fvn_interpol.f90 21.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
module fvn_interpol
use fvn_common
implicit none


! Utility procedure find interval
interface fvn_find_interval
    module procedure fvn_s_find_interval,fvn_d_find_interval
end interface fvn_find_interval

! Quadratic 1D interpolation
interface fvn_quad_interpol
    module procedure fvn_s_quad_interpol,fvn_d_quad_interpol
end interface fvn_quad_interpol

! Quadratic 2D interpolation
interface fvn_quad_2d_interpol
    module procedure fvn_s_quad_2d_interpol,fvn_d_quad_2d_interpol
end interface fvn_quad_2d_interpol

! Quadratic 3D interpolation
interface fvn_quad_3d_interpol
    module procedure fvn_s_quad_3d_interpol,fvn_d_quad_3d_interpol
end interface fvn_quad_3d_interpol

! Akima interpolation
interface fvn_akima
    module procedure fvn_s_akima,fvn_d_akima
end interface fvn_akima

! Akima evaluation
interface fvn_spline_eval
    module procedure fvn_s_spline_eval,fvn_d_spline_eval
end interface fvn_spline_eval

contains

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Quadratic interpolation of tabulated function of 1,2 or 3 variables
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine fvn_s_find_interval(x,i,xdata,n)
      implicit none
      ! This routine find the indice i where xdata(i) <= x < xdata(i+1)
      ! xdata(n) must contains a set of increasingly ordered values 
      ! if x < xdata(1) i=0 is returned
      ! if x > xdata(n) i=n is returned
      ! special case is where x=xdata(n) then n-1 is returned so 
      ! we will not exclude the upper limit
      ! a simple dichotomy method is used

      real(kind=4), intent(in) :: x
      real(kind=4), intent(in), dimension(n) :: xdata
      integer(kind=4), intent(in) :: n
      integer(kind=4), intent(out) :: i

      integer(kind=4) :: imin,imax,imoyen

      ! special case is where x=xdata(n) then n-1 is returned so 
      ! we will not exclude the upper limit
      if (x == xdata(n)) then
            i=n-1
            return
      end if

      ! if x < xdata(1) i=0 is returned
      if (x < xdata(1)) then
            i=0
            return
      end if

      ! if x > xdata(n) i=n is returned
      if (x > xdata(n)) then
            i=n
            return
      end if

      ! here xdata(1) <= x <= xdata(n)
      imin=0
      imax=n+1

      do while((imax-imin) > 1)
            imoyen=(imax+imin)/2
            if (x >= xdata(imoyen)) then
                  imin=imoyen
            else
                  imax=imoyen
            end if
      end do

      i=imin

end subroutine


subroutine fvn_d_find_interval(x,i,xdata,n)
      implicit none
      ! This routine find the indice i where xdata(i) <= x < xdata(i+1)
      ! xdata(n) must contains a set of increasingly ordered values 
      ! if x < xdata(1) i=0 is returned
      ! if x > xdata(n) i=n is returned
      ! special case is where x=xdata(n) then n-1 is returned so 
      ! we will not exclude the upper limit
      ! a simple dichotomy method is used

      real(kind=8), intent(in) :: x
      real(kind=8), intent(in), dimension(n) :: xdata
      integer(kind=4), intent(in) :: n
      integer(kind=4), intent(out) :: i

      integer(kind=4) :: imin,imax,imoyen

      ! special case is where x=xdata(n) then n-1 is returned so 
      ! we will not exclude the upper limit
      if (x == xdata(n)) then
            i=n-1
            return
      end if

      ! if x < xdata(1) i=0 is returned
      if (x < xdata(1)) then
            i=0
            return
      end if

      ! if x > xdata(n) i=n is returned
      if (x > xdata(n)) then
            i=n
            return
      end if

      ! here xdata(1) <= x <= xdata(n)
      imin=0
      imax=n+1

      do while((imax-imin) > 1)
            imoyen=(imax+imin)/2
            if (x >= xdata(imoyen)) then
                  imin=imoyen
            else
                  imax=imoyen
            end if
      end do

      i=imin

end subroutine


function fvn_s_quad_interpol(x,n,xdata,ydata)
      implicit none
      ! This function evaluate the value of a function defined by a set of points
      ! and values, using a quadratic interpolation
      ! xdata must be increasingly ordered
      ! x must be within xdata(1) and xdata(n) to actually do interpolation
      ! otherwise extrapolation is done
      integer(kind=4), intent(in) :: n
      real(kind=4), intent(in), dimension(n) :: xdata,ydata
      real(kind=4), intent(in) :: x
      real(kind=4) ::  fvn_s_quad_interpol

      integer(kind=4) :: iinf,base,i,j
      real(kind=4) :: p

      call fvn_s_find_interval(x,iinf,xdata,n)

      ! Settings for extrapolation
      if (iinf==0) then
            ! TODO -> Lower bound extrapolation warning
            iinf=1
      end if

      if (iinf==n) then
            ! TODO -> Higher bound extrapolation warning
            iinf=n-1
      end if

      ! The three points we will use are iinf-1,iinf and iinf+1 with the
      ! exception of the first interval, where iinf=1 we will use 1,2 and 3
      if (iinf==1) then
            base=0
      else
            base=iinf-2
      end if

      ! The three points we will use are :
      ! xdata/ydata(base+1),xdata/ydata(base+2),xdata/ydata(base+3)

      ! Straight forward Lagrange polynomial
      fvn_s_quad_interpol=0.
      do i=1,3
            !  polynome i
            p=ydata(base+i)
            do j=1,3
                  if (j /= i) then
                        p=p*(x-xdata(base+j))/(xdata(base+i)-xdata(base+j))
                  end if
            end do
            fvn_s_quad_interpol=fvn_s_quad_interpol+p
      end do

end function


function fvn_d_quad_interpol(x,n,xdata,ydata)
      implicit none
      ! This function evaluate the value of a function defined by a set of points
      ! and values, using a quadratic interpolation
      ! xdata must be increasingly ordered
      ! x must be within xdata(1) and xdata(n) to actually do interpolation
      ! otherwise extrapolation is done
      integer(kind=4), intent(in) :: n
      real(kind=8), intent(in), dimension(n) :: xdata,ydata
      real(kind=8), intent(in) :: x
      real(kind=8) ::  fvn_d_quad_interpol

      integer(kind=4) :: iinf,base,i,j
      real(kind=8) :: p

      call fvn_d_find_interval(x,iinf,xdata,n)

      ! Settings for extrapolation
      if (iinf==0) then
            ! TODO -> Lower bound extrapolation warning
            iinf=1
      end if

      if (iinf==n) then
            ! TODO Higher bound extrapolation warning
            iinf=n-1
      end if

      ! The three points we will use are iinf-1,iinf and iinf+1 with the
      ! exception of the first interval, where iinf=1 we will use 1,2 and 3
      if (iinf==1) then
            base=0
      else
            base=iinf-2
      end if

      ! The three points we will use are :
      ! xdata/ydata(base+1),xdata/ydata(base+2),xdata/ydata(base+3)

      ! Straight forward Lagrange polynomial
      fvn_d_quad_interpol=0.
      do i=1,3
            !  polynome i
            p=ydata(base+i)
            do j=1,3
                  if (j /= i) then
                        p=p*(x-xdata(base+j))/(xdata(base+i)-xdata(base+j))
                  end if
            end do
            fvn_d_quad_interpol=fvn_d_quad_interpol+p
      end do

end function


function fvn_s_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
      implicit none
      ! This function evaluate the value of a two variable function defined by a
      ! set of points and values, using a quadratic interpolation
      ! xdata and ydata must be increasingly ordered
      ! the couple (x,y) must be as x within xdata(1) and xdata(nx) and
      ! y within ydata(1) and ydata(ny) to actually do interpolation
      ! otherwise extrapolation is done
      integer(kind=4), intent(in) :: nx,ny
      real(kind=4), intent(in) :: x,y
      real(kind=4), intent(in), dimension(nx) :: xdata
      real(kind=4), intent(in), dimension(ny) :: ydata
      real(kind=4), intent(in), dimension(nx,ny) :: zdata
      real(kind=4) :: fvn_s_quad_2d_interpol

      integer(kind=4) :: ixinf,iyinf,basex,basey,i
      real(kind=4),dimension(3) :: ztmp
      !real(kind=4), external :: fvn_s_quad_interpol

      call fvn_s_find_interval(x,ixinf,xdata,nx)
      call fvn_s_find_interval(y,iyinf,ydata,ny)

      ! Settings for extrapolation
      if (ixinf==0) then
            ! TODO -> Lower x  bound extrapolation warning
            ixinf=1
      end if

      if (ixinf==nx) then
            ! TODO -> Higher x bound extrapolation warning
            ixinf=nx-1
      end if

      if (iyinf==0) then
            ! TODO -> Lower y  bound extrapolation warning
            iyinf=1
      end if

      if (iyinf==ny) then
            ! TODO -> Higher y bound extrapolation warning
            iyinf=ny-1
      end if

      ! The three points we will use are iinf-1,iinf and iinf+1 with the
      ! exception of the first interval, where iinf=1 we will use 1,2 and 3
      if (ixinf==1) then
            basex=0
      else
            basex=ixinf-2
      end if

      if (iyinf==1) then
            basey=0
      else
            basey=iyinf-2
      end if

      ! First we make 3 interpolations for x at y(base+1),y(base+2),y(base+3)
      ! stored in ztmp(1:3)
      do i=1,3
            ztmp(i)=fvn_s_quad_interpol(x,nx,xdata,zdata(:,basey+i))
      end do

      ! Then we make an interpolation for y using previous interpolations
      fvn_s_quad_2d_interpol=fvn_s_quad_interpol(y,3,ydata(basey+1:basey+3),ztmp)
end function


function fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
      implicit none
      ! This function evaluate the value of a two variable function defined by a
      ! set of points and values, using a quadratic interpolation
      ! xdata and ydata must be increasingly ordered
      ! the couple (x,y) must be as x within xdata(1) and xdata(nx) and
      ! y within ydata(1) and ydata(ny) to actually do interpolation
      ! otherwise extrapolation is done
      integer(kind=4), intent(in) :: nx,ny
      real(kind=8), intent(in) :: x,y
      real(kind=8), intent(in), dimension(nx) :: xdata
      real(kind=8), intent(in), dimension(ny) :: ydata
      real(kind=8), intent(in), dimension(nx,ny) :: zdata
      real(kind=8) :: fvn_d_quad_2d_interpol

      integer(kind=4) :: ixinf,iyinf,basex,basey,i
      real(kind=8),dimension(3) :: ztmp
      !real(kind=8), external :: fvn_d_quad_interpol

      call fvn_d_find_interval(x,ixinf,xdata,nx)
      call fvn_d_find_interval(y,iyinf,ydata,ny)

      ! Settings for extrapolation
      if (ixinf==0) then
            ! TODO -> Lower x  bound extrapolation warning
            ixinf=1
      end if

      if (ixinf==nx) then
            ! TODO -> Higher x bound extrapolation warning
            ixinf=nx-1
      end if

      if (iyinf==0) then
            ! TODO -> Lower y  bound extrapolation warning
            iyinf=1
      end if

      if (iyinf==ny) then
            ! TODO -> Higher y bound extrapolation warning
            iyinf=ny-1
      end if

      ! The three points we will use are iinf-1,iinf and iinf+1 with the
      ! exception of the first interval, where iinf=1 we will use 1,2 and 3
      if (ixinf==1) then
            basex=0
      else
            basex=ixinf-2
      end if

      if (iyinf==1) then
            basey=0
      else
            basey=iyinf-2
      end if

      ! First we make 3 interpolations for x at y(base+1),y(base+2),y(base+3)
      ! stored in ztmp(1:3)
      do i=1,3
            ztmp(i)=fvn_d_quad_interpol(x,nx,xdata,zdata(:,basey+i))
      end do

      ! Then we make an interpolation for y using previous interpolations
      fvn_d_quad_2d_interpol=fvn_d_quad_interpol(y,3,ydata(basey+1:basey+3),ztmp)
end function


function fvn_s_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
      implicit none
      ! This function evaluate the value of a 3 variables function defined by a
      ! set of points and values, using a quadratic interpolation
      ! xdata, ydata and zdata must be increasingly ordered
      ! The triplet (x,y,z) must be within xdata,ydata and zdata to actually 
      ! perform an interpolation, otherwise extrapolation is done
      integer(kind=4), intent(in) :: nx,ny,nz
      real(kind=4), intent(in) :: x,y,z
      real(kind=4), intent(in), dimension(nx) :: xdata
      real(kind=4), intent(in), dimension(ny) :: ydata
      real(kind=4), intent(in), dimension(nz) :: zdata
      real(kind=4), intent(in), dimension(nx,ny,nz) :: tdata
      real(kind=4) :: fvn_s_quad_3d_interpol

      integer(kind=4) :: ixinf,iyinf,izinf,basex,basey,basez,i,j
      !real(kind=4), external :: fvn_s_quad_interpol,fvn_s_quad_2d_interpol
      real(kind=4),dimension(3,3) :: ttmp

      call fvn_s_find_interval(x,ixinf,xdata,nx)
      call fvn_s_find_interval(y,iyinf,ydata,ny)
      call fvn_s_find_interval(z,izinf,zdata,nz)

      ! Settings for extrapolation
      if (ixinf==0) then
            ! TODO -> Lower x  bound extrapolation warning
            ixinf=1
      end if

      if (ixinf==nx) then
            ! TODO -> Higher x bound extrapolation warning
            ixinf=nx-1
      end if

      if (iyinf==0) then
            ! TODO -> Lower y  bound extrapolation warning
            iyinf=1
      end if

      if (iyinf==ny) then
            ! TODO -> Higher y bound extrapolation warning
            iyinf=ny-1
      end if

      if (izinf==0) then
            ! TODO -> Lower z bound extrapolation warning
            izinf=1
      end if

      if (izinf==nz) then
            ! TODO -> Higher z bound extrapolation warning
            izinf=nz-1
      end if

      ! The three points we will use are iinf-1,iinf and iinf+1 with the
      ! exception of the first interval, where iinf=1 we will use 1,2 and 3
      if (ixinf==1) then
            basex=0
      else
            basex=ixinf-2
      end if

      if (iyinf==1) then
            basey=0
      else
            basey=iyinf-2
      end if

      if (izinf==1) then
            basez=0
      else
            basez=izinf-2
      end if

      ! We first make 9 one dimensional interpolation on variable x.
      ! results are stored in ttmp
      do i=1,3
            do j=1,3
                  ttmp(i,j)=fvn_s_quad_interpol(x,nx,xdata,tdata(:,basey+i,basez+j))
            end do
      end do

      ! We then make a 2 dimensionnal interpolation on variables y and z
      fvn_s_quad_3d_interpol=fvn_s_quad_2d_interpol(y,z, &
            3,ydata(basey+1:basey+3),3,zdata(basez+1:basez+3),ttmp)
end function


function fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
      implicit none
      ! This function evaluate the value of a 3 variables function defined by a
      ! set of points and values, using a quadratic interpolation
      ! xdata, ydata and zdata must be increasingly ordered
      ! The triplet (x,y,z) must be within xdata,ydata and zdata to actually 
      ! perform an interpolation, otherwise extrapolation is done
      integer(kind=4), intent(in) :: nx,ny,nz
      real(kind=8), intent(in) :: x,y,z
      real(kind=8), intent(in), dimension(nx) :: xdata
      real(kind=8), intent(in), dimension(ny) :: ydata
      real(kind=8), intent(in), dimension(nz) :: zdata
      real(kind=8), intent(in), dimension(nx,ny,nz) :: tdata
      real(kind=8) :: fvn_d_quad_3d_interpol

      integer(kind=4) :: ixinf,iyinf,izinf,basex,basey,basez,i,j
      !real(kind=8), external :: fvn_d_quad_interpol,fvn_d_quad_2d_interpol
      real(kind=8),dimension(3,3) :: ttmp

      call fvn_d_find_interval(x,ixinf,xdata,nx)
      call fvn_d_find_interval(y,iyinf,ydata,ny)
      call fvn_d_find_interval(z,izinf,zdata,nz)

      ! Settings for extrapolation
      if (ixinf==0) then
            ! TODO -> Lower x  bound extrapolation warning
            ixinf=1
      end if

      if (ixinf==nx) then
            ! TODO -> Higher x bound extrapolation warning
            ixinf=nx-1
      end if

      if (iyinf==0) then
            ! TODO -> Lower y  bound extrapolation warning
            iyinf=1
      end if

      if (iyinf==ny) then
            ! TODO -> Higher y bound extrapolation warning
            iyinf=ny-1
      end if

      if (izinf==0) then
            ! TODO -> Lower z bound extrapolation warning
            izinf=1
      end if

      if (izinf==nz) then
            ! TODO -> Higher z bound extrapolation warning
            izinf=nz-1
      end if

      ! The three points we will use are iinf-1,iinf and iinf+1 with the
      ! exception of the first interval, where iinf=1 we will use 1,2 and 3
      if (ixinf==1) then
            basex=0
      else
            basex=ixinf-2
      end if

      if (iyinf==1) then
            basey=0
      else
            basey=iyinf-2
      end if

      if (izinf==1) then
            basez=0
      else
            basez=izinf-2
      end if

      ! We first make 9 one dimensional interpolation on variable x.
      ! results are stored in ttmp
      do i=1,3
            do j=1,3
                  ttmp(i,j)=fvn_d_quad_interpol(x,nx,xdata,tdata(:,basey+i,basez+j))
            end do
      end do

      ! We then make a 2 dimensionnal interpolation on variables y and z
      fvn_d_quad_3d_interpol=fvn_d_quad_2d_interpol(y,z, &
            3,ydata(basey+1:basey+3),3,zdata(basez+1:basez+3),ttmp)
end function




!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Akima spline interpolation and spline evaluation
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Single precision
subroutine fvn_s_akima(n,x,y,br,co)
    implicit none
    integer, intent(in)  :: n
    real, intent(in) :: x(n)
    real, intent(in) :: y(n)
    real, intent(out) :: br(n)
    real, intent(out) :: co(4,n)
    
    real, allocatable :: var(:),z(:)
    real :: wi_1,wi
    integer :: i
    real :: dx,a,b

    ! br is just a copy of x
    br(:)=x(:)
    
    allocate(var(n+3))
    allocate(z(n))
    ! evaluate the variations
    do i=1, n-1
        var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
    end do
    var(n+2)=2.e0*var(n+1)-var(n)
    var(n+3)=2.e0*var(n+2)-var(n+1)
    var(2)=2.e0*var(3)-var(4)
    var(1)=2.e0*var(2)-var(3)
  
    do i = 1, n
    wi_1=abs(var(i+3)-var(i+2))
    wi=abs(var(i+1)-var(i))
    if ((wi_1+wi).eq.0.e0) then
        z(i)=(var(i+2)+var(i+1))/2.e0
    else
        z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
    end if
    end do
    
    do i=1, n-1
        dx=x(i+1)-x(i)
        a=(z(i+1)-z(i))*dx                      ! coeff intermediaires pour calcul wd
        b=y(i+1)-y(i)-z(i)*dx                   ! coeff intermediaires pour calcul wd
        co(1,i)=y(i)
        co(2,i)=z(i)
        !co(3,i)=-(a-3.*b)/dx**2                ! méthode wd
        !co(4,i)=(a-2.*b)/dx**3                 ! méthode wd
        co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx   ! méthode JP Moreau
        co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2  !
        ! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6
        ! etrangement la fonction csval corrige et donne la bonne valeur ...
    end do
    co(1,n)=y(n)
    co(2,n)=z(n)
    co(3,n)=0.e0
    co(4,n)=0.e0

    deallocate(z)
    deallocate(var)

end subroutine

! Double precision
subroutine fvn_d_akima(n,x,y,br,co)

    implicit none
    integer, intent(in)  :: n
    double precision, intent(in) :: x(n)
    double precision, intent(in) :: y(n)
    double precision, intent(out) :: br(n)
    double precision, intent(out) :: co(4,n)
    
    double precision, allocatable :: var(:),z(:)
    double precision :: wi_1,wi
    integer :: i
    double precision :: dx,a,b
    
    ! br is just a copy of x
    br(:)=x(:)

    allocate(var(n+3))
    allocate(z(n))
    ! evaluate the variations
    do i=1, n-1
        var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
    end do
    var(n+2)=2.d0*var(n+1)-var(n)
    var(n+3)=2.d0*var(n+2)-var(n+1)
    var(2)=2.d0*var(3)-var(4)
    var(1)=2.d0*var(2)-var(3)
  
    do i = 1, n
    wi_1=dabs(var(i+3)-var(i+2))
    wi=dabs(var(i+1)-var(i))
    if ((wi_1+wi).eq.0.d0) then
        z(i)=(var(i+2)+var(i+1))/2.d0
    else
        z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
    end if
    end do
    
    do i=1, n-1
        dx=x(i+1)-x(i)
        a=(z(i+1)-z(i))*dx                      ! coeff intermediaires pour calcul wd
        b=y(i+1)-y(i)-z(i)*dx                   ! coeff intermediaires pour calcul wd
        co(1,i)=y(i)
        co(2,i)=z(i)
        !co(3,i)=-(a-3.*b)/dx**2                ! méthode wd
        !co(4,i)=(a-2.*b)/dx**3                 ! méthode wd
        co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx   ! méthode JP Moreau
        co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2  !
        ! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6
        ! etrangement la fonction csval corrige et donne la bonne valeur ...
    end do
    co(1,n)=y(n)
    co(2,n)=z(n)
    co(3,n)=0.d0
    co(4,n)=0.d0

    deallocate(z)
    deallocate(var)

end subroutine

!
! Single precision spline evaluation
!
function fvn_s_spline_eval(x,n,br,co)
    implicit none
    real, intent(in) :: x           ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
    integer, intent(in) :: n        ! number of intervals
    real, intent(in) :: br(n+1)     ! breakpoints
    real, intent(in) :: co(4,n+1)   ! spline coeeficients
    real :: fvn_s_spline_eval
    
    integer :: i
    real :: dx
    
    if (x<=br(1)) then
        i=1
    else if (x>=br(n+1)) then
        i=n
    else
    i=1
    do while(x>=br(i))
        i=i+1
    end do
    i=i-1
    end if
    dx=x-br(i)
    fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3

end function

! Double precision spline evaluation
function fvn_d_spline_eval(x,n,br,co)
    implicit none
    double precision, intent(in) :: x           ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
    integer, intent(in) :: n        ! number of intervals
    double precision, intent(in) :: br(n+1)     ! breakpoints
    double precision, intent(in) :: co(4,n+1)   ! spline coeeficients
    double precision :: fvn_d_spline_eval
    
    integer :: i
    double precision :: dx
    
    
    if (x<=br(1)) then
        i=1
    else if (x>=br(n+1)) then
        i=n
    else
    i=1
    do while(x>=br(i))
        i=i+1
    end do
    i=i-1
    end if
    
    dx=x-br(i)
    fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3

end function


end module fvn_interpol