amd_post_tree.c
3.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/* ========================================================================= */
/* === AMD_post_tree ======================================================= */
/* ========================================================================= */
/* ------------------------------------------------------------------------- */
/* AMD, Copyright (c) Timothy A. Davis, */
/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */
/* web: http://www.cise.ufl.edu/research/sparse/amd */
/* ------------------------------------------------------------------------- */
/* Post-ordering of a supernodal elimination tree. */
#include "amd_internal.h"
GLOBAL Int AMD_post_tree
(
Int root, /* root of the tree */
Int k, /* start numbering at k */
Int Child [ ], /* input argument of size nn, undefined on
* output. Child [i] is the head of a link
* list of all nodes that are children of node
* i in the tree. */
const Int Sibling [ ], /* input argument of size nn, not modified.
* If f is a node in the link list of the
* children of node i, then Sibling [f] is the
* next child of node i.
*/
Int Order [ ], /* output order, of size nn. Order [i] = k
* if node i is the kth node of the reordered
* tree. */
Int Stack [ ] /* workspace of size nn */
#ifndef NDEBUG
, Int nn /* nodes are in the range 0..nn-1. */
#endif
)
{
Int f, head, h, i ;
#if 0
/* --------------------------------------------------------------------- */
/* recursive version (Stack [ ] is not used): */
/* --------------------------------------------------------------------- */
/* this is simple, but can caouse stack overflow if nn is large */
i = root ;
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
k = AMD_post_tree (f, k, Child, Sibling, Order, Stack, nn) ;
}
Order [i] = k++ ;
return (k) ;
#endif
/* --------------------------------------------------------------------- */
/* non-recursive version, using an explicit stack */
/* --------------------------------------------------------------------- */
/* push root on the stack */
head = 0 ;
Stack [0] = root ;
while (head >= 0)
{
/* get head of stack */
ASSERT (head < nn) ;
i = Stack [head] ;
AMD_DEBUG1 (("head of stack "ID" \n", i)) ;
ASSERT (i >= 0 && i < nn) ;
if (Child [i] != EMPTY)
{
/* the children of i are not yet ordered */
/* push each child onto the stack in reverse order */
/* so that small ones at the head of the list get popped first */
/* and the biggest one at the end of the list gets popped last */
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
head++ ;
ASSERT (head < nn) ;
ASSERT (f >= 0 && f < nn) ;
}
h = head ;
ASSERT (head < nn) ;
for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
{
ASSERT (h > 0) ;
Stack [h--] = f ;
AMD_DEBUG1 (("push "ID" on stack\n", f)) ;
ASSERT (f >= 0 && f < nn) ;
}
ASSERT (Stack [h] == i) ;
/* delete child list so that i gets ordered next time we see it */
Child [i] = EMPTY ;
}
else
{
/* the children of i (if there were any) are already ordered */
/* remove i from the stack and order it. Front i is kth front */
head-- ;
AMD_DEBUG1 (("pop "ID" order "ID"\n", i, k)) ;
Order [i] = k++ ;
ASSERT (k <= nn) ;
}
#ifndef NDEBUG
AMD_DEBUG1 (("\nStack:")) ;
for (h = head ; h >= 0 ; h--)
{
Int j = Stack [h] ;
AMD_DEBUG1 ((" "ID, j)) ;
ASSERT (j >= 0 && j < nn) ;
}
AMD_DEBUG1 (("\n\n")) ;
ASSERT (head < nn) ;
#endif
}
return (k) ;
}