . . . . X X X . . X . X X X
17: X X . . . . . . . . . . . . . . . X . X X . X .
18: . . X . . . . . . . X X . . . . . . X . . X . X
19: . . . X X X . . . . . . . . . . X X . X X . X X
20: . . . X X . . . . . . . . . . . . X . X X . X .
21: . . X . . . . . . . X X . X . X X . X . . X . X
22: X X X . . . . . . . . . . . . . X X . X X . X X
23: . X X . . . . . . . . . . . . X X . X X . X X X